Sun Certified Enterprise Architect
Inhoudsopgave:
2Chapter 01
Sun Certification for Enterprise Architect

21.1 JEE Architecture and Connectivity to Existing data

3Chapter 02
Common Architectures and Protocols

32.1 Types of Architecture

32.1.1
System Architecture

32.1.2
Reference Architecture

32.1.3
Flexible Reference Architecture

32.2 Architectural Design and Principals

32.2.1
Architecture vs. Design

32.2.2
Architectural Design

32.3 Architectural Terminology

32.3.1
Abstraction

32.3.2
Surface Area

42.4 Principals of Architecture

42.4.1
Layering

42.4.2
Tiers

62.5 Creating an Architecture Using Distributed Services and JEE

62.5.1
Enterprise JavaBeans

62.5.2
Iterative Development/MVC

62.5.3
Simplified Architecture and Development

72.5.4
Component-Based Application Models

72.5.4.1
Containers

72.5.4.2
Support for Client Components

82.5.4.3
Support for Business Logic Components

92.6 JEE API’s and Certification

92.7 XML and JEE

102.8 Distributed Programming Services

102.8.1
Naming and Registration

102.8.2
Remote Method Invocation (RMI)

102.8.3
Protocols

112.8.4
Distributed Object Frameworks

122.8.4.1
CORBA

122.8.4.2
Native Language Integration

122.8.4.3
Java/RMI

122.8.4.4
Distributed Component Object Model (DCOM)

Chapter 01
Sun Certification for Enterprise Architect
1.1 JEE Architecture and Connectivity to Existing data
[image: image1.png]Java Enterprise Edition (JEE) combines presentation, business processes, and enterprise connectivity.

Clientside presentation Server-side presencation Business procasses/domains Enterprise connectivey
| |
] RN

I3 D

I3 5

—>
Jova serviet 3
Jova serviet 3

Articles on JEE Technologies that cover the SCEA exam:
[image: image2.png](@ JEE Tutorial www.java.sun.com/J 2EE/tutorialfindex. heml
B TheServerSide, Your JEE Community www.theserverside.com)

[image: image3.png]W SCEA_JEE hutp:/Jtech.groups.yahoo|
.com/groupfscea_j2ee|

[image: image4.png]W SCEA_PREP hutp://tech.groups.yahoo.com/group/scea_prep
B JavaRanch hipi//saloon.javaranch.comjcgi-binfubblultimatebb
_cgitubb=forum&f=26

[image: image5.png]W SUN'’s Coursework from the creators of SCEA exam www.sun.com/

wrainingfeertification/javafjava_certpath_ee. heml

[image: image6.png]B Middleware Company, a premier JEE training company www.middleware-
company.com

Chapter 02
Common Architectures and Protocols
2.1 Types of Architecture

2.1.1
System Architecture

The result of a design process and must consider the functions of components, their interfaces, interactions and constraints.
Architectures are best represented using a tool such as UML (Unified Modeling Language).

2.1.2
Reference Architecture

Describes the kind of System components and their responsibilities, dependencies, possible interactions and constraints.
2.1.3
Flexible Reference Architecture
Example is JNDI (Java Naming and Directory Interface).
2.2 Architectural Design and Principals

2.2.1
Architecture vs. Design

Architecturals scope; its architectural Design Patterns and the Frameworks upon which you can add components. Realizes Nonfunctionality!!! Design operates at a low level of abstraction.

Together they provide a solution that meets the functional and non-functional constraints of the requirements.

2.2.2
Architectural Design
The architect has to decide which Framework to use, JEE, CORBA (Common Object Request Broker), RMI (Remote Method Invocation) or DCOM (Distributed Component Object Model) f.e.

2.3 Architectural Terminology
2.3.1
Abstraction
Examples are Database Application Server, Printer, DatabaseServer.

2.3.2
Surface Area

Interaction between Components, define method’s of Classes and split Classes if necessary.

2.4 Principals of Architecture

2.4.1 Layering

[image: image7.png]The layers of architecture are systems in themselves, and they do what all systems d
they obtain input from their environment and provide output to their environment.

[image: image8.png]Architectural
layers

Client

Network

Server

User interface

Communication protocol

Data dictionary

Function set

Translation layer

Data objects

Database access

Data transport

Dat partitioning

2.4.2
Tiers
2.4.2.1 Multi-tier Architecture
· Front-end component such as a Web server.

· Back-end such as a Database server

· Middle-tier component such as a Application server

[image: image9.png][TER Rl Architectural tiers

Presentation tier

Business ier Resource tier

\Web server

Application server Database and legacy server(s)

Danibase

[image: image10.png]The three-tier Java architecture is achieved by using interactive components—
HTML, applets, the Java application that resides on the client, and the servlets and
JSPs that reside on the middle tier. JDBC communication is used on the middle tier|

to create the persistence data that resides or the third or back-end tier—which is the
database layer.

[image: image11.png]Basic Three-Tier Java Technology Architecture

HTML HTTP ervle RDBMS

HTML with applet Legacy File

Java application JRMP RMI Server JDBC RDBMS, Legacy File
Java application RMI- TIOP EJB JDBC RDBMS, Legacy File
Jova ol 0P CORBA JDBC RDBMS, File
(ot aJava 3

[image: image12.png]Capabilities and System Quality

System Quality Definition

Availability ‘The degree to which a system is accessible. The term 24x7 describes
total availability. This aspect of a system is often coupled with
performance.

Reliability The ability to ensure the integrity and consistency of an application

and its transactions.

Manageability The ability to administer and thereby manage the system resources
to ensure the availability and performance of a system with respect
to the other capabilities.

Flexibility The ability to address architectural and hardware configuration
changes without a great deal of impact to the underlying system.

Performance The ability to carry out functionality in a timeframe that meets
specified goals.

Capacity The ability of a system to run multiple tasks per unit of time.

Scalability The ability to support the required availability and performance as
transactional load increases.

Extensibility The ability to extend functionality.

Validity The ability to predict and confirm results based on a specified input

or user gesture.

Reusability The ability to use a component in more than one context without
changing its internals.

Security The ability to ensure that information is not accessed and modified
unless done so in accordance with the enterprise policy.

2.5 Creating an Architecture Using Distributed Services and JEE
[image: image13.png]JEE takes advantage of many features of standard Java, such as “write once, run
anywhere” portability, the JDBC API for database access, RMI, CORBA technology
for interaction with existing enterprise resources, and a security model. Building

on this base, JEE adds support for EJB components, the Java Servlets AP, JSP,

and Extensible Markup Language (XML) technology. The JEE standard includes
complete specifications and compliance tests to ensure portability of applications
across the wide range of existing enterprise systems capable of supporting JEE. This
portability was also a key factor in the success of SQL.

2.5.1
Enterprise JavaBeans

A major part of the JEE architecture is EJB. It’s a middleware component.
More about JEE-compliant application servers on http://java.sun.com/javaee/

2.5.2 Iterative Development/MVC

[image: image14.png]Presentation Application Services Domain
FIcURE 28 VIEW CONTROL As MODEL

The MVC

ides an M: Business B
provi aintains processes usiness
application HTML client saate entities

- > « > Controls < >

development Java clent Handles] Business
breakout for exceptions s rules
developing &7

with JEE.

2.5.3 Simplified Architecture and Development
[image: image15.png]The JEE platform supports a simplified, component-based development model.
Because it is based on the Java programming language and the Java Platform,
Standard Edition (JxSE), this model offers “write once, run anywhere” portability,|
supported by any server product that conforms to the JEE standard.

2.5.4
Component-Based Application Models

[image: image16.png][Component-based application models map easily and with flexibility to the
functionality desired from an application. As the examples presented throughout
this book illustrate, the JEE platform provides a variety of ways to configure the
architecture of an application, depending on factors such as client types required,
level of access required to data sources, and other considerations. Component-based
design also simplifies application maintenance. Because components can be updated
and replaced independently, new functionality can be shimmed into existing
applications simply by updating selected components.

2.5.4.1
Containers

Through the use of Deployment Descriptors components can be configured to a specific container’s environment.

[image: image17.png]EJB container
EBs

«

J5Ps
Servlets

Web container

Enterprise
connectivity

Naming
services

Messaging

CORBA
integration

Security

Transaction
management

Database.
connectivity

FIGURE 2.9

for web and EJB
are run from

JEE components
containers.

2.5.4.2
Support for Client Components

[image: image18.png]The JEE client tier provides support for a variety of client types, both within the
enterprise firewall and outside. Clients can be offered through web browsers by using
plain HTML pages, dynamic HTML generated with JSP technology, or Java applets.
Clients can also be offered as stand-alone Java language applications. JEE clients

are assumed to access the middle tier primarily using Web standards, namely HTTP,
HTML, and XML.

2.5.4.3
Support for Business Logic Components
[image: image19.png]FIGURE 2.10

The J2EE
enterprise
application equals
the EAR plus the
deployment
XML file.

Enterprise Application = EAR + application xml
Archived components plus XML to describe deployment

Encerprise Archive (.ear)

application.xml
‘Web archive €8 archive Client archive
(war) (jar) (car)
webxml ejoriarxml application-dlientxml

This defines the larger, distributed programming environment in which enterprise
beans are used as business logic components. Application servers such as Sun’s

iPlanet, BEA's WebLogic, and IBM’s WebSphere provide the environment, which

must be scalable, secure, and reliable.

The JEE application is packaged in an archive or “Zip” file known as an
Enterprisc Archive (EAR). The EAR contains the web, EJB, and client components

(see Figure 2-10).

The web, EJB, and client components are encased in their own archive files (web
archive, or WAR; Java archive, or JAR; and client archive, or CAR) as shown in

Figure 2-11.

[image: image20.png]IR The EAR file encapsulates the web archive, client archive, and EJB archive.

EAR deployment EAR
EAR descriptor. deployment
plan
5BJAR £JB modle
Deployment Deployment
descriptor descriptor
ED
deployment plan [~ E)B module

WaR WAR module
Deployment Deployment
descriptor. descriptor

WAR
deployment phn |~ WAR module

‘Application

e dient module

-
‘Applcation
ey Deployment
descriptor
Application client

Deployment Application client | _

descriptor deploymen plan module

2.6 JEE API’s and Certification
[image: image21.png]The JEE platform, together with the JSE platform, includes a number of industry-
standard APIs for access to existing enterprise information systems. The following
APIs provides basic access to these systems:

JDBC, the API for accessing relational data from Java

The Java Transaction API (JTA), the API for managing and coordinating
transactions across heterogeneous enterprise information systems

The Java Naming and Directory Interface (JNDI), the API for accessing

information in enterprise name and directory services

The Java Message Service (JMS), the API for sending and receiving messages
through enterprise-messaging systems such as [BM MQ Series and TIBCO
Rendezvous

JavaMail, the API for sending and receiving e-mail

Java IDL, the API for calling CORBA services

2.7 XML and JEE
[image: image22.png]HTML is rigidly defined and cannot support all enterprise data types; therefore, those
shortcomings provided the impetus to create XML. The XML standard enables the
enterprise to define its own markup languages with emphasis on specific tasks, such as
electronic commerce, supply-chain integration, data management, and publishing.

[image: image23.png]Sun Microsystems, IBM, Novell, Oracle, and even Microsoft support the XML
standard. Sun Microsystems coordinated and underwrote the World Wide Web
Consortium (W3C) working group that delivered the XML specification. Sun
also created the Java platform, a family of specifications that form a ubiquitous
application development and runtime environment.

[image: image24.png]XML provides a data-centric method of moving data between Java and non-
Java technology platforms. Although CORBA represents the method of obtaining
interoperability in a process-centric manner, it is not always possible to use CORBA
connectivity.

[image: image25.png]XML is a meta-language; it can be used to create any other language, including a
scripting language. This is a powerful use of XML technology that the industry is just
starting to explore.

2.8 Distributed Programming Services
[image: image26.png]The EJB container and application server are also responsible for maintaining the
distributed object environment. This means that they must manage the logistics of |
the distributed objects as well as the communications between them.

2.8.1
Naming and Registration

[image: image27.png]For each class installed in a container, the container automatically registers an
EJBHome interface in a directory using the JNDI APL Using JNDI, any client can
locate the EJBHome interface to create a new bean instance or to find an existing
entity bean instance. When a client creates or finds a bean, the container returns its|

[EJBObject interface.

2.8.2
Remote Method Invocation (RMI)

[image: image28.png]RMI is a high-level programming interface that makes the location of the server
transparent to the client. The RMI compiler creates a stub object for each
remote interface. The stub object is either installed on the client system or can
be downloaded at runtime, providing a local proxy object for the client. The stub
implements all the remote interfaces and transparently delegates all method calls
across the network to the remote object.

The EJB framework uses the Java RMI API to define and provide access to EJBs.
The EJBHome and EJBObject interfaces, which are both required when creating

EJBs, are extended from the java.rmi.Remote interface.

2.8.3
Protocols

[image: image29.png]The EJB specification asserts no requirements for a specific distributed object
protocol. RMI is able to support multiple communication protocols. The Java

RMI is the native protocol, supporting all functions within RML. The next release
of RMI plans to add support for communications using the CORBA standard
communications protocol, IIOP, which supports almost all functions within RMI.
EJBs that rely only on the RMI/IIOP subset of RMI are portable across both
protocols. Third-party implementations of RMI support additional protocols, such as
Secure Sockets Layer (SSL).

2.8.4 Distributed Object Frameworks
[image: image30.png]| The current distributed object frameworks are CORBA, RMI, DCOM, and

EJB. The EJB specification is intended to support compliance with the range of
(CORBA standards, current and proposed. The two technologies can function in a
complementary manner. CORBA provides a great standards-based infrastructure
on which to build EJB containers. The EJB framework makes it easier to build an
application on top of a CORBA infrastructure. Additionally, the recently released
(CORBA components specification refers to EJB as the architecture when building
(CORBA components in Java.

[image: image31.png]TABLE 2 Protocol

Advantages

‘Well-established protocol that
is firewall-friendly and stateless,
so that if servers fail between
requests, the failure may be
undetected by clients.

The stateless nature makes it easy
to scale and load balance HTTP
servers.

Disadvantages

Limited to communication with
aservlet and JSP. Because it is
stateless (session tracking requires
cookies andfor URL rewriting),
it's difficult to secure or maintain
session state.

Object is passed by value. The
client or server can reconstitute
the objects easily.

The data type can be any Java
object.

Any Java objects can be passed as
arguments.

Arguments must implement the
Serializable interface or java.rmi.
Remote object.

Heterogeneous objects are not
supported.

Heterogeneous objects are
supported.

Basically the opposite of RML
‘Well established in the industry,
with 800+ members in the OMG
supporting the standard.

TIOP wire protocol guarantees
interoperability between vendor
products.

Bundled with well-known and
well-documented services such
as COSNaming and CORBASec
to extend the capabilities of the
ORB.

Objects are not passed by value;
only the argument data is passed.
The server/ client has to
reconstitute the objects with the
data.

Only commonly accepted datatypes
can be passed as arguments unless
CORBA 2.3/Objects By Value
specification used.

Distributed HTTP

Object

| Communication
RMI
CORBA
DCOM

Fits well with the Windows OS
deployment platform.

‘Works best in the Windows
environment.

2.8.4.1
CORBA

[image: image32.png](CORBA is a language independent, distributed object model specified by the
(OMG. This architecture was created to support the development of object-oriented|
applications across heterogeneous computing environments that might contain
different hardware platforms and operating systems.

2.8.4.2
Native Language Integration

[image: image33.png]Native Language Integration By using IIOP, EJBs can interoperate with na-
tive language clients and servers. IIOP facilitates integration between CORBA and
EJB systems. EJBs can access CORBA servers, and CORBA clients can access EJBs.
Also, if a COM/CORBA internctworking service is used, ActiveX clients can access
EJBs, and EJBs can access COM servers. Eventually, there may also be a DCOM
implementation of the EJB framework.

2.8.4.3
Java/RMI

[image: image34.png]Since a Bean’s remote and home interfaces are RMI compliant, they can interact
with CORBA objects via RMI/IIOP, Sun, and IBM’s adaptation of RMI, which
conforms to the CORBA -standard 1IOP protocol. The Java Transaction API (JTA),
which is the transaction API prescribed by the EJB specification for bean-managed
transactions, was designed to be well integrated with the OMG Object Transaction
Service (OTS) standard.

2.8.4.4
Distributed Component Object Model (DCOM)

[image: image35.png]the COM specification is at the binary level, it allows DCOM server components
to be written in diverse programming languages such as C++, Java, Object Pascal
(Delphi), Visual Basic, and even COBOL. As long as a platform supports COM
services, DCOM can be used on that platform. DCOM is now heavily used on the
Windows platform.

