Sun Certified Java Programmer Two Minute Drill

Sun Certified Java Programmer
-- Two Minute Drill --

Inhoudsopgave
2Chapter 01
Declarations and Acces Control

8Chapter 02
Object Orientation

13Chapter 03
Assignments

17Chapter 04
Operators

19Chapter 05
Flow Control, Exceptions, Assertions

23Chapter 06
Strings, I/O, Formatting and Parsing

27Chapter 07
Generics and Collections

32Chapter 08
Inner Classes

34Chapter 09
Threads

37Chapter 10
Development

Chapter 01
Declarations and Acces Control
[image: image1.png]TWO-MINUTE DRILL

Remember that in this chapter, when we talk about classes, we're referring to
non-inner classes, or top-level classes. We'll devote all of Chapter 8 to inner classes.

Identifiers (Objective 1.3)

a
a
a
a

Identifiers can begin with a letter, an underscore, or a currency character.
After the first character, identifiers can also include digits.
Identifiers can be of any length.

JavaBeans methods must be named using camelCase, and depending on the
method's purpose, must start with s=t, get, s, add, or remove.

Declaration Rules (Obijective I.1)

a
a

a

a
s}
Q

A source code file can have only one publ ic class.
If the source file contains a public class, the filename must match the
public class name.

A file can have only one package statement, but multiple imports.

The package statement (if any) must be the first (non-comment) line ina
source file.

The import statements (if any) must come after the package and before
the class declaration.

If there is no pacicage statement, impor statements must be the first (non-
comment) statements in the source file.

package and import statements apply to all classes in the file.
A file can have more than one nonpublic class.

Files with no publ i c classes have no naming restrictions.

Class Access Modifiers (Objective I.1)

a

a
a
a
a

There are three access modifiers: public, protected, and privace.
There are four access levels: public, protected, default, and private.

Classes can have only public or default access.

A class with default access can be sen only by classes within the same package.
A class with public access can be seen by all classes from all packages.

[image: image2.png]Q Class visibility revolves around whether code in one class can
Q Create an instance of another class
O Extend (or subclass), another class
0 Access methods and variables of another class

Class Mo
Q Classes can also be modified with £inal, abstract, or strictfp.

A class cannot be both £inal and abstract.

A £inal class cannot be subclassed.

An abstract class cannot be instantiated.

ers (Nonaccess) (Objective 1.2)

A single abstract method in a class means the whole class must be abstract.
An abstract class can have both abstract and nonabstract methods.

The first concrete class to extend an abstract class must implement all of its
abstract methods.

Interface Implementation (Objective 1.2)

O Interfaces are contracts for what a class can do, but they say nothing about
the way in which the class must do .

O Interfaces can be implemented by any class, from any inheritance tree.

Q An interface is like a 100-percent abstract class, and is implicitly abstract
whether you type the abstract modifier in the declaration or not.

Q An interface can have only abstract methods, no concrete methods allowed.

O Interface methods are by default publ ic and abstzact—explicit declaration
of these modifiers is optional.

Q Interfaces can have constants, which are always implicitly public,
static, and £inal.

Q Interface constant declarations of public, statie, and £inal are optional
in any combination.

O A legal nonabstract implementing class has the following properties:
Q It provides concrete implementations for the interface’s methods.
Q It must follow all legal override rules for the methods it implements.
Q It must not declare any new checked exceptions for an

implementation method.

[image: image3.png]o

Q It must not declare any checked exceptions that are broader than
the exceptions declared in the interface method.

Q It may declare runtime exceptions on any interface method
implementation regardless of the interface declaration.

O It must maintain the exact signature (allowing for covariant returns)
and return type of the methods it implements (but does not have to
declare the exceptions of the interface).

A class implementing an interface can itself be abstract.

An abstzact implementing class does not have to implement the interface

methods (but the first conerete subclass must).

A class can extend only one class (no multiple inheritance), but it can

implement many interfaces.

Interfaces can extend one or more other interfaces.

Interfaces cannot extend a class, or implement a class or interface.

When taking the exam, verify that interface and class declarations are legal
before verifying other code logic.

Member Access Modifiers (Objectives 1.3 and 1.4)

s]
s]
s]

[y o}

Methods and instance (nonlocal) variables are known as "members.”
Members can use all four access levels: public, protected, default, private.
Member access comes in two forms:

0 Code in one class can access a member of another class.

O A subelass can inherit a member of ts superclass.

Ifa class cannot be accessed, its members cannot be accessed.

Determine class visibility before determining member visibility.

‘public members can be accessed by all other classes, even in other packages.
1If a superclass member is public, the subelass inherits it—regardless of package.
Members accessed without the dot operator (.) must belong to the same class.
this. always refers to the currently executing object.

this.aMethod() is the same as just invoking aMethod ().

private members can be accessed only by code in the same class.

private members are not visible to subclasses, so private members can-
not be inherited.

[image: image4.png]Q Default and protected members differ only when subelasses are involved:
Q Default members can be accessed only by classes in the same package.
Q protected members can be accessed by other classes in the same
package, plus subclasses regardless of package.
Q protected = package plus kids (kids meaning subclasscs).

Q For subclasses outside the package, the protected member can be
accessed only through inheritance; a subelass outside the package cannot
access a protected member by using a reference to a superclass instance
(in other words, inheritance is the only mechanism for a subclass
outside the package to access a protected member of its superclass).

Q A protected member inherited by a subclass from another package is
not accessible to any other class in the subclass package, except for the
subclass' own subclasses.

Local Variables (Objective 1.3)
Q Local (method, automatic, or stack) variable declarations cannot have
access modifiers.
Q final is the only modifier available to local variables.
Q Local variables don't get default values, so they must be initialized before use.

Other Modifiers—Members (Obijective 1.3)

Q £inal methods cannot be overridden in a subclass.

Q abstract methods are declared, with a signature, a return type, and
an optional throws clause, but are not implemented.

Q sbstract methods end in a semicolon—no curly braces.

Q Three ways to spot a non-abstract method:
Q The method is not marked abstrac.
Q The method has curly braces.
Q The method has code between the curly braces.

Q The first nonabstract (concrete) class to extend an abstract class must
implement all of the abstract class' abstract methods.

Q The synchronized modifier applies only to methods and code blocks.

Q synchronized methods can have any access control and can also be
marked £inal.

[image: image5.png]Q abstract methods must be implemented by a subclass, so they must be
inheritable. For that reason:

O abstract methods cannot be private.
O abstract methods cannot be £inal.

Q The nat ive modifier applies only to methods.

Q The strict£p modifier applies only to classes and methods.

Methods with var-args (Objective 1.4)
Q As of Java 5, methods can declare a parameter that accepts from zero to
many arguments, a so-called var-arg method.
Q A var-arg parameter s declared with the syntax type. . . name; for instance:
dostuff(int... x) { }
QA vararg method can have only one var-arg parameter.
Q In methods with normal parameters and a var-arg, the var-arg must come last.

Variable Declarations (Objective 1.3)
Q Instance variables can
0 Have any access control
0 Be marked £inal or transient
O Instance variables can't be sbstract, synchronized, native, or strictep.
Q Itis legal to declare a local variable with the same name as an instance
variable; this is called "shadowing."
Q final variables have the following properties:
O £inal variables cannot be reinitialized once assigned a value.

O final reference variables cannot refer to a different object once the
object has been assigned to the £inal variable.

Q £inal reference variables must be initialized before the constructor
completes.

Q There is no such thing as a £inal object. An object reference marked £inal
does not mean the object itself is immutable.

Q The transient modifier applies only to instance variables.

0 The volatile modifier applies only to instance variables.

[image: image6.png]Array Declarations (Objective 1.3)

Q' Arrays can hold primitives or objects, but the array itself s always an object.

Q When you declare an array, the brackets can be to the left or right of the
variable name.

Q It is never legal to include the size of an array in the declaration.

O An array of objects can hold any object that passes the IS-A (or instanceof)
test for the declared type of the array. For example, if Horse extends Animal,
then a Horse object can go into an Animal array.

Static Variables and Methods (Objective 1.4)
Q' They are not tied to any particular instance of a class.
O No classes instances are needed in order to use static members of the class.
O There is only one copy of a static variable / class and all instances share it.
=}

static methods do not have direct access to non-static members.

Enums (Objective 1.3)

O An enun specifies a list of constant values assigned to type.

O An enunis NOT a String or an inf; an enum constan’s type is the enum
type. For example, SUMMER and FALL are of the enum type Season.

O An enun can be declared outside or inside a class, but NOT in a method.

O An enun declared outside a class must NOT be marked static, £inal,
sbstract, protected, or private.

Q' Enums can contain constructors, methods, variables, and constant class bodies.

Q' enum constants can send arguments to the enum constructor, using the
syntax BIG(8), where the int literal 8 is passed to the enum constructor.

Q' enum constructors can have arguments, and can be overloaded.

Q' num constructors can NEVER be invoked directly in code. They are always
called automatically when an enunis initialized.

Q The semicolon at the end of an emum declaration is optional. These are legal:
enum Foo { ONE, TWO, THREE}
enum Foo { ONE, TWO, THREE);

Q yyZnum. values () returns an array of MyEnuns values.

[image: image7.png]for (Coffeesize cs: CoffeeSize.values())
System.out.println(cs + " " + cs.getOunces());

Chapter 02
Object Orientation
[image: image8.png]TWO-MINUTE DRILL

Here are some of the key points from each certification objective in this chapter.

Encapsulation, IS-A, HAS-A (Objective 5.1)
Q Encapsulation helps hide implementation behind an interface (or API).
O Encapsulated code has two features:

Q Instance variables are kept protected (usually with the private modifier).

O Getter and setter methods provide access to instance variables.

IS-A refers to inheritance or implementation.

IS-A is expressed with the keyword extends.

IS-A, "inherits from," and "is a subtype of " are all equivalent expressions.

HAS-A means an instance of one class "has a" reference to an instance of
another class or another instance of the same class.

oouoo

Inheritance (Objective 5.5)
Q Inheritance allows a class to be a subclass of a superclass, and thereby
inherit public and protected variables and methods of the superclass.

Q Inheritance is a key concept that underlies IS-A, polymorphism, overriding,
overloading, and casting.

Q All classes (except class object), are subclasses of type object, and therefore
they inherit obj ect's methods.

Polymorphism (Objective 5.2)

Q Polymorphism means "many forms."

Q A reference variable is always of a single, unchangeable type, but it can refer
toa subtype object.

Q Asingle object can be referred to by reference variables of many different
types—as long as they are the same type or a supertype of the object.

Q The reference variable's type (ot the object's type), determines which
methods can be called!

Q Polymorphic method invocations apply only to overridden instance methods.

[image: image9.png]Overriding and Overloading (Obijectives 1.5 and 5.4)
0 Methods can be overridden or overloaded; constructors can be overloaded
but not overridden.

0 Abstract methods must be overridden by the first concrete (non-abstract)
subclass.

0 With respect to the method it overrides, the overriding method
O Must have the same argument list.

O Must have the same return type, except that as of Java 5, the return type
can be a subclass—this is known as a covariant return.

Must not have a more restrictive access modifier.
May have a less restrictive access modifier.

Must not throw new or broader checked exceptions.

oouoo

May throw fewer or narrower checked exceptions, or any
unchecked exception.
Q £inal methods cannot be overridden.

Q Only inherited methods may be overridden, and remember that private
‘methods are not inherited.

O A subclass uses super . overriddenttethodans () to call the superclass
version of an overridden method.

Q Overloading means reusing a method name, but with different arguments.
Q Overloaded methods
Q Must have different argument lists
O May have different return types, if argument lists are also different
Q May have different access modifiers
Q May throw different exceptions
O Methods from a superclass can be overloaded in a subclass.
Polymorphism applies to overriding, no to overloading.

[}

Q Object type (not the reference variable's type), determines which overridden
method is used at runtime.

O Reference type determines which overloaded method will be used at
compile time.

[image: image10.png]Reference Variable Casting (Objective 5.2)
Q There are two types of reference variable casting: downcasting and upcasting.
Q Downcasting: If you have a reference variable that refers to a subtype object,
you can assign it to a reference variable of the subtype. You must make an
explicit cast to do this, and the result is that you can access the subtype's
members with this new reference variable.

Q Upcasting: You can assign a reference variable to a supertype reference vari-
able explicitly or implicitly. This is an inherently safe operation because the
assignment restricts the access capabilities of the new variable.

Implementing an Interface (Objective 1.2)

Q When you implement an interface, you are fulfilling its contract.
Q You implement an interface by properly and concretely overriding all of the
methods defined by the interface.

Q Asingle class can implement many interfaces.

Return Types (Objective 1.5)

Q Overloaded methods can change retun types; overridden methods cannot,
except in the case of covariant returns.

Q Object reference retun types can accept mull as a return value.

Q An array is a legal rerum type, both to declare and return as a value.

Q For methods with primitive retum types, any value that can be implicitly
converted to the retum type can be returned.

Q Nothing can be returned from a void, but you can retum nothing. You're
allowed tosimply say return, in any method with a void retum type, to bust
out of a method early. But you can't return nothing from a method with a
non-void return type.

Q Methods with an object reference retum type, can return a subtype.

Q Methods with an interface return type, can return any implementer.

Constructors and Instantiation (Objectives 1.6 and 5.4)

Q A constructor is always invoked when a new object is created.

[image: image11.png]Oooo

o

Each superclass in an object's inheritance tree will have a constructor called.

Every class, even an abstract class, has at least one constructor.

Constructors must have the same name as the class.

Constructors don't have a return type. If you see code with a retum type, it's a

method with the same name as the class, it's not a constructor.

Typical constructor execution occurs as follows:

O The constructor calls its superclass constructor, which calls its superclass
constructor, and so on all the way up to the Object constructor.

O The Object constructor executes and then retumns to the calling
constructor, which runs to completion and then returns to its calling
constructor, and so on back down to the completion of the constructor of
the actual instance being created.

Constructors can use any access modifier (even private!).

The compiler will create a default constructor if you don't create any construc-

tors in your class.

The default constructor is a no-arg constructor with a no-arg call to super ().

The first statement of every constructor must be a call to either this () (an

overloaded constructor) or super () .

The compiler will add a call to super () unless you have already put in a call

to this () or super ().

Instance members are accessible only after the super constructor runs.

Abstract classes have constructors that are called when a concrete

subclass is instantiated.

Interfaces do not have constructors.

If your superclass does not have a no-arg constructor, you must create a con-

structor and insert a call to supex () with arguments matching those

of the superclass constructor.

Constructors are never inherited, thus they cannot be overridden.

A constructor can be directly invoked only by another constructor (using

acall to super () or this()).

Issues with calls to this ()

O May appear only as the first statement in a constructor.

O The argument list determines which overloaded constructor is called.

[image: image12.png]0 Constructors can call constructors can call constructors, and so on, but
sooner or later one of them better call super () or the stack will explode.

Q Calls to this () and supex () cannot be in the same constructor. You can
have one or the other, but never both.

Statics (Objective 1.3)

Q

Q

Q

Use stat ic methods to implement behaviors that are not affected by the
state of any instances.
Use static variables to hold data that is class specific as opposed to instance
specific—there will be only one copy of a static variable.
All static members belong to the class, not to any instance.
A static method can't access an instance variable directly.
Use the dot operator to access static members, but remember that using a
reference variable with the dot operator s really a syntax trick, and the com-
piler will substitute the class name for the reference variable, for instance:
d.dostuff () ;
becomes:
Dog.doStuff () ;
static methods can't be overridden, but they can be redefined.

Coupling and Cohesion (Objective 5.1)

Q

Q

Coupling refrs to the degree to which one class knows about or uses mem-.
bers of another class.

Loose coupling is the desirable state of having classes that are well encapsu-
lated, minimize references to each other, and limit the breadth of API usage.
Tight coupling is the undesirable state of having classes that break the rules of
loose coupling.

Cohesion refers to the degree in which a class has a single, well-defined role.
or responsibility.

High cohesion is the desirable state of a class whose members support a

single, well-focused role or responsibility.

Low cohesion is the undesirable state of a class whose members support mul-
tiple, unfocused roles or responsibilities.

Chapter 03
Assignments
[image: image13.png]TWO-MINUTE DRILL

Here are some of the key points from this chapter.

Stack and Heap

a
a

Local variables (method variables) live on the stack.
Objects and their instance variables live on the heap.

Literals and Primitive Casting (Objective 1.3)

a

a
a
a
a

Integer lterals can be decimal, octal (c.g. 013), or hexadecimal (e.g. 0x2d).
Literals for 1ongs end in L or 1.

Float literals end in ¥ or £, double literals end in a digit or D or d.

The boolean literals are true and £alse.

Literals for chars are a single character inside single quotes: 'd'.

Scope (Obijectives 1.3 and 7.6)

a
a

Scope refers to the lifetime of a variable.
There are four basic scopes:

Q Static variables live basically as long as their class lives.
O Instance variables live as long as their object lives.

O Local variables live as long as their method is on the stack; however, if
their method invokes another method, they are temporarily unavailable.

Q Block variables (e.g. ina £or or an i£) live until the block completes.

Basic Assignments (Objectives 1.3 and 7.6)

a

a
a
a
a
a
a

Literal integers are implicitly ints.

Integer expressions always result in an int-sized result, never smaller.
Floating-point numbers are implicitly doubles (64 bits).

Narrowing a primitive truncates the high order bits.

Compound assignments (e.g. +=), perform an automatic cast.

A reference variable holds the bits that are sed fo refer to an object.

Reference variables can refer to subclasses of the declared type but not to
superclasses.

[image: image14.png]O When creating a new object, e.g, Button b = new Button() ;, three
things happen:
O Make a reference variable named b, of type Button
Q Create a new Button object
O Asign the Button object to the reference variable b
Using a Variable or Array Element That Is Uni
Unassigned (Objectives 1.3 and 7.6)

0 When an array of objects is instantiated, objects within the array are not
instantiated automatically, but all the references get the default value of null.

lized and

0 When an array of primitives is instantiated, elements get default values.
Q Instance variables are always initialized with a default value.

Q Local/automatic/method variables are never given a default value. If you
attempt to use one before initializing i, you'll get a compiler error.

Passing Variables into Methods (Objective 7.3)
O Methods can take primitives and/or object references as arguments.

Method arguments are always copics.
Method arguments are never actual objects (they can be references to objects).
A primitive argument is an unattached copy of the original primitive.

A reference argument is another copy of a reference to the original object.

Do0ooo

Shadowing oceurs when two variables with different scopes share the same
name. This leads to hard-to-find bugs, and hard-to-answer exam questions.

Array Declaration, Construction, and Initialization (Obj. 1.3)
O Armays can hold primitives or objects, but the array itselfis always an object.
When you declare an array, the brackets can be left or right of the name.

It is never legal to include the size of an array in the declaration.

oDoo

You must include the size of an array when you construct it (using new)
unless you are creating an anonymous array.

o

Elements in an array of objects are not automatically created, although
primitive array clements are given default values.

O You'll et a NullPointerException if you try to use an array clement in an
object array, if that clement does not refer to a real object.

[image: image15.png]Arrays are indexed beginning with zero.

An ArraylndexOutOfBoundsException occurs if you use a bad index value.
Arrays have a Length variable whose value is the number of array clements.
The last index you can access is always one less than the length of the array.
Multidimensional arrays are just arrays of arrays.

The dimensions in a multidimensional array can have different lengths.

oouooooo

An array of primitives can accept any value that can be promoted implicitly
to the array's declared type;. e.g., a byte variable can go in an int array.

O Anarray of objects can hold any object that passes the IS-A (or instanceof)

test for the declared type of the array. For example, if Horse extends Animal,
then a Horse object can go into an Animal array.

Q If you assign an array to a previously declared array reference, the array you're
assigning must be the same dimension as the reference you're assigning it to.

Q You can assign an array of one type to a previously declared array reference of
one of ts supertypes. For example, a Honda array can be assigned to an array
declared as type Car (assuming Honda extends Car).

Initialization Blocks (Objectives 1.3 and 7.6)
Q Static initialization blocks run once, when the class is first loaded.

O Instance initialization blocks run every time a new instance is created. They
run after all super-constructors and before the constructor's code has run.

Q If multiple init blocks exist in a class, they follow the rules stated above,
AND they run in the order in which they appear in the source file.

Using Wrappers (Objective 3.1)

O The wrapper classes correlate to the primitive types.

O Wiappers have two main functions:
so that they can be handled like objects
‘methods for primitives (usually conversions)
O The three most important method families are

O oovalue() Takes no arguments, returns a primitive
O parseiec() TakesaString, retums a primitive, throws NFE.
O valueof() TakesaString, retums a wrapped object, throws NFE

[image: image16.png]O Wrapper constructors can take a String or a primitive, except for Character,
which can only take a char.
Q Radix refers to bases (typically) other than 10; octal is radix = 8, hex = 16.

Boxing (Objective 3.1)

Q AsofJava 5, boxing allows you to convert primitives to wrappers or to
convert wrappers to primitives automatically.

Q Using == with wrappers created through boxing is tricky; those with the same
small values (typically lower than 127), will be ==, larger values will not be ==.

Advanced Overloading (Obijectives 1.5 and 5.4)
Q Primitive widening uses the "smallest” method argument possible.
Used individually, boxing and var-args are compatible with overloading.
You CANNOT widen from one wrapper type to another. (IS-A fails.)
You CANNOT widen and then box. (An int can't become a Long.)
You can box and then widen. (An int can become an Object, via an Integer.)

You can combine var-args wit

oououoo

either widening or boxing.

Garbage Collection (Objective 7.4)

In Java, garbage collection (GC) provides automated memory management.
The purpose of GC is to delete objects that can't be reached.

Only the JVM decides when to run the GC, you can only suggest it.

You can't know the GC algorithm for sure.

Objects must be considered eligible before they can be garbage collected.
An object is cligible when no live thread can reach .

To reach an object, you must have a live, reachable reference to that object.
Java applications can run out of memory.

Islands of objects can be GCed, even though they refer to cach other.
Request garbage collection with system.ge () ; (only before the SCIP 6).
Class Object has a £inalize () method.

The £inalize () method is guaranteed fo run once and only once before the
garbage collector deletes an object.

[y o}

o

The garbage collector makes no guarantees, £inalize () may never run.
Q You can uneligibilize an object for GC from within £inalize () .

Chapter 04
Operators
[image: image17.png]TWO-MINUTE DRILL

Here are some of the key points from each section in this chapter.

Relational Operators (Objective 7.6)

Q Relational operators always result in a boolean value (crus or £alse).
Q There are six relational operators: >, and !=. The last two (-
and !=) are sometimes referred to as equality operators.

Q When comparing characters, Java uses the Unicode value of the character as
the numerical value.

Q Equality operators

O There are two equality operators: == and !

D Four types i en o NIRRT TRy]
reference variables.

O When comparing reference variables, == retuns £rue only if both references
refer to the same object.

instanceof Operator (Obijective 7.6)
QO instanceot s for reference variables only, and checks for whether the object
is of a particular type.
O The instanceot operator can be used only to test objects (or nul1) against
class types that are in the same class hierarchy.

Q For interfaces, an object passes the instanceof test if any of its superclasses
implement the interface on the right side of the instanceof operator

Arithmetic Operators (Objective 7.6)
Q There are four primary math operators: add, subtract, multiply, and divide.
Q' The remainder operator (%), retums the remainder of a division.

Q Expressions are evaluated from left to right, unless you add parentheses, or
unless some operators in the expression have higher precedence than others.

Q The *,/, and % operators have higher precedence than + and -.

[image: image18.png]String Concatenation Operator (Objective 7.6)

a
a

If cither operand is a String, the + operator concatenates the operands.
If both operands are numeric, the + operator adds the operands.

Increment/Decrement Operators (Objective 7.6)

=]
s]
s]

s]

Prefix operators (++ and --) run before the value is used in the expression.
Postfix operators (++ and --) run after the valu is used in the expression.
In any expression, both operands are fully evaluated before the operator

is applied.

Variables marked £inal cannot be incremented or decremented.

Ternary (Conditional Operator) (Obijective 7.6)

a]

Returns one of two values based on whether a boolean expression is true
or false.

O Returns the value after the if the expression is true.

O Returns the value after the : if the expression is false.

Logical Operators (Obijective 7.6)

s]
s]

s]
s]
=]
=]

oo

The exam covers six "logical" operators: &, 1,7, !, &, and 11
Logical operators work with two expressions (except for !) that must resolve.
to boolean values.

The && and & operators return true only if both operands are trus.
The || and | operators return true if cither or both operands are true.
The &&and | | operators are known as short-circuit operators.

The && operator does not evaluate the right operand if the left operand

is false.

The | | does not evaluate the right operand if the left operand is true.

The & and | operators always evaluate both operands.

The / operator (called the "logical XOR"), retuns txue if exactly one oper-
and is true.

The ! operator (called the "inversion” operator), returns the opposite value of
the boolean operand it precedes.

Chapter 05
Flow Control, Exceptions, Assertions
[image: image19.png]TWO-MINUTE DRILL

Here are some of the key points from each certification objective in this chapter.
You might want to loop through them several times.

Writing Code Using if and switch Statements (Obj. 2.1)

Q

Q

The only legal expression in an if statement is a boolean expression, in
other words an expression that resolves to a boolean or a Boolean variable.

Watch out for boolean assignments (=) that can be mistaken for boolean

boolean x = falses
if (x = true) { } // an assignment, so x will always be true!

Carly braces are optional for 1£ blocks that have only one conditional state-
ment. But watch out for misleading indentations.

switeh statements can evaluate only to enuns or the byte, shore, int, and
chax data types. You can't say,

long = = 30;
switen(s) { }

The case constant must be a literal or £inal variable, or a constant
expression, including an enum. You cannot have a case that includes a non-
final variable, or a range of values.

If the condition in a switch statement matches a case constant, execution
will run through all code in the swi tch following the matching case
statement until a break statement or the end of the switch statement is
encountered. In other words, the matching case is just the entry point into
the case block, but unless there's a break statement, the matching case is
not the only case code that runs.

The default keyword should be used in a switch statement if you want to
run some code when none of the case values match the conditional value.
The default block can be located anywhere in the switch block, so if no
case matches, the default block will be entered, and if the default does
not contain a break, then code will continue to execute (fall-through) to the
end of the switch or until the break statement is encountered.

[image: image20.png]Writing Code Using Loops (Obiective 2.2)

QA basic for statement has three parts: declaration and/or initialization, bool-
ean evaluation, and the iteration expression.

Q Ifa variable is incremented or evaluated within a basic £or loop, it must be
declared before the loop, or within the £ox loop declaration.

0 A variable declared (not just initialized) within the basic for loop declara-
tion cannot be accessed outside the £or loop (in other words, code below the
£or loop won't be able to use the variable).

O You can initialize more than one variable of the same type in the first part
of the basic £ox loop declaration; each initialization must be separated by a
comma.

O An enhanced for statement (new as of Java 6), has two parts, the declaration
and the expression. It is used only to loop through arrays or collections.

O With an enhanced for, the expression is the array or collection through
which you want to loop.

Q With an enhanced for, the declaration is the block variable, whose type is
compatible with the elements of the array or collection, and that variable
contains the value of the element for the given iteration.

O You cannot use a number (old C-style language construct) or anything that
does not evaluate to a boolean value as a condition for an 1 £ statement or
looping construct. You can't, for example, say ££ (x) , unless x is a boolean
variable.

Q The do loop will enter the body of the loop at least once, even if the test
condition is not met.

Using break and continue (Objective 2.2)

O An unlabeled break statement will cause the current iteration of the inner-
most looping construct to stop and the line of code following the loop to run.

O An unlabeled cont inue statement will cause: the current iteration of the
innermost loop to stop, the condition of that loop to be checked, and if
the condition is met, the loop to run again.

Q Ifthe break statement or the cont-inue statement is labeled, it will cause
similar action to oceur on the labeled loop, not the innermost loop.

[image: image21.png]Handling Exceptions (Objectives 2.4, 2.5,and 2.6)

QO Exceptions come in two flavors: checked and unchecked.

O Checked exceptions include all subtypes of xception, excluding classes
that extend RuntimeException.

O Checked exceptions are subject to the handle or declare rule; any method
that might throw a checked exception (including methods that invoke meth-
ods that can throw a checked exception) must cither declare the exception
using throws, or handle the exception with an appropriate try/catch.

O Subtypes of Error or Runt imeExcept ion are unchecked, so the compiler
doesn't enforce the handle or declare rule. You're free to handle them, or to
declare them, but the compiler doesn't care one way or the other.

O If you use an optional £inally block, it will always be invoked, regardless of
whether an exception in the corresponding £xy is thrown or not, and regard-
less of whether a thrown exception is caught or not.

O The only exception to the £inally-will-always-be-called rule s that a £1 -
nally will not be invoked if the JVM shuts down. That could happen if code
from the txy or catch blocks calls System. exit ().

O Just because £inally is invoked does not mean it will complete. Code in the
finally block could itself raise an exception or issue a System. exit ().

O Uncaught exceptions propagate back through the call stack, starting from
the method where the exception is thrown and ending with either the first
method that has a corresponding catch for that exception type or a JVM
shutdown (which happens if the exception gets to main (), and main () is
"ducking” the exception by declaring it).

O You can create your own exceptions, normally by extending Exeept ion or
one of its subtypes. Your exception will then be considered a checked excep-
tion, and the compiler will enforce the handle or declare rule for that exception.

O All cateh blocks must be ordered from most specific to most general.

If you have a catch clause for both ToException and Exception, you must
put the catch for T0Except ion first in your code. Otherwise, the ToExcep-
tion would be caught by catch (Exception <), because a catch argument
can catch the specified exception or any of its subtypes! The compiler will
stop you from defining cateh clauses that can never be reached.

O Some exceptions are created by programmers, some by the JVM.

[image: image22.png]Working with the Assertion Mechanism (Obje

Q

Q

ive 2.3)

Assertions give you a way to test your assumptions during development and
debugging.

Assertions are typically enabled during testing but disabled during deployment.
You can use assert as a keyword (as of version 1.4) or an identifier, but not
both together. To compile older code that uses assert as an identifier

(for example, a method name), use the -source 1.3 command-line flag

to javac.

Assertions are disabled at runtime by default. To enable them, use a com-
mand-line flag -e= or -enable:
Selectively disable assertions by using the -da or -dissbleassertions flag.

ertions.

If you enable or disable assertions using the flag without any arguments,
you're enabling or disabling assertions in gencral. You can combine enabling
and disabling switches to have assertions enabled for some classes and/or
packages, but not others.

You can enable and disable assertions on a class-by-class basis, using the fol-
lowing syntax:

java -ea -da:yclass TestClass

You can enable and disable assertions on a package-by-package basis, and any
package you specify also includes any subpackages (packages further down the
directory hierarchy).

Do not use assertions to validate arguments to public methods.

Do not use assert expressions that cause side cffects. Assertions aren't guar-
anteed to always run, and you don't want behavior that changes depending
on whether assertions are enabled.

Do use assertions—even in public methods—to validate that a particular
code block will never be reached. You can use assext £alse; for code that
should never be reached, so that an assertion error is thrown immediately if
the assert statement is executed.

Chapter 06
Strings, I/O, Formatting and Parsing
[image: image23.png]TWO-MINUTE DRILL

Here are some of the key points from the certification objectives in this chapter.

Using String, StringBuffer, and StringBuilder (Objective 3.1)

Q String objects are immutable, and String reference variables are not.
If you create a new String without assigning it it will be lost to your program.
If you redirect a String reference to a new String, the old String can be lost.

0ououo

String methods use zero-based indexes, except for the second argument of
substring().

The String class s £inal—its methods can't be overridden.

When the JVM finds a String literal, it is added to the String literal pool.
Strings have a method: 1ength (); arrays have an attribute named 1ength.

The StringBuffer's AP is the same as the new StringBuilder's API, except
that StringBuilder's methods are not synchronized for thread safety.

StringBuilder methods should run faster than StringBuffer methods.
Q Al of the following bullets apply to both StringBuffer and StringBuilder:
O They are mutable—they can change without creating a new object.

O StringBuffer methods act on the invoking object, and objects can change
without an explicit assignment in the statement.

oouoo

o

Q StringBuffer equals () is not overridden; it doesn't compare values.

Q Remember that chained methods are evaluated from left to right.

Q String methods to remember: charat (), concat (), equalsIgnorecass (),
length(), replace (), substring(), tolowsrCase (), tostring(),
covppercase (), and trim().

Q StringBuffer methods to remember: append (), delete (), fnsert (),
reverse (), and tostring ().

File 1/O (Objective 3.2)
Q The classes you need to understand in java.io are File, FileReader,
BufferedReader, FileWriter, BufferedWiiter, PrintWriter and, Console.
QA new File object doesn't mean there's a new file on your hard drive.

O File objects can represent either a file or a directory.

[image: image24.png]Q The File class lets you manage (add, rename, and delete) files and directories.
Q The methods createNewrile) and mkdir () add entrics to your file system.
Q FileWriter and FileReader are low-level /O classes. You can use them to
write and read files, but they should usually be wrapped.
Q Classes in java.io are designed to be "chained” or "wrapped." (This is a
common use of the decorator design pattern.)
Q It's very common to "wrap" a BufferedReader around a FileReader
ora BufferedWriter around a FileWriter, to get access to higher-level
(more convenient) methods.
Q PrintWriters can be used to wrap other Writers, but as of Java 5 they can be
built directly from Files or Strings.
Q Java 5 PrintWriters have new append (), £ormat (), and print£ () methods.
Q Console objects can read non-echoed input and are instantiated using
System.console().

Serialization (Objective 3.3)

Q The classes you need to understand are all in the java.io package; they
include: ObjectOutputStream and ObjectInputStream primarily, and
FileOutputStream and FilelnputStream because you will use them to create
the low-level streams that the ObjectXxxStream classes will use.

Q A class must implement Serializable before its objects can be serialized.

O The objectoutputstraan.writeobjzct () method serializes objects, and
the Object Inputstrean. readobject () method deserializes objects.

Q If you mark an instance variable transient, it will not be serialized even
though the rest of the object's state will be.

QO You can supplement a class's automatic serialization process by implementing
the writeobject () and readobject () methods. If you do this, embedding
calls to defaultiiriteobject () and defaultreadobject (), respectively,
will handle the part of serialization that happens normally.

Q Ifa superclass implements Serializable, then s subclasses do automatically.

Q Ifa superclass doesn't implement Serializable, then when a subelass object
i deserialized, the superclass constructor will be invoked, along with its
superconstructor(s).

Q DatalnputStream and DataOutputStream aren't actually on the exam, in
spite of what the Sun objectives say.

[image: image25.png]Dates, Numbers,and Currency (Objective 3.4)

a

a
a
a
a

oo

The classes you need to understand are java.util Date, java.util Calendar,
java.text.DateFormat, java.text.NumberFormat, and java.util Locale.

Most of the Date class's methods have been deprecated.

A Date is stored as a 1ong, the number of milliseconds since January 1, 1970.
Date objects are go-betweens the Calendar and Locale classes.

The Calendar provides a powerful set of methods to manipulate dates,
performing tasks such as getting days of the week, or adding some number of
months or years (or other increments) to a date.

Create Calendar instances using static factory methods (getInstance ()).
The Calendar methods you should understand are add (), which allows you
to add or subtract various pieces (minutes, days, years, and so on) of dates,
and ro11 (), which works like add () but doesn't increment a date's bigger
pieces. (For example: adding 10 months to an October date changes the
month to August, but doesn't increment the Calendar's year value.)
DateFormat instances are created using static factory methods
(getInstance () and getDateTnstance ().

There are several format "styles" available in the DateFormat class.
DateFormat styles can be applied against various Locales to create a wide
array of outputs for any given date.

The Daterormat . format () method is used to create Strings containing
properly formatted dates.

The Locale class is used in conjunction with DateFormat and NumberFormat.
Both DateFormat and NumberFormat objects can be constructed with a
specific, immutable Locale.

For the exam you should understand creating Locales using language, or a
combination of language and country.

Parsing, Tokenizing, and Formatting (Objective 3.5)

a

a
a

regex is short for regular expressions, which are the patterns used to search for
data within large data sources.

regex is a sub-language that exists in Java and other languages (such as Perl).
regex lets you to create search patterns using literal characters or
metacharacters. Metacharacters allow you to search for slightly more abstract
data like "digits” or "whitespace”.

[image: image26.png]Study the \d, \s, \w, and . metacharacters
regex provides for quantifiers which allow you to specify conceps like: "look
for one or more digits in a row."

Study the 7, #, and + greedy quantifiers.

Remember that metacharacters and Strings don't mix well unless you
remember to "escape” them properly: For instance sexing s = "\\d"

The Pattern and Matcher classes have Java's most powerful regex capabilities.
You should understand the Pattern compile () method and the Matcher
matches (), pattern(), £ind(), start (), and group () methods.

You WON'T need to understand Matcher's replacement-oriented methods.
You can use java.util.Scanner to do simple regex searches, but it is primarily
intended for tokenizing.

Tokenizing is the process of splitting delimited data into small pieces.

In tokenizing, the data you want is called tokens, and the strings that separate
the tokens are called delimiters.

Tokenizing can be done with the Scanner class, or with String.split ().
Delimiters are single characters like commas, or complex regex expressions.
The Scanner class allows you to tokenize data from within a loop, which
allows you to stop whenever you want to.

The Scanner class allows you to tokenize Strings or streams or files.

The String. split () method tokenizes the entire source data all at once, so
large amounts of data can be quite slow to process.

New to Java 5 are two methods used to format data for output. These
methods are format () and print£ (). These methods are found in the
PrintStream class, an instance of which is the out in System.out.

The format () and print () methods have identical functionality.
Formatting data with print£ () (or format ()) is accomplished using
formatting strings that are associated with primitive or string arguments.

The £ormat () method allows you to mix literals in with your format strings.
The format string values you should know are

QO Flags: -, +,0,"",and (

Q Conversions: b, c, 4, £,and s

If your conversion character doesn't match your argument type, an exception.
will be thrown.

Chapter 07
Generics and Collections
[image: image27.png]TWO-MINUTE DRILL

Here are some of the key points from this chapter.

Overriding hashCode() and equals() (Objective 6.2)

a
a

OuUuUdooo

(=)

oo uUuodooo

equals (), hashCode (), and tostring () are public.
Override tostring) so that System. out .printla() or other

‘methods can sce something useful, like your object's state.

Use == to determine if two reference variables refer to the same object.
Use equals () to determine if two objects are meaningfully equivalent.

If you don't override equals (), your objects won't be useful hashing keys.
If you don't override equals (), different objects can't be considered equal.
Strings and wrappers override equals () and make good hashing keys.
When overriding equals (), use the instanceof operator to be sure you're
evaluating an appropriate class.

When overriding equals (), compare the objects' significant attributes.
Highlights of the equala () contract:

O Reflexive: x. equals (x) is true.

O Symmetric: If x.equals (y) is true, then y. equals (x) must be trus.
QO Transitive: If x. equals (y) is true, and y.equals (z) is true,

then z.equals (x) is true.

Q Consistent: Multiple calls to x. quals (y) will return the same result.
Q Null: If x is not null, then x. equals (mull) is false.

If . equals (y) is true, then x. hashCode () == y.hashCode () is true.

If you override equals (), override hasheode ().

HashMap, HashSet, Hashtable, LinkedHashMap, & LinkedHashSet use hashing.
An appropriate hashCode () override sticks to the hashCode () contract.
An cfficient hashcode () override distributes keys evenly across its buckets.
An overridden equals () must be at least as precise as its hashCode () mate.
To reiterate: if two objects are equal, their hashcodes must be equal.

It's legal for a hashCode () method to return the same value for all instances
(although in practice it's very incfficient).

[image: image28.png]O Highlights of the hashcode () contract:
Q Consistent: multiple calls to x. hashCode () return the same integer.
O Ifx.equals(y) is true, x.hashCode () == y.hashCode () is true.

Q Ifx.equals(y) is £alse, thenx. hashCode () == y.hashcode () can
be cither trus or £alse, but £alse will tend to create better efficiency.

O transient variables aren't appropriate for equals () and hashcode ().

Collections (Objective 6.1)

O Common collection activities include adding objects, removing objects, veri-
fying object inclusion, retrieving objects, and iterating.

O Three meanings for "collection”:
O collection Represents the data structure in which objects are stored
Q Collection java.util interface from which Set and List extend
O Collections A class that holds static collection utility methods

Q Four basic flavors of collections include Lists, Sets, Maps, Queues:
Q Lists of things Ordered, duplicates allowed, with an index.
O Sets of things May or may not be ordered and/or sorted; duplicates

not allowed.
O Maps of things with keys May or may not be ordered and/or sorted;
duplicate keys are not allowed.

O Queues of things to process Ordered by FIFO or by priority.

Q Four basic sub-flavors of collections Sorted, Unsorted, Ordered, Unordered.
O Ordered Iterating through a collection in a specific, non-random order.
O Sorted Iterating through a collection in a sorted order.

Q Sorting can be alphabetic, numeric, or programmer-defined.

Key Attributes of Common Collection Classes (Objective 6.1)

Q ArrayList: Fast iteration and fast random access.

Q Vector: It like a slower ArayList, but it has synchronized methods.

O LinkedList: Good for adding elements to the ends, i.c., stacks and queues.
O HashSet: Fast access, assures no duplicates, provides no ordering.
Q LinkedHashSet: No duplicates; iferates by insertion order.
O TreeSet: No duplicates; iterates in sorted order.

[image: image29.png]a
a

HashMap: Fastest updates (key/values); allows one nu11 key, many
null values.

Hashtable: Like a slower HashMap (as with Vector, due to its synchronized
‘methods). No mul1 values or mu11 keys allowed.

LinkedHashMap: Faster iterations; iterates by insertion order or last accessed;
allows one nu11 key, many nu11 values.

TreeMap: A sorted map.

PriorityQueue: A to-do list ordered by the elements' priority.

Using Collection Classes (Objective 6.3)

a
a
a
a
a
a

a

a

Collections hold only Objects, but primitives can be autoboxed.
Iterate with the enhanced Zor, or with an Iterator via hastext () & next ().
hasiext () determines if more elements exist; the Iterator does NOT move.
next () returns the next clement AND moves the Iterator forward.

To work correctly, a Map's keys must override equals () and hashcode ().
Queues use o££ex () to add an element, pol1() to remove the head of the.
queue, and pesi () to look at the head of a queue.

As of Java 6 TreeSets and TreeMaps have new navigation methods like
floor() and higher().

You can create/extend "backed" sub-copies of TreeSets and TreeMaps.

Sorting and Searching Arrays and Lists (Obijective 6.5)

a

a
a
a
a

Sorting can be in natural order, or via a Comparable or many Comparators.
Implement Comparable using compareTa (; provides only one sort order.
Create many Comparators to sort a class many ways; implement compare ().
To be sorted and scarched, a List's elements must be comparable.

To be scarched, an array or List must first be sorted.

Utility Classes: Collections and Arrays (Objective 6.5)

a

Both of these java.util classes provide
Q A sort () method. Sort using a Comparator or sort using natural order.
O Abinarysearch() method. Search a pre-sorted array or List.

[image: image30.png]Q arrays.asList () creates a List from an array and links them together.
O Collections.reverss () reverses the order of clements in a List.

O collections.reverssorder () retums a Comparator that sorts in reverse.
O Lists and Sets have a toarray () method to create arrays.

Generics (Objective 6.4)
O Generics let you enforce compile-time type safety on Collections (or other
classes and methods declared using generic type parameters).
O An ArmayList<Animal> can accept references of type Dog, Cat, or any other
subtype of Animal (subclass, or if Animal is an interface, implementation).
O When using generic collections, a cast is not needed to get (declared type) el-
ements out of the collection. With non-generic collections, a cast is required:
List<String> gList = new ArrayList<String>();
List list = new Arraylist();
// more code

String s = glist.get(0); // mo cast needed
String s = (String)list.get(0); // cast required

0 You can pass a generic collection into a method that takes a non-generic col-
Lection, but the results may be disastrous. The compiler can't stop the method
from inserting the wrong type into the previously type safe collection.

Q If the compiler can recognize that non-type-safe code is potentially endanger-
ing something you originally declared as type-safe, you will get a compiler
warning. For instance, if you pass a List<String> into a method declared as

void foo(List aList) | alist.add(anInteger);)
You'll get a warning because add() is potentially "unsafe”.

Q "Compiles without error” is not the same as "compiles without warnings.”
A compilation waming is not considered a compilation error or failre.

O Generic type information does not exist at runtime—it is for compile-time
safety only. Mixing generics with legacy code can create compiled code that
‘may throw an exception at runtime.

Q Polymorphic assignments applies only to the base type, not the generic type
parameter. You can say

List<Animals alist = new ArrayList<animals(; // yes
You can't say

List<Animal> alist = new ArrayList<Dog>(); 1/ mo

[image: image31.png]The polymorphic assignment rule applies everywhere an assignment can be
made. The following are NOT allowed:

void foo(List<Animal> alist) { } // cannot take a Li
List<Animal> bazr() { } // cannot return a L:

‘Wildeard syntax allows a generic method, accept subtypes (or supertypes) of
the declared type of the method argument:

void addD(List<Deg> d) {} // can take only <Dog>

void addD(List<? extends Dog>) {} // take a <Dog> or <Beagle>
The wildcard keyword extends is used to mean either "extends" or "imple-
ments." So in <? extends Dogs, Dog can be a class or an interface.

When using a wildcard, List<? extends Dog>, the collection can be
accessed but not modified.

When using a wildcard, List<?, any generic type can be assigned to the
reference, but for access only, no modifications.

List<Object> refers only to a List<0bjects, while List<?> or

List<? extends Object> can hold any type of object, but for access only.
Declaration conventions for generics use T for type and E for element:
public interface List<E» // API declaration for List
boolean add(E o) // List.add() declaration

The generics type identifier can be used in class, method, and variable
declarations:

class Foosts {) // a class
T anInstance; // an instance variable
Foo (T aref) {} // a constructor argument
void bar (T aRef) {} // a method argument

T baz() {} // a return type

The compiler will substitute the actual type.
You can use more than one parameterized type in a declaration:

public class UseTwo<T, X> { }

You can declare a generic method using a type not defined in the class:
public <T> void makeList(T t) {]

is NOT using T as the return type. This method has a void return type, but

to use T within the method's argument you must declare the <T>, which
happens before the retun type.

Chapter 08
Inner Classes
[image: image32.png]TWO-MINUTE DRILL

Here are some of the key points from this chapter.

Inner Classes

Q A "regular” inner class is declared inside the curly braces of another class, but
outside any method or other code block.

Q An inner class is a full-fledged member of the enclosing (outer) class, so it
can be marked with an access modifier as well as the abstract or final
modifiers. (Never both abstract and £inal together— remember that
abstract must be subclassed, whereas £inal cannot be subclassed).

O An inner class instance shares a special relationship with an instance of the
enclosing class. This relationship gives the inner class access to all of the
outer class's members, including those marked private.

O To instantiate an inner class, you must have a reference to an instance of the
outer class.

Q From code within the enclosing class, you can instantiate the inner class
using only the name of the inner class, as follows:

MyTnner mi = new MyTmmer();

O From code outside the enclosing class's instance methods, you can
instantiate the inner class only by using both the inner and outer class names,
and a reference to the outer class as follows:

MyOuter mo = new MyOuter();
MyOuter .MyInner immer = mo.new MyImmer();

Q From code within the inner class, the keyword this holds a reference to
the inner class instance. To reference the outer this (in other words, the
instance of the outer class that this inner instance is tied to) precede the
keyword this with the outer class name as follows:_Myouter. this;

Method-Local Inner Classes

Q A method-local inner class is defined within a method of the enclosing class.

Q For the inner class to be used, you must instantiate it, and that instantiation
‘must happen within the same method, but after the class definition code.

QA method-local inner class cannot use variables declared within the method
(including parameters) unless those variables are marked £inal.

[image: image33.png]Q The only modifiers you can apply to a method-local inner class are abstract
and £inal. (Never both at the same time, though.)

Anonymous Inner Classes

Q Anonymous inner classes have no name, and their type must be cither a
subelass of the named type or an implementer of the named interface.

Q An anonymous inner class is always created as part of a statement; don't
forget to close the statement after the class definition with a curly brace. This
i a rare case in Java, a curly brace followed by a semicolon.

Q Because of polymorphism, the only methods you can call on an anonymous
inner class reference are those defined in the reference variable class (or
interface), even though the anonymous class s really a subelass or imple-
menter of the reference variable type.

Q An anonymous inner class can extend one subclass or implement one
interface. Unlike non-anonymous classes (inner or otherwise), an anonymous
inner class cannot do both. In other words, it cannot both extend a class and
implement an interface, nor can it implement more than one interface.

Q An argument-defined inner class is declared, defined, and automatically
instantiated as part of a method invocation. The key to remember is that the
class is being defined within a method argument, so the syntax will end the
class definition with a curly brace, followed by a closing parenthesis to end
the method call, followed by a semicolon to end the statement:) ;

Static Nested Classes
O Static nested classes are inner classes marked with the static modifier.

O A static nested class is not an inner class, it's a top-level nested class.

O Because the nested class is static, it does not share any special relationship
with an instance of the outer class. In fact, you don't need an instance of the
outer class to instantiate a static nested class.

O Instantiating a static nested class requires using both the outer and nested
class names as follows:

BigOuter.Nested n = new BigOuter.Nested();

QA static nested class cannot access non-static members of the outer class,
since it does not have an implicit reference to any outer instance (in other
words, the nested class instance does not get an outer this reference).

Chapter 09
Threads
[image: image34.png]TWO-MINUTE DRILL

Here are some of the key points from each certification objective in this chapter.
Photocopy it and sleep with it under your pillow for complete absorption.

Defining, Instantiating, and Starting Threads (Objective 4.1)

O Threads can be created by extending Thread and overriding the
public void run() method.

O Thread objects can also be created by calling the Thread constructor that
takes a Runnable argument. The Runnable object is said to be the target of
the thread.

Q Youcan call start () ona Thread object only once. If start () is called
more than once on a Thread object, it will throw a RuntimeException.

Q Itis legal to create many Thread objects using the same Runnable object as
the target.

O When a Thread object is created, it does not become a thread of execution
until its start () method is invoked. When a Thread object exists but hasn't
been started, it is in the new state and is not considered alive.

Transitioning Between Thread States (Objective 4.2)

Q Once a new thread is started, it will always enter the runnable state.

Q The thread scheduler can move a thread back and forth between the
runnable state and the running state.

Q Fora typical single-processor machine, only one thread can be running at a
time, although many threads may be in the runnable state.

Q There is no guarantee that the order in which threads were started
determines the order in which they'll run.

Q There's no guarantee that threads will take tumns in any fair way. It's up
to the thread scheduler, as determined by the particular virtual machine
implementation. If you want a guarantee that your threads will take turns
regardless of the underlying JVM, you can use the s1leep () method. This
prevents one thread from hogeing the running process while another thread
starves. (In most cases, though, yie1d () works well enough to encourage
your threads to play together nicely.)

QA running thread may enter a blocked/waiting state by a wait (), sleep (),
orjoin() cll

[image: image35.png]Q

A running thread may enter a blocked/waiting state because it can't acquire
the lock for a synchronized block of code.

When the sleep or wait is over, or an object's lock becomes available, the
thread can only reenter the runnable state. It will go directly from waiting to
running (well, for all practical purposes anyway).

A dead thread cannot be started again.

Sleep,Yield, and Join (Objective 4.2)

Q

Q

Slecping is used to delay execution for a period of time, and no locks are
released when a thread goes to slecp.

A sleeping thread is guaranteed to sleep for at least the time specified in

the argument to the sle=p () method (unless it's interrupted), but there is
no guarantee as to when the newly awakened thread will actually return to
running.

The sleep () method is a static method that sleeps the currently executing
thread's state. One thread cannot tell another thread to slep.

The seteriority () method is used on Thread objects to give threads

a priority of between 1 (low) and 10 (high), although priorities are not
guaranteed, and not all JVMs recognize 10 distinct priority levels—some
levels may be treated as effectively equal.

If not explicitly set, a thread's priority will have the same priority as the
priority of the thread that created it.

The yield () method may cause a running thread to back out if there are
runnable threads of the same priority. There is no guarantee that this will
happen, and there is no guarantee that when the thread backs out there

will be a different thread selected to run. A thread might yield and then
immediately reenter the running state.

The closest thing to a guarantee is that at any given time, when a thread

is running it will usually not have a lower priority than any thread in the
runnable state. If a low-priority thread is running when a high-priority thread
enters runnable, the JVM will usually preempt the running low-priority
thread and put the high-priority thread in.

When one thread calls the join () method of another thread, the currently
running thread will wait until the thread it joins with has completed. Think
of the join() method as saying, "Hey thread, | want to join on to the end
of you. Let me know when you're done, soI can enter the runnable state.”

[image: image36.png]Concurrent Access Problems and Synchronized Threads (Obj. 4.3)

Q synchronized methods prevent more than one thread from accessing an
object’s critical method code simultancously.

O You can use the synchronized keyword as a method modifier, or to start a
synchronized block of code.

Q To synchronize a block of code (in other words, a scope smaller than the
whole method), you must specify an argument that is the object whose lock
you want to synchronize on.

Q While only one thread can be accessing synchronized code of a particular
instance, multiple threads can sill access the same object’s unsynchronized code.

0 Whena thread goes to sleep, its locks will be unavailable to other threads.

O static methods can be synchronized, using the lock from the
java.lang Class instance representing that class.

Communicating with Objects by Waiting and Notifying (Obj. 4.4)

Q The wait () method lets a thread say, "there’s nothing for me to do now, so
put me in your waiting pool and notify me when something happens that 1
care about.” Basically, a wait () call means "wait me in your pool,” or "add
me to your waiting list."

O The not £y () method is used to send a signal to one and only one of the
threads that are waiting in that same object's waiting pool.

Q The notify () method can NOT specify which waiting thread to notify.

O The method not £a11 () works in the same way as not i€y (), only it sends
the signal to all of the threads waiting on the object.

O All three methods—wait (), notizy (), and noti£yall () —must be
called from within a synchroni zed context! A thread invokes wait () or
notify () on a particular object, and the thread must currently hold the lock
on that object.

Deadlocked Threads (Objective 4.3)

Q Deadlocking is when thread execution grinds to a halt because the code is
waiting for locks to be removed from objects.

Q Deadlocking can occur when a locked object attempts to access another
locked object that is trying to access the first locked object. In other words,
both threads are waiting for each other's locks to be released; therefore, the
locks will never be relcased!

Q Deadlocking is bad. Don't do it.

Chapter 10
Development
[image: image37.png]TWO-MINUTE DRILL

Here are the key points from this chapter

Using javac and java (Objective 7.2)

a

a

Use -d to change the destination of a class file when it's first generated by the
javac command.

The -a option can build package-dependent destination classes on-the-ly if
the root package directory already exists.

Use the D option in conjunction with the java command when you want to
set a system property.

System properties consist of name=value pairs that must be appended directly
behind the -p, for example, java -Dmyproperty=myvalue.

Command-line arguments are always treated as Strings.

The java command-line argument 1 is put into array element 0, argument 2
is put into element 1, and so on.

Searching with java and javac (Objective 7.5)

a
a

a

o

Both java and javac use the same algorithms to search for classes.
Searching begins in the locations that contain the classes that come standard
with J2SE.

Users can define secondary search locations using classpaths.

Default classpaths can be defined by using OS environment variables.

A classpath can be declared at the command line, and it overrides the default
classpath.

A single classpath can define many different search locations.

In Unix classpaths, forward slashes (/) are used to separate the directories
that make up a path. In Windows, backslashes (1) are used.

[image: image38.png]In Unisx, colons (:) are used to separate the paths within a classpath. In Win-
dows, semicolons (;) are used.
Ina classpath, to specify the current directory as a search location, use a ot (.)

Ina classpath, once a class is found, searching stops, so the order of locations
to search is important.

Packages and Searching (Objective 7.5)

a
a
a

a
a
a

‘When a class is put into a package, its fully qualified name must be used.
An import statement provides an alias to a class's fully qualified name.
In order for a class to be located, its fully qualified name must have a tight
relationship with the directory structure in which it resides.

A classpath can contain both relative and absolute paths.
An absolute path starts with a / ora \.
Only the final directory in a given path will be scarched.

JAR Files (Objective 7.5)

a
a
a

a

An entire directory tree structure can be archived in a single JAR file.
JAR files can be searched by java and javac.

When you include a JAR file in a classpath, you must include not only the
directory in which the JAR file is located, but the name of the JAR file too.
For testing purposes, you can put JAR files into . . . /jre/1ib/ext, which is
somewhere inside the Java directory tree on your machine.

Static Imports (Objective 7.1)

a
Q

You must start a static import statement like this: import static

You can use static imports to create shortcuts for static members (static
variables, constants, and methods) of any class.

- 1 -

