Sun Certified Web Component Developer
Inhoudsopgave:
3Chapter 01
The Servlet Model

31.1 Ex0101

6Chapter 02
Web Applications

62.1 Web Application Directory Structure

72.2 List of Top-level Elements Deployment Descriptor

9Chapter 03
The Webcontainer Model

93.1 Attribute Methods for Different Scopes

103.2 Request and Context Scope in figures!!!!!!!

113.3 Multithreading and Scope Attributes

123.4 Request and Dispatching

133.5 Special Attributes for RequestDispatcher (forward and include)

143.6 Filters and Wrappers

15Chapter 04
Sessions and Listeners

154.1 Session Life Cycle

174.2 Multithreading and Session Attributes

174.3 Session Management

184.4 Request and Context Listener

194.5 The Request Listener

204.6 The Request Attribute Listener

214.7 The Context Listener

214.8 Context Attribute Listener

224.9 Session Listeners

24Chapter 05
Security

245.1 Security Mechanisms

245.2 Deployment Descriptor Security Declarations

245.2.1
<security-constraint>

245.2.2
<login-config>

245.2.3
<security-role>

265.3 Authentication Types

265.3.1
BASIC

265.3.2
DIGEST

265.3.3
FORM

265.3.4
CLIENT-CERT

27Chapter 06
JavaServer Pages

276.1 JSP Life Cycle

276.1.1
JSP Translation and Execution

286.1.2
The JSP Request / Execution Phase

296.2 JSP Elements

306.3 JSP Directives

306.4 JSP Implicit Objects

306.4.1
request

306.4.2
response

306.4.3
out

306.4.4
session

316.4.5
config

316.4.6
application

316.4.7
page

316.4.8
pageContext

326.4.9
exception

33Chapter 07
JSP Standard actions, XML, and EL

337.1 JSP Standard Actions

347.1.1 <jsp:useBean>

347.1.2 <jsp:setProperty>

357.1.3 <jsp:getProperty>

357.2 Dispatching Mechanisms

357.2.1 Parameters

367.3 JSPs in XML

367.3.1 XML friendly Syntax; Scripting Elements, Directives, Comments

367.3.2 XML friendly Syntax; Namespaces

377.3.3 XML and the JSP Container

387.4 Expression Language

397.4.1 EL Literals

397.4.2 EL Operators

407.4.3 EL Property Acces

42Chapter 08
JSP Tag Libraries

428.1 Tag Libraries

428.1.1 The Custom Tag Development Process

458.2 JSTL
JSP Standard Tag Libraries

468.2.1 Groupings of Actions

488.2.2 Conditional Actions

498.2.3 Iterator Actions

518.2.4 URL Related Actions

528.3 EL Functions

528.3.1 Writing Methods for EL Functions

528.3.2 Defining the Function within the TLD File

528.3.3 Finding the TLD

538.3.4 Declaring the TLD and Using the EL Function

548.4 The “Classic” Custom Tag Event Model

548.4.1 Tags for all Seasons

588.4.2 Iteration Tag Interface and Tag Support Class

638.4.3 BodyTag Interface and BodyTagSupport Class

65Chapter 09
Custom Tags

659.1 Tags and Implicit Variables

679.2 The “Simple” Custom Tag Event Model

699.3 The Tag File Model

719.4 Tag Hierarchies

72Chapter 10
J2EE Patterns

7310.1 Intercepting Filter Pattern

7410.2 Front Controller Pattern

7410.3 Model View Controller Pattern

7610.4 Business Delegate Pattern

7710.5 Service Locator Pattern

7810.6 Transfer Object Pattern

Chapter 01
The Servlet Model
1.1 Ex0101
[image: image1.png]HTTP Client User Interface

- . -
URL: [htpiocainost 8080ex010 indexisp
Hitp Method: [GET <] sae
Textto POST: |Type any text you like here
FletoPUT: (C\UsersWarkiDocumensipeteop it Browse Fies
Execute HTTP Request | 200:0K
Request Headers | Response Readers | Response Body
Response nformation
Key Type Value

[Date. |General [Sat, 02 Oct 2010 18:53:29 GMT]
Content-Length [Entity [206]
setcootis (ISESSIONID=SEF958E08CC0TEE 2435287,
[Content-Type [Entity textitmi]
Server [Response [Apache-Coyote/1.1]

default is het niet toegestaan om bestanden te plaatsen/deleten (PUT/DELETE)
403: Forbidden!!

[image: image2.png]o

it e, o] onsae

Textto POST: |Type any text you like here

e EE e ——
[T p—
eeiisiars | ERERITRRY eesmsvoi
e
Key Type Value

Date |General [Sat, 02 Oct 2010 18:54:16 GMT]
[Content-Length |Entity [964]
|Content-Type |Entity text/html;chars et=utf-8]
Server |Response [Apache-Coyote/1.1]

aanpassen web.xml in C:\workspace\WebCert\Servers\Tomcat v6.0 Server at localhost-config
onderstaand toevoegen:

<init-param>

<param-name>readonly</param-name>

<param-value>false</param-value>

</init-param>

mbv POST method data aan de server toevoegen:
PostServlet.java verwerkt het verzoek.

[image: image3.png][

Hittp Method:

Textto POST:

File to PUT:

[ntto:Mocalnost8080/ex0101/PostSenet

POST ~] unsare

[Type any text you like here, kkki

CaMy Documents WyFilefit

Browse Files

T . o

[Request Headers

Response Headers | Response Body

Response Body

L
IEAD>

TITLE>Post Senet</TITLE>

IEAD>
Y=

I>Type any textyou ke here, okidoki
I>Type any textyou ke here, kkikk
1>Type any textyou ke here, kkkk
1>Type any textyou ke here, kkkk

Y=
ThL>

Een bestandje “postData.txt” wordt aangemaakt en iedere POST voegt de ingevulde tekst toe.

Bestand bevindt zich ook op onderstaande plek…..

C:\workspace\WebCert\.metadata\.plugins\org.eclipse.wst.server.core\tmp0\wtpwebapps\ex0101

[image: image4.png]HTTP Client User Interface

URL: [nitp:iiocalhost8080/ex0 10 /myfile bt

Hitp Method: [PUT ~] unsare

Textto POST: [Type any text you like here,mooooi

File to PUT: | C:Users\MarkDocuments\petjeop.t Browse Files

[—

RequestHeaders | Response Headers | Response Body

Request Information
Key Type Value

Accept-Language [Request fen-gb.en-us]

-Modified-Since [Request ue, 15 Nov 1994 08:12:31 GHT]

User-Agent [Request ozila/4.0]

Accept [Reauest ", applicationh-shockwave-flash, application.

resultaat is een myfile.txt in onderstaande directory….
[image: image5.png]myfile Gewiigd op: 310-2010916
5 Grostte 426 bytes

C\workspace\WebCert\.metadata\, plugins\org.cclipse.wst.server.core\tmp0\wipwebapps\ei101

C:\workspace\WebCert\.metadata\.plugins\org.eclipse.wst.server.core\tmp0\wtpwebapps\ex0101
Chapter 02
Web Applications
2.1 Web Application Directory Structure

[image: image6.png]FIGURE 2.1
[ricuse 1 [N

A Web Applica-
tion Directory
Structure with
Typical Contents

(U

s styie ——

(SR

o0
1011

[US

fctag-110.]

s eras
L

> /1

MyApplet.clss

‘webaxmi

myagsdd

1010

ses/webcert /chapter2/ | 1000

=1

101

1010| supportStufiar

MyOniyServiet.class

[image: image7.png]Exact match

How to Form the
URL Pattern URL Pattern

URLs That Would Match

ndthis Any string—must b [findthis
with
Path match ffindthat/ tring must begin with
here/* and end in */%.”
Jfindhat here fquickly/index. heml
Extension i String must begin findex.jsplany
match with directoryfindex.jsp
Default

ingle forward slash only

(any URL that fell through all
other marching attempts)

2.2 List of Top-level Elements Deployment Descriptor
[image: image8.png]FIGURE 2.

The Full List
of Top-Level
Elements In the
Deployment
Descriptor
web.al

<web-app>

<descriptions
<atsplay-nane Elements in <bold> are
<teon> discussed in this chapter.
Zatstributables

<COMCEXE-DATaM> Hlaments cn appaar inany
<tilters order,and 35 many mes 25
<Eilter-mapping> roquired (oven mot ot al), There
<listener> are some fow exceptions,
<serviet> discussed throughout the book.

<servlst_mapping>
<session-configs
<mime-mapping>
<walcome-file-1ist>
<error-page>
<jsp-configs
<security-constraints
<login-configs
<security-roles

~

<env-entry>
<ejb-ref>

<ejb-local-refs
<sarvica-refs
<rasource-refs
<rasource-env-refs
<message-destination-ref>
<locale-encoding-mapping-1ist>

nowiedg oftese dlaments nox
e for o ean))

[image: image9.png]FIGURE <serviet>

The Serviet
Element
Expanded

<dsscriptions Oormany
” Youll see this optional
group of descriptive
‘lements in several
places in the DD.

|- <display-name> 0ormany

[~ <1com> | cemall-icons Oor |

Qormany ~— 1arge-icon» Oorl

— <serviet-name> [Aways |
— <serviet-class> OR <jsp-file> (AWl
~ <init-param> . _gescription> Oorl
Oormany | cparam-name> [Abwayl]

— <param-value> [Ahapl]
— <load-on-startup> Oor |
— <run-ass A

Oorl _ crole-names [Alwaysl]

<security-role-ref> | _qescription» Oor many

Oormany | .role-nanes

<role-link> Oor|

<servlet>

<servlet-name>FutureServlet</servlet-name>

<servlet-class>webcert.MyFutureServlet</servlet-class>

</servlet>

(<jsp-file>/WEB-INF/secure/concealed.jsp</jsp-file> ipv servlet-class igv JSP file)
<servlet-mapping>

<servlet-name>FutureServlet</servlet-name>

<url-pattern>/myfuture</url-pattern>

</servlet-mapping>

<init-param>

<description>The number of months ahead to predict: default value</description>

<param-name>months</param-name>

<param-value>3</param-value>

</init-param>
<init-param>

<description>How wild to make the prediction: default adjective</description>

<param-name>wildness</param-name>

<param-value>exaggerated</param-value>

</init-param>
protected void doGet(HttpServletRequest request,

HttpServletResponse response) throws ServletException, IOException {

/* Local variables to hold parameter values */

int months = 0;

String wildness = "";

/* Iterate through all the initialization parameters */

Enumeration e = getInitParameterNames();

while (e.hasMoreElements()) {

String parmName = (String) e.nextElement();

if (parmName.equals("months")) {

months = Integer.parseInt(getInitParameter(parmName));

}

if (parmName.equals("wildness")) {

wildness = getInitParameter(parmName);

}

}

/* Return a page showing the values discovered */

response.setContentType("text/plain");

PrintWriter out = response.getWriter();

out.write("Intialization parameters were 'months' with a value of "

+ months + ' and 'wildness' with a value of '" + wildness + "'");

}

Chapter 03
The Webcontainer Model
3.1 Attribute Methods for Different Scopes
[image: image10.png]Comparison of Attribute Methods for Different Scopes

Context (Apj
Scoj Request Scoj Scope
on Interface javax.servlet javax.servlet
ServletRequest HeSession ServietContext
public void Bindsanobjecttothere- Binds an object to the Binds an object to the
setattribute | quest, keyed by the String session, keyed by the context, keyed by the
(String name. If the object passed String name. If the object String name. If the object
name,Object asavalue isnull, has the 2 passed as a value is null,
value) same effect as has the same effect as
removeAttribute(). removeAttribute(). removeAttribute().
Throws lllegalStateException
if invoked when the session
is invalid.
public Returns the value ofthe Returns the value of the Returns the value of the
Object named attribute asan named artribute as an named attribue as an Ob-
getattribute Object, ornull fnoat- Object, or null if no at- ject, or null if no attribute
(String tribute of the given name tribute of the given name of the given name exists.
nane) exists. exiss. Throws lllegalState
Exception if invoked when
the sesion is invalid
public Rerurns an Enumeration Returns an Enumeration Returns an Enumeration
Enumeration | containing the namesof containing the names of containing the names
getattribute available atributes. available attributes. Returns | of available artributes.
Names () Returns an empty an empty Enumeration if Because there are some at-
Enumeration if no no attributes exist. Throws tributes that the web con-
artributes exist. llegalStateException if tainer must supply to the
invoked when the session context, this Enumeration.
is invalid. should never be empty.
public void | Removes the named Removes the named aceri- Removes the named
remove artribute. bute. Throws lllegalStare ~ attribute,
Attribute Exception if invoked when
(string the session is invalid
nane)

Four methods are available on each of the three objects representing scopes: ServletRequest (for request scope), HttpSession (for session scope), and ServletContext (for context scope).
1. getAttribute(String name)
2. setAttribute(String name, Object value)
3. getAttributeNames()
4. removeAttribute(String name)
3.2 Request and Context Scope in figures!!!!!!!
[image: image11.png]1. Client makes request to web container for
ServieeA.

2. Web container supplies request object to
service () method of ServietA-

3. Servieth passes request object to helper
class (in same web application).

4. ServietA dispatches to ServiecB In separate.
‘wab application, passing the requast object.

5. Control retums to ServietA. ServietA
service () mathod ends. Web container
removes request object from scope (and
returns response to clent).

Helper
Class

lservice ()

Web Agp 2

Session scope comes into play from the point where a browser window establishes

contact with your web application up to the point where that browser window

is closed.

[image: image12.png]T Coreex e

R
T
El —
a1 =
==
e

1. Applcation servr sarts up and oads web
ors sopaa conioe o created for e\ | (2]

L W

2. Client! requests ServietA; SorviotA uses Web

% m
App | context objoct.

3. Client 2 requests ServiatA, then ServietB: both Web App 2,
Serviets use same Web App | context object.

4. Client 3 requests ServietB in Web App ServierC |
ServietB uses context object 2 before.

5. Client 3 requests ServiecC in Web App 2:
ServletC uses separate context object for
this web app.

6. Application servr stops; context objects
destroyed.

3.3 Multithreading and Scope Attributes

Multithreading and Request Attributes

request attributes are thread safe.

Multithreading and Session Attributes

Session attributes are offi cially not thread safe.

For most common web applications, though, you can assume thread safety.

Multithreading and Context Attributes

Do need to worry about thread safety!!!
1. Treat servlet context attributes like servlet context parameters. Set up servlet

context attributes in the init() method of a servlet that loads on the startup

of the server, and at no other time. Thereafter, treat these attributes as “read

only”— only ever call getAttribute(), never setAttribute(), on the

context object.

2. If there are context attributes where you have no option but to update them

later, surround the updates with synchronization blocks. If it’s crucial that

no other thread reads the value of these attributes mid-update, you’ll need to

synchronize the getAttribute() calls as well.

Local Variables:
completely thread safe

Instance Variables:
They are not thread safe, so add your own synchronization.

Class Variables:
Again, these are not thread safe.

3.4 Request and Dispatching
ServletRequest has one method for getting a RequestDispatcher: getRequest

Dispatcher(String path).

ServletContext has two methods of getting hold of a RequestDispatcher. These are

getRequestDispatcher(String path) and getNamedDispatcher(String name).
The name must match one of the <servlet-name> values you have set up in the deployment descriptor (entry in the deployment descriptor doesn’t need a corresponding <servletmapping>)
[image: image13.png]Requestpispatcher rd = <serviet-mapping>
request . getRequestDispatcher <servlet-namesservletse/servlst-name>
(v/serviet/serviets®) ; <url-patterns/servlet/servlets</url-patterns

</serviet-mappings

SorvietA || Servietd

Requestpispatcher rd =
request . getRequestDispatcher
("/html/jfile.ntmi®) ;

/tomcat /webapps /webapp1 /bt /1le. htul

When ServletA calls ServletB, it uses a matching <url-pattern> for ServletB when

creating the RequestDispatcher. When ServletC dispatches to a static HTML fi le

(fi le.html in the html directory of webapp1), it supplies the full path starting from

the context root (e.g., “/html/fi le.html”).
[image: image14.png]Forwarding
We'll irst consider the case of forwarding. The following illustration gives a graphic
account of what happens when a servlet forwards to another servlet.

Requestpispatcher. forward ()

Clien

\

The first servlet is effectively forgotten. Although it can have code that writes output to the response, the contents of the response buffer are lost at the point of forwarding to the second servlet. ServletA forwards to ServletB, but there is code following the forward() method in

ServletA (setAttribute f.e. will be executed!), only the contents of the response buffer are lost!
3.5 Special Attributes for RequestDispatcher (forward and include)
[image: image15.png]http://localhosf

Attribute Name

:8080/myapp/ForwardingServlet/pathinfo?frui

Description

“Equivalent” Method
on ServietRequest

javasservlet forward request_uri

The URI of the original request to
the forwarding servlet (c.g., /myapp/
ForwardingServlet Jpathinfo)

getRequestURI()

javas.servlet forward context_path

The context path for the forwarding
servlet (e.g. fmyapp)

getContextPath()

javasservlet forward servlet_path

The servlet path for the forwarding
servlet (e.g. [ForwardingServlet)

getservletPath()

javaservlet forward path_info

The path information for the for-
warding servlet (e.g. [pathinfo)

getPathInfo()

java.servletforward query_string

The query string attaching to the
original request for the forwarding.
servlet (e.g, fruit=orange)

getgueryString()

http://localhost:8080/myapp/IncludingServlet/pathinfo?fruit=orange

and a code snippet from IncludingServlet that includes IncludedServlet, as follows:

RequestDispatcher rd = req.getRequestDispatcher("/IncludedServlet/newPathInfo?fruit=apple");

rd.include(req, resp);
Now the attributes (as you access them in IncludedServlet) have the following values:
[image: image16.png]Attribute Name

jav

rvlet include.request_uri

Description

The URI o the revised request to
the included servlet (c.g, /myapp/
IncludedServlet/newPathinfo)

“Equivalent” Method
on ServietRequest

javaxservlet. include.context_path

The context path for the included
servlet (e.g. fmyapp)

getContextPath()

javax.servlet. include servlet_path

The servlet path for the included
servlet (e.g., /IncludedServlet)

getServletPath()

javaservlet. include.path_info

The path information for the in-
cluding servet (c.g., newPathlnfo)

getPathInfo()

javaservlet. include.query_string

The query string attaching to the re-
vised request to the included servle
(c.g. fruit=apple)

getQueryString()

3.6 Filters and Wrappers
List of the uses you might find for Filters:

■ Authentication filters

■ Logging and auditing filters

■ Image conversion filters

■ Data compression filters

■ Encryption filters

■ Tokenizing filters

■ Filters that trigger resource access events

■ XSL / T filters that transform XML content

■ MIME-type chain filters

■ Caching filters

Three methods of the Filter interface: init(), destroy(), and doFilter().
destroy() The full signature is public void destroy(): no parameters in, nothing returned.
You are guaranteed that this method will be called once and once only when the filter is taken out of service, which means, usually, when the web application closes down.
[image: image17.png]Client
request for
servietA

‘Web Container | (App server / VM)

Lo Fra Stk
<dispatcher>REQUEST</dispatcher> /Q =
ot
S

P

" <dispatcher>FORRARD< /dispatchers

Serviet®. ServietB.
includes
—_ServierC.

)
e

Web App |

Request that matches more than one Filter-mapping First, all matching filters will run for <filter-mappings> with <url-pattern> matches, in order of <filter-mapping> declaration. Second, all matching filters will run for <filter-mappings> with <servletname> matches, in order of <filter-mapping> declaration.
Chapter 04
Sessions and Listeners
4.1 Session Life Cycle
[image: image18.png]‘Web container (app server / JVM)

e roquest

Web App |

HttpSession session = HttpServletRequest.getSession();
HttpSession session = HttpServletRequest.getSession(true);

HttpSession session = HttpServletRequest.getSession(false);

This last call will return a session object, but only if one already exists. (for pass through a

Login Servlet f.e.)

[image: image19.png]FIGURE 4 Session Scope

Client

— s\ ‘container server
e W G
= S
-
oo

NGT NEW>- distrbuted

1. Client makes it first request to web
container (for ServietA).

2. Servieth requests session object: web
container provides new session object.

3. Web container passes back session tracking
nfo to client.

4. Client recurns acknowledgment of tracking
info on next request to ServietB: this flags
session as no longer new.

5. ServietB accesses (no longer new) session

6. Overall application server architacture
replicates session object from on 2pp
server to another (separate JVM).

7. Client doesnit access session for spaciied
ime interval: web container ramoves
session objects.

| Serviecs

[

= X ‘web app)
7

(X/) W hes T
(second

= running

nstance of
distributed
web app)

Web container (app server / [VM)

—
OVERALL APPLICATION SERVER ARCHITECTURE

If you launch Internet Explorer afresh, then access a session- aware servlet - that’s a new session. If Internet Explorer itself launches a new Internet Explorer window (e.g., by running File | New Window or by running some appropriate script) and that new window accesses a session – aware Servlet - it shares the session object with the Internet Explorer window from which it was launched.

[image: image20.png]‘Web container (app server / VM)

Client

Client requests ServietA

Web App |

ServietA

ServietA accesses session object
—

—

ServieeA dispatches to Serviec.
separate web app

Serviesd.

Web App 2

ServietB accesses sssion object

Itsa diferent.
Session object!

Session Death can occurs by providing invalidate() method, close IE window, or when invalidate time is reached (set in web.xml <session-timeout>).
You can setup the invalidate time by HttpSession.setMaxInactivaInterval(int seconds).
4.2 Multithreading and Session Attributes
[image: image21.png]‘Web container (spp server / JVH)

et L) >
Clans [ogumcdrd” |
Clenic

Web Agp |

i
|
|
|
|
|
|
|
|

-
|
|
|
|
|
|
|
|
|
|

-
|
|
|
|
|
|
|
|
|
i

In most circumstances you can regard session objects and their associated attributes

as thread safe, but you can’t rely on session attributes being thread safe.
4.3 Session Management

There are two principal methods for session management “officially” recognized by the servlet API. One method is management by Cookie exchange, other is management by Rewriting URLs.
General Principals of Session Management:
HttpSession.getId() returns a String whose contents carries a unique ID. This ID identifies the session to which it belongs. This associates a group of requests, they all carries the same ID.
There are a couple of HttpServletRequest methods that identify which of the two standard session mechanisms are in use, cookies or URL rewriting.

· HttpServletRequest.isRequestedSessionIdFromCookie()
· HttpServletRequest.isRequestedSessionIdFromURL()
They can be both return false when the Session is new, Because at this point, the session ID isn’t coming from a URL or a cookie, but it has been generated by the web container.
4.4 Request and Context Listener

Listeners
[image: image22.png]stener Interface Name

ServletRequestListener

Ap

s to

Request objects

Function

Responds to the life and death of each

request.

ServletContextListener

The context object

Responds to the life and death of the

context for a web appl

ServlerRequestAtrributeL stener

Request objects

Responds to any change to the set of at-
tribues attached to a request object.

ServletContextAttributeListener

The context object

Responds to any change to the set of at-
ributes attached to the context object.

There are two things you need to do to set up a listener in a web application:
· Write a class that implements the appropriate listener interface.
· Register the class name in the web application deployment descriptor, web.xml.
<listener>

<listener-class>com.osborne.RequestTrackingListener</listener-class>

</listener>

<listener>

<listener-class>com.osborne.SessionLoggingListener</listener-class>

</listener>

List your listener declarations in the desired order in the deployment descriptor, and let the web container ensure the correct invocation sequence.

[image: image23.png]Taten

Closedown of aweb ap- called Is then In reverse order of deploy-
plication triggers a call to the matching ment description declaration, with session
closedown events In session and context listeners being processed before context
listeners. The order In which listeners are listeners.

It’s worth remembering that listener classes must have a no-argument constructor.

The web container is going to instantiate your listener only through the no-argument constructor.
4.5 The Request Listener

ServletRequestListener.

A class implementing this interface has two methods to implement:
· requestInitialized()

at the beginning of every request’s scope
· requestDestroyed()

each request that comes to an end
Example:

You write code like the following in your ServletRequestListener class to preload an

attribute into every request made to your web application:
public void requestInitialized(ServletRequestEvent requestEvent) {

HttpServletRequest request = (HttpServletRequest)

requestEvent.getServletRequest();
request.setAttribute("com.osborne.bookrecommendation",
 "Core JSPs 2.0");

}

Cast the ServletRequest() to Http ServletRequest() object.
[image: image24.png]Two Requests Triggering Request Events

Web conainer
| service) {| 1
Begn | |Filcer! Fiter2 [oee)
2] somesi
e ey ‘
|GoFilter() \ i
= g [!
Bd 1) X
request | }
Servietp
sdtvice() ServierRequestListener
aoget ();
N/ - Yrequestinitializea {}
) —> Progress of request

~> Callto request lstener.

4.6 The Request Attribute Listener
Methods for the the ServletRequestAttributeListener interface:
· attributeAdded(ServletRequestAttributeEvent srae)

when a new attribute is added to any request

· attributeRemoved(ServletRequestAttributeEvent srae)

when remove an attribute from a request

· attributeReplaced(ServletRequestAttributeEvent srae)

when setAttribute is called for excisting (named) attribute
There are two useful methods on the event object passed as a parameter to these methods. The method getName() is straightforward: It returns the String holding the name of the attribute being added, removed, or replaced. getValue() returns the object of the value parameter.
public void attributeReplaced(ServletRequestAttributeEvent event) {

String name = event.getName();

Object oldValue = event.getValue();

Object newValue = event.getServletRequest().getAttribute(name);

System.out.println("Name of attribute: " + name);

System.out.println("Old value of attribute: " + oldValue);

System.out.println("New value of attribute: " + newValue);

}
The Inheritance chain for ServletRequestAttributeEvent

[image: image25.png]- javautil -

EventObject

Object gatsource ()

Javax.serviet- -

ServietRequestEvent

SorvietContext getservletcontext ()
ServietRequest getservietRequest ()

ServietRequestArributeEvent

String getwame ()
Object getvalue ()

Method getSource() returns the object that is the source of the event. This is the ServletContext object. It represents the web application framework, which is, ultimately, the source of all events.
4.7 The Context Listener
Two methods to implement, they act on the Life Cycle scope of the Context:

· contextInitialized()

at webapplication startup

· contextDestroyed()

at shutdown webapplication

[image: image26.png]on the The contextInitialized() method of a ServietContextListener Is a

Qob great place to read in parameters from initialization files that are fundamen-
tal to the operation of your application. It’s a better alternative than relying
on the init () method in a serviet that loads on startup. Although you can
configure your servlet to be the first one that loads In the application, that's
vulnerable to later configuration changes. But you can guarantee that the
contextInitialized() method will be the first plece of your code to run
on startup of the web application.

4.8 Context Attribute Listener

Has the same trio of methods as ServletRequestAttributeListener:

· attributeAdded(ServletContextAttributeEvent scae)

any call to ServletContext.setAttribute() will trigger a call to this method

· attributeRemoved(ServletContextAttributeEvent scae)

any call to ServletContext.removeAttribute() will trigger a call to this method

· attributeReplaced(ServletContextAttributeEvent scae)

any call to ServletContext.setAttribute()for an attribute name already in use by the servlet context will trigger a call to this method

[image: image27.png]- javauti -

EventObject

Object getsource ()

i

Javaxserviec

ServietContextEvent

ServlerContext getservistcontext ()

ServietContextAttributeEvent

String getwame ()
Object getvalue ()

4.9 Session Listeners
Sessions have two listeners that are equivalent in every way to the lifetime and attribute

listeners we’ve already met for context and request:
· HttpSessionListener

· HttpSessionAttributeListener
The session has some additional listener interfaces that don’t occur in other scopes, and these Listeners are Not Declared in the Deployment Descriptor!!!!!!!!
· HttpSessionBindingListener

receives events when a value object is used as a session attribute

· HttpSesssionActivationListener

receives events when a value object is transported across JVMs.

HttpSessionListener Interface
Has two methods
· sessionCreated(HttpSessionEvent event)
called by webcontainer after first getSession()
· sessionDestroyed(HttpSessionEvent event) called just before HttpSession.invalidate()
HttpSessionAttributeListener Interface

· attributeAdded(HttpSessionBindingEvent hsbe)
· attributeRemoved(HttpSessionBindingEvent hsbe)

· attributeReplaced(HttpSessionBindingEvent hsbe)

HttpSessionAttributeListener methods take an HttpSessionBindingEvent as a parameter. HttpSessionAttributeEvent does not exist!!!!!!!
[image: image28.png]FIGURE 43

Comparative
Inheritance
Hierarchies for
Event Classes

ServietRequestAttributeEvent

HpSessionBindingEvent.

—javaxserviet

favaxserviethttp

Session-Related Listeners Not Declared in the Deployment Descriptor:
HttpSessionBindingListener Interface
· valueBound(HttpSessionBindingEvent hsbe)
· valueUnBound(HttpSessionBindingEvent hsbe)

public class SessionAttrObject implements HttpSessionBindingListener {

private String data;

public SessionAttrObject(String value) {

data = value;

}

public String getData() {return data;}

public String toString() {return data;}

public void setData(String data) {

this.data = data;

}

public void valueBound(HttpSessionBindingEvent event) {

System.out.println("valueBound() call on object " + getData());

}

public void valueUnbound(HttpSessionBindingEvent event) {

System.out.println("valueUnbound() call on object " + getData());

}

}
Let’s now consider some servlet code that adds, replaces, and removes session

attributes—some of whose values are of type SessionAttrObject:

11 SessionAttrObject boundObject1 = new SessionAttrObject("Prometheus1");

12 SessionAttrObject boundObject2 = new SessionAttrObject("Prometheus2");

13 HttpSession session = request.getSession();

14 session.setAttribute("bound", boundObject1);

15 session.setAttribute("bound2", boundObject2);

16 session.setAttribute("nonBound", "Icarus");

17 session.setAttribute("bound", boundObject2);

18 session.setAttribute("bound", null);

19 session.removeAttribute("bound2");

20 session.removeAttribute("nonBound");
OUTPUT

01 >B>B> valueBound() called for object Prometheus1

nav 14
02 >B>B> valueBound() called for object Prometheus2

nav 15
03 >B>B> valueBound() called for object Prometheus2

nav 17
04 >U>U> valueUnbound() called for object Prometheus1

nav 17
05 >U>U> valueUnbound() called for object Prometheus2

nav 18, same effect as removeAttribute()
06 >U>U> valueUnbound() called for object Prometheus2

HttpSessionActivationListener Interface
The methods are called in distributed environments, at the point where a session is moved from one JVM to another. In the source JVM, all objects bound to the session need to be serialized, and—of course—deserialized in the JVM that is the destination for the moved session. Armed with this information, we can make sense of the methods:
· sessionWillPassivate(HttpSessionEvent hse) just prior to serialization of the Session
· sessionDidActivate(HttpSessionEvent hse) just after deserialization of the Session
Chapter 05
Security
5.1 Security Mechanisms
1. Authentication

2. Authorization

3. Data Integrity
4. Confidentiality (Data Privacy)
Just as for data integrity, confidentiality in a web application is ensured by the deployment descriptor element <transport-guarantee>
<transportguarantee>INTEGRAL</transport-guarantee>

(data integrity
<transportguarantee>CONFIDENTIAL</transport-guarantee>
(confidentiality
5.2 Deployment Descriptor Security Declarations

There are three top-level (child from <web-app>) deployment descriptor elements:
5.2.1
<security-constraint>

It defines what resource we’re securing, what roles can access the resource, and how the resource is to be transmitted across the network.
[image: image29.png]FETSTTIERl <sccurity-constraints

The
<security-
constraint>
Element

<display-name> 0 ormany

<web-resource-collections,

Oorl
<anmcmtnmt>t

Oort
<cuser-data-constraints,

C

(|

<wab-resource-name>

<descriptions 0 ormany

<ur1-patterns[Tor many]
<http-methods 0 or many

<descriptions 0 ormany
<role-nane> 0 or many

<descriptions 0ormany
<transport-guarantees

[BwaysT)

If there is no <auth-constraint> for your security constraint? That’s fine, it simply means that the web resource collection is open to all, regardless of role or authentication.
<auth-constraint></auth-constraint> means deny access to the resource for any role!!
5.2.2
<login-config>

Which defines what authentication mechanism is to be used.
5.2.3
<security-role>

Which simply catalogues any security roles in use by the web application.
Example web.xml
[image: image30.png]'http://java.sun.com/xml/ns/j2ee" xmin:
http:/ /java.sun.com/xml/ns/j2ee http:/ /java.sun.com/xml/ns/j2ee

<serviet-name>CheckedServlet</serviet-name>
<servlet-class>webcert.ch05.ex0503.CheckedServlet</servlet-class >
- <security-role-ref>
<role-name >MGR</role-name:>
<role-link>manager</role-ink>
</security-role-ref>
</serviet>
- <servlet-mapping>
<serviet-name>CheckedServlet</serviet-name>
<url-pattern>/CheckedServlet</url-pattemns>
</serviet-mapping>
- <security-constraint>
- <web-resource-collection>
<web-resource-name >TheCheckedServlet</web-resource-name >
<url-pattern>/CheckedServlet</url-pattern=>
<http-method>GET</http-method>
</web-resource-collection>
- <auth-constraint>
<role-name >lowlife </role-name >
</auth-constraint>
</security-constraint>
- dogin-config>
<auth-method>FORM</auth-method>
- <form-login-config>
<form-login-page>/login.html</form-login-page>
<form-error-page >/ error.html</form-error-page >
</form-login-config>
</login-config>
- <security-role>
<role-namelowlife </role-name >
</security-role>
- <security-role>
<role-name>manager</role-name>
</security-role>
</web-app>

Following web.xml disallowes “PUT” and “DELETE” for the whole web application:

<security-constraint>

<web-resource-collection>

<web-resource-name>All Resources</web-resource-name>

<url-pattern>/</url-pattern>

<http-method>DELETE</http-method>

<http-method>PUT</http-method>

</web-resource-collection>

<auth-constraint />

</security-constraint>
5.3 Authentication Types
[image: image31.png]FIGURE 5-3

The <login-
config> Element

<1ogin-confis> . autn-methods Oor
<realm-nane> Oor |

<form-login-contigs
Oorl

<forn-login-page> ARy 1]
<forn-error-page> Ay 1]

5.3.1
BASIC

<login-config>

<auth-method>BASIC</auth-method>

<realm-name>MyUserRegistry</realm-name>

</login-config>

The realm is simply the registry used to store user account information.
5.3.2
DIGEST
DIGEST authentication improves a little on BASIC by using a secure algorithm to encrypt the password and other security details.
Different browservendors do different things in support of DIGEST authentication. You need to

know (and test) the clients you expect your web application to support.
5.3.3
FORM
There are only a few rules you have to abide by when constructing such a page:
· The HTML form must use the POST method (GET is not acceptable).
· The form must have “j_security_check” as its action.

· The form must include an input-capable fi eld for user called “j_username.”

· The form must also include an input-capable fi eld for password called “j_password.”
<html>

<head><title>Login Form</title></head>

<body>

<form action="j_security_check" method="POST">

Name: <input type="text" name="j_username" />

Password: <input type="password" name="j_password" />

<input type="submit" value="Log In" />

</form>

</body>

</html>

<login-config>

<auth-method>FORM</auth-method>

<form-login-config>

<form-login-page>/login.html</form-login-page>

<form-error-page>/error.html</form-error-page>

</form-login-config>

</login-config>

5.3.4
CLIENT-CERT

This is the most secure form of authentication, but it also requires the most understanding and the most setup.
Chapter 06
JavaServer Pages
6.1 JSP Life Cycle
6.1.1
JSP Translation and Execution
[image: image32.png]FIGURE &-1

The JavaServer
Page Transhation
Phase

[image: image33.png]Class Hierarchy
for Generated

Serviet from JSP
Source (Tomcat)

java.lang.

Object

Jjavax.serviet

r
|
e

javax.serviet

GenericServiet

javax.serviet.http

HerpServiet

org.apache. jasper. runtime.

Huplplase

org.apache. jep

myjsprame_jsp.

Buaends

Implements.

6.1.2
The JSP Request / Execution Phase
Just as for any other servlet, the JSP page’s servlet class is loaded, and an instance of it is created.

However, you can register a JSP page in the same way as a servlet. You even use the <servlet> element, with one vital difference—where the <servlet-class> would appear, you substitute

<jsp-file> instead.

[image: image34.png]The avaserver T esborma o eey e
Page Request Tepiiworw csborna com fecydajsp mnu\
Phase TeapTveeew osborne comTfecydesp sopsecvicen |
g ww esborna com ey p
gl wwowborne comicyde /Qm[%
T Twmwesborma comeeydep _
" Sing msanc
Multipl requests for same JSP Singe s
(i o concurrent) olasenier
ecyclesp
(@) Seves rprosencing ecyclesp oaded, saic

initaization
(b) Instance of representing serviet created
() JspTnit) clled

Rules: must happen in order (3). (b). (¢) (hough
these don't hava to happen In quick succession)

Must happen before 2

Requests to fecyclesp processed by calling the
_3spsexvice () method on the corresponding.
Sarviet. May occur in multple concurrent threads.

‘Serviet representing lfecycle]sp taken out of service:
+jsppestroy () clled
«instance of servlet garbage collected

[image: image35.png]</appsvrRoot /webapps> JSPs tend to go here..
indexcheml in the user-accessible
L. part of the web application.
either in the context root or
catalogar
Jeatatesary ep | catlogi in their own named directory,
e s ‘of the context oot
Ls eorerss o] st
U | v

s Jclasses

s i

If you want to suppress direct access to a JSP (so that users have to go through a registered name and a servlet mapping), locate the JSP page under WEB-INF.
6.2 JSP Elements

[image: image36.png]Anatomy of a
5P Page

15P page source

Template text
Elements

Direcves

Scrpan

g o Languagebused ‘ B
‘Actons
// Sundard Custom

Expressions, Scriptets, Declarations, Comments

Elements fall into three types:

· Directive
(fe for importing classes you need)
· Scripting
(XML-style tags for inclusion of dynamic data)
· Action

There are two forms of scripting: (EL or “traditional”) .
And two forms of action element (standard or custom).

Language-based scripting elements:
- expressions

<%= new Date() %>

- scriptlets

<% System.out.println("in the jspService() method"); %>

- declariations

<%! public void jspInit() { // Do nothing } %>

Code in methods outside the _jspService() method. Instance-, static-methods, inner classes
- comments

<%-- Author: David Bridgewater --%>.
Of course, you can still use Java’s own commenting mechanisms: // for single-line comments, /* ... */ for extended comments, and /** ... */ for JavaDoc comments.
[image: image37.png]ement Starts Ends Semic

nsonEndof Code Generated into the
Type with with Java Source Statements? Service() Method?
Expression <a= ®> No Yes

<s &> Yes Yes

<s! ®> Yes No
Comment <8 %>

applicable Not generated at al

6.3 JSP Directives

Write JSP code that uses the directives: “page”, “include” and “taglib”
Made up:
<%@
page
%>
<%@
include
%>
<%@
taglib
%>

· Page:

It is common practice to keep one attribute per directive line:

<%@ page import="java.util.*" %>
<%@ page language="Java" %>
<%@ page session="true" %>

Same as servlet code: HttpSession session = request.getSession();

<%@ page contentType="image/gif" %>

<%@ page isELIgnored="true" %>

Expression Language!
To deal with this, JSP 2.0 sets a default of isELIgnored="true" so that any

occur of ${ in your old application will be correctly treated as templateText.

· Include:
<%@ include file="/jsps/stubs/header.html" %>
· Taglib:
 <%@ taglib prefix="mytags" uri="http://www.osborne.com/taglibs/mytags" %>
Prefix and uri are mandatory.
6.4 JSP Implicit Objects

6.4.1 request
The expression <%= request.getMethod() %> would display the HTTP method (generally GET or POST) used by the request for the JSP.
6.4.2 response

The following scriptlet code, using the response implicit object, would return an HTTP 500 error from a JSP page:

<% response.sendErrorHttpServletResponse.SC_INTERNAL_SERVER_ERROR); %>
6.4.3 out

PrintWriter is unbuffered, so the response output is sent to the page directly. The buffered JspWriter output is appended to the end once the page is complete.
<%@ page import="java.io.PrintWriter" %>

JspWriter buffer size: <%= out.getBufferSize() %>
6.4.4 session

you can make the session implicit object unavailable using the following directive:

<%@ page session="false" %>
Or a scriptlet like this: <% session.invalidate(); %>
6.4.5 config

The only practical reason for using the conﬁg object, which implements javax.servlet.ServletConﬁg, is to get hold of initialization parameters associated with the JSP page. If there are any, they will be in the deployment descriptor, as <init-param> elements associated with the <servlet> element for this JSP page.
6.4.6 application

you can save yourself the bother of deﬁning your own context variable using scriptlet code like this:

<% ServletContext context = this.getServletContext(); %>

You can use application to do all the things we saw in the servlet code from Chapter 3. The following expression could be used to display the name of your web application (as deﬁ ned in the <display> element of the deployment descriptor, web.xml):

<%= application.getServletContextName() %>
6.4.7 page

This is a reference to the JSP page object itself—in other words, the generated servlet.
You could safely downcast the reference within the Tomcat container like this:

<%!
public String getServletInfo() {

 return "My Downcast Page :-(";

}

%>
<% HttpServlet servlet = (HttpServlet) page; %>

<%= servlet.getServletInfo() %>
Consequently, java.lang.Object is the only safe choice for the page reference variable!
You could equally well substitute the following for the last two lines of the above mini-JSP:

<%= this.getServletInfo() %>

Or, of course, just:

<%= getServletInfo() %>

6.4.8 pageContext

The PageContext class is only really exciting to developers who implement JSP containers, not so much page authors. For example, pageContext provides a mechanism for handling exceptions on

a page, and forwarding to another page.
Most usefully, pageContext provides a new scope for attributes: unsurprisingly called page scope. You’ve encountered three sorts of attributes already, here listed from most local to most global:

■ Request attributes

■ Session attributes

■ Context attributes
6.4.9 exception

JSP page designated as an error page, meaning that it contains the following directive:

<%@ page isErrorPage="true" %>

Furthermore, you never call such a page directly. Instead, you include another directive in all those JSP pages that might give rise to an error. This is in the form:

<%@ page errorPage="/jsps/myErrorPage.jsp" %>

The value for the errorPage attribute is the name of a JSP page where isErrorPage is set to true, and can give a path to that page. The path can begin with a forward slash, in which case it is relative to the context root.
Chapter 07
JSP Standard actions, XML, and EL

[image: image38.png]FIGURE 7-

Anstomy of 5P
Page Revisced

ISP page source

Chapeer 7 copics

7.1 JSP Standard Actions

Let’s ﬁrst look at the general syntax of actions, whether standard or custom. As we’ve said, they adhere to strict XML syntax. Here’s a generalized picture:

<prefix:tagname firstAttribute="value" secondAttribute="value"> ... </prefix:tagname>
A standard action may have a body, but it often has no body at all. This can be represented in one of two ways:

 1. By having start and end tag touching, thus: <prefix:tagname attr="value"></prefix:tagname>
 2. By omitting the end tag but using a special /> terminator for the start tag, thus:
<prefix:tagname attr="value" />
Look at the three standard actions for the exam objective: (the preﬁx for all standard actions is jsp)
■ <jsp:useBean>

■ <jsp:setProperty>

■ <jsp:getProperty>
7.1.1 <jsp:useBean>
There are four attributes described for <jsp:useBean>:

· id

· class

· scope

· type
(subclass or implementing interface from class!)
Leave the instantiation to the bean tool you are using — in our case, standard actions. Consequently, your bean must have a no-argument constructor —
<jsp:useBean id="theDog" class="animals.Dog" />

theDog becomes a local variable holding an instance of Dog, in page scope!
<jsp:useBean id="theDog" class="animals.Dog" scope="session" />

in session scope!
For this to work, several things have to be true:

■ The class attribute must specify the fully qualiﬁed name of a class (the import attribute of the page directive will be no help to you, unfortunately).

■ animals.Dog must obey JavaBean conventions.

■ animals.Dog must be visible somewhere in the web application —mostly this means it will exist as a class in WEB-INF/classes or within a JAR ﬁle in WEB-INF/lib.

■ An id with a value of theDog must not have been used in <jsp:useBean>

already; in other words, all ids for beans on a page must be unique.
7.1.2 <jsp:setProperty>
<jsp:setProperty name="theDog" property="weight" value="6.4" />

The ﬁrst thing to watch is the attribute name. This is the name of the bean itself.

The value for name attribute has to be the same as a previous value for a <jsp:useBean> id attribute

If your <jsp:setProperty> and <jsp:getProperty> standard actions try to access an attribute that doesn’t exist, they are liable to die a horrible death with HTTP 500 errors returned to the requester.

The property attribute specifies a property on the bean. Because the property here is “weight,” then the underlying code will assume the existence of a getWeight() method on the theDog bean. The value attribute supplies the data for the property.

Instead of supplying a literal value - value="6.4." - , you can substitute an expression.

<% float w = 6.4f; %>

<jsp:setProperty name="theDog" property="weight" value="<%=w%>" />

Another:

<% String dftWeight = config.getInitParameter("defaultDogWeight"); %>

<jsp:setProperty name="theDog" property="weight" value="<%= dftWeight %>" />
You’ll very often want to use request parameters (say from an HTML form) to set properties. You could follow on from the examples above and write code like this:

<jsp:setProperty name="theDog" property="weight"

value="<%= request.getParameter("dogWeight") %>" />

=
<jsp:setProperty name="theDog" property="weight" param="dogWeight" />

This is shorthand for saying take the request parameter called “dogWeight,” and use

the value for this to set the property called “weight” on the bean called “theDog.”

=

It could well be that name of a request parameter (from your HTML form) matches the corresponding property name. In that case, you can omit the param attribute altogether:

<jsp:setProperty name="theDog" property="weight" />

7.1.3 <jsp:getProperty>
<jsp:useBean id="currentAnimal" scope="session" class="Webcert.ch07.examp0701.Dog"

type="webcert.ch07.examp0701.Animal" />
The type you choose must be compatible with the actual class of the object (subclass or interface)
7.2 Dispatching Mechanisms

[image: image39.png]TABLE 7.
Comparing 2nd
Conerasting the
Two J5P Inclusion
Mechanisms

<jsp:include> Standard Action <3@ include %> Directive

Atributes: page (and fush)

Aurbure: ile

Page attribute accepes relative and abso-
lute URLs.

File aterbute sccepts relaive and absolute
URLs.

Response from target page included at
reques time.

Target fl included during translaton phase.

Target page to include can be sofi-coded as
an expression.

Target fle must be a hard-coded ltera value.

Can execute conditionaly n the middle of
page logic

Will be processed uncondidonally—carlt be
embedded in page logic.

Target page doestt have to exist until
request time.

Target fle must exist at translation time.

‘Always includes the latest version of the
target page.

'Does not necessarly include the latet version.
of the target file: depends on your container.
(not mandated by the JSP specificarion).

7.2.1 Parameters

To illustrate these points, suppose that you make the following HTTP request to

forwarder.jsp:

http://localhost:8080/examp0702/forwarder.jsp?animaltypes=dog

forwarder.jsp:

<jsp:forward page="animalHouse.jsp">

 <jsp:param name="animaltypes" value="cat" />

</jsp:forward>
then the output will be:
cat;dog;

7.3 JSPs in XML

7.3.1 XML friendly Syntax; Scripting Elements, Directives, Comments
[image: image40.png]Scripting Elements Original JSP Syntax XML Syntax

XML Equivalents
for JSP Sytax

Seriplets P <jsprscriptless...
</3spiscriptiess

Expressions <jsprexpression>...
</3sp:expression>
Declarations <t <jsprdecilazation>...

</ 3sp:declaration>

page <sé page <jspidirective.page
ster=svalue® >

include <3¢ include
£ile=tabo.txt &>

taglib <t& taglib prefix=
“abor uri="..." >

Exclude from translation. | <8== +2. ——8> PIE—
(and outpur)
Include HTML comment <1—= > [ETen

in HTML outpur

7.3.2 XML friendly Syntax; Namespaces
<html>

<head><title>Namespaces</title></head>

<jsp:directive.page xmlns:jsp="http://java.sun.com/JSP/Page"

contentType="text/html" />

<body><h1>Namespace Demonstration</h1></body>

</html>

You can see that the <jsp:directive.page> element now contains an additional attribute:

xmlns:jsp="http://java.sun.com/JSP/Page"

The xmlns stands for XML namespace and —after the colon —uses a name/value pair. The name (jsp) is the preﬁx you use for any elements belonging to this namespace —such as <jsp:directive.page>. The value is —more often than not —a URL, though it can be any text at all. Sometimes, the URLs actually correspond to pages on the Internet. Mostly —and http://java.sun.com/JSP/Page is a case in point —they don’t. There’s no technical need for the resource at the end of the URL to exist; a URL is often used because it has a good chance of being

unique. So when you see the namespace http://java.sun.com/JSP/Page, you can safely assume that this is uniquely associated with a set of elements that have to do with JavaServer Page standard actions.
7.3.3 XML and the JSP Container

There are three approaches that identify a page as a JSP document:
· Ensure that your web application deployment descriptor web.xml is at version

level 2.4 and that the ﬁle with your JSP page source has the extension .jspx.
· Ensure that your web application deployment descriptor web.xml is at version

level 2.4, and include some appropriate settings in deployment descriptor’s

<jsp-config> element.
· Enclose your page source with the root element <jsp:root>. This element

is backward-compatible with previous versions of the JSP container, so it

doesn’t rely on a particular version level for web.xml.
<jsp-config>

<jsp-property-group>

<url-pattern>/jspx/*</url-pattern>

<is-xml>true</is-xml>

</jsp-property-group>

</jsp-config>
This says that any for any ﬁle accessed with a URL ending in /jspx /anythingatall.any within the web application, treat this as a JSP document. The <is-xml> element takes two valid values: true (treat these as JSP documents with XML syntax) or false (treat these documents as JSP pages with standard syntax). The <url-pattern> element works in just the same way we saw within the
<servlet-mapping> element way back in Chapter 2.
What to do to Create a .jspx-source from a .jsp-source:

1. Replace
<html>
tag by
<html xmlns:jsp="http://java.sun.com/JSP/Page" >
2. Repl
page directive syntax by
<jsp:directive.page import="java.util.*" />
3. Replace

by
<![CDATA[]]>
4. Replace every occurrence of <% by <jsp:scriptlet>, and every corresponding %> by </jsp:scriptlet>.
5. Replace every occurrence of <%= by <jsp:expression>, and every corresponding %> by </jsp:expression>.
6. Replace the “<” sign in scriptlets by escape characters <
Replace the “>” sign in scriptlets by escape characters >

7.4 Expression Language

As the name implies, Expression Language provides an alternative to the expression aspect of Java language scripting —<jsp:expression>...</jsp:expression> or <%...%> .
EL by itself is not a replacement for scriptlets!
Expression Language can be enabled or disabled in three different ways:

1. The page directive attribute isELEnabled can turn on EL for a single page—or not.

2. With the <jsp-propertygroup> element, which has a subelement <el-enabled>.
3. EL is enabled at an application level by having a deployment descriptor at servlet level 2.4. A previous deployment descriptor level indicates that EL should be switched off.
An expression begins with ${ and ends with }.
EL is equally valid in standard JSP syntax or JSP document (XML) syntax.
First a JSP in normal syntax:

<html>

<head><title>As a normal JSP</title></head>

<body>

<% request.setAttribute("whichever", "EL in either syntax"); %>

<p>${whichever}</p>

</body>
</html>

And now the same as a JSP document:

<html xmlns:jsp="http://java.sun.com/JSP/Page">

<head><title>As a JSP document</title></head>

<jsp:output omit-xml-declaration="true" />
<jsp:directive.page contentType="text/html" />

<body>

<jsp:scriptlet>

 request.setAttribute("whichever", "EL in either syntax");

</jsp:scriptlet>

<p>${whichever}</p>

</body>
</html>
In both cases, the EL syntax ${whichever} picks up and displays the value of the whichever attribute set up in the scriplet: “EL in either syntax.” However, you do have to keep Java code (such as scriptlets) free of EL (after all, EL is not valid Java syntax).
So the following will not work:

<% request.setAttribute("anAttribute", ${aValueFromEL});

7.4.1 EL Literals
[image: image41.png]TABLE 7-

The Five Kinds
of EL Litersl

Type Example Comments

Boolean ${true) Valid values ate true and false —just like
Java Boolean liteals.

Integer s(18782) Underpinned by a java.lang Long value.
Donfeappend “I"or “L" to the literal value
a5 would happen for a Java long literal

foating point ${1.618034) or Underpinned by a java.lang Double value.

$(2.998e43)

Strings $(“Galleon”} or Characters surrounded by double or single

${’Coracle’} quotes.

Null Soull) Equivalent to the Java null lizeral. Doesele

output anything.

7.4.2 EL Operators
Operators in EL come in four categories:

· arithmetic

· relational
· logical

· empty

- Arithmetic Operators

There are ﬁve arithmetic operators:

1. addition (+)
2. subtraction (-)

3. multiplication (*)
4. division (/) or div

5. modulo (%) or mod

- Relational Operators
[image: image42.png]—
S

Greaterthan. > =
Less chan < i«
Equals e
Greaterthan or equals = -
Less chan or equal = e
Notequals ne

- Logical Operators
[image: image43.png]N <R =

EL Logieal
Operators

- The empty Operator
EL’s empty operator can be invoked like this: ${empty obj}.

obj is an empty string (“”), obj is an empty array or obj is an empty Map or empty Collection.
7.4.3 EL Property Acces
- The . and [] Operators

To display a property of the dog, you use the attribute name and the property name.
■ ${currentDog.name}
These variants will also display the dog’s name:

■ ${currentDog["name"]}

■ ${currentDog['name']}
You’re not limited to one level, either. Let’s suppose our Dog class had an additional method, getFather(), which returned another Dog object —representing the father of the current dog. This would expose another property on the current dog, called “father.” The father dog —being a Dog object —has all the same properties as the current dog. So if you now wanted to display the name of the current dog’s father, you could do so this way:
■ ${currentDog.father.name}

The alternative syntax would look like this:

■ ${currentDog["father"]["name"]}

■ ${currentDog['father']['name']}
- Arrays, Lists, and Maps

Array and List works in the same way

<% String[] dayArray = {"Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"};

pageContext.setAttribute("days", dayArray); %>

<% pageContext.setAttribute("two", new Integer(2));

pageContext.setAttribute("three", "3"); %>

${days[two]}

${days[three]}
Map works with unique Key like this,
 ${nameOfMap[keyValue]}

<jsp:directive.page import="java.util.*" />

<% Map longDays = new HashMap();

longDays.put("MON", "Monday");

longDays.put("TUE", "Tuesday");

longDays.put("WED", "Wednesday");

longDays.put("THU", "Thursday");

longDays.put("FRI", "Friday");

longDays.put("SAT", "Saturday");

longDays.put("SUN", "Sunday");

pageContext.setAttribute("longDays", longDays);

pageContext.setAttribute("wed", "WED");

%>

 ${longDays[wed]}

 ${longDays["THU"]}

 ${longDays.FRI}

The output from this code is

Wednesday

Thursday

Friday

- EL Implicit Objects

[image: image44.png]E7. EL Implicic Objects

Closest JSP Scripting

Variable Name Description Equivalent”
‘pageContext Represents the |SP PageContext Accessing properties of the
object pageContext implicit object
‘pageScope A Map of page scope attrbutes pageContexs.geshteribute()
requesSeope A Map of request scope auributes___request .getAteribute()
sessionScope A Map of session scope attrbutes___ sess ion.getAteribute()
applicationScope A Map of pplication scope attributes_ application.gethttribute()
param "A Map of ServietRequest parameter request .getraraneter()
names and firt values
‘paramValues A Map of ServletRequest parameter _ Zequest . getParanetervalues()
‘names and al values
header A Map of HtpServletRequest header_ zequest. . gecheader ()
names and firt values
headerValues A Map of HeipServierRequest header zequest . getReaders()
‘names and al values
cookie ‘A map of HuupServletRequest cookie request .getCookies () and
‘names and cookie objects rerating through the returned Cookie
arcay for a cookie of a given name
initParam A Map of ServletContext parameter _ config . getServLetContext ()

‘names and values

-getInitraranecer()

All the EL implicit objects, with the exception of pageContext, are of type java.util.Map!

- pageScope, requestScope, sessionScope, and applicationScope

${sessionScope.myAttribute}

${applicationScope ["myAttribute"]}

${myAttribute}: Under the covers, PageContext.find("myAttribute") is used to search all scopes through page, request, session, and application, stopping when it ﬁnds an attribute of the right name

- param, paramValues

Let’s suppose that your HTTP header request contains the following query string: ?myParm=firstValue&myParm=secondValue
The result of ${param.myParm} is “ﬁrstValue.”
The result of ${paramValues.myParm[1]} is “secondValue.”

- header, headerValues

These are used in a very similar way to param and paramValues, but they are targeted to recover request headers. The request header “Accept” is a good one to experiment with. This speciﬁes the MIME types that a client is willing to receive back in the response, and it often consists of multiple

values. The syntax is identical as for param and paramValues, so ${header.accept}

returns the ﬁrst value of the accept header, and ${headerValues.accept[2]} returns the third value. (“Accept” is one of the headers set up by the browser you met in Chapter 1).
- initParam
to access ServletContext initialization parameters
 ${initParam.myParm}

- cookie
to access a named Cookie in the HttpRequestHeader ${cookie.JSESSIONID.value}
- pageContext
${pageContext.request.method}, will display the HTTP method (GET, POST. Etc.) associated with the request.

Chapter 08
JSP Tag Libraries

8.1 Tag Libraries

8.1.1 The Custom Tag Development Process
There are four essential stes to writing a custom tag for use in your JavaServer Pages:

1. Writing a Java class called a tag handler

2. Defining the tag within a tag library definition (TLD) file

3. Providing details of where to find the TLD file in the deployment descriptor, web.xml

4. Referencing the TLD file in your JSP page source and using the tags from it
To illustrate the process of how the JSP container finds the tag, we’ll use a custom tag for rounding a figure to an arbitrary number of decimal places. The process is shown in overview in Figure 8-1.
[image: image45.png][TITNM e suicing Blocks

Imyroundingeege >
7 Documere g uri
<33 tagiin praigernyiage Gearason in
i i S P pagemaps 0
Jeagiisajariaget > i
i depoymant
lnyiagsszountas(3.21/3)e/my ascrpe WESNFwasn!
. il
&t [—
et
START HERE: g wasd n 5 pge. ez e oeborne con/<aglibe/myzazs
g maps o s préic mysgs” Jeagt e

<taglib-lacations

Jws- 1z cags mytags <1
/ /tagiiniscacions
YT —— esgliplecstizme

T eaymencesrpror et

Tog Lbrary Deserpar he el g orary cescripeor .
e,

<name>zoune/nanes

<tag-classs

ebcars.ihos. eundingTaz

o WS- INFichsses wecere ch08/RoundingTg css

e Teg Handler Chss

L e
SRR | iissesatotaieis
e £000101010100000010010
iteing

Here’s a complete JSP page in traditional syntax that uses a rounding tag:
01 <html>

02 <%@ taglib prefix="mytags" uri="http://www.osborne.com/taglibs/mytags" %>

03 <head><title>Rounding Example: JSP syntax</title></head><body>

04 <h1>Round EL Calculation To 2 Decimal Places</h1>

05 <p>EL calculation without rounding:${9.21 / 3}</p>

06 <p>EL calculation with rounding:

07 <mytags:round decimalPlaces="2">${9.21 / 3}</mytags:round></p>

08 </body></html>
<web-app>

<jsp-config>

<taglib>

<taglib-uri>http://www.osborne.com/taglibs/mytags</taglib-uri>

<taglib-location>/WEB-INF/tags/mytags.tld</taglib-location>

</taglib>

</jsp-config>

</web-app>
The first <taglib-uri> has a body value that exactly matches the uri quoted in the taglib directive. The second subelement, <taglib-location>, gives the actual location in the web application where the taglib library descriptor (TLD file) is located.
The following diagram shows the complete layout of the <jspconfig> element.
[image: image46.png]<ieeceta o cagiiss Qe e

<cagiin-locacions

<jep-property-groups \ (" aceco o g

Oormany
<cparan-nane> Oorm

Even though che —

schems s3ys D or <lesms I gnaliicons @BHN

mary, tere musc be Oormany

3 contaner-nforced ey

Lcnines o P r—

<Gsp-contiz> <cei-ignoreds Qo

inder <usb-spe. <page-encodings Oorl

<cscripting-invalids 0GRl
<tamxals Oarl
<cincluda-preludes Ot many
<includs-coiss Oarmany

There are several elements whose meaning M <is-xml> is described in the JSP
you donit have to know for the exam —these document section of Chaprer 7.
are grayed out in the illustration. Of the
Foriy These leaves two elements (<el-ignored>
and <script ing-invalid>) that control
B <taglib> and its subelements expression language and Java as a scripting
are described elsewhere in this language. Here's an example <jsp-con€ig>
chapter. setting that does both:
<jsp-contig>

<jsp-property-group>
<url-patcern>/+</url-patcern>
<el-ignored>true</el-ignored>
<scripting-invalid>crue</scripting-invalid>
</3sp-property-group>
</3sp-contig>

The only piece of the puzzle left is the TLD file itself, which looks like this:

<taglib xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee/webjsptaglibrary_2_0.xsd”

version="2.0">

<tlib-version>1.0</tlib-version>

mandatory element!
<short-name>My Tag Library</short-name>
mandatory element!
<tag>

<name>round</name>

<tag-class>webcert.ch08.examp0801.RoundingTag</tag-class>

<body-content>scriptless</body-content>

<attribute>

zero to many!
<name>decimalPlaces</name>

<required>false</required>

<rtexprvalue>true</rtexprvalue>

</attribute>

</tag>

</taglib>
<name> The name for the tag as used on the JSP page (<mytags:round decimalPlaces="2">).
<body-content> dictates what can go in the body of the tag. There are four valid values:
1. empty—the body of the tag must be empty (so <pfx:mytag /> or pfx:mytag></pfx:mytag>).

2. tagdependent—the body of the tag contains something that isn’t regular JSP source. The tag handler code works out what to do with it. A typical use is to put an SQL statement in the body.

3. scriptless—the body of the tag does contain regular JSP source, but nothing involving scripting language. So Java language syntax is forbidden—whether in scriptlets or expressions. EL, though, is absolutely fine in a body specified as scriptless—and will be evaluated.

4. JSP the body of the tag contains any kind of regular JSP source. Java language syntax is just fine.
The <attribute> element has a number of subelements:
· <name>—for the name of the attribute (decimalPlaces in the example).

· <required>—true if the attribute is mandatory, false otherwise.

· <rtexprvalue> (short for “run-time expression value”)— true if you can use EL or an expression (<%= ... %> or <jsp:expression>) to provide the attribute’s value at run time, false if the attribute’s value must be a literal.
[image: image47.png]Imyroundingssgeisp

5 documene
<¥a cagiih praxsrmyzages
Gxiatates. /e Ssborne con

el

Routes to Tag Library Descriptors

15P concaner searches subareccaries
of [WEB-INFand JARS in WEB-INF/
o LD fle i mcing UR

IWERINFlsgs myeag e

T lorary o

ccagliny
oytags:zoundas(s.21/3)emy |

Sage:ratnar

START HERE: g used
nJ5P page. mymgs:
maps to g prefx
Eagaths

—
<izisnep://uns.osborne con/tagl iba/mycagse/uris
vy
<hanesround./nanes
Ceagiciasss
ebcert.enos.ReundingTag

/R | L biore crag-classs none

i TUD maps to1 ag hander cass.

</eaglins

/\WEBHINF ssse webcare/chOB Rounding Tag st

Tag randier cnse

8.2 JSTL
JSP Standard Tag Libraries

The JavaServer Page Standard Tag Library—or JSTL.

You’ll need an implementation. JSP containers (such as Tomcat) don’t necessarily come with one already supplied. Fortunately, it’s easy and free to acquire an implementation, which is also easy to install into most containers.
The JSTL comprises five tag libraries:
· core: custom actions that do the programming “grunt work”—such as conditions and loops—and also fundamental JSP tasks such as setting attributes, writing output, and redirecting to other pages and resources.
· xml: custom actions that alleviate much of the work in reading and writing XML files

· sql: custom actions dedicated to database manipulation

· fmt: custom actions for formatting dates and numbers, and for internationalization of text

· function: a set of standardized EL functions.
To make use of the core tag library in your own JSP pages, you must include a taglib directive (or namespace reference) containing the right URI: http://java.sun.com/jsp/jstl/core
So a complete taglib directive to include the core JSTL library might look like this:
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

JSP page
or

xmlns:c=”http://java.sun.com/jsp/jstl/core”

JSP document
8.2.1 Groupings of Actions
In all, there are fourteen actions contained in the JSTL core library. The JSTL specification splits these up into four groups: General Purpose actions, Conditional actions, Iterator actions, and URL-Related actions.
[image: image48.png]Group
General Purpose

Actions

s>

<cises>

Purpose

Manipulating artsibutes, controlling
output to the JSPWriter, carching
exceptions

Conditional Control flow (branching)
<ciotherwise>

Ineration <c:forpach> Control flow (looping)
<c:forTokens>

URLRelated <ciimpore> Use of other resources
<cruzl>

<ciredirace>

<ciparam>

<c:out>
<c:out value=${user.name} default="User name not recognized" />

If the name property of the user attribute has a value, that value is displayed. If the name property evaluates to null, then the text “User name not recognized” will be displayed instead.
The second feature is the ability to escape XML-unfriendly characters, such as < and >. Entities are substituted instead, such as < and >.

<c:out value=${xmlUnfriendlyAttribute} escapeXml="true" />
The following table shows the list of characters that are converted through the XML-escaping facility.
[image: image49.png]Character Converted To

< sle;
> sgt;

3 samp;
#039;
#03¢4;

<c:set>
This is used for setting attributes in any scope. This tag is a convenient and lightweight alternative to the standard action combination of <jsp:useBean> and <jsp:getProperty>. Here’s an example:

<c:set value="9.21" var="numerator" />

<c:set value="3" var="denominator" />

<c:set value="${numerator/denominator}" var="calculationResult" />

${calculationResult}
Here is how calculationResult can be put into session scope:

<c:set var="calculationResult" scope="session">${numerator/denominator}</c:set>

consider that HttpSession has a maxInactiveInterval property—by virtue of having set and getMaxInactiveInterval() methods. You can set this property using the following <c:set> syntax:

<c:set value="28" target="${pageContext.session}" property="maxInactiveInterval" />
As before, the body of <c:set> can be used to specify the value, instead of using the value attribute:

<c:set target="${pageContext.session}" property="maxInactiveInterval">28</c:set>
<c:remove>
As always, page is the default when scope is not specified.
<c:remove var="calculationResult" />

or one such as

<c:remove var="calculationResult" scope="session" />
<c:catch>
The <c:catch> action relates only to anything that goes on in its body.

<c:catch var="numException">

<jsp:scriptlet>int zero = 0; out.write(3/zero);</jsp:scriptlet>

</c:catch>

<p>If there was an exception, the message is: ${numException.message}</p>
[image: image50.png]Run-time

Attribute Name ~ Expression Allowed? Mandatory? Default Value
<ciout>

value Yes Yes None Object
escapexnl Yes No True boolean
defaule Yes No EmptyString __ Object
<ciset>

value Yes No None Object
var No No None String
scope No No Page String
carger Yes No None Object
property Yes No None String
var No Yes None String
scope No No Page String
<cicateh>

var No No None String

8.2.2 Conditional Actions
<c:if>
<c:if test="${user.loyaltyPoints gt 1000}">

<p>Welcome to one of our best customers!</p>

</c:if>
<c:if test="${mytags:checkRole(user, 'Manager')}" var="userInManagerRole" scope="session" />

The test uses an EL function called checkRole, which receives two parameters—a user name and a role name, one an attribute called “user,” the other a String literal “Manager.” The checkRole function returns a boolean result.
The following test makes use of this variable, and returns sensitive information only if userInManagerRole evaluates to true.

<c:if test="${userInManagerRole}">Salary field: $1,234,567</c:if>
<c:choose>
In combination with <c:when> and <c:otherwise>
<c:choose>

<c:when test="${userInDeveloperRole}">
Welcome, fellow developer.</c:when>

<c:when test="${userInManagerRole}">

You are a manager! I'll take the next bit slowly for you.</c:when>

<c:otherwise>

Hmm—I'm not sure what you are. Should I be talking to you?

</c:otherwise>

</c:choose>
[image: image51.png][
Expression Default

Allowed? Mandatory? Value

test Yes Yes None. boolean

var No No None

scope No No Page.

<cichoose>

whan> sctions, and

Noatributes. Body may contain only one or m

<cruhen>

<o Yes Yes None boolean

<crotherwise>

Noartributes

8.2.3 Iterator Actions

<c:forEach>
EL helpfully provides some ready-made implicit variables that are collections of objects—for example, ${headerValues}, which represents the collection of values for request headers. Here is a <c:forEach> loop that displays these values in an HTML table:
<table border="1">

<c:forEach var="hdr" items="${headerValues}">

<tr><td>${hdr.key}</td><td>${hdr.value[0]}</td></tr>

</c:forEach>

</table>
The value for the items attribute must contain the collection object to loop around—in this case, a java.util.Map object (${headerValues}. On each circuit of the loop, an object from this collection is placed in the variable represented by the value for the var attribute: hdr. Each object in a Map is a Map.Entry object, with getKey() and getValue() methods, exposing the two bean-like properties key and value. So the EL syntax ${hdr.key} has the effect of getting the request header’s key value

and writing this to the current JspWriter.
<table border="1">

<c:set var="num" value="1" />

<c:forEach begin="1" end="128" step="2">

<c:set var="num" value="${num + num}" />

<tr><td>${num}</td></tr>

</c:forEach>

</table>
<c:forTokens>
Is a specialized version of the <c:forEach> action, designed to perform String tokenization much like the StringTokenizer class does in straight Java language syntax.
Two important respects:
· The items attribute will accept only a String as a value

· An additional attribute, delims, is used to specify the delimiter to recognize when breaking up the String into tokens.
<table border="1">

<c:forEach var="hdr" items="${headerValues}">

<tr><td>${hdr.key}</td><td>${hdr.value[0]}</td></tr>

<c:if test="${hdr.key eq 'Accept'}">

<c:set value="${hdr.value[0]}" var="acceptValues" />

</c:if>

</c:forEach>

</table>

<table border="1"><tr><th>Accept values</th></tr>

<c:forTokens items="${acceptValues}" delims="," var="value">

<tr><td>${value}</td></tr>

</c:forTokens>

</table>
The acceptValues variable becomes the input to the <c:forTokens> action, as the value for the items attribute. Each value within acceptValues is recognized as separate from the next because comma is set as the value for the delims attribute. The var attribute is used to produce the value EL variable to display in a table cell on each iteration of the loop:
<c:forTokens items="${acceptValues}" delims="," var="value">

<tr><td>${value}</td></tr>

</c:forTokens>

[image: image52.png]Run-time Default

Attribute Name Expression Allowed? Mandatory? Value ype
<c:forEach>

var No No None String
icens Yes No None Object
varstacue No No None String
begin Yes No None in
end Yes No None in
step Yes No None inc
<c: forTokens>

var No No None String
icens Yes Yes None String
delins Yes Yes None String
varstacue No No None String
begin Yes No None inc
=nd Yes No None in
scep Yes No None inc

8.2.4 URL Related Actions
<c:import>
If you want to go outside of the current context, the syntax is this:

<c:import url="/rounding.jspx" context="/examp0801" />
<c:import url="http://c2.com/index.html" var="importedPage" scope="page" />

<jsp:scriptlet>String fiftyChars = ((String)

 pageContext.getAttribute("importedPage")).substring(0,50);

 pageContext.setAttribute("fiftyChars", fiftyChars);

</jsp:scriptlet>

<pre>${fiftyChars}</pre>

<c:url>
<c:url value="/rounding.jspx" context="/examp0801" var="myLink" />

Link to another page in another context
<c:redirect>
At the other extreme, url can have a value that doesn’t begin with a forward slash. Then it is interpreted relative to the directory in which the page doing the redirection is located:

<c:redirect url="iteration.jspx" />

You can begin the url value with a forward slash, in which case it is interpreted as starting at the context root:

<c:redirect url="/iteration.jspx" />
<c:redirect url="/rounding.jspx" context="/examp0801" />
for other context
<c:param>
Used to attach parameters to any of the previous three URL actions <c:import>, <c:url>, or <c:redirect>. The following example expands the original <c:url> example to add some parameters:

<c:url value="/rounding.jspx" context="/examp0801" var="myLink">

 <c:param name="firstName" value="David" />

 <c:param name="secondName">Bridgewater</c:param>

</c:url>

Link to another page in another context
[image: image53.png]Run-time Default
Attribute Name Expression Allowed? Mandato Value

<c:import>

wrl Ve Yes None Sering
context Y No None String
var No No None String
scope No No Page String
charzncoding Ve No 1S0-8859-1 String
varneader No No None String
<crurl>

value Yo No None String
context Yo No None String
var No No None String
scope No No Page String

8.3 EL Functions

The development process is easier, and the use of the function within the JSP page is as easy as using a custom tag. The process of developing and using an EL function very closely parallels the same process for custom tags.

There are four very similar stages of developing:
1. Writing a Java class containing the method underpinning the EL function

2. Defining the function within a tag library definition (TLD) file

3. Providing details of where to find the TLD file in the deployment descriptor, web.xml

4. Referencing the TLD file in your JSP page source and using the EL functions from it
8.3.1 Writing Methods for EL Functions
Any class will do as a repository for EL functions. The only requirement of a method that acts as an EL function is that it should be declared (1) public and (2) static.
The class that implements an EL function has two usual locations—as a straight class file in WEB-INF/classes, or wrapped up in a JAR in WEB-INF/ lib.
public class Rounding {

public static double round(double figure, int decimalPlaces) {

/* Do the rounding */

long factor = (long) Math.pow(10, decimalPlaces);

// Shift decimal point to right...

figure *= factor;

// Do the rounding...

long interimResult = Math.round(figure);

/* Shift decimal point to left (cast of numerator to double

* because you don't want

* integer division to occur, and then promote to double) */

double output = ((double) interimResult) / factor;

return output;

}

}
8.3.2 Defining the Function within the TLD File

The definition for our rounding function might look like this:

<function>

<description>Rounds figure to given number of decimal places</description>

<name>round</name>

<function-class>webcert.ch08.examp0803.Rounding</function-class>

<function-signature>double round(double, int)</function-signature>

</function>
8.3.3 Finding the TLD
You don’t need a separate TLD for EL functions, different from a TLD that contains custom tags. You can mix EL functions and custom tags (and, as we’ll see later, other elements as well) in the

same TLD. The only rule is on names: Each must be unique across all functions, custom

tags, and other top-level elements within the TLD.
8.3.4 Declaring the TLD and Using the EL Function

Your options for declaring the TLD file have already been covered at the beginning of this chapter: You can either use the taglib directive (for JSP syntax) or reference the taglib in a namespace (JSP document XML syntax).
However, using the function is different.
${mytags:round(9.21 / 3, 2)}
Here’s another example of the use of the round function, in a more realistic setting. Parameters to functions can be run-time expressions.
<c:set var="unrounded" value="${param.num/param.denom}" />

${mytags:round(unrounded, 2)}
First of all, the JSTL action <c:set> is used to load an attribute called unrounded with the value from an EL calculation. The EL calculation performs a division based on two request parameters: one called num and the other called denom.

Then the unrounded variable is plugged in to the EL round function—as the first parameter.
8.4 The “Classic” Custom Tag Event Model

8.4.1 Tags for all Seasons
In actual fact, the classic custom tag event life cycle isn’t a single life cycle. There are three possibilities you can choose from, based on three interfaces, all in the javax.servlet.jsp.tagext package: Tag, IterationTag, and BodyTag.
[image: image54.png]FIGURE 8.3

Tag ncerfaces and
Classes i javax
serviet jspsgext

Tegsupoort

SodyTapport

If all you want to do is make the tag do something—you’re not interested in the body at all—then the Tag interface is for you. Perhaps you would like to insert the current date and time. You could use an expression such as this: <%= new Date() %>
import java.io.IOException;

import java.util.Date;

import javax.servlet.jsp.JspException;
import javax.servlet.jsp.JspWriter;

import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.tagext.Tag;

public class DateStampTag1 implements Tag {

private PageContext pageContext;

private Tag parent;

public void setPageContext(PageContext pageContext) {

this.pageContext = pageContext;

}

public void setParent(Tag parent) {

this.parent = parent;

}

public Tag getParent() {

return parent;

}

public int doStartTag() throws JspException {

dateStamp();

return Tag.EVAL_BODY_INCLUDE;

}

public int doEndTag() throws JspException {

return Tag.EVAL_PAGE;

}
protected void dateStamp() throws JspException {

JspWriter out = pageContext.getOut();

try {

out.write("<i>" + new Date() + "</i>");

} catch (IOException e) {

throw new JspException(e);

}

}

public void release() {

}

}
[image: image55.png]FIGURE 8-4

Custom Tag Lie
Cyee (1): The
Tag Interface

JSP container processing one occurrence of 3 ta implemencing the Tag Interface in ane JSP page:

mmz-»4zon

seczagecontext (ragecontex pe)

seczarens (s o

tsstxooooel..01

inr gostarezag()

¥ EVAL_BODY_INCLUDE reaurned

i#skp_sopy
(15 processes oy contans] ke e
int gommatag()
¥ EVAL PAGE recurnes
b (15 processesremaincer of page] sk _pace
resurnad

5P container does noching
it he e o re page]

· First of all, the JSP container makes an instance of the DateStampTag1 class.
· Next, the JSP container calls setPageContext(PageContext pc).
· After this, the JSP container calls setParent(Tag parent).
· The getParent() method (returning the parent Tag—or null) must be defined. Isn’t called by the container.
· Now the JSP container calls any other set methods on DateStampTag1 that relate to attributes for the tag.
· Next the JSP container calls doStartTag().
In this case, doStartTag() calls its own internal method—dateStamp()—to do the work of writing the date to page output. After doing this, doStartTag() must return an int value—this is a return code to tell the JSP container what to do next.
There are two possibilities:
1. Tag.EVAL_BODY_INCLUDE—any JSP page source between the opening and closing tags for this action should now be processed.
2. Tag.SKIP_BODY—the exact opposite: Any JSP page source between the opening and closing tags for this action should be ignored.
· Dealing with the dateStamp() method: This is the only method in the DateStampTag1 class that is not an implementation of a Tag interface method.
· Next, the JSP container calls doEndTag().

The method is still obliged to send back a return code to the container. Again, there are two options:

1. Tag.EVAL_PAGE tells the JSP container to process the rest of the page after the closing tag.

2. Tag.SKIP_PAGE effectively tells the JSP container to abort the rest of the page following closing tag.
· Finally, the JSP container calls release().If the container decides to take a particular instance of a tag out of service, then release() is called.
Here’s how the tag element looks (to save space, some mandatory taglib attributes are omitted, as are the top-level elements that go with tag libraries): The 3 subelements are mandatory!
<taglib ...taglib attributes...>

<... elements omitted ...>

<tag>

<name>dateStamp1</name>

<tag-class>webcert.ch08.examp0804.DateStampTag1</tag-class>

<body-content>empty</body-content>

</tag>

</taglib>
Here is a complete JSP document that uses the dateStamp1 tag:

<html
xmlns:mytags="http://www.osborne.com/taglibs/mytags"

xmlns:jsp="http://java.sun.com/JSP/Page">

<jsp:output omit-xml-declaration="true" />

<jsp:directive.page contentType="text/html" />

<head><title>Date Stamp Example</title></head>

<body>

<h1>Date Stamp Example</h1>

<p>Date Stamp 1: <mytags:dateStamp1 /></p>

</body>

</html>

Dependent on the setting of an attribute called beforeBody, the location of the date stamp will change in respect of the body.
<html
xmlns:mytags="http://www.osborne.com/taglibs/mytags"

xmlns:jsp="http://java.sun.com/JSP/Page"

xmlns:c="http://java.sun.com/jsp/jstl/core" >

<jsp:output omit-xml-declaration="true" />

<jsp:directive.page contentType="text/html" />

<head><title>Date Stamp 2 Example</title></head>

<body>

<h1>Date Stamp 2 Example</h1>

<h3>Example 1</h3>

<p><mytags:dateStamp2 beforeBody=“false”>

Date after tag body:
</mytags:dateStamp2></p>

<h3>Example 2</h3>

<c:set var=“trueVariable” value=“true” />

<p><mytags:dateStamp2 beforeBody=“${trueVariable}”>

 — date before tag body through runtime expression.

</mytags:dateStamp2></p>

<h3>Example 3</h3>

<p><mytags:dateStamp2>

Date after tag body by default:

</mytags:dateStamp2></p>

</body>

</html>
<...>

<tag>

<name>dateStamp2</name>

<tag-class>webcert.ch08.examp0804.DateStampTag2</tag-class>

<body-content>JSP</body-content>

<attribute>

<name>beforeBody</name>

<required>false</required>

<rtexprvalue>true</rtexprvalue>

</attribute>

</tag>

<...>
public class DateStampTag2 implements Tag {

private PageContext pageContext;

private Tag parent;

private boolean beforeBody;

public void setPageContext(PageContext pageContext) {

this.pageContext = pageContext;

}

public void setParent(Tag parent) {

this.parent = parent;

}

public Tag getParent() {

return parent;

}

public boolean isBeforeBody() {

return beforeBody;

}

public void setBeforeBody(boolean beforeBody) {

this.beforeBody = beforeBody;

}

public int doStartTag() throws JspException {

if (isBeforeBody()) {

dateStamp();

}

return Tag.EVAL_BODY_INCLUDE;

}

public int doEndTag() throws JspException {

if (!isBeforeBody()) {

dateStamp();

}

return Tag.EVAL_PAGE;

}

protected void dateStamp() throws JspException {

JspWriter out = pageContext.getOut();

try {

out.write("<i>" + new Date() + "</i>");

} catch (IOException e) {

throw new JspException(e);

}

}

public void release() {
}
8.4.2 Iteration Tag Interface and Tag Support Class

<html
xmlns:mytags="http://www.osborne.com/taglibs/mytags"

xmlns:jsp="http://java.sun.com/JSP/Page">

<jsp:output omit-xml-declaration="true" />

<jsp:directive.page contentType="text/html" />

<head><title>Card Game</title></head>

<body>

<h1>Bridge Hand</h1>

<table border="1">

<tr>

<th>Player 1</th>

<th>Player 2</th>

<th>Player 3</th>

<th>Player 4</th>

</tr>

<mytags:cardDealer>

<tr>

<td><mytags:card /></td>

<td><mytags:card /></td>

<td><mytags:card /></td>

<td><mytags:card /></td>

</tr>

</mytags:cardDealer>

</table>

</body>

</html>
The TLD descriptions for the two custom actions are pretty simple. Neither has any attributes. The notable difference is that cardDealer can contain any sort of body content, whereas card must be free of any body content.

<tag>

<name>cardDealer</name>

<tag-class>webcert.ch08.examp0804.CardDealingTag</tag-class>

<body-content>JSP</body-content>

</tag>

<tag>

<name>card</name>

<tag-class>webcert.ch08.examp0804.CardTag</tag-class>

<body-content>empty</body-content>

</tag>

import javax.servlet.jsp.JspException;

import javax.servlet.jsp.tagext.IterationTag;

import javax.servlet.jsp.tagext.Tag;

import javax.servlet.jsp.tagext.TagSupport;

public class CardDealingTag extends TagSupport {

private static String[] suits = { "spades", "hearts", "clubs", "diamonds" };

private static String[] values = { "Ace of", "Two of", "Three of", "Four of",

"Five of", "Six of", "Seven of", "Eight of",

"Nine of", "Ten of", "Jack of", "Queen of", "King of" };

private String[] pack = new String[52];

private int currentCard;
public int doStartTag() throws JspException {

initializePack();

shufflePack();

currentCard = 0;

return Tag.EVAL_BODY_INCLUDE;

}

public int doAfterBody() throws JspException {

if (currentCard >= pack.length) {

return Tag.SKIP_BODY;

} else {

return IterationTag.EVAL_BODY_AGAIN;

}

}

public String dealCard() {

String card = pack[currentCard];

currentCard++;

return card;

}

protected void initializePack() {

for (int i = 0; i < 4; i++) {

for (int j = 0; j < 13; j++) {

int cardIndex = (i * 13) + j;

pack[cardIndex] = values[j] + " " + suits[i];

}

}

}

protected void shufflePack() {

int packSize = pack.length;

for (int i = 0; i < packSize; i++) {

int random = (int) (Math.random() * packSize);

// Swap two cards in the pack

String card1 = pack[i];

String card2 = pack[random];

pack[i] = card2;

pack[random] = card1;

}

}

}
So when writing your own tag that extends TagSupport, you are likely to have less work to do than if implementing IterationTag from scratch. You confine yourself to overriding only those methods where the default TagSupport behavior is insufficient. So, for example, doEndTag() is missing from our CardDealingTag code. The default TagSupport implementation—which is simply to return the value Tag.EVAL_PAGE—is just what we want here. There’s no special processing to be done when the closing tag is encountered in the page.
We get the doStartTag() method, which is overridden from TagSupport. Remember that this will be invoked whenever the JSP container encounters the opening cardDealer tag in any JSP page. The method calls the initializePack() and shufflePack() methods in the class, which serve to load up the pack String array with randomized card values.
You can guarantee a doStartTag() call for every access to the tag, which guarantees a newly shuffled deck of cards every time. The doStartTag() method ends by returning Tag .EVAL_BODY_INCLUDE, which is necessary to ensure that the body is processed.

Following doStartTag() is a call to doAfterBody(). This is the one new method introduced by the IterationTag interface. The JSP container calls this method after evaluating the body but before doEndTag() (see Figure 8-5).

If there are more cards available, then the method returns a new constant defined in the IterationTag interface: Iteration Tag.EVAL_BODY_AGAIN. As the name of this constant implies, the JSP container will evaluate the body of the tag again, and then once again invoke the doAfterBody() method. So you can see that there is no way out of this tag handler until Tag.SKIP_BODY is returned!
However, there is no code inside of the CardDealingTag class that calls method dealCard(), so where is it called from? The answer lies in the code of the tag handler class for the card tag—the CardTag class does:

[image: image56.png]Custom Tag Lie
Cyele (2): The
eerationTsg
Interface

J5P container processing one occurrence of a ag implementing the IteratonTag Iterface in one JSP page:

mmz-»4z00

ine dostarcTag()

//rem. 5001w s

I S —
sxe_so0r
1 EVAL_BODY_AGAN resrmed e
I S
/ 5co s00t s
fis comnarag0
1 L_pAGE et
I S p———. rser uce

5P container coss nothing
with che rest of the page]

public class CardTag implements Tag {

private PageContext pageContext;

private Tag parent;

private static int instanceNo;

public CardTag() {

instanceNo++;

}

public void setPageContext(PageContext pageContext) {

this.pageContext = pageContext;

}

public void setParent(Tag parent) {

this.parent = parent;

}

public Tag getParent() {

return parent;

}

public int doStartTag() {

return Tag.SKIP_BODY;

}

public int doEndTag() throws JspException {

CardDealingTag dealer = (CardDealingTag) getParent();

String card = dealer.dealCard();

JspWriter out = pageContext.getOut();

try {

out.write(card);
//out.write(card + "
" + instanceNo);

} catch (IOException e) {

throw new JspException(e);

}

return Tag.EVAL_PAGE;

}

public void release() {

System.out.println("Releasing CardTag instance number: " + instanceNo);

}

}

This is reinforced by the doStartTag() method, which simply skips the body. All the action occurs in the doEndTag() method, whose purpose is to obtain the latest card from the pack and send the name of the card to page output. Its mechanism for doing this is simple enough. getParent() works well when the tag in question is nested directly inside of its intended parent.
Consider the following change to the JSP document that used the cardDealer and card tags:

<mytags:cardDealer>

<tr>

<td><mytags:embolden><mytags:card /></mytags:embolden></td>

</tr>

</mytags:cardDealer>

You can see a new tag here, called “embolden,” which surrounds the card tag for the second player (in the second column of the table). Its tag handler code isn’t shown here, but the class name is EmboldenTag. Now when the tag handler code for the card tag reaches the first line of code in its doEndTag() method:

CardDealingTag dealer = (CardDealingTag) getParent();

The actual tag handler instance returned by the getParent() method will be of type EmboldenTag—not the expected CardDealingTag instance as required.

The page will fall down in a messy heap at run time with a ClassCastException.
There is a solution to this, provided by a static method on the TagSupport class, called findAncestorByClass(), which accepts two parameters: the first an instance of the tag whose ancestor is sought, and the second the class type of the ancestor tag. Here’s the rewritten code for the doEndTag() method in card’s tag handler:

Class parentClass;

try {

parentClass = Class.forName("webcert.ch08.examp0804.CardDealingTag");

} catch (ClassNotFoundException e1) {

throw new JspException(e1);

}

CardDealingTag dealer =
(CardDealingTag) TagSupport.findAncestorWithClass(this, parentClass);

// Code is unchanged from this point onwards...

String card = dealer.dealCard();

// etc.

8.4.3 BodyTag Interface and BodyTagSupport Class
This is a type of JspWriter, with an important distinction: The contents are buffered so that no part

of the body has yet been committed to page output. This is what gives BodyTags their ability to take any liberties they wish with body content.
[image: image57.png]TR Cuscom Tog Life Cycle (3): The BodyTag Incerface

J5P conainer procssing one occurrence of a tag implementing the BodyTag Interface in one JSP page:

> serpagecontex (ageContext pe)
> secpaves(mag o)

> setmoooul)

5 1#5KP_BODY
P f——— int dostareTagl) reued.

EVAL_BODY_BUFFERED
renumes...

f————> sessodyContent (s0dyContent be)

EVAL_BODY_INCLUDE
renurned

dolnitnody)

f—————> (1P processes body contents]
EVAL_BODY_AGAN retumed ...

mmz->»4z00

> inc soarcernoay()

§SKIP_BODY returned...

> int dofrdlag() ¢
VAL PAGE reuree...

> [} processes remaincer of page] #SKP_PAGE
rewred....

5P contaner coes noching
with the st of the page]

You can see two new life cycle methods over and above those provided by Tag and IterationTag.

■ setBodyContent() gives you the opportunity to save the BodyContent object that will hold the buffered body contents. This method is called after doStartTag(), but before the next method, doInitBody().

■ doInitBody() is called before the JSP container enters and evaluates this tag’s body for the ﬁrst time. It is called only once per access to the tag, however many times you choose to iterate through the body. Remember that at this point, the BodyContent object —though available —is empty: The body hasn’t been evaluated at all yet.
Now, as well as being able to skip the body altogether (Tag.SKIP_BODY) or evaluating the body as normal (Tag.EVAL_BODY_INCLUDE), you can choose BodyTag.EVAL_BODY_BUFFERED, which has the effect of making the BodyContent object available. (Unless you set this return code, then the setBodyContent() method is not called.)
The BodyContent Object

The BodyContent object effectively traps the output from any evaluations of the body that occur within the tag. As noted, the BodyContent is a JspWriter, so you can (in your tag handler code) write additional content to the BodyContent object before, between, and after evaluations of the tag body that arrive in the Body Content object as well.

Although the BodyContent object is a writer, there is no real underpinning stream; everything that accumulates there is held in a string buffer. One consequence of this is that you can write as much as you like to BodyContent, but nothing arrives in the page output.
What you are meant to do, usually when you are ﬁnished doing all you need to evaluate in the tag (most likely at the end of doEndTag()), is redirect the output to some other writer. BodyContent has a method exactly for this purpose: writeOut(Writer w).
BodyContent comes to the rescue with the method getEnclosingWriter(), which passes back a JspWriter object.
The right thing to do is to pass the output to the enclosing writer.

So a typical invocation you will see at the end of your tag logic goes like this:

BodyContent bc = getBodyContent();

bc.writeOut(bc.getEnclosingWriter());

You can always write whatever you like to the enclosing writer and silently drop the original content of the tag. This is especially useful when you set the content of your tag in the tag library to <body-content>tagdependent</body-content>. This means that the JSP container will make no effort at all to translate the body contents of your tag: It’s up to the tag logic to do that. A very typical example of this use is when the body of the tag contains some completely non-Java dynamic content —such as an SQL statement to read a database. Suppose you have a JSP page with such a tag setup:

<mytags:sqlExecute>SELECT * FROM PRODUCT WHERE NAME LIKE %1 </mytags:sqlExecute>
Let’s sketch out how you might approach writing a BodyTag to perform this translation:

■ Ensure that you pass back EVAL_BODY_BUFFERED from the doStartTag() method (if you’re extending BodyTagSupport, no need even to override the method —this is the default return code).

■ Trap the BodyContent object in a private instance variable in your implementation of the setBodyContent() method (again this work is done already if you’re extending bodyTagSupport).

■ Override doAfterBody(), calling the getString() method on the Body Content object —return this to a local String variable. This variable will contain the SQL string as an outcome of evaluating the body.
■ Still in doAfterBody(), establish a data source connection to your database, and execute the SQL string. From the ResultSet returned, format the output as desired (in an HTML table, XML, or whatever). Write this to page output using the JspWriter returned by the BodyContent object’s getEnclosingWriter() method.
■ Still in doAfterBody(), release your data source connection, and return SKIP_BODY to prevent any further evaluations (no need for iteration here).

Chapter 09
Custom Tags
9.1 Tags and Implicit Variables

JSPs have their own implicit variables (such as request, session, and application), your tag handler classes don’t. What they have instead is a PageContext object.
The PageContext API
javax.servlet.jsp.PageContext is an abstract class, you never meet an object of this type directly—your kindly JSP container provides an instance of a subclass that has implemented all the abstract methods it contains.
If your tag class inherits from TagSupport (or BodyTagSupport), setPageContext() saves the object to a protected instance variable so that you can access it directly in your code as pageContext.
Accessing JSP Implicit Variables
Table 9-1 lists the nine JSP implicit variables, together with the PageContext method needed to obtain the equivalent instance objects.
[image: image58.png]TABLE 5
J5P Implicie
Varisbles 2nd
Equivalent
PageContext
Meshods

JSP Implicit Variable

PageContext Method Used to Obtain
Equivalent Object

Request gesrequest()

Response getresponse()

Ou gecout () (inheried from PageContext’s parent class
JapWeiter)

Session. gessession()

Config gesservietconis()

Application gesservietcontext()

Page gespage()

PageContext (This i the PageContext object pased to your tag handler)

Exception

getexception()

The following example shows tag handler code using PageContext to exercise methods on objects that are otherwise implicit to the JSP:

public int doStartTag() throws JspException {

ServletRequest request = pageContext.getRequest();

String var1 = request.getServerName() + ":"

+ request.getServerPort();

ServletResponse response = pageContext.getResponse();

String var2 = response.getCharacterEncoding() + ";"

+ response.getContentType();

ServletConfig config = pageContext.getServletConfig();

String var3 = config.getServletName();

try {

Writer out = pageContext.getOut();

out.write(var1 + ";" + var2 + ";" + var3);

} catch (IOException e) {

e.printStackTrace();

}

return Tag.EVAL_BODY_INCLUDE;

}
Accessing Attributes with PageContext
Use PageContext inside of tag handler code to set or get attribute values. We’ll consider a small example where a tag handler performs a simple mathematical function using attributes to handle the input and outputs to the JSP page. Here’s the JSP page first of all:
01 <%@ taglib prefix="mytags" uri="http://www.osborne.com/taglibs/mytags" %>

02 <html><head><title>Squaring Function</title></head>

03 <body><p>The square of ${param.input}

04 <% pageContext.setAttribute("input", request.getParameter("input")); %>

05 <mytags:square />

06 is ${output}

07 </p></body></html>

The tag handler code in doStartTag() that performs the calculation looks like this:
01 String input = (String) pageContext.getAttribute("input");

02 int i = Integer.parseInt(input);

03 i = i * i;

04 pageContext.setAttribute("output", new Integer(i));

05 return Tag.SKIP_BODY;
http://localhost:8080/examp0901/square.jsp?input=2

Then the output is

The square of 2 is 4
9.2 The “Simple” Custom Tag Event Model

Instead of three life cycle choices in “classic Tag event model” based on the interfaces Tag, IterationTag, and BodyTag, you have only one. Based on the javax.servlet.jsp.tagext.SimpleTag interface.

[image: image59.png]The Simple Model
Tag Life Cycle

JSP conainer processing one occurrence of 2 ag implementing the SimpleTag Interface n one JSP page:

mmz-»az00

sacaspeontext (ssptontext pe)

saczarent (3spTag pavenc)

(SRR ———

tsatinoooe(..) for each aribuse]

secaspsody (saprragrens Japsody)

-

weid domag)
ZRA——

= aeras0)
~outpueor dicard the body|
arae 2 many ties 35
you e (wieh or winoue
upuing the body)

Sec st for L.
varisies n body or

cling page

159 processes ramainger ofpsge]

18P container does nathing
with the rest ofthe page]

:
Scpagebxception

ehraun

So far, so classic —though you might have already noticed some unfamiliar parameter types

(such as JspContext, JspTag, and JspFragment —where you might have expected PageContext, Tag, and BodyContent).

Next comes the doTag() method, and this is where the big difference lies. This method replaces all of doStartTag(), doAfterBody(), and doEndTag(). All the processing that would have occurred in those methods moves to doTag().

Furthermore, doTag() returns nothing at all. With simple tags, you don’t use return codes (such as Tag.SKIP_BODY or BodyTag.EVAL_BODY_BUFFERED) to inﬂuence the life cycle. The life cycle as it directly affects the tag output is controlled instead by your code inside doTag().
[image: image60.png]INSIDE THE EXAM

Get clear in your mind the differences
between the following:

B PageContext and JspContext
B BodjContent and JspFragment.

PageContext and BodyContent belong to the
classic tag model. JspContext and JspFragment
are their equivalents (roughly speaking) in the
simple tag model. There are many similarities,
but there are significant differences as well.
First, some points about javax.servlet.jsp
JspContext and javax.servlet.jsp.PageContext:

M Both PageContext and JspContext are
classes, not interfaces.

B Asa page author, you're never supposed
0 make a new one of either of these
classes: You let the JSP container supply
the instances.

B JspContext is the parent of PageContext
(PageContext extends JspContext).

B JspContext contains a the methods to
dowith
B Aribure access (2. get

attribute(), sethttribute())

B Witer access (getou ()
B Programmatic access to the EL

evaluator (getzxpression
Evaluator (), getvariable
Resolver ())—not something
you are likely to encounter in the
exam or encounter early in your
simple tag development career.
B PageContext adds methods o
dowith

B Accessing implicit objects in
aservler environment (e.g.
getRequest(), getResponse(),
setservieccontext()).

B Redirection (forward(),
include()).

The idea behind JspContext was to abstract
away all the parts that are not specific to the
HTTP servlet environment. Of course, you

are likely to be using JspContext ina HTTP
servlet environment most, if not all, o the
time. And indeed, many JspContext methods
are designed to accept constants defined in the
PageContext class, as in the following:

nyJspContext.getattribute(nySessionId’, PageContext.SESSION_SCOPE)

However, at least you can be aware of the
differences so you're ot fooled by exam

questions that include simple tag handler code
of the following kind:

[image: image61.png]HttpServletRequest request = myJspContext.getRequest();

‘which, of course, won't compile.

So what about the differences between
javax.servlet jsp.tagext BodyContent and
javax.servlet jsp.tagext JspFragment? These
are more pronounced:

W JspFragment is the opposite: Its
‘content constitutes the body before any
evaluation has taken place. In your
simple tag handler code, you control
‘when to do the evaluation —if at all —

B BodyContent inherits from javas.servlet
jsp JspWriter, which is a java.io. Writer.

W JspFragment isnt a Writer of any sorg; it
inherits directly from java.lang Objecr.

B BodyContent has some content in it
already when your classic custom tag
handler code gets hold of ir. Thisis the

result of the JSP container evaluating the
body of the tag—processing any scriplets
or EL contained therein.

by calling the invoke() method on the
JopFragment object.
B There is no concept of buffering
JopFragment, as there is with
BodyContent. Nothing of the bady is
buffered because nothing has been output
until you decide. You can simulate a
buffe by all means: Have the invoke()
method write to a StringWriter, and
there you have evaluared content, very
like a BodyContent object.

9.3 The Tag File Model

Where Does the JSP Container Find the Tag File?

To ensure that your web container will ﬁ nd your tag ﬁle, you have to ensure that it has an extension of .tag and that it is located in one of these places within your web application:
■ /WEB-INF/tags

■ A subdirectory of /WEB-INF/tags

■ In a JAR ﬁle kept in /WEB-INF/lib. The directory of the tag ﬁle within the JAR ﬁle must be /META-INF/tags — or a subdirectory of /META-INF/tags.
[image: image62.png]EEIEM s e Deploymen and Run Time

Imyroundingpageisp
T B s e
o tagith pretimyrace |
Juza-ndliaze DI
o WEBINE On e e
Tagors P g e
ovaracory of penere
WEB NP, [ampieag SipiTag
orse Simpie 2 nave sothing bus | M souce
N EnsTmL % 55| and compied
® o cass
START FERE g s e
inJSP page. myags: /
feataitiec
g For cample: czcncaT TssTALLATION
STRECTORY> \wori\Catalina) Locelnos | exanpo303\oxa\
Sacne\ep\agied
SmpeTagsoure
Dobiic dnat class
nicocacomvarier sy
Sourcesmdcassessre | Srmente -
ept somewhere known SimpleTagsuppers |
o Your applcation srver b
]
SmpleTagcass
Fr s domen: | e
mpstoSmpeTagcas. | 133003 e

We don’t need a Tag Library Descriptor (TLD), instead we use an namespace declaration like:

<html xmlns:mytags="urn:jsptagdir:/WEB-INF/tags/" >
Where Simple Tag use declaration like:

<html xmlns:mytags="http://www.osborne.com/taglibs/mytags" ... >
The URL String “http://www.osborne.com/taglibs /mytags” doesn’t point to anything —it just has to match the corresponding <taglib-uri> setting in the web deployment descriptor.

Let’s look at the complete tag ﬁle example.tag:

01 <%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

02 <%@ taglib prefix="mytags" uri="http://www.osborne.com/taglibs/mytags" %>

03 <%@ attribute name="begin" %>

04 <%@ attribute name="end" %>

05 <table border="1">

06 <c:forEach begin="${begin}" end="${end}" step="1" varStatus="counter">

07 <tr>

08 <td>${counter.index}</td>

09 <td>${mytags:unicodeConverter(counter.index)}</td>

10 </tr>

11 </c:forEach>

12 </table>

Tag File Directives

There are two directives in the tag ﬁle example: <%@ taglib %>, which you have met many times before in JSPs, and <%@ attribute %>, which you are meeting for the ﬁrst time and which only works in tag ﬁles. Let’s consider —ﬁrst of all—those attributes found in JSPs and how they are used in tag ﬁles:

■ <%@ page %> only suitable for JSP pages. Tag ﬁles have their own equivalent <%@ tag %>.

■ <%@ taglib %>, <%@ include %>—both work identically in tag ﬁles and in JSP pages.

There are three directives that are only for tag ﬁles:

■ <%@ tag %>, which shares several attributes in common with <%@ page %> for

JSPs (language, import, pageEncoding, isELIgnored)

■ <%@ attribute %>, like the <attribute> subelement of <tag> in a TLD

■ <%@ variable %>, like the <variable> subelement of <tag> in a TLD

9.4 Tag Hierarchies

[image: image63.png]Tagsaar:

SmpaTsgsusor

NestrgCisaatig

NestngCiassTag

Chapter 10
J2EE Patterns
Sun’s J2EE patterns are based on a tiered approach to application development.
[image: image64.png]Tiers for.
Ap
Development

Client Tier Presentation Tier Business Tier Integration Tier Resource Tier.
Soing
=) Daber
Tosc
Goer)
e Serves Tors
s queves
Ooer
e T busness
obiess By e
inormation iormacen
vk) sy seems
ey Connactors

EJBs run in an Enterprise JavaBean container (JBoss for example). You can’t make an EJB with the new keyword EJBs are a primary force in driving some of the patterns you encounter for the SCWCD (Business Delegate, Service Locator, and Transfer Object).
[image: image65.png]How the J2EE
Patcerns Fie
Together

Presentation Tier

Business Tier

et Tier

Conwoler

Frodelview conrolle”

Model

0 Busness

Otrer
business
obecss

Itegration Tir

Resource Tier

[image: image66.png]How the
Werking Example
Implements J2EE
Pazerns

Servic/sP Conainer VM Business Servr JVM
(Remoss)
Presentason Tier Business Ter Busness Tier || Rasource Tir
ncsgration Tier
Ty
pacerstie| || B
o o
OrgFiter
PacernLoscer
Rmimpl

Prternlonte

10.1 Intercepting Filter Pattern

[image: image67.png]FIGURE

A Requests
Route Through
Fiters

Request for

resource Lhuml

Firer
mansger

.

Fiter
erain

Fier || [Ferz] [Fiers | [Tresouees ressuree et
"t =jsp,resources”
Firer Fiers resources resource2 ip
Iresources! Iresources!

resourcel bl

resource2sp

[image: image68.png]Another Request
Routing Through
Fiters

Lol e] [Fer2] [Fers S ———
jai [T——
l <ot ™
Fle Firers Freers
Iresources! Iresources!
resource huml resourced

Filter 1: because of the extension match (* heml)

Filter 3: because of the path mach (Jresources/*—anything whose path begins
with resources)
Filter 4: because of the exact match (/resources resource himl)

10.2 Front Controller Pattern

When Do You Choose a Front Controller Instead of an Intercepting Filter?
[image: image69.png]SCENARIO & SOLUTIOI

Consrolling the flow of navigation from
one page to another

Converting responses from one form of
XML to another

Zipping up the response

Executing diflerent blocks of business logic
dependent on a perameter in the request
Stopping a request dead in s tracks if your
applicarion dislikes ts encoding

Enforcing J2EE authentication and
auhorization (asper Chapter 5 on
security)

Enforcing custom authentication of sutho-
sization rules

Front Controller (as we've seen)

Intercepring Filter (as long as there is a general way of
translating the XML for many different responses)

Intercepring Flter

Frone Controller (dispatching to other classes that conean the
busines logic)

Interceping Fiter

Neither Intercepting Filter nor Front Controller. You want
to procect individual components declaratively in the
deployment deseriptor a far as possible.

Depends: could be Intercepting Filer or Front Controller, Use
Interceping Filter if these are “blanket” rules, applying to all
(or most) resources. If authentieation and authorization needs
o be closer to business logic, use Front Conrroller

10.3 Model View Controller Pattern

The main motivation for using MVC is to separate your presentation logic from your business logic.
Figure 10-9 indicates two principle responsibilities for the view:
· To detect each user action (like a mouse click or an enter keypress) and transmit it to the controller component.

· To receive information back from the controller and organize this appropriately for the recipient
[image: image70.png][Ficure 109 | Mouse clicks, keyboard
e, e

ool
by
The Mocal ——
View Controller New v Cpices 2 mocel
Pactern . updhced ot formacn
Responses o reguess
faging canges rom
oo ources
Vi Hioce

_——

The modslmsy receive ocner
changes hat i come from
e conoler

The responsibilities of the controller (Front Controller Pattern):

· To supply the view with the information it needs —usually by obtaining information from the underlying model.
· To interpret user actions and take appropriate actions —usually updating the model and switching view (or both).
· To receive changes from the model that come from other sources, and update views as appropriate
You should be aware, though, that MVC can be found at the micro as well as the macro level. Swing components have the same idea: a visual component, the view (like a JTable); an underlying representation of the data, the model (JTableModel); and the Swing framework acting as controller

mediating between the two.
In design and development terms, the JSP is the view.

Choice for a controller component is often a servlet (with assistant classes where necessary). The model is composed —more often than not — of Enterprise JavaBeans (though there are good

reasons why we might want to place some classes in between our controller and the Enterprise JavaBeans.

In the example:

1. The view consists of three JSP documents: home.jspx, pattern.jspx, and error.jspx.
2. The controller is the FrontController class, which we have already examined in some detail. We have seen how it uses logic to direct to the different JSP documents.

3. The model is the BusinessDelegate class, and everything behind it.

What about real J2EE applications that avoid MVC? One of the JSTL libraries contains custom actions dedicated to SQL (database access functionality). This library has a host of useful facilities for embedding database access directly in your JavaServer Page. The JavaServer Page is normally the view, and the database is ultimately a model, where is the controller?

Disadvantages MVC Pattern:

· Increases complexity: more objects involved

Benefits of using it:
· You want to reduce dependencies between the view code and the business model code. That way,
1. You can graft on additional views much more easily (so you might have a web client and a Swing client showing alternative views of the same model data).

2. You can change the view without affecting the business model, and vice versa.

3. The controller is the only volatile component that might be affected by changes at either end.

· You are using a framework that has MVC built into it. Struts is a very popular framework. If you are in a development team that uses it, you are forced into a set of programming standards that abide by MVC rules.

· You want the maintenance beneﬁt that comes from separating the layers. Expert Java programmers can concentrate on the controller and model ends of the application. Web designers (potentially, nondevelopers) can concentrate on the JSP view side of things. Alternatively, if you are using a fancy graphical view, expert Swing Java programmers can concentrate on the visual aspects and be freed up from most concerns about model access.
10.4 Business Delegate Pattern

The Business Delegate pattern works by placing a layer in between a client (possibly a Front Controller object) and a business object. It may well be possible to absorb the change within the

business delegate object —without changing the interface that this presents to its clients.

The other service a Business Delegate typically provides is encapsulation.

[image: image71.png]| riovee oo [

Naming
ing 1. Gl i e
Encerprise Jasaiied) G Cienclooke w2
JovaBean here e SE s
Lingx NI mame.
€18 concainer
25, Ciene g s
ferenc o e £
o’ marice e
Ghent code
5 Clencuee -Home'|
inarace o sk e
5. and ... 0% o’ apjcs i 4 Home object creaes
cient exectes creme herea 58 o el buiass bt
busness methocs buanes oject Jounasd
e res £
Susnees abiect.
™G>

Why Use Business Delegate?
· To reduce coupling between clients in the presentation tier and actual business services, by hiding the way the underlying business service is implemented.

· To cache the results from business services.

· To reduce network trafﬁc between a client and a remote business service.

· To minimize error handling code (particularly network error handling code) in the presentation tier.
· Substituting application-level (user-friendly) errors for highly technical ones. If at ﬁrst the business service doesn’t succeed, the Business Delegate class might choose to retry or to implement some alternative API call to recover a situation. A business service failure doesn’t immediately have to be passed on to a client.

· Make naming and lookup activities happen within the Business Delegate — or code that the Business Delegate uses (see Service Locator).
· To act as an adapter between two systems (B2B-type communication —where a visible GUI isn’t involved). The delegate might interpret incoming XML as a business API call.
10.5 Service Locator Pattern

Why Use Service Locator?

The reasons for using the Service Locator pattern are these:

· To hide JNDI (or similar) code that gets hold of a reference to a service. Even though JNDI code is pure, portable Java, the parameters fed into JNDI code can be vendor-speciﬁc, so locating all these details in one place (rather than leaking them all over your business objects) is desirable if you want to port your application later with minimum hassle.

· By locating JNDI (or similar) code in one place — or a few places —you avoid copying and pasting technical calls across many business objects.

· To minimize network calls —the Service Locator can decide which JNDI calls need to be made and when it has appropriate references to remote objects already. This can, of course, improve performance.
10.6 Transfer Object Pattern

[image: image72.png]FIGURE I0-

£j8 gatData()
Meshod
Returning A
Transfer Object

o~
-

(DRESS wransfe obiect oRess £ DRESS tble
sneRange sneRange SiZE RaNGE
color color color
fashonsesson fanonSeason FSHN_SEASON
pesiskange() gesSneRange()

SesSzeRange() SesSzeRanga()

guColor() geColor)

SexCoior) SexColor)

geFasnionSeason) gecFashionSeason()

SecFashonsesson(SesFashionsesson()

geDa)

