Common
Architectures
and Protocols

CERTIFICATION OBJECTIVES

2.01

2.02

Recognize the Effect on Each of the
Following Characteristics of Two-tier,
Three-tier; and Multi-tier Architectures:
Scalability Maintainability, Reliability,
Availability, Extensibility, Performance,
Manageability, and Security

Given an Architecture Described in
Terms of Network Layout, List Benefits
and Potential Weaknesses Associated
with It

1/ Two-Minute Drill
Q&A Self Test

272 Chapter 22 Common Architectures and Protocols

he role of the architect, especially when it revolves around JEE, is on the increase as the

need to build web-enabled systems increases. The architect must consider not only the

functional requirements of the system but also the nonfunctional requirements as well.
Is the system capable, scalable, secure, extensible? The architect must consider these issues and
utilize JEE, especially its security, speed, reliability, and cross-platform capabilities, to address them.
To that end, this chapter will cover the topics that follow:

Role of an architect
Architecture defined
Architectural terms
Architecture versus design
Fundamentals of architecture
Capabilities of an architecture
Design goals of architecture
Architecture tiers and layers

Benefits and weaknesses of architecture
Protocols: HTTP, HTTPS, IIOP

Anyone who has seen the 2002 movie My Big Fat Greek Wedding knows how the
main character, Toula’s father, thinks every English word is derived from the Greek
language. In the case of the word architect, he is correct. Arkhitekton is the Greek
term meaning “head builder,” from which the word architect is derived. Originally, it
described the leading stonemason of the ancient Greek temples of 500 B.C. It goes
like so: Arkhi means head, chief, or master; Tekton means worker or builder. The
word is related to Tekhne, the Greek term meaning art or skill.

The architect’s goal is always to rearrange the environment—to shape, construct,
and devise, whether it be buildings, institutions, enterprises, or theories. Architects
look upon the world as little more than raw material to be reshaped according to
their design. Author Ayn Rand describes this characteristic in the architect Howard
Roark, her protagonist in The Fountainhead:

“He looked at the granite.... These rocks, he thought, are here for me; waiting for the

drill, the dynamite and my voice; waiting to be split, ripped, pounded, reborn, waiting for
the shape my hands will give to them.” [The Fountainhead, pp 15-16]

Types of Architecture 23

What purpose does an architect serve in today’s world? Architects visualize the
behavior of a system. They create the BluePrint for the system, and they define
the way in which the elements of the system work together. Architects distinguish
between functional and nonfunctional system requirements, and they are responsible
for integrating nonfunctional requirements into the system.

This chapter describes architecture and the role of an architect from a conceptual
viewpoint and introduces and explores some of the nomenclature and terminology
associated with architecture. It also explores Java Enterprise Edition (JEE) and its
architecture.

Types of Architecture
Webster’s dictionary provides the following definitions for the term architecture:

B The art or practice of designing and building structures and especially
habitable ones

B Formation or construction as the result of a conscious act
B Architectural product or work
B A method or style of building

Architecture refers to an abstract representation of a system’s components and
behaviors. Ideally, architecture does not contain details about implementation
(that’s left for the developers or engineers). The architect gathers information about
the problem and designs a solution, which satisfies the functional and nonfunctional
requirements of the client and is flexible enough to evolve when the requirements
change.

Needless to say, defining architecture is a creative process. An architect’s
challenge is to balance creativity and pragmatism using the available technology in
the form of models, frameworks, and patterns. Architecture may refer to a product,
such as the architecture of a building, or it may refer to a method or style, such as the
knowledge and styles used to design buildings. In addition, architecture needs to be
reconfigurable to respond to changing environments and demands.

24 Chapter 22 Common Architectures and Protocols

System Architecture

System architecture corresponds to the concept of “architecture as a product.” It is
the result of a design process for a specific system and must consider the functions of
components, their interfaces, interactions, and constraints. This specification is the
basis for application design and implementation steps.

Defining architecture for a system serves many objectives. It abstracts the
description of dynamic systems by providing simple models. In this way, architecture
helps the designer define and control the interfaces and the integration of the system
components. During a redesign process, the architecture strives to reduce the impact
of changes to as few modules as possible. The architectural system model allows the
architect to focus on the areas requiring the most change.

The architecture indicates the vital system components and constructs that should be
adhered to when adapting the system to new uses. Violating the architecture decreases
the system’s ability to adapt gracefully to changing constraints and requirements. The
architecture is a means of communication during the design process. It provides several
abstract views on the system, which serve as a discussion basis to crystallize each party’s
perception of the problem area. Architectures are best represented graphically using
a tool such as UML (Unified Modeling Language). An architect communicates the
design of the system to other members of the team using UML.

Drawing the analogy with the architecture of buildings provides good insight
in understanding the characteristics of system architecture, because it shows how
architectures provide multiple views and abstractions, different styles, and the
critical influence of both engineering principles and materials. A building architect
works with a number of different views in which some particular aspect of the
building is emphasized. For example, elevations and floor plans give exterior views
and top views, respectively. Scale models can be added to give the impression
of the building’s size. For the builder, the architect provides the same floor plans
plus additional structural views that provide an immense amount of detail about
various design considerations, such as electrical wiring, heating, and other elements.
For the customer of a computer-based information system, the most important
views on architecture are those that focus on system performance, user interface,
maintainability, and extendability. The architect of the system will be interested in
detailed views on resource allocation, process planning, maintenance, monitoring,
statistics, and other similar types of information.

System architecture can be formulated in a descriptive or prescriptive style. Descriptive
style defines a particular codification of design elements and formal arrangements.
The descriptive style is used during discussions between the client and the architect.
Prescriptive style limits the design elements and their formal arrangements. This style is

Types of Architecture 2§

applied in plans used during the construction of a building. The builder, or development
team, shall build according to plan.

The relationship between engineering principles and architectural style is
fundamental. It is not just a matter of aesthetics, because engineering principles
are also essential to the project. In a similar way, a reconfigurable computer-based
information system cannot be built without a notion of such object-oriented
concepts as metadata.

In addition, the influence of materials is of major importance in enabling certain
architectural styles. Materials have certain properties that can be exploited in providing
a particular style. For example, one cannot build a modern, stable skyscraper with wood
and rope; concrete and iron are indispensable materials in realizing this construction.
Like high-tech building architecture, Internet/Intranet-enabled information system
architectures currently under development rely on recent technologies (such as fast
networks and distributed processing); such systems could not have been developed
in the past.

Reference Architecture

Reference architecture corresponds to “architecture as a style or method.” It refers to a
coherent design principle used in a specific domain. Examples of such architectures are
the Gothic style for building and the Java Enterprise Edition (JEE) model for computer-
based information systems. This architecture describes the kinds of system components
and their responsibilities, dependencies, possible interactions, and constraints.

The reference architecture is the basis for designing the system architecture for
a particular system. When designing a system according to an architectural style,
the architect can select from a set of well-known elements (standard parts) and use
them in ways appropriate to the desired system architecture. The JEE architecture
is a component-based service architecture. The architect designs the system to
utilize the appropriate components for each task. For example, as we will see later in
the book, Java ServerPages (JSP) can be used to provide a user view of the system
response to a user gesture.

This architecture gathers the principles and rules concerning system development
in a specific domain to achieve the following:

B A unified, unambiguous, and widely understood terminology

B System architecture design simplicity, possibly allowing less expensive and
more efficient design

B High-quality systems that rely on proven concepts of the reference architecture

26 Chapter 2: Common Architectures and Protocols

B Interfacing and possible reusability of modules among different projects or
system generations

B Implementation tasks that can be partitioned among different teams, ideally
allowing each team to bring in its best expertise and available equipment

B Traceability between solution-independent requirements and final realizations

The architecture shall clearly indicate and justify how and at what stage in the
development process, external constraints and engineering design decisions are
introduced. Successful achievement of these goals relies on the adoption of a clear and
systematic methodology. Again, an analogy can be made with building architecture
with regard to the science, methods, and styles of building. Since the architectural
methods are a generalization and abstraction of the architecture as a product, the
remarks concerning multiple views and abstractions, different architectural styles,
and the important influence of both engineering principles and materials are equally
valid. In this case, however, architecture describes system domain elements and
their functions and interactions; it does not describe how they actually function and
interact in a specific system. For example, building architecture describes load-sharing
component pools as elements serving the goal of performance; it does not specify how
the pools should be implemented by each certified JEE vendor.

Flexible Reference Architecture

Reference architecture refers to engineering and design principles used in a specific
domain. A reference architecture aims at structuring the design of a system
architecture by defining a unified terminology, describing the responsibilities of
components, providing standard (template) components, giving example system
architectures, and defining a development methodology.

A reconfigurable and flexible system is able to evolve according to changing needs;
it enables easy redesign, and its functions can be extended. In other words, the system
allows you to add, remove, and modify system components during system operation.
In addition, flexible systems minimize the need to adapt by maximizing their range
of normal situations. To this end, reference architecture for reconfigurable/flexible
systems shall specify the following:

B Special elements to enable and support reconfiguration and adaptation. In
a JEE system, this could be a Java Naming and Directory Interface (JNDI)
agent who knows what system elements are present, where they are, and what
services they offer.

Architectural Design and Principles 2.7

B Common characteristics of ordinary system elements to support
reconfiguration and adaptation. In other words, using JNDI, we can make
objects available via their names, and new components can be constructed to
leverage them without knowing the specifics regarding their implementation.

B Design rules to safeguard system flexibility. For instance, when designing a
system element, the developer shall not build on system constraints induced
by other system elements with lower expected lifetime; otherwise, the system
will lock into (arbitrary) design choices, which may need (nonarbitrary)
revisions.

Moreover, the system architecture for reconfigurable/flexible systems has specific
characteristics. Using the analogy of building architectures, the load-sharing elements
are moved out of the way of the functional space. Note that flexible system architecture
gives little indication of how the system is used or even what customer service the
system provides. It is no surprise that a flexible architecture leaves many questions
unanswered; when all questions have been addressed and anticipated, the result is often
an inflexible system.

Reconfiguration and adaptation often require the capacity to provide maneuvering
space. For instance, some buffer space is needed for a workstation that is temporarily
unavailable during reconfiguration so as not to halt the entire production line.
System architecture is an abstract description of a specific system. Indicating the
functions of the system components, their interactions, and constraints helps to
(re)develop the system. The architecture depends on engineering principles and
available technology.

The design of reconfigurable systems puts additional demands on the reference
architecture, because the architecture shall allow adding, updating, and deleting
system components during operation.

Architectural Design and Principles

Architecture is the overall structure of a system, and it can contain subsystems that

interface with other subsystems. Architecture considers the scalability, security, and
portability of the system. The implementation normally follows the architecture. At
the architectural level, all implementation details are hidden.

28 Chapter 2: Common Architectures and Protocols

The software architecture is the high-level structure of a software system. The
important properties of software architecture must consider whether it is at a high
enough level of abstraction that the system can be viewed as a whole. Also, the
structure must support the functionality required of the system. Thus, the dynamic
behavior of the system must be taken into account when the architecture is designed.

The structure or architecture must also conform to the system capabilities
(also known as nonfunctional requirements). These likely include performance,
security, and reliability requirements associated with current functionality, as well
as flexibility or extensibility requirements associated with accommodating future
functionality at a reasonable cost of change.

These requirements may conflict, and trade-offs among alternatives are an
essential part of the design of architecture.

Where Architecture Fits in Analysis, Design, and Development

In most project alignments, the architects are members of the development team.
On a large project, they work with the system designers, team leads, enterprise
modelers, developers, testers, QA staff, configuration experts, and business domain
experts. On a small team, architects may be playing one or more of these roles.
Architects are responsible for interacting with customers, beta testers, and end users
to make sure that user requirements are satisfied.

Architecture vs. Design

An architect is not a designer. An application architecture’s scope is the system’s
major structure, its architectural design patterns, and the frameworks upon which you
can add components. The architecture’s concern realizes nonfunctionality, whereas
design is concerned with the business use cases to convert the domain object model
into a technical object model. Application architecture is the project’s structure.

The key difference between the terms architecture and design is in the level of details.
Architecture operates at a high level of abstraction with less detail. Design operates at
a low level of abstraction, obviously with more of an eye to details of implementation.
Together, they produce a solution that meets the functional and nonfunctional
constraints of the requirements. The solution describes how to perform the task.

The architecture addresses structural issues, organizes subsystems, and assigns
functionality to components. It defines the protocols for communication,
synchronization, and data access; it physically allocates components to processors.
Most important, it delivers the architectural design of the component interface
specifications.

Architectural Design and Principles 29

At this point, the designers step in and provide internal details of each component
in the architecture, including an interface for each component class, the details for
input/output, and the data structures and algorithms used.

The reality of most situations can cause this separation to break down for the
following reasons:

B Time There may not be enough time to consider the long-term architectural
implications of the architectural design and implementation decisions.

B Cost Architecture is expensive, especially when a new domain such as JEE
is being explored.

B Experience Even when we have the time as well as the inclination to take
architectural concerns into account, an architect’s experience with a domain
can limit the degree of architectural sophistication that can be brought to
the system.

B Skill Developers differ in their levels of skill, as well as in experience.

B Visibility Only people who build a Java class see how it looks inside.
Architecture is invisible.

B Complexity Software often reflects the inherent complexity of the
application domain.

B Change Architecture is a hypothesis of the future.

B Scale The architecture required for a large project is typically very different
from that of smaller ones, making the architect’s challenge all the more difficult.

Today’s architect must comport theory and best practices with the reality of the
target system requirement and available resources. For a hierarchical picture of the
balancing that is the challenge, see Figure 2-1.

As JEE architecture is mature, the deliverables for a JEE architect are typically
well defined. The assignment part of Sun’s JEE Enterprise Architect certification
requires deliverables to be in UML, which is important but sometimes insufficient
for real-world JEE applications.

To get started, the architecture specification and process require at least the
following:

B A system architecture document to describe your existing hardware, software,
network topology, and other components.

B An application architecture document to describe the application’s major
structure, including a logical view of all architecturally significant components,
use case components, and legacy components.

30 Chapter 2: Common Architectures and Protocols

Balancing
architecture,
design, and
reality

Architect’s
challenge
Archite|cture $ Cost $
Design Design Time Scale
—
(J:ZI‘::S Data store Change EXPSIT;:E“CG Complexity

B A components design guideline to describe all design guidelines and
architectural decisions, explain all those decisions, and describe possible
consequences if an alternative option is used. These guidelines should capture
all-important base determinants that the new component design must respect
to maintain the system’s architectural integrity.

B An architectural prototype to evaluate new technologies, gain experience
developing and deploying JEE applications, build architectural frameworks,
and address risks by measuring performance and scalability, as well as proof of
concept for the project stakeholders.

Steps in Software Development

Knowing we must make many architectural decisions, we establish a process for
architecture development. The typical steps in software development include
requirement analysis or the problem statement, object-oriented analysis and
architectural analysis, object-oriented design and architectural design, and
ultimately the object creation.

Requirement Analysis/Problem Statement This phase involves the domain
specification of the software in need. Suppose, for example, that we want to create a
bookstore application that is accessible from the web. An example outcome of this
phase would be the domain—in other words, what types of functionality do we need
and whether or not the system being specified is feasible. The software’s functional-
ity would include interface features that users would like to see: interfaces to retrieve

Architectural Design and Principles 3 ||

information regarding the books available in the company and those that would
allow users to purchase books online using a credit card.

The requirement analysis describes what the system should do so that developers
and customers can create a business contract. Analysts generate domain models:
classes, objects, and interactions. The requirement analysis should theoretically be
free from any technical or implementation details and should contain an ideal model.

The result of requirement and object analyses is the entry point for JEE architecture
development. You can apply experience to domain objects, and let that knowledge
serve as a design guideline for the object design stage. Enterprise-wide system architecture
covers hardware and software infrastructure, network topology, development, testing,
production environment, and other factors. Before development, you want to evaluate
existing software and hardware infrastructure and perhaps add components and
upgrade your existing system if it cannot fully support JEE. You need to evaluate
hardware, including computers, routers, network switches, and network topology, as
they all impact system performance and reliability.

Object-Oriented/Architectural Analysis This phase involves the analysis of
the domain. The requirement analysis sets the boundary for this phase. A modeling
tool using UML might be used (more on this in Chapter 3).

The analysts would do the following:

B Develop use case diagrams for all the business processes. Use case diagrams
are high-level descriptions of the system actors and the system functionality.

B Develop sequence diagrams. These diagrams show the sequence of operation
as a function of time.

B Develop class diagrams. Class diagrams show the system functionality as
classes and their methods.

B Develop collaboration diagrams. Collaboration diagrams depict how the
classes interact.

Architectural Design This phase involves creating the architectural design

for the software. The development of the architecture is based on the output of

the object-oriented analysis. This phase tries to give a framework within which all
the components will work to satisfy all the customer requirements. In this phase,
implementation details are not documented. The outcome would be to decide upon
and document the architecture. For example, the architect must decide which
framework to use—JEE, CORBA (Common Object Request Broker), RMI (Remote

32 Chapter 2: Common Architectures and Protocols

on the

()ob

on the

Qob

Method Invocation), or DCOM (Distributed Component Object Model), for
example. (These frameworks are discussed later in the chapter.) Any new hardware
and software requirements are defined, along with how security will be handled.
The architect would also define how performance is achieved. Pragmatically, the
architect would work out a solution that takes into account security, performance,
and cost, as well as considers reusing existing technology and business logic in the
legacy system.

In a typical enterprise, many application projects are underway in a partial
state of development—some of which could span years, resulting in system
evolution of many cycles. As a result, common frameworks, reusable software
architectures that provide the generic structure and behavior, are needed for
a family of software applications.

From the object-oriented design perspective, the architect would do the following:

B Develop package dependency diagrams.
B Decide how the classes in different packages interact.
B Develop deployment diagrams.

B Decide where the software components will reside in deployment.

Guided by architectural specifications, the design technically adapts the analysis
result. While domain object modeling at the analysis phase should be free from
technical details, the object design fully accounts for technical factors, including what
kind of platform, language, and vendors are selected in the architecture development
stage. Guided by architectural decisions, a detailed design effort should address
specification of all classes, including the necessary implementation attributes, their
detailed interfaces, and code or plain text descriptions of the operation. With a good
architecture and detailed design, implementation should be clear.

In many organizations, developers often arrive at the implementation
stage too early. This problem is compounded when managers pressure the
developer to ensure they’re writing code, since to them, anything else is a
waste of time.

Object-Oriented Design and Creation In this phase, the design for the
implementation is complete, and the decision is made as to whether the client tier

Architectural Terminology 3 3

is thick (e.g., an applet) or thin (e.g., HTML and JavaScript). All the classes are
defined with their intended directory hierarchies identified. Design patterns are
used, and object reuse is considered. Any architectural considerations arising out

of the implementation design are discussed. If the client uses HTML, for example,
the server-side servlet can be communicated with via HTTP without any modifica-
tion in the existing systems. If the client uses an applet instead of HTML, HTTP
tunneling is considered on the server side. The objects and code are implemented
and some standard notation is used—for example, UML is the standard notation for
architecture and may be used freely in all of the phases of architecting and designing
a system.

In addition, during the implementation stage, the application is in the hands of
its users, for whom you must provide documentation and training. Users will find
issues and request modifications to functionality. These must be handled through
proper change management procedures.

Architectural Terminology

As mentioned, architecture refers to an abstract representation of a system’s components
and behaviors. Good system architecture leads to reusable components, because each
component is broken into parts that may be repeated and can therefore be reused.
Abstraction naturally forms layers representing different levels of complexity. Each
layer describes a solution. These layers are then integrated with each other in such a
way that high-level abstractions are affected by low-level abstractions.

The following architectural terms are important for the certification exam, and
as a group, they seem to be unique to Sun’s view of system architecture. They appear
in the Sun prescribed coursework, specifically Architecting and Designing J2EE
Applications (SL-425). Synonymous terminology will be applied where appropriate.

Abstraction

The term abstraction implies the use of a symbol for something used repeatedly in
a design; it’s a component that hides details and is a clear representation. We use
abstractions every day when we discuss computer models using boxes with lines
connecting them to represent the components we are trying to glue together.

34 Chapter 2: Common Architectures and Protocols

Abstraction is the first step of the design process, when we break down the intended
system into an extended hierarchy and examine each level of the hierarchy in terms
of the functions and intentions of the design. This breakdown is described from the
point of view of the architect, as he or she is the central actor of the system. Clients,
who have certain requirements for the structure to be built, transfer their goals
and constraints to the architect, who employs the materials and directs the people
involved in the system to produce a structure design that the client is happy with.

In addition to identifying the goals of the system, the abstraction hierarchy also
shows us that the system involves a large amount of communication. The client
communicates with the architect to provide initial design requirements and feedback
on working designs. The architect communicates with developers to determine the
constraints of the design in terms of physical limitations, limitations imposed by
availability, and limitations inherent in architecture.

Figure 2-2 shows some examples of how we all use abstraction in our day-to-day
communications.

Examples of

abstraction

Database

Workstation

Database server

Application server 2

Architectural Terminology 3 §

Surface Area

Surface area is a term used to describe the way in which components interact with
one another in a defined way. It’s important to note that the greater the surface area,
the more ways a change in one component can affect another. Figure 2-3 shows two
simple examples of surface area.

In Figure 2-3, the class Employee has the methods +GetName (), +GetCurrentage (),
+GetSalary (), +GetAddress (), and +GetSkill (). This is a large surface area
that can be difficult to maintain and is not reusable. The revised classes comprise all
of the methods contained in the original Employee class. EmployeeDemographics, the
smaller surface area, includes only methods pertaining to the employee’s demographics:
+GetName (), +GetCurrentAge (), and +GetAddress (). The other new class,
EmployeeJob, includes only methods pertaining to the employee’s job: +GetSalary ()
and +GetSkill.

Boundaries

Examples of
surface area

Boundaries are the areas where two components interact. For example, the line
drawn between two boxes in a computer model diagram represents boundaries.

Surface area larger Surface area smaller

Employee EmployeeDemographics

.4— Three methods
interact

.4—Five methods

+GetName () interact

+GetName ()

+GetCurrentAge() +GetCurrentAge()
+GetSalary() +GetAddress()
+GetAddress()
+GetSkill() I'| -Supplies attributes
EmployeeJSP
| |-Supplies attributes -Presents
|
EmployeeJSP Employeeob
-Presents
-Presents
| +GetSalary() |
TW? methods +GetSkill()
interact

-Supplies attributes
Surface area: Interaction between components

36 Chapter 2: Common Architectures and Protocols

Brittleness

Brittleness is the degree to which small changes will impact large portions of the system.
Software tends to be unwieldy for many reasons, but a primary reason is brittleness.
Software breaks before it bends; it demands perfection in a universe that prefers
statistics. This in turn leads to “legacy lock-in” and other perversions. The distance
between the ideal computers architects imagine and the real-world computer systems
we know and work on is unfortunate and due in large part to brittleness.

Capabilities, Friction, and Layering

Capabilities are the nonfunctional, observable system qualities including scalability,
manageability, performance, availability, reliability, and security, which are defined
in terms of context. Capabilities are discussed later in the chapter, in the section
“Capabilities of an Architecture.”
Friction refers to how much interaction occurs between two components. Friction
is measured in terms of how a change in one component affects both components.
Layering is a hierarchy of separation.

Principles of Architecture

Layering

For system architects, all techniques for decomposing (breaking a large object into
smaller component parts) software systems address two main concerns:

B Most systems are too complex to comprehend in their entirety.

B Different audiences require different perspectives of a system.

The next few paragraphs describe techniques for decomposing an architecture
using concepts known as layers and tiers.

The layers of architecture are systems in themselves, and they do what all systems do:
they obtain input from their environment and provide output to their environment.
Figure 2-4 shows a depiction of the architectural layers in an application system.

Architectural
layers

Tiers

Principles of Architecture 37

Client Network Server
User interface Communication protocol Data dictionary
Function set Translation layer Data objects
Database access Data transport Data partitioning

Bidirectional-layered systems provide and procure major services at their upper
and lower sides. Unidirectional-layered systems procure major services in one
direction while providing major services in the opposite direction.

Most engineering disciplines, especially software, strive to construct “unidirectional”
layered systems, or strict layering. The services a layer provides at its upper side make
it possible for a higher layer to operate, while the services it procures through its lower
side are those the layer requires for its own operation.

In strict layering, classes or objects in a layer should depend, for compilation and
linking purposes (physical dependency purposes), on classes or objects within the
same or lower layers. Constructing a layer and its objects in such a manner makes
it possible to construct lower layers before higher ones. At the same time, classes or
objects in one single-layer package should not have a cyclic dependency on objects
in other packages—either within or outside the layer. This eliminates “spaghetti-
like” physical dependencies, which cause small changes to ripple through a larger
number of code units than they should. It also helps to lessen compilation and
interpretation times.

What makes it possible to swap one layer for another is a well-known layer
interface protocol—the Internet Interoperability Protocol (IIOP)—that lies between
the layer and both its upper and lower adjacent layers.

In a multi-tier environment, the client implements the presentation logic (thin
client). The business logic is implemented on an application server(s), and the data
resides on a database server(s). The following three component layers thus define

a multi-tier architecture:

B A front-end component, which is responsible for providing portable
presentation logic, such as an web server

B A back-end component, which provides access to dedicated services, such as
a database server

38 Chapter 2: Common Architectures and Protocols

B A middle-tier component(s), which allows users to share and control business
logic by isolating it from the actual application, such as an application server

Figure 2-5 shows a three-tiered architecture.
Advantages of multi-tier client/server architectures include the following:

B Changes to the user interface or to the application logic are largely
independent from one another, allowing the application to evolve easily to
meet new requirements.

B Network bottlenecks are minimized because the application layer does not
transmit extra data to the client; instead, it transmits only what is needed to
handle a task.

B When business logic changes are required, only the server has to be updated.
In two-tier architectures, each client must be modified when logic changes.

B The client is insulated from database and network operations. The client can
access data easily without having to know where data is or how many servers
are on the system.

B Database connections can be “pooled” and are thus shared by several users,
which greatly reduce the cost associated with per-user licensing.

m Architectural tiers

Presentation tier Business tier Resource tier

Database

Application server Database and legacy server(s)

Workstation

Principles of Architecture 39

B The organization has database independence because the data layer is written
using standard SQL, which is platform independent. The enterprise is not
tied to vendor-specific stored procedures.

B The application layer can be written in standard third- or fourth-generation
languages, such as Java or C, with which the organization’s in-house
programmers are experienced.

Basic Three-Tier Java Technology Architecture
The three-tier Java architecture is achieved by using interactive components—
HTML, applets, the Java application that resides on the client, and the servlets and
JSPs that reside on the middle tier. JDBC communication is used on the middle tier
to create the persistence data that resides or the third or back-end tier—which is the
database layer.

Table 2-1 shows these technologies and where they reside in the architecture.

Capabilities of an Architecture

As mentioned, capabilities are the nonfunctional, observable system qualities
including scalability, manageability, performance, availability, reliability, and
security, which are defined in terms of context. Measures of system quality typically
focus on performance characteristics of the system under study. Some research
has examined resource utilization and investment utilization, hardware utilization
efficiency, reliability, response time, ease of terminal use, content of the database,
aggregation of details, human factors, and system accuracy.

Table 2-2 lists some well-known system quality measures.

Basic Three-Tier Java Technology Architecture

Middle-
Client Client-Middle Middle Persistence Persistence
HTML HTTP Servlet JDBC RDBMS
HTML with applet JSP Legacy File
Java application JRMP RMI Server JDBC RDBMS, Legacy File
Java application RMI- IIOP EJB JDBC RDBMS, Legacy File
Java application 11OP CORBA JDBC RDBMS, Legacy File
(not a Java 3 tier)

40 Chapter 2: Common Architectures and Protocols

Capabilities and System Quality

System Quality

Defin

Auvailability The degree to which a system is accessible. The term 24x7 describes
total availability. This aspect of a system is often coupled with
performance.

Reliability The ability to ensure the integrity and consistency of an application
and its transactions.

Manageability The ability to administer and thereby manage the system resources
to ensure the availability and performance of a system with respect
to the other capabilities.

Flexibility The ability to address architectural and hardware configuration
changes without a great deal of impact to the underlying system.

Performance The ability to carry out functionality in a timeframe that meets
specified goals.

Capacity The ability of a system to run multiple tasks per unit of time.

Scalability The ability to support the required availability and performance as
transactional load increases.

Extensibility The ability to extend functionality.

Validity The ability to predict and confirm results based on a specified input
or user gesture.

Reusability The ability to use a component in more than one context without
changing its internals.

Security The ability to ensure that information is not accessed and modified
unless done so in accordance with the enterprise policy.

Availability

The availability of a system is often coupled with performance. Availability is the
degree to which a system, subsystem, or equipment is operable and in a committable

state at the start of a session, when the session is called for at an unknown, or
random, time. The conditions determining operability must be specified. Expressed
mathematically, availability is 1 minus the unavailability. Availability is the ratio of
(a) the total time a functional unit is capable of being used during a given interval
to (b) the length of the interval. An example of availability is 100/168, if the unit
is capable of being used for 100 hours in a week. Typical availability objectives are
specified in decimal fractions, such as 0.9998.

Principles of Architecture 4 |

Reliability

Reliability is the ability of an item to perform a required function under stated
conditions for a specified period of time. Reliability is the probability that a functional
unit will perform its required function for a specified interval under stated conditions.

The proper functioning of a company’s computer systems is now critical to the
operation of the company. An outage of an airline’s computer systems, for example,
can effectively shut down the airline. Many computer failures may be invisible to
customers—a temporary hiccup during the catalog order process, for example (“I
can’t check the availability of that item right now, but I'll take your order and call
you back if there’s a problem”), or cashiers having to use hand calculators to ring up
sales. However, on the Internet, a company’s computing infrastructure is on display
in the store window—in fact, the company’s infrastructure is the store window, so a
computer problem at Amazon.com would be tantamount to every Barnes and Noble
branch in the world locking its doors.

In the arena of Internet appliances and ubiquitous computing, the consumer
cannot be placed in the position of troubleshooting the computer system. Reliability
is critical because, eventually, people will expect their computers to work just as well
as any other appliance in their home. After all, who has heard of a TV program that
is “incompatible with the release level of your television?”

What does reliability mean from the standpoint of computer architecture? It is
instructive to examine a system that is designed to have high fault tolerance and
to allow repair without shutting down the system. For example, the IBM G5 series
of S/390 mainframes have shown mean time to failure of 45 years, with 84 percent
of all repairs performed while the system continues to run. To achieve this level of
fault tolerance, the G5 includes duplicate instruction decode and execution pipeline
stages. If an error is seen, the system retries the failing instruction. Repeated failures
result in the last good state of the CPU being moved to another CPU, the failed
CPU being stopped, and a spare CPU being activated (if one is available). At the
other end of the design spectrum, most PC systems do not have parity checking
of their memory, even though many of these systems can now hold gigabytes of
memory. Clearly, there is much room for computer architects to move high-end
reliability and serviceability down into low-end servers, personal computers, and
ubiquitous computing devices.

Manageability and Flexibility

Manageability refers to the set of services that ensures the continued integrity, or
correctness, of the component application. It includes security, concurrency control,
and server management. A metric example of manageability would be the number

472 Chapter 22 Common Architectures and Protocols

of staff hours per month required to perform normal upgrades. Server management
refers to the set of system facilities used for starting and stopping the server,
installing new components, managing security permissions, and performing other
tasks. These services can be implemented through a “best of breed” third-party
product approach, integrated in a middle-tier server product, or implemented
through operating system facilities.

Flexibility is the key to an available, reliable, and scalable application. Flexibility
can be improved through location independence of application code. An example
of flexibility would be a JEE system that uses internationalization code and property
files to allow changes in the presentation language (for example, English to
German). Regarding metrics, there is no standard way of measuring flexibility. The
business measure is the cost of change in time and money, but this depends on what
types of change can be anticipated.

As flexibility, reliability, and availability are increased, manageability can suffer.
Flexibility is also essential for keeping pace with rapid change. It's enhanced when the
middle-tier technology is a component-based solution that easily accommodates the
integration of multiple technologies. Independence from hardware, operating system,
and language creates the most adaptable and portable solutions. The connectivity
mechanisms to multiple data sources also increase adaptability. Fortunately, this area
is one in which several solutions are available, including the database connection
standards (ODBC and JDBC), native database drivers, messaging, remote procedure
calls (to database stored procedures), object request brokers, and database gateways.

Performance

Response time and response ratio are important to an application. The most
important task resulting in good performance is to identify and control expensive
calls. The architect should state target performance criteria before implementing
within a production environment. For example, the first visible response in any
application browser view when the application is under maximum specified load
must occur in less than 3 seconds, 95 percent of the time. Measurement is made at
the enterprise’s external firewall.

Today, when measuring performance, the architect must consider and attempt
to quantify the cost of an operation (data or computational)—which can involve a
myriad of servers across a sea of network connections—before finally returning
a response view to the user requestor.

Today, performance is the ability to execute functions fast enough to meet goals.
Response time and response ratio (the time it takes to respond/time it takes to
perform the function) are important to an application. Both figures should be as

Principles of Architecture 4.3

low as possible, but a ratio of 1 is the target. For example, suppose a user requests
functionality requiring a great deal of processing or database searching and it takes a
minute to process. The user will not see a result for a minute—seemingly a long time
to wait, but if the result can be viewed in 1 minute plus 20 seconds (a response ratio
of 1.3333), that is still good performance. Alternatively, suppose that the processing
takes only 1 second but the user does not see the result for 20 seconds (response ratio
of 20); that is not good performance.

Capacity

Capacity is a measure of the extent or ability of the computer hardware, software,
and connection infrastructure resources over some period of time. A typical capacity
concern of many enterprises is whether resources will be in place to handle an
increasing number of requests as the number of users or interactions increases.

The aim of the capacity planner is to plan so well that new capacity is added just

in time to meet the anticipated need but not so early that resources go unused

for a long period. The successful capacity planner is one that makes the trade-offs
between the present and the future that overall prove to be the most cost efficient.
No benchmark can predict the performance of every application. It is easy to find
two applications and two computers with opposite rankings, depending on the
application; therefore, any benchmark that produces a performance ranking must
be wrong on at least one of the applications. However, memory references dominate
most applications.

For example, there is considerable difference between a kernel-like information
retrieval product and one that performs complex business rules of a heuristic trading
system that does a matrix multiply. Most “kernels” are code excerpts. The work
measure is typically something like the number of iterations in the loop structure, or
an operation count (ignoring precision or differing weights for differing operations).
It accomplishes a petty but useful calculation and defines its work measure strictly in
terms of the quality of the answer instead of what was done to get there. Although
each iteration is simple, it still involves more than 100 instructions on a typical
serial computer and includes decisions and variety that make it unlikely to be
improved by a hardware engineer.

Scalability

Vertical scalability comes from adding capacity (memory and CPUs) to existing
servers. Horizontal scalability comes from adding servers. In terms of scalability,

44 Chapter 22 Common Architectures and Protocols

a system can scale to accommodate more users and higher transaction volumes in
several different ways:

B Upgrade the hardware platform. Solutions that offer platform independence
enable rapid deployment and easier integration of new technology.

B Improve the efficiency of communications. In a distributed environment,
the communications overhead is often a performance bottleneck. Session
management will improve communication among clients and servers through
session pooling.

B Provide transparent access to multiple servers to increase throughput during peak
loads. Load balancing is especially necessary to support the unpredictable and
uncontrollable demands of Internet applications. Some application server
products offer load balancing.

B Improve communication between the application component server and various data
sources through connection pooling management.

[t used to be easier to predict a system load. The Internet has certainly changed
that, and it can create scaling problems. During the 1999 Super Bowl, for example, an
advertisement by sexy underwear merchant Victoria’s Secret resulted in 1.5 million
people simultaneously attempting to access a live web event, overwhelming the pool
of 1000 servers that had been prepared. This phenomenon, called the “Slashdot
Effect,” was named for a popular technology news and discussion site: ssadler.phy.
bnl.gov/adler/SDE/SlashDotEffect.html. It can create huge amounts of traffic for sites.
Stock-trading sites used to be (and hopefully will again be) vulnerable to huge (and
unpredictable) peaks in traffic caused by events in the market.

Even on longer time scales, it is difficult at best to predict the growth or popularity
of an Internet business. What is required is for Internet infrastructures to scale evenly
(without discontinuities in performance), simply, quickly, and inexpensively. It
should not be necessary to rearchitect a system repeatedly as it grows.

Scalability is more a system problem than a CPU architecture problem. The
attributes that a system needs include the following:

B Graceful degradation all the way up to 100 percent system load

B The ability to add capacity incrementally (CPUs, memory, 1/O, and/or disk
storage) without disrupting system operation

B The ability to prioritize the workload so that unneeded work can be
suspended at times of peak activity

Principles of Architecture 4§

Some web sites, such as www.CNN.com, revert to lower overhead pages (smaller
pages with less graphics) during traffic peaks. One possibility for the future would be
to provide peak offload facilities for web merchants. If groups of sites used relatively
similar architectures, a site with spare capacity could be kept ready for whoever
needs it. If an unexpected peak occurred—or an expected peak that didn’t justify
buying more hardware—the contents of the site could be shadowed to the offload
facility and traffic divided between the two sites.

Techniques such as logical partitioning can also be used to shift system resources.
Logical partitioning is available in mainframe systems and allows one large CPU
complex to contain multiple logical system images, which are kept completely
separate by the hardware and operating system. Portions of the system resources can
be assigned to the partitions, with the assignments enforced by the hardware. This
allows resources to be shifted from development to production, or between different
systems involved in production, by simply shifting the percentages assigned to the
partitions. Capacity is affected by scalability—for example, one machine handles
500 transactions or five machines handle 100 transactions each.

Extensibility, Validity, and Reusability

Extensibility requires careful modeling of the business domain to add new features
based on a model.

Validity, or testability, is the ability to determine what the expected results should
be. Multi-tier architecture provides for many connection points and hence many
points of failure for intermediate testing and debugging.

Reusability of software components can be achieved by employing the interfaces
provided by frameworks. This is accomplished by defining generic components that
can be reapplied to create new applications. Framework reusability leverages the
domain knowledge and prior effort of experienced developers to avoid recreating
and revalidating common solutions to recurring application requirements and
software design challenges. Reuse of framework components can yield substantial
improvements in programmer productivity, as well as enhance other system qualities
such as performance, reliability, and interoperability.

Security

Security is essential for ensuring access to component services and for ensuring that
data is appropriately managed; these issues are particularly important in Internet
applications. Integrated network, Internet, server, and application security is the
most manageable solution. This approach can be described by “single sign-on,”

46 Chapter 2: Common Architectures and Protocols

which requires a rich infrastructure of network and system services. Firewalls and
authentication mechanisms must also be supported for Internet security. With
concurrency control, multiuser access can be managed without requiring explicit
application code.

A goal of information security is to protect resources and assets from loss.
Resources may include information, services, and equipment such as servers and
networking components. Each resource has several assets that require protection:

B Privacy Preventing information disclosure to unauthorized persons

B Integrity Preventing corruption or modification of resources

B Authenticity Proof that a person has been correctly identified or that
a message is received as transmitted

B Availability Assurance that information, services, and equipment are
working and available for use

The classes of threats includes accidental threats, intentional threats, passive
threats (those that do not change the state of the system but may include loss of
confidentiality but not of integrity or availability), and active threats (those that
change the state of the system, including changes to data and to software).

A security policy is an enterprise’s statement defining the rules that regulate how it
will provide security, handle intrusions, and recover from damage caused by security

breaches. Based on a risk analysis and cost considerations, such policies are most
effective when users understand them and agree to abide by them.

Security services are provided by a system for implementing the security policy of

an organization. A standard set of such services includes the following:

Identification and authentication Unique identification and verification of
users via certification servers and global authentication services (single sign-
on services).

Access control and authorization Rights and permissions that control what
resources users may access.

Accountability and auditing Services for logging activities on network
systems and linking them to specific user accounts or sources of attacks.

Data confidentiality Services to prevent unauthorized data disclosure.

Data integrity and recovery Methods for protecting resources against

corruption and unauthorized modification—for example, mechanisms using
checksums and encryption technologies.

Creating an Architecture Using Distributed Services and JEE 4.7

B Data exchange Services that secure data transmissions over communication
channels.

B Object reuse Services that provide multiple users secure access to
individual resources.

B Non-repudiation of origin and delivery Services to protect against
attempts by the sender to falsely deny sending the data, or subsequent
attempts by the recipient to falsely deny receiving the data.

B Reliability Methods for ensuring that systems and resources are available
and protected against failure.

Creating an Architecture Using Distributed
Services and JEE

Often in the world of corporate information technology, a new implementation
paradigm arises, and the architects must apply their acquired skills to the emerging
set of tools and building materials to create systems that make the best use of the
available resources. Here are some examples of that situation.

In the ‘60s, IBM released a multitasking operating system called OS MVT/MFT.
For the first time, an enterprise could run multiple batch jobs on the same machine.
This heralded the beginning of what we affectionately called the “batch night cycle.”
All transactions for an entire firm, whatever the business happened to be, would be
collected daily and then keyed into punch cards. This information was then fed to
one or more of these batch COBOL jobs, which would record the information to
create the firm’s “books and records.” This was fine, but the information was always
out of date by a day.

In the ‘70s, IBM brought us online data entry. This functionality was made
possible by software called Customer Information Control System (CICS) and
Virtual Storage Access Method (VSAM). CICS provided for terminal access and
entry of data. VSAM provided a way to store the data with indexes and keys to
facilitate access. This was better, and now the information was fairly up to date—
even intraday updates were common.

In the ‘80s, Microsoft improved on the IBM “green screen” and released the
personal computer equipped with a mouse and a personal drive space for storing

48 Chapter 2: Common Architectures and Protocols

information locally. Additionally, a host of other vendors (including IBM) brought
us SQL. Because it was done by committee, SQL became the de facto standard for
working with data and databases.

In the ‘90s, Microsoft popularized the client/server platform. This seemed like a
good idea, and it certainly provided an example for so-called “user-friendly” ways
of combining business transactions and computers. The problem was distribution.

If an organization had 1000 workstations, it would be difficult if not impossible to
maintain each of these workstations at the same level of software.

In the 2000s, Sun Microsystems and other vendors brought us JEE. Once again,

a committee has created a standard way to architect business processes that run on
almost any platform. This is powerful, because these computer classes are portable
and interoperable.

From a development perspective, these major revolutions involved only SQL and
JEE, because these are standards to which almost everyone has adhered.

Just as SQL defines the standard for querying multiuser relational databases, JEE
defines the standard for developing multi-tier enterprise applications. JEE, much like
the SQL paradigm, simplifies enterprise applications by basing them on standardized,
modular components; by providing a complete set of services to those components;
and by handling many details of application behavior automatically, without the
need for complex programming.

JEE takes advantage of many features of standard Java, such as “write once, run
anywhere” portability, the JDBC API for database access, RMI, CORBA technology
for interaction with existing enterprise resources, and a security model. Building
on this base, JEE adds support for E]B components, the Java Servlets API, JSP,
and Extensible Markup Language (XML) technology. The JEE standard includes
complete specifications and compliance tests to ensure portability of applications
across the wide range of existing enterprise systems capable of supporting JEE. This
portability was also a key factor in the success of SQL.

Standards such as SQL and JEE help enterprises gain competitive advantage by
facilitating quick development and deployment of custom applications. Whether
they are internal applications for staff use or Internet applications for customer or
vendor services, this timely development and deployment of an application is key
to success.

Portability and scalability are also essential for long-term viability. For example,
our company has ported a single SQL application database using five different
vendors: Oracle, Sybase, Informix, Microsoft SQL Server, and IBM DB/2. Enterprise
applications must scale from small working prototypes and test cases to complete 24x7,
enterprise-wide services that are accessible by tens, hundreds, or even thousands of
clients simultaneously. In the global finance market, 24x7 is especially important.

Creating an Architecture Using Distributed Services and JEE 4.9

Multi-tier applications are difficult to architect. They require merging a variety of
skill sets and resources, perhaps also including legacy data and legacy code. In today’s
heterogeneous environment, enterprise applications must integrate services from
a variety of vendors with a diverse set of application models and other standards.
Existing daily cycle applications at Merrill Lynch, for example, use all of the
database vendors in addition to legacy databases such as IDMS, ADABAS, IMS, and
a host of others. Industry experience shows that integrating these resources can take
up to 50 percent of application development time.

JEE will hopefully break the barriers inherent to current enterprise systems. The
unified JEE standard permits an API set that in full maturity will wrap and embrace
existing resources required by multi-tier applications with a unified, component-
based application model. This will initiate the next generation of components, tools,
systems, and applications for solving the strategic requirements of the enterprise.

Figure 2-6 provides a glimpse of how a JEE server fits into the frame of a Net-
enabled enterprise application. The good news is that it can salvage and extend life
to legacy systems that have been in production and are sensitive to change.

Although Sun Microsystems invented the Java programming language, the JEE
standard represents collaboration between leaders from throughout the enterprise
software arena. Partners include OS and database management system providers
IBM and Microsoft, middleware and tool vendors BEA WebLogic and IBM
WebSphere, and vertical market applications and component developers. Sun has
defined a robust, flexible platform that can be implemented on the wide variety of

m JEE server context

Whole business

| Engage |—>| Transact |—>| Fulfill |—>| Service |
| Portal |
| eCRM | | J2EE application server | | Self-service applications |

| Content management | | EAI | | B2B integration | | Content management |

B0 Chapter 2: Common Architectures and Protocols

on the

0ob

existing enterprise systems currently available. This platform supports the range of
applications that IT organizations need to keep their enterprises competitive.

If your enterprise architecture only partially supports an early release of JEE,
you might first upgrade your system. If you cannot upgrade due to budget or
timing concerns, then you may have to work within the technical constraints
associated with older versions.

Enterprise JavaBeans

A major part of the JEE architecture is EJBs. That is because the E]JB server-side
component model facilitates development of middleware components that are
transactional, scalable, and portable.

Consider transaction management. In the past, developers have had to write
and maintain transaction management code or rely on third-party transaction
management systems, generally provided through proprietary, vendor-specific APls.
This second-generation web development helped to promote Java and highlighted
the need for a standard. In contrast, EJB technology enables components to
participate in transactions, including distributed transactions. The EJB server itself
handles the underlying transaction management details, while developers focus
specifically on the business purpose of the objects and methods. EJB components can
be deployed on any platform and operating system that supports the EJB standard.
The list of these JEE-compliant application servers is numerous and can be viewed at
the Sun web site (http://java.sun.com/javaee/).

Distributed Application Lifecycle

One of the strengths of the JEE platform is that the implementation process is divided
naturally into roles that can be performed by team members with specific skills.
Because of this role-based development, staff can be used efficiently. Developers can do
what they do best—code business applications—without worrying about the details of
the user interface. The designers can do what they do best—design attractive, easy-to-
use interfaces—without having to be involved in the application’s coding.

Multiple Developer Roles

Before the emergence of SQL as a standard for data access, the role of the developer
included writing and maintaining the application code, maintaining the files,

and facilitating data access. SQL-facilitated distributed application data and the

FIGURE 2-7

The JEE
application life
cycle: iterative
process with
multiple
development
roles

Creating an Architecture Using Distributed Services and JEE § ||

Develop Assemble Ar?lfi?/:):ﬁ d
the J2EE — | the components:[—» XML with
components Archive vendor-specifics

Test:
Validate,
stress,
failover

added requirements of database, design, creation, and maintenance required new
development administration roles. Likewise, with a set of features designed specifically
to expedite the process of distributed application development, the JEE platform offers
several benefits but requires additional developer roles (see Figure 2-7).

The JEE standard describes the following roles for developers who must perform
the different types of tasks necessary to create and deploy a JEE/E]B application.

Entity Enterprise Bean Developer The entity enterprise bean developer
defines both the home and remote interfaces representing the client view of the
bean. This developer also creates classes that implement the entity bean enterprise
interface, as well as methods corresponding to those classes in the bean’s home and
remote interfaces.

The Bean Developer The bean developer, sometimes known as the bean pro-
vider, has the following responsibilities:

B To write Java code reflecting business logic.

B To provide interfaces and implementations.

B To make course references to data and security access. There is no need to
code for security when controlling access at the method level. The bean
developer can also use generic security references, such as accounting.

B To integrate code with third-party objects.

B To set transaction attributes.

B To control access programmatically within a method.

B To do nothing, allowing the application assembler to add roles and associate

these roles with methods.

B2 Chapter 2: Common Architectures and Protocols

To create a home interface that is used to create and find beans.
To create a remote interface for business logic methods.

To create an implementation of the bean class itself and utility classes if
needed.

To create a deployment descriptor giving security and transaction descriptions

for the EJB’s methods.

The Application Assembler The application assembler combines components
and modules into deployable application units. An application assembler may be a
high-level business analyst who designs overall applications on the component level.
The responsibilities include the following:

Building applications using E]Bs. This usually includes the presentation layer
Specifying transaction management requirements

Setting transaction attributes for either all of the bean’s methods or none of
them

Defining security roles
Associating roles with methods by adding permissions

Specifying which roles belong to particular methods or using a wildcard (*)
to apply to all methods

The Bean Deployer The bean deployer adapts applications for a specific server’s
environment as well as making final customizations. The skills required would be
those of a database administrator (DBA) and an application administrator. Respon-
sibilities include the following:

Managing persistence by mapping fields to actual database columns
Managing security by defining roles, users, and user/groups
Using deployment tools to create wrapper classes

Making sure that all methods of the deployed bean have been assigned a
transaction attribute

Mapping roles of users and user groups for specific environments

Third-party software companies can play several roles in the EJB framework, such
as component provider, application server provider, and EJB container provider.

Creating an Architecture Using Distributed Servicesand JEE § 3

The Component Provider The responsibilities of the component provider

lie in the business domain such as business process, software object modeling, Java
programming, EJB architecture, and XML. They implement business functions with
portable components such as E]Bs or web components.

Application Server Provider The application server provider provides the
platform on which distributed applications can be developed and provides the
runtime environment. The application server provider will usually contain an EJB

container such as IBM WebSphere or BEA WebLogic.

EJB Container Provider The EJB container provider provides the runtime
environment for E]B and binds it to the server. It may also generate standard code to
transact with data resources. The application server provider is often the container
provider as well.

Iterative Development/MVC

The MVC
provides an
application
development
breakout for
developing
with JEE.

The authors of this book have been developing enterprise systems for an average of
20 years, and we are all too familiar with the application life cycle. In Chapter 5, we
discuss patterns of developing application architectures. The Model View Controller
(MVCQC) application architecture is one of those patterns and will be used in the book
to analyze features of distributed applications. This abstraction helps in the process
of dividing an application into logical components that can be built more easily.
This section explores the general features of MVC.

The MVC architecture provides a way to divide the functionality involved in
maintaining and presenting data (see Figure 2-8). The MVC architecture has been
with us for a while, as it appears in early IBM CICS implementations as well as in
client/server with PowerBuilder. It was originally developed to map the traditional

Presentation Application Services Domain
VIEW CONTROL AJS MODEL
M Business B
aintains usiness
) processes
HTML client state entities
+—> +—> Controls <4 >
Java client Handles transactions Business
exceptions rules
Utility

B4 Chapter 2: Common Architectures and Protocols

input, processing, and output tasks to the user-interaction model. However, it is
straightforward to map these concepts into the domain of multi-tier web-based
enterprise applications.

In the MVC architecture, the model represents application data and the business
rules that govern access and modification of this data. The model maintains the
persistent state of the business and provides the controller with the ability to access
application functionality encapsulated by the model.

A view component renders the contents of a particular part of the model. It
accesses data from the model and specifies how that data should be presented.
When the model changes, it is responsibility of the view component to maintain
consistency in its presentation. The view forwards user actions to the controller.

A controller defines application behavior; it interprets user actions and maps them
into processing to be performed by the model. In a web application client, these
user actions could be button clicks or menu selections. The actions performed by
the model include activating business processes or changing the state of the model.
After evaluating the user action and the outcome of the model processing, the
controller selects a view to be rendered as part of the response to this user request.
There is usually one controller for each set of related functionality.

Simplified Architecture and Development

The JEE platform supports a simplified, component-based development model.
Because it is based on the Java programming language and the Java Platform,
Standard Edition (JxSE), this model offers “write once, run anywhere” portability,
supported by any server product that conforms to the JEE standard.

JEE applications have a standardized, component-based architecture that consist
of components (including JSPs, E]Bs, and servlets) that are bundled into modules.
Because JEE applications are component based, you can easily reuse components in
multiple applications, saving time and effort, and delivering applications quickly.
Also, this modular development model supports clear division of labor across
development, assembly and deployment of applications so that you can best leverage
the skills of individuals at your site.

JEE applications are for the most part distributed and multi tiered. JEE provides
server-side and client-side support for enterprise applications. JEE applications
present the user interface on the client (typically, a web browser), perform their
business logic and other services on the application server in the middle tier,
and are connected to enterprise information systems on the back end. With this
architecture, functionality exists on the most appropriate platform.

Creating an Architecture Using Distributed Servicesand JEE § §

JEE applications are standards-based and portable. JEE defines standard APIs that
all JEE-compatible vendors must support. This ensures that your JEE development
is not tied to a particular vendor’s tools or server, and you have your choice of tools,
components, and servers. Because JEE components use standard APIs, you can
develop them in any JEE development tool, develop components or purchase them
from a component provider, and deploy them on any JEE-compatible server. You
choose the tools, components, and server that make the most sense for you.

JEE applications are scalable. JEE applications run in containers, which are part
of a JEE server. The containers themselves can be designed to be scalable, so that the
JEE server provider can handle scalability without any effort from the application
developer.

JEE applications can be easily integrated with back-end information systems.

The JEE platform provides standard APIs for accessing a wide variety of enterprise
information systems, including relational database management systems, e-mail
systems, and CORBA systems.

Component-Based Application Models

on the

Qob

Component-based application models map easily and with flexibility to the
functionality desired from an application. As the examples presented throughout
this book illustrate, the JEE platform provides a variety of ways to configure the
architecture of an application, depending on factors such as client types required,
level of access required to data sources, and other considerations. Component-based
design also simplifies application maintenance. Because components can be updated
and replaced independently, new functionality can be shimmed into existing
applications simply by updating selected components.

Component assembly and solution deployment are especially important in
JEE development.The development and production environment could be
quite different. In an extensible architecture, the system structure should
be stable but should also support incremental deployment of components
without dffecting the whole system.

Components can expect the availability of standard services in the runtime
environment, and they can be connected dynamically to other components providing
well-defined interfaces. As a result, many application behaviors can be configured at
the time of application assembly or deployment, without modification. Component
developers can communicate their requirements to application deployers through
specific settings stored in XML files. Tools can automate this process to expedite
development.

B6 Chapter 2: Common Architectures and Protocols

JEE components
for web and EJB
are run from
containers.

Components help divide the labor of application development among specific
skill sets, enabling each member of a development team to focus on his or her ability.
For example, JSP templates can be created by graphic designers, their behavior can
be coded by Java programming language coders, the business logic can be coded by
domain experts, and application assembly and deployment can be affected by the
appropriate team members. This division of labor also helps expedite application
maintenance. For example, the user interface is the most dynamic part of many
applications, particularly on the web. With the JEE platform, graphic designers can
modify the look and feel of JSP-based user interface components without the need
for programmer intervention.

Containers

Central to the JEE component-based development model is the notion of containers,
standardized runtime environments that provide specific component services.
Components can expect these services to be available on any JEE platform from any
vendor. For example, all JEE web containers provide runtime support for responding
to client requests, performing request-time processing (such as invoking JSP or
servlet behavior), and returning results to the client. All EJB containers provide
automated support for transaction and life cycle management of EJB components, as
well as bean lookup and other services. Containers also provide standardized access
to enterprise information systems—for example, providing RDBMS access through
the JDBC API (see Figure 2-9).

In addition, containers provide a mechanism for selecting application behaviors
at assembly or deployment time. Through the use of deployment descriptors (text files
that specify component behavior in terms of well-defined XML tags), components
can be configured to a specific container’s environment when deployed, rather than
in component code. Features that can be configured at deployment time include
security checks, transaction control, and other management responsibilities.

Although the JEE specification defines the component containers that must be
supported, it doesn’t specify or restrict the configuration of these containers. Thus,

Web container EJB container

[P | le—n

H

[a) 3 4 = [a]
o = o m
=P 22 9 590 3 8z 532
I 0 1] 5 e o
88 %% £ U2 & 23 33
o o 5 8 A = o
[=) 3 = o I 0 5 a3
<2 35 2 o> 5 8w 2a
< =] =1 oa Qm
t

Creating an Architecture Using Distributed Services and JEE §7

both container types can run on a single platform, web containers can live on
one platform and EJB containers on another, or a JEE platform can be made up of
multiple containers on multiple platforms.

Support for Client Components

The JEE client tier provides support for a variety of client types, both within the
enterprise firewall and outside. Clients can be offered through web browsers by using
plain HTML pages, dynamic HTML generated with JSP technology, or Java applets.
Clients can also be offered as stand-alone Java language applications. JEE clients

are assumed to access the middle tier primarily using Web standards, namely HTTP,
HTML, and XML.

Although use of the JEE client tier has been difficult to perfect and it is therefore
rarely used, it can be necessary to provide functionality directly in the client tier.
Client-tier JavaBeans components would typically be provided by the service as
an applet that is downloaded automatically into a user’s browser. To eliminate
problems caused by old or nonstandard versions of the JVM in a user’s browser, the
JEE application model provides special support via tags used in Java Server Pages’ for
automatically downloading and installing the Java plug-in.

Client-tier beans can also be contained in a stand-alone application client written
in the Java programming language. In this case, the enterprise would typically make
operating system—specific installation programs for the client available for users to
download through their browsers. Users execute the installation file and are then
ready to access the service. Because Java technology programs are portable across all
environments, the service needs only maintain a single version of the client program.
Although the client program itself is portable, installation of the Java technology
client typically requires code specific to the operating system. Several commercial
tools automate the generation of these OS-specific installation programs.

Support for Business Logic Components

In the JEE platform, business logic is implemented in the middle tier as EJB
components. Enterprise beans enable the component or application developer to
concentrate on the business logic while the complexities of delivering a reliable,
scalable service are handled by the E]B server.

The JEE platform and E]B architecture have complementary goals. The E]JB
component model is the backbone of the JEE programming model. The JEE platform
complements the EJB specification by fully specifying the APIs that an enterprise
bean developer can use to implement enterprise beans.

B8 Chapter 2: Common Architectures and Protocols

m Enterprise Application = EAR + application.xml

Archived components plus XML to describe deployment
The J2EE Enterprise Archive (.ear)
enterprise application.xml
application equals Web archive EJB archive Client archive
the EAR plus the (-war) (jar) (.car)
deployment web.xml ejb-jar.xml application-client.xml
XML file.

This defines the larger, distributed programming environment in which enterprise
beans are used as business logic components. Application servers such as Sun’s
iPlanet, BEA’'s WebLogic, and IBM’s WebSphere provide the environment, which
must be scalable, secure, and reliable.

The JEE application is packaged in an archive or “Zip” file known as an
Enterprise Archive (EAR). The EAR contains the web, EJB, and client components
(see Figure 2-10).

The web, E]JB, and client components are encased in their own archive files (web
archive, or WAR; Java archive, or JAR; and client archive, or CAR) as shown in

Figure 2-11.
FIGURE 2-11 The EAR file encapsulates the web archive, client archive, and EJB archive.
EAR deployment EAR
EAR descri
escriptor deployment
plan
EJB JAR EJB module
Deployment Deployment
descriptor descriptor
BB e T N o EJB module
deployment plan
WAR WAR module
Deployment Deployment
descriptor descriptor
WAR
deployment plan || T TTTTTTTT T T [~"F| VVAR module
Application
client module
Application
client JAR Deployment
descriptor
Deployment Application client LN / I Application client
descriptor deployment plan module

JEEAPIs and Certification §Q

The archives are accompanied by XML files that describe the deployment
specifics of the EAR, WAR, JAR, and CAR archives.

JEE APIs and Certification

The JEE platform, together with the JSE platform, includes a number of industry-
standard APIs for access to existing enterprise information systems. The following
APIs provides basic access to these systems:

B JDBC, the API for accessing relational data from Java

B The Java Transaction API (JTA), the API for managing and coordinating
transactions across heterogeneous enterprise information systems

B The Java Naming and Directory Interface (JNDI), the API for accessing
information in enterprise name and directory services

B The Java Message Service (JMS), the API for sending and receiving messages
through enterprise-messaging systems such as IBM MQQ Series and TIBCO
Rendezvous

B JavaMail, the API for sending and receiving e-mail
B Java IDL, the API for calling CORBA services

The JEE standard is defined through a set of related specifications; key among
these are the E]B specification, the Servlet specification, and the JSP specification.
Together, these specifications define the architecture described in this book. In
addition to the specifications, several other offerings are available to support the JEE
standard, including the JEE Compatibility Test Suite (CTS) and the JEE SDK (see
http:/fjava.sun.com/j2ee/licensees.html).

The JEE CTS helps maximize the portability of applications by validating the
specification compliance of a JEE platform product. This test suite begins where
the basic Java Conformance Kit (JCK) ends. The CTS tests conformance to the
Java standard extension APIs not covered by the JCK. In addition, it tests a JEE
platform’s ability to run standard end-to-end applications.

The JEE SDK is intended to achieve several goals. First, it provides an operational
definition of the JEE platform, used by vendors as the “gold standard” to determine
what their product must do under a particular set of application circumstances.

60 Chapter 2: Common Architectures and Protocols

To verify the portability of an application, developers can use it, and it is used as the
standard platform for running the JEE CTS.

The JEE SDK exists to provide the developer community with a free
implementation of the JEE platform. This is Sun’s way of expediting adoption of the
JEE standard.

The JEE specifications have, by design, set the bar for platform compatibility.
Owing to the collaborative way in which the platform specifications have
been developed thus far, Sun gave platform vendors the opportunity to supply
implementations of the JEE platform. Obvious and unreasonable implementation
hurdles were avoided. For example, no restrictions exist on vendors adding value to
JEE products by supporting services not defined in the specifications.

JEE-component portability is primarily a function of the dependency a
component has on the underlying container. The rule is (as it was with SQL), where
possible, follow the standard to ensure portability or else mark the divergent parts of
the application. Components using a vendor-specific feature that falls outside of the
JEE requirements can have limitations in the area of portability. JEE specifications,
however, spell out a base set of capabilities that a component can count on; hence,
an application should be able to achieve a minimum cross-container portability. An
application developer expecting to deploy on a specific vendor implementation of
the JEE platform should carefully engineer the design to implement the application
across a wide range of operating systems and hardware architectures.

Sun Microsystems set a new standard for client-side computing with the
JSE. That experience, coupled with input from enterprise software vendors and
developers, has led to a full support program for the JEE standard. This program
includes four specific deliverables: the CTS to validate the JEE brand, the JEE

specification, a complete JEE reference implementation, and the JEE Sun BluePrint.

JEE Specification

Based on input and feedback from a variety of enterprise technology leaders and

the industry at large, the JEE specification is the beginning of a definition for a
consistent yet flexible approach to implementing the platform. The JEE specification
enumerates the APIs to be provided with all JEE platforms and includes full
descriptions of the support levels expected for containers, clients, and components.
[t defines a standard that can either be built on a single system or deployed across
several servers, each providing a specific set of JEE support services. Hopefully, this
will mean that a wide range of existing enterprise systems in use throughout the
industry will be able to support JEE.

XMLand JEE @ ||

JEE Reference Implementation

The JEE Reference Implementation provides all the specified technologies, plus a
range of sample applications, tools, and documentation. This basic implementation
of the JEE standard is provided for two purposes: it provides system vendors with a
standard by which to compare their implementations, and it provides application
developers with a way to become familiar with JEE technology as they explore
commercial products for full-scale deployment of JEE applications.

Sun BluePrint Design Guidelines for JEE

Provided as both documentation and complete examples, the Sun BluePrint Design
Guidelines for JEE will describe and illustrate “best practices” for developing and
deploying component-based enterprise applications in JEE. Topics explored will
include component design and optimization, division of development labor, and
allocation of technology resources.

XML and JEE

Prior to 1998, the exchange of data and documents was limited to proprietary or
loosely defined document formats. The advent of HTML offered the enterprise a
standard format for exchange with a focus on interactive visual content. Adversely,
HTML is rigidly defined and cannot support all enterprise data types; therefore, those
shortcomings provided the impetus to create XML. The XML standard enables the
enterprise to define its own markup languages with emphasis on specific tasks, such as
electronic commerce, supply-chain integration, data management, and publishing.

For these reasons, XML has become the strategic instrument for defining
corporate data across a number of application domains. The properties of XML
make it suitable for representing data, concepts, and contexts in an open, platform-,
vendor-, and language-neutral manner. It uses tags, identifiers that signal the start
and end of a related block of data, to create a hierarchy of related data components
called elements. In turn, this hierarchy of elements provides encapsulation and
context. As a result, there is a greater opportunity to reuse this data outside of the
application and data sources from which it was derived.

62 Chapter 2: Common Architectures and Protocols

XML technology has already been used successfully to furnish solutions for
mission-critical data exchange, publishing, and software development. Additionally,
XML has become the incentive for groups of companies within a specific industry
to work together to define industry-specific markup languages (sometimes referred
to as vocabularies). These initiatives create a foundation for information sharing and
exchange across an entire domain rather than on a one-to-one basis.

Sun Microsystems, IBM, Novell, Oracle, and even Microsoft support the XML
standard. Sun Microsystems coordinated and underwrote the World Wide Web
Consortium (W3C) working group that delivered the XML specification. Sun
also created the Java platform, a family of specifications that form a ubiquitous
application development and runtime environment.

XML and Java technologies have many complementary features, and when used
in combination, they enable a powerful platform for sharing and processing data and
documents. Although XML can clearly define data and documents in an open and
neutral manner, there is still a need to develop applications that can process it. By
extending the Java platform standards to include XML technology, companies will
obtain a long-term secure solution for including support for XML technologies in
their applications written in the Java programming language.

Because XML is a recommendation of the W3C, it reflects a true industry accord
that provides the first real opportunity to liberate the business intelligence that
is trapped within disparate data sources found in the enterprise. XML does this
by providing a format that can represent structured and unstructured data, along
with rich descriptive delimiters, in a single atomic unit. In other words, XML can
represent data found in common data sources, such as databases and applications,
but also in nontraditional data sources, such as word processing documents and
spreadsheets. Previously, nontraditional data sources were constrained by proprietary
data formats and hardware and operating system platform differences.

Why Use XML?

XML technology enables companies to develop application-specific languages that

better describe their business data. By applying XML technology, one is essentially

creating a new markup language. For example, an application of XML would produce

the likes of an Invoice Markup Language or a Book Layout Markup Language. Each

markup language should be specific to the individual needs and goals of its creator.
Part of creating a markup language includes defining the elements, attributes,

and rules for their use. In XML, this information is stored inside a document type

definition (DTD). JEE 1.4 uses XML Schemas instead of a DTD. Also, some JEE

XMLand JEE 63

products are XML Schema based—such as WebLogic Integration. A DTD can be
included within an XML document, or it can be external. If the DTD is stored
externally, the XML document must provide a reference to the DTD. If a document
does provide a DTD and the document adheres to the rules specified in the DTD,

it is considered valid.

SAX (Simple API for XML) is a Java technology interface that enables applications
to integrate with any XML parser to receive notification of parsing events. Every major
Java technology-based parser available now supports this interface.

Here are some other ways that the Java platform supports the XML standard:

B The Java platform intrinsically supports the Unicode standard, simplifying
the processing of an international XML document. For platforms without
native Unicode support, the application must implement its own handling of
Unicode characters, which adds complexity to the overall solution.

B The Java technology binding to the W3C Document Object Model (DOM)
provides developers with a highly productive environment for processing
and querying XML documents. The Java platform can become a ubiquitous
runtime environment for processing XML documents.

B The Java platform’s intrinsic support of the object-oriented programming
means that developers can build applications by creating hierarchies of Java
objects. Similarly, the XML specification offers a hierarchical representation
of data. Because the Java platform and XML content share this common
underlying feature, they are extremely compatible for representing each
other’s structures.

B Applications written in the Java programming language that process XML
can be reused on any tier in a multi-tiered client/server environment, offering
an added level of reuse for XML documents. The same cannot be said of
scripting environments or platform-specific binary executables.

Electronic Data Exchange and E-Commerce

Given the industry’s vast knowledge of communications, networking, and data
processing, validating and processing data from other departments and/or enterprises
should be a simple task. Unfortunately, that’s not the case. Validating data formats
and ensuring content correctness are still major hurdles to achieving simple,
automated exchanges of data.

64 Chapter 2: Common Architectures and Protocols

Using XML technology as the format for data exchange can quickly remedy most
of these problems for the following reasons:

B Electronic data exchange of nonstandard data formats requires developers to
build proprietary parsers for each data format. XML technology eliminates
this requirement by using a standard XML parser.

B An XML parser can immediately provide some content validation by ensuring
that all the required fields are provided and are in the correct order. This
function, however, requires the availability of a DTD. Additional content
validation is possible by developing applications using the W3C DOM.

In addition, content and format validation can be completed outside of the
processing application and perhaps even on a different machine. The effect of this
approach is twofold: It reduces the resources used on the processing machine and
speeds up the processing application’s overall throughput because it does not need
to first validate the data. In addition, the approach offers companies the opportunity
to accept or deny the data at time of receipt instead of requiring them to handle
exceptions during processing.

Electronic Data Interchange (EDI)

EDI is a special category of data exchange that nearly always uses a VAN (value-
added network) as the transmission medium. It relies on either the X12 or EDIFACT
standards to describe the documents that are being exchanged. Currently, EDI is a
very expensive environment to install and possibly requires customization, depending
on the terms established by the exchanging parties. For this reason, a number of
enterprises and independent groups are examining XML as a possible format for X12
and EDIFACT documents, although no decisions have been reached as of this writing.

Enterprise Application Integration (EAIl)

EALI is best described as making one or more disparate applications act as a single
application. This is a complex task that requires that data be replicated and
distributed to the correct systems at the correct time. For example, when integrating
accounting and sales systems, it can be necessary for the sales system to send sales
orders to the accounting system to generate invoices. Furthermore, the accounting
system must send invoice data into the sales system to update data for the sales
representatives. If done correctly, a single sales transaction will generate the sales

XMLand JEE 65§

order and the invoice automatically, thus eliminating the potentially erroneous
manual re-entry of data.

Software Development and XML

XML has impacted three key areas of software development: the sharing of application
architectures, the building of declarative environments, and scripting facilities.

In February 1999, the OMG (Object Management Group, a consortium of 11
companies, founded in April 1989) publicly stated its intention to adopt the XMI
(XML Metadata Interchange) specification. XMI is an XML-based vocabulary that
describes application architectures designed using the UML.

With the adoption of XM, it is possible to share a single UML model across a
large-scale development team that is using a diverse set of application development
tools. This level of communication over a single design makes large-scale
development teams much more productive. Also, because the model is represented
in XML, it can easily be centralized in a repository, which makes it easier to
maintain and change the model as well as provide overall version control. See the
object Management Group site at www.omg.org for detailed specifications on UML.

XMI illustrates how XML simplifies the software development process, but it
also can simplify design of overall systems. Because XML content exists within
a document that must be parsed to provide value, it is a given that an XML
technology—based application will be a declarative application. A declarative
application decides what a document means for itself. A declarative environment
would first parse the file, examine it, and make a decision about what type of
document it is. Then, drawing on this information, the declarative application
would take a course of action. In contrast, an imperative application will make
assumptions about the document it is processing in terms of predefined logic. The
Java compiler is imperative because it expects any file it reads to be a Java class file.

The concept of declarative environments is extremely popular right now,
especially when it comes to business rules processing. These applications enable
developers to declare a set of rules that are then submitted to a rules engine, which
will match behavior (actions) to rules for each piece of data they examine. XML
technology can also provide developers with the ability to develop and process their
own action (scripting) languages.

XML is a meta-language; it can be used to create any other language, including a
scripting language. This is a powerful use of XML technology that the industry is just
starting to explore.

66 Chapter 2: Common Architectures and Protocols

XML Technology and the Java Platform

Since 1998, early adopters of the XML specification have been using Java technology
to parse XML and build XML applications for a variety of reasons. Java technology’s
portability provides developers with an open and accessible market for sharing their
work, and XML data portability provides the means to build declarative, reusable
application components.

Development efforts within the XML community clearly illustrate this benefit. In
contrast to many other technology communities, those building on XML technology
have always been driven by the need to remain open and facilitate sharing. Java
technology has enabled these communities to share markup languages as well as code to
process markup languages across most major hardware and operating system platforms.

Java Platform Standard Extension for XML Technology
The Java Platform Standard Extension for XML technology proposes to provide
basic XML functionality to read, manipulate, and generate text. This functionality
will conform to the XML 1.0 specification and will leverage existing efforts around
Java technology APIs for XML technology, including the W3C DOM Level 1 Core
Recommendation and the SAX programming interface version 1.0.

The intent in supporting an XML technology standard extension is to

B Ensure that it is easy for developers to use XML and XML developers to use
Java technologies

B Provide a base from which to add XML features in the future

B Provide a standard for the Java platform to ensure compatible and consistent
implementations

B Ensure a high-quality integration with the Java platform

The Java community process gives Java technology users the opportunity to
participate in the active growth of the Java platform. The extensions created by
the process will eventually become supported standards within the Java platform,
thus providing consistency for applications written in the Java programming
language going forward. The Java Platform Standard Extension for XML technology
will offer companies a standard way to create and process XML documents within
the Java platform.

XML provides a data-centric method of moving data between Java and non-
Java technology platforms. Although CORBA represents the method of obtaining
interoperability in a process-centric manner, it is not always possible to use CORBA
connectivity.

Distributed Programming Services &7

XML defines deployment descriptors for the E]JB architecture. Deployment
descriptors describe for EJB implementations the rules for packaging and deploying
an EJB component. XML is an industry-wide recognized language for building
representations of semistructured data that can be shared intra- and inter-enterprise.
However, XML enables companies to describe only the data and its structure.
Additional processing logic must be applied to ensure document validity, transportation
of the documents to interested parties, and transformation of the data into a form more
useful to everyday business systems.

Distributed Programming Services

The EJB container and application server are also responsible for maintaining the
distributed object environment. This means that they must manage the logistics of
the distributed objects as well as the communications between them.

Naming and Registration

For each class installed in a container, the container automatically registers an
EJBHome interface in a directory using the]NDI API. Using JNDI, any client can
locate the EJBHome interface to create a new bean instance or to find an existing

entity bean instance. When a client creates or finds a bean, the container returns its
EJBObject interface.

Remote Method Invocation (RMI)

RMI is a high-level programming interface that makes the location of the server
transparent to the client. The RMI compiler creates a stub object for each
remote interface. The stub object is either installed on the client system or can
be downloaded at runtime, providing a local proxy object for the client. The stub
implements all the remote interfaces and transparently delegates all method calls
across the network to the remote object.

The EJB framework uses the Java RMI API to define and provide access to E]Bs.
The EJBHome and EJBObject interfaces, which are both required when creating
EJBs, are extended from the java.rmi.Remote interface.

68 Chapter 2: Common Architectures and Protocols

When a client object invokes methods on either a session bean or an entity bean,
the client is using RMI in a synchronous fashion. This is different from a message-
driven bean, which has its methods invoked by messages in an asynchronous fashion.

Protocols

The EJB specification asserts no requirements for a specific distributed object
protocol. RMI is able to support multiple communication protocols. The Java

RMI is the native protocol, supporting all functions within RMI. The next release
of RMI plans to add support for communications using the CORBA standard
communications protocol, [IOP, which supports almost all functions within RMI.
EJBs that rely only on the RMI/IIOP subset of RMI are portable across both
protocols. Third-party implementations of RMI support additional protocols, such as
Secure Sockets Layer (SSL).

Using Protocols to Communicate Across Tiers

Table 2-3 shows some protocol suggestions for communication across tiers. A
comparison of various protocols is presented in Table 2-4.

Distributed Object Frameworks

The current distributed object frameworks are CORBA, RMI, DCOM, and

EJB. The EJB specification is intended to support compliance with the range of
CORBA standards, current and proposed. The two technologies can function in a
complementary manner. CORBA provides a great standards-based infrastructure
on which to build EJB containers. The EJB framework makes it easier to build an
application on top of a CORBA infrastructure. Additionally, the recently released
CORBA components specification refers to EJB as the architecture when building
CORBA components in Java.

TABLE 2-3
_ Tiers Communicating Possible Protocols

Tier-to-Tier Communication between the user ~ HTTP, RMI, CORBA, DCOM, JMS

Communication interface and business tiers
Communication between the JDBC, IDL to COM bridge, JMS, plain socket, native
business and persistence tiers APIs via JNI embedded in resource adapters

TABLE 2-4
_ Protocol

Distributed
Object
Communication

Distributed Programming Services

Advantages

69

Disadvantages

HTTP Well-established protocol that Limited to communication with
is firewall-friendly and stateless, a servlet and JSP. Because it is
so that if servers fail between stateless (session tracking requires
requests, the failure may be cookies and/or URL rewriting),
undetected by clients. it's difficult to secure or maintain
The stateless nature makes it easy ~ session state.
to scale and load balance HTTP
Servers.

RMI Object is passed by value. The Heterogeneous objects are not
client or server can reconstitute supported.
the objects easily.
The data type can be any Java
object.
Any Java objects can be passed as
arguments.
Arguments must implement the
Serializable interface or java.rmi.
Remote object.

CORBA Heterogeneous objects are Objects are not passed by value;
supported. only the argument data is passed.
Basically the opposite of RMI. The server/ client has to
Well established in the industry, reconstitute the objects with the
with 800+ members in the OMG data.
supporting the standard. Only commonly accepted datatypes
IIOP wire protocol guarantees can be passed as arguments unless
interoperability between vendor CORBA 2.3/Objects By Value
products. specification used.
Bundled with well-known and
well-documented services such
as COSNaming and CORBASec
to extend the capabilities of the
ORB.

DCOM Fits well with the Windows OS Works best in the Windows
deployment platform. environment.

CORBA

CORBA is a language independent, distributed object model specified by the
OMG. This architecture was created to support the development of object-oriented
applications across heterogeneous computing environments that might contain
different hardware platforms and operating systems.

70 Chapter 2: Common Architectures and Protocols

CORBA relies on IIOP for communications between objects. The center of
the CORBA architecture lies in the Object Request Broker (ORB). The ORB
is a distributed programming service that enables CORBA objects to locate and
communicate with one another. CORBA objects have interfaces that expose sets
of methods to clients. To request access to an object’s method, a CORBA client
acquires an object reference to a CORBA server object. Then, the client makes
method calls on the object reference as if the CORBA object were local to the
client. The ORB finds the CORBA object and prepares it to receive requests, to
communicate requests to it, and then to communicate replies back to the client. A
CORBA object interacts with ORBs either through an ORB interface or through an
Object Adapter.

Native Language Integration By using IIOP, E]Bs can interoperate with na-
tive language clients and servers. IIOP facilitates integration between CORBA and
EJB systems. EJBs can access CORBA servers, and CORBA clients can access E]Bs.
Also, if a COM/CORBA internetworking service is used, ActiveX clients can access
EJBs, and E]JBs can access COM servers. Eventually, there may also be a DCOM
implementation of the EJB framework.

Java/RMI

Since a Bean’s remote and home interfaces are RMI compliant, they can interact
with CORBA objects via RMI/IIOP, Sun, and IBM’s adaptation of RMI, which
conforms to the CORBA -standard IIOP protocol. The Java Transaction API (JTA),
which is the transaction API prescribed by the E]B specification for bean-managed
transactions, was designed to be well integrated with the OMG Object Transaction
Service (OTS) standard.

Java/RMI relies on a protocol called the Java Remote Method Protocol (JRMP).
Java relies heavily on Java Object Serialization, which allows objects to be marshaled
(or transmitted) as a stream. Since Java Object Serialization is specific to Java, both
the Java/RMI server object and the client object have to be written in Java. Each Java/
RMI server object defines an interface, which can be used to access the server object
outside of the current JVM and on another machine’s JVM. The interface exposes a
set of methods, which are indicative of the services offered by the server object.

For a client to locate a server object for the first time, RMI depends on a naming
mechanism called an RMIRegistry that runs on the server machine and holds

Distributed Programming Services 7 ||

information about available server objects. A Java/RMI client acquires an object
reference to a Java/RMI server object by performing a lookup for a server object
reference and invokes methods on the server object as if the Java/RMI server object
resided in the client’s address space. Java/RMI server objects are named using URLs,
and for a client to acquire a server object reference, it should specify the URL of
the server object as you would specify the URL to a HTML page. Since Java/RMI
relies on Java, it also can be used on diverse operating system platforms from IBM
mainframes to UNIX boxes to Windows machines to handheld devices, as long as a
JVM implementation exists for that platform.

Distributed Component Object Model (DCOM)

DCOM supports remote objects by running on a protocol called the Object Remote
Procedure Call (ORPC). This ORPC layer is built on top of Distributed Computing
Environment’s (DCE) Remote Procedure Call (RPC) and interacts with Component
Object Model’s (COM) runtime services. A DCOM server is a body of code that
is capable of serving up objects of a particular type at runtime. Each DCOM server
object can support multiple interfaces, each representing a different behavior of
the object. A DCOM client calls into the exposed methods of a DCOM server by
acquiring a pointer to one of the server object’s interfaces. The client object then
starts calling the server object’s exposed methods through the acquired interface
pointer as if the server object resided in the client’s address space. As specified by
COM, a server object’s memory layout conforms to the C++ vtable layout. Since
the COM specification is at the binary level, it allows DCOM server components
to be written in diverse programming languages such as C++, Java, Object Pascal
(Delphi), Visual Basic, and even COBOL. As long as a platform supports COM
services, DCOM can be used on that platform. DCOM is now heavily used on the
Windows platform.

The following five exercises take the form of practice essay questions:

I. Read the question.
2. Develop an essay-style answer.
3. Review the draft and finalize your response.

4. Review the answer in the book.

72 Chapter 2: Common Architectures and Protocols

EXERCISE 2-1

Role of Architect

Question Define the role of an architect.

Answer An architect visualizes the behavior of the system. Architects create

the BluePrint for the system. They define the way in which the elements of the
system work together and distinguish between functional and nonfunctional system
requirements. Architects are responsible for integrating nonfunctional requirements
into the system.

EXERCISE 2-2

Architecture Terminology

Question Define the term architecture and its variations for system software.

Answer Architecture refers to the art or practice of designing and building
structures. It refers to a method or style for the formation or construction of

a product or work. System architecture refers to the architecture of a specific
construction or system, corresponding to “architecture as a product.” It is the

result of a design process for a specific system and specifies the functions of
components, their interfaces, interactions, and constraints. This specification is

the basis for detailed design and implementation steps. The architecture is a means
of communication during the design or redesign process. It may provide several
abstract views on the system that serve as a basis for discussion to clarify each party’s
perception of the problem area. Reference architecture corresponds to “architecture
as a style or method.” It refers to a coherent design principle used in a specific
domain. An example of such architecture is the JEE model for a computer-based
information system. The architecture describes the kinds of system components,
their responsibilities, dependencies, possible interactions, and constraints. The
reference architecture is the basis for designing the system architecture for a
particular system. When designing a system according to an architectural style, the
architect can select from a set of well-known elements (standard parts) and use them
in ways appropriate to the desired system architecture. In summary, architecture
refers to an abstract representation of a system’s components and behaviors.

Distributed Programming Services 73

Architecture does not contain details about implementation. Architectures are best
represented graphically. An architect communicates the design of the system to
other members of the team. Defining architecture is a creative process. The creative
process can have positive and negative aspects. Architects try to balance creativity
with science in the form of models, frameworks, and patterns.

EXERCISE 2-3

Abstraction, Boundaries, Brittleness, and Capabilities

Question Explain architectural terms such as abstraction, boundaries, brittleness,
and capabilities.

Answer An abstraction is a term for something that is factored out of a design so
that it can be used repeatedly. Boundaries are the area where two components interact.
Brittleness is the degree to which small changes will break large portions of the system.
Capabilities are the nonfunctional, observable system qualities, including scalability,
manageability, performance, availability, reliability, and security, that are defined in
terms of context. Friction is how much interaction occurs between two components.
Friction is measured by how a change in one component affects the other. Layering

is a hierarchy of separation. Surface area is a list of methods that are exposed to the
client. The key difference between architecture and design is in the level of detail.

EXERCISE 2-4

Fundamentals of System Architecture
Question Identify the fundamentals of system architecture.

Answer System architecture refers to the architecture of a specific construction or
system. System architecture corresponds to “architecture as a product.” It is the result
of a design process for a specific system and specifies the functions of components,
their interfaces, interactions, and constraints. This specification is the basis for
detailed design and implementation steps. Designs may include implementation
details not present at the architectural level.

74 Chapter 2: Common Architectures and Protocols

EXERCISE 2-5

Abstraction

Question Explain the concept of abstraction and how it is implemented in sys-
tem architecture.

Answer Defining architecture for a system serves multiple objectives. It uses
abstraction to factor out commonly used functionality to provide help in represent-
ing complex dynamic systems using simple models. This way architecture helps the
designer in defining and controlling the interfaces and the integration of the system
components. During a redesign process, the architecture enables the designer to
reduce the impact of changes to as few modules as possible. The architectural model
of a system allows focusing on the areas requiring major change.

CERTIFICATION SUMMARY |

This chapter describes architecture as the practice of designing and building
structures. It describes the role played by the architect in the development of
computer applications, especially those developed using the JEE standard. It
contrasts architecture and design. It covers the fundamentals, capabilities, and
design goals of architecture using tables that will be useful in preparing for the exam.
The rest of the book’s chapters embellish upon the tasks performed by the architect.

Two-Minute Drill 7§

TWO-MINUTE DRILL

Given an Architecture Described in Terms of Network Layout,
List Benefits and Potential Weaknesses Associated with It

a

Architecture refers to an abstract representation of a system’s components and
behaviors. A good system architecture leads to reusable components because
each component is broken into parts that may be repeated and can therefore
be reused. Abstraction naturally forms layers representing different levels of
complexity.

System architecture corresponds to the concept of architecture as a product.

It is the result of a design process for a specific system and must consider the
functions of components, their interfaces, their interactions, and constraints.
This specification is the basis for application design and implementation steps.

Reference architecture corresponds to architecture as a style or method. It refers
to a coherent design principle used in a specific domain.

The key difference between the terms architecture and design is in the level of
details. Architecture operates at a high level of abstraction with less detail.
Design operates at a low level of abstraction, obviously with more of an eye to
the details of implementation.

The layers of architecture are systems in themselves. They obtain input from
their environment and provide output to their environment.

Recognize the Effect on Each of the Following Characteristics
of Two-tier, Three-tier and Multi-tier Architectures: Scalability
Maintainability, Reliability, Availability, Extensibility,
Performance, Manageability, and Security

Qa

The attributes of a system based on solid architectural principles will include
the following:

Q Availability The degree to which a system is accessible. The term 24x7
describes total availability. This aspect of a system is often coupled with
performance.

Q Reliability The ability to ensure the integrity and consistency of an ap-
plication and its transactions.

76 Chapter 2: Common Architectures and Protocols

O Manageability The ability to administer and thereby manage the system
resources to ensure the availability and performance of a system with
respect to the other capabilities.

Q Flexibility The ability to address architectural and hardware configura-
tion changes without a great deal of impact to the underlying system.

Q Performance The ability to carry out functionality in a time frame that
meets specified goals.

Q Capacity The ability of a system to run multiple tasks per unit of time.

QO Scalability The ability to support the required availability and perfor-
mance as transactional load increases.

QO Extensibility The ability to extend functionality.

Q Validity The ability to predict and confirm results based on a specified
input or user gesture.

O Reusability The ability to use a component in more than one context

without changing its internals.

Q Security The ability to ensure that information is not accessed and
modified unless done so in accordance with the enterprise policy.

Self Test 77

SELFTEST

The following questions will help you measure your understanding of the material presented in this
chapter. Read all the choices carefully because there might be more than one correct answer. Choose
all correct answers for each question.

Recognize the Effect on Each of the Following Characteristics of Two-tier,
Three-tier and Multi-tier Architectures: Scalability Maintainability, Reliability,
Availability, Extensibility, Performance, Manageability, and Security.

1. Which of the following is true about the requirements of a banking system?

A. The need for security is a classic example of a functional service level requirement, and
a checking account rule is an example of a nonfunctional requirement.

B. Security and the mandatory checking account both illustrate functional service level
requirements.

C. Neither security nor the mandatory checking account is an example of any kind of
requirement, theoretically speaking.

D. Security is an architectural nonfunctional requirement and the mandatory checking
accounts a functional design requirement.

E. They are both examples of business use cases.

2. Which of the following are nonfunctional requirements?

Scalability, availability, extensibility, manageability, and security
Performance, reliability, elaboration, transition, documentation, and security
Specification, elaboration, construction, transition, use cases, and security

Performance, availability, scalability, and security

mogON® >

Reliability, availability, scalability, manageability, and security

3. Which of the following is the most important item that should be considered when designing
an application?

Scalability

Maintainability

Reliability

Meeting the needs of the customer

Performance

mmogOo®»

Ensuring the application is produced on time and within budget

78 Chapter 2: Common Architectures and Protocols

Given an Architecture Described in Terms of Network Layout, List Benefits
and Potential Weaknesses Associated with It

4. Your have been contacted by a company to help them improve the performance of their
e-commerce application. You have suggested that the hardware on which the application is
currently deployed (two web servers and a database server) be migrated to three web servers, an
application server, and a database server (all on different machines). You assure them that all
the required software rewrites will be worth it in the long run. What are the characteristics of
your suggested architecture?

Fat clients

Thin clients

Good separation of business logic
Good scalability

Poor separation of business logic
Poor scalability

OmMmoUN®»

There is no difference in the separation of business logic

Self Test Answers 779

SELF TEST ANSWERS

Recognize the Effect on Each of the Following Characteristics of Two-tier,
Three-tier and Multi-tier Architectures: Scalability Maintainability, Reliability,
Availability, Extensibility, Performance, Manageability, and Security.

I. K D is correct. Successful software architecture deals with addressing the nonfunctional
service level requirements of a system. The design process takes all functional business
requirements into account. Security is considered a nonfunctional requirement and specific
business rules, such as the one described for the checking account, are considered functional
requirements. Choice D is the only choice that accurately describes this.

&l A, B, C, and E are not true. Choice A is incorrect because the functional and
nonfunctional requirements are switched. Choice B is incorrect because only one of them
is a functional requirement. Choice C is incorrect because, as just described , one of them is
a functional requirement and the other, a nonfunctional requirement. Finally, Choice E is
incorrect because business analysis may start with use cases.

2. D is correct. The nonfunctional service level requirements discussed are performance
(I: The system needs to respond within 5 seconds); availability (II: The system needs to have
a 99.9 percent uptime); scalability (III: An additional 200,000 subscribers will be added); and
security (IV: HTTPS is to be used). Hence, choice D is correct.
& A, B, C, and E are incorrect. There is no mention of extensibility (ability to easily add or
extend functionality) and manageability (ability to monitor the health of the system). Hence,
choice A is incorrect. Specification, elaboration, construction, transition, documentation,
and use cases are not nonfunctional service level requirements. Hence, choices B and C are
incorrect. While scalability and reliability may be related (Will the system perform as reliably
when more users operate on it?), there is no mention of reliability in the question. Hence,
choice E is incorrect.

3. i Dis correct. The most important consideration when designing an application is that it
meets the needs of the customer.
Xl A, B, C, E, and F are incorrect. Ensuring the application is produced on time and within
budget is something that should be done, but it is not the number one concern. The application
does not have to be the best possible solution under the circumstances. As long as it meets the
customer’s needs, it is considered adequate. All of the other considerations are secondary to
meeting the customer’s needs.

80 Chapter 2: Common Architectures and Protocols

Given an Architecture Described in Terms of Network Layout, List Benefits
and Potential Weaknesses Associated with It

4. 4 B, C, and D are correct. The system you have suggested they migrate to is a three-tier
system. The characteristics of a three-tier system are thin clients, good separation of business
logic, and good scalability. This is due to the fact that each tier is separate from the other
(for example, it would be possible to change the data store without affecting the business logic).
Xl A, E, E and G are incorrect. Choice A is incorrect; the suggested system has thin clients,
the business logic residing on the application server, in the middle tier. Because there is a good
separation of business logic, choices E and G are incorrect. Choice F is incorrect, as the three-
tier nature of the system makes it very scalable.

