
CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3
Blind Folio 81

3
Object-Oriented
Analysis and
Design

CERTIFICATION OBJECTIVES

 3.01 Draw UML Diagrams

 3.02 Interpret UML Diagrams

 3.03 State the Effect of Encapsulation,
Inheritance, and use of Interfaces on
Architectural Characteristics

✓ Two-Minute Drill

Q&A Self Test

ch03.indd 81 6/5/07 3:28:20 PM

82 Chapter 3: Object-Oriented Analysis and Design

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

One of the fundamental challenges facing software architects is change. The need to
develop maintainable software systems has driven interest in approaches to software
development and design. Object-oriented technology has proved over time to be one

of the most mature paradigms for design and implementation of large-scale systems. Software
architects are expected to be able to understand and communicate high-level design concepts to
programmers under their direction and also to higher-ups who must approve their designs. Thus,
the SCEA certification puts a great deal of emphasis upon object-oriented design concepts and
less on concrete APIs. In particular, the design abstraction known as the Unified Modeling Language
(UML) receives strong emphasis. The SCEA Part 2 is the literal and figurative center of the exam.
Here, candidates must submit a JEE-based project solution for a given business scenario. The
scenarios may contain both B2C (business-to-consumer) and B2B (business-to-business) aspects.
The preparation for this part of the exam obviously requires a thorough knowledge of JEE and
whatever is current in terms of assembled components. But your preparation for this exam part
revolves around the UML. Your project will be evaluated on a number of objective criteria that fall
into three categories:

 1. Class Diagram This category covers how well your class diagram(s) address
the object model needed to satisfy the requirements.

 2. Component Diagram This category covers how well your component
diagram(s) convey the structure of the architecture in satisfying the requirements.

 3. Sequence/Collaboration Diagrams This category covers how well your
sequence or collaboration diagrams satisfy the requirements of the assignment.

Additionally, the project is evaluated based upon UML compliance.
The maximum number of possible points is 100. The minimum passing grade is 70.

The maximum points per category are

 1. Class Diagram(s): 44

 2. Component Diagram(s): 44

 3. Sequence/Collaboration Diagrams: 12

With that said, UML is a system for drawing diagrams of object-oriented designs
and using these diagrams throughout the design process. UML evolved out of a
synthesis of several design methodologies to become an industry standard overseen
by the Object Management Group (OMG, see www.omg.org/uml). This chapter will
cover UML with a view toward providing what you need to deliver a project for Part 2
of the exam. Also see the Chapter 11 Case Study, which provides a UML-based
project solution for a B2C and B2B securities trading system.

ch03.indd 82 6/5/07 3:28:20 PM

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

Analysis and Design of
Object-Oriented Architecture

Modeling is a visual process used for creating in a preserved form the design and
structure of an application. Before, during, and after development, it is typical and
prudent to outline an application, depicting dependencies and relationships among
the components and subsystems. Like any good development tool, today’s modeling
tools facilitate this process by tracking changes made in the model to reflect the
cascading effects of changes. Use of modeling tools gives developers a high-level and
accurate view of the system.

Modeling can be used at any point in a project. Most modeling tools can reengineer
and use code as input to create a visual model. The standard for modeling tools is
the Unified Modeling Language (UML). This standard unifies the many proprietary
and incompatible modeling languages to create one modeling specification. Use of
modeling tools for development projects is increasing. With the increasing complexity
of enterprise Java applications and components, modeling is a virtual necessity. It can
reduce development time while ensuring that code is well formed.

Modeling is useful whether the objective is to understand and modify an existing
computer-based business system or to create an entirely new one. An obstacle to
engineering successfully is the inability to analyze and communicate the numerous
interactive activities that make up a business process. Conversational languages,
such as English, are ambiguous and therefore ineffective for communicating
such objectives and activities. Formal languages are unintelligible to most
functional (business) experts. What is needed instead is a technique that
structures conversational language to eliminate ambiguity, facilitating effective
communication and understanding.

In a process model, extraneous detail is eliminated, thus reducing the apparent
complexity of the system under study. The remaining detail is structured to eliminate
any ambiguity, while highlighting important information. Graphics (pictures, lines,
arrows, and other graphic standards) are used to provide much of the structure; so
most people consider process models to be pictorial representations. However, well-
written definitions of the objects, as well as supporting text, are also critical to a
successful model.

In engineering disciplines, the model is typically constructed before an actual
working system is built. In most cases, modeling the target business process is a
necessary first step in developing an application. The model becomes the road map

Analysis and Design of Object-Oriented Architecture 83

ch03.indd 83 6/5/07 3:28:20 PM

84 Chapter 3: Object-Oriented Analysis and Design

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

that will establish the route to the final destination. Deciding the functionality of
the target destination is essential. To be effective, it must be captured and depicted
in detail.

In today’s software development environment, we speak of objects as things that
encapsulate attributes and operations. Before we proceed to the modeling standards
being used today by software architects, let's begin with some basic definitions of
object programming and its intending analysis, design, and life cycle.

Key Features of OOP: Objects and Classes
Object-oriented programming (OOP) is the methodology used for programming
classes based on defined and cooperating objects. OOP is based on objects rather
than procedural actions, data rather than logic. In days past, a program had been
viewed as a logical procedure that used input data to process and produce output
data. Object-oriented programming focuses on the objects we want to manipulate
rather than the logic required to manipulate them. Object examples range from
human beings (described by name, address, and so forth) to inanimate objects whose
properties can be described and managed, such as the controls on your computer
desktop—buttons, scroll bars, and so on.

Step one in OOP is to identify the objects to be manipulated and their relationships
with each other. That is the essence of modeling. Once you’ve identified an object,
you generalize it as a class of objects and define the kind of data it contains and logic
that can manipulate it. The logic is known as methods. A real instance of a class
is called an object or an instance of a class. The object or class instance is executed
on the computer. Its methods provide computer instructions, and the class object
characteristics provide relevant data. You communicate with objects and they
communicate with each other with defined interfaces called messages.

The concepts and rules used in OOP provide these important benefits:

■ The concept of a data class makes it possible to define subclasses of data
objects that share some or all of the main class characteristics. This is known
as inheritance, and it is a property of OOP that facilitates thorough data
analysis, reduces development time, and ensures more accurate coding.

■ Since a class defines only the data it needs, when an instance of that class
is run, the code will not be able to access other program data improperly.
This characteristic of data hiding provides greater system security and avoids
unintended data corruption.

ch03.indd 84 6/5/07 3:28:20 PM

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

■ The definition of a class is reusable not only by the program for which it is
initially created but also by other object-oriented programs. This facilitates
distribution for use in other domains.

■ The concept of data classes allows a programmer to create new data types
that are not defined in the language itself.

Defining Object-Oriented Analysis and Design
In terms of computing software, analysis is the development activity consisting of the
discovery, modeling, specification, and evaluation of requirements. Object-oriented
analysis (OOA) is the discovery, analysis, and specification of requirements in
terms of objects with identities that encapsulate properties and operations, message
passing, classes, inheritance, polymorphism, and dynamic binding. Object-oriented
design (OOD) is the design of an application in terms of objects, classes, clusters,
frameworks, and their interactions.

In comparing the definition of traditional analysis with that of object-oriented
analysis and design (OOAD), the only aspect that is new is thinking of the world or
the problem in terms of objects and object classes. A class is any uniquely identified
abstraction—that is, a model—of a set of logically-related instances that share the
same or similar characteristics. An object is any abstraction that models a single
element, and the term object as mentioned is synonymous with instance. Classes have
attributes and methods, as they are more commonly known.

Project Life Cycle
The project life cycle is a pivotal concept in terms of understanding what a project
is; the life cycle is a mapping of the progress of the project from start to finish.
Projects, by definition, have a start and finish, like any good game. At the simplest
level, projects have two phases: planning and executing. Planning and executing
are okay for a simple, short-term project. Larger, long-term endeavors require
another layer to be added to the life cycle of the projects. This can be achieved by
subdividing each phase: plan and execute into two further phases, leading to a life
cycle of analysis, design, development, and implementation.

Project Life Cycle 85

ch03.indd 85 6/5/07 3:28:20 PM

86 Chapter 3: Object-Oriented Analysis and Design

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

Table 3-1 summarizes the classic project life cycle phases and mentions activities
to be planned and executed for each phase. UML deliverables mentioned in this
table are discussed in the sections that follow.

For the sake of completeness, we should also mention the Unified Process—or
RUP (Rational Unified Process), as it has been trademarked by Rational (www
.rational.com). The RUP is an incremental process used by development managers
to manage a software project. Using the RUP, the project is broken down into phases
and iterations. The iterations are oriented toward decreasing risk. Each phase should
deliver a product, usually software that can be demonstrated and validated against
the project's requirements and use cases. The development manager uses iteration
plans to manage the project. An iteration plan provides a detailed description of
the upcoming phase of work. It defines the roles involved as well as activities and

Primary Phase Subphase Activities

Analysis Requirements analysis Take a concept statement and define
detailed requirements and the externally
visible characteristics of the system. Write a
validation plan that maps to the requirements
specification. Short form: Is it possible to
resolve the requirements?

System-context
analysis

Define the context of the system via use cases
and scenarios. External messages, events, and
actions are defined. The system is treated as
a black box. Use care and scenario models
are the deliverables. For real-time systems,
characterize the sequence and synchronization
details of the messages/responses. Short form:
What would the big picture solution look like?

Model analysis Identify the classes, objects, and associations
that solve the problem, using class and object
diagrams. Response behavior is modeled
using state charts. Interaction among objects
is shown with sequence or collaboration
diagrams. Short form: A further refinement
of the big picture solution arrived at by
decomposing subsystems into high-level classes.

 TABLE 3-1 Project Life Cycle Phases

ch03.indd 86 6/5/07 3:28:20 PM

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

Project Life Cycle 87

Primary Phase Subphase Activities

Design Architectural design Define the important architectural decisions.
Physical architecture of the system is
modeled using deployment diagrams, software
component architecture is modeled using
component diagrams, and concurrency models
are captured using class diagrams identifying
the active objects. Design patterns are used
here as well.
Note: One key element of design is that “hard”
dependencies on specific hardware, software,
and other infrastructure is fleshed out as we
move closer to implementation. For example, an
architect may decide to use BEA WebLogic as
the J2EE server. A designer may find that, while
trying to build some XML parsing components, a
decision needs to be made about whether to use
BEA-specific APIs or perhaps use JAXP APIs.

Mechanistic design Define the collaborative behavior of classes
and objects. This information is captured
on class and object diagrams. Sequence
and collaboration diagrams capture specific
instances of collaborations and state charts are
enhanced to define the full behavior.

Detailed design Define the detailed behavior and structure of
individual classes using activity diagrams and
notations.

Development Develop class code, database definition, and
message structures in the target language,
DBMS, and messaging system.

Implementation Unit testing Test the internal structure and behavior of
each class.

Integration testing Test the integration of various components.
This takes place recursively at multiple levels
of decomposition based on the scale of the
system.

Validation testing Test the delivered system against the
requirements as defined in the validation
test plan.

System delivered Pass the delivered system and user guide and
other operational documentation to the user
and technical support staff.

 TABLE 3-1 Project Life Cycle Phases (continued)

ch03.indd 87 6/5/07 3:28:20 PM

88 Chapter 3: Object-Oriented Analysis and Design

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

artifacts to be delivered in that iteration. The RUP outlines a set of criteria by which
productivity and progress can be measured during the iteration. As with all planning
tools, it defines specific start and end dates for product delivery.

The RUP identifies four phases for projects. Each phase focuses the team on an
aspect of the project and has associated milestones.

 1. Inception The focus of this phase is the project scope.

 2. Elaboration The architecture as well as the requirements of the product
being built must be defined by the end of this phase.

 3. Construction The software must be developed or constructed in this phase.

 4. Transition The software must be rolled out to users during this phase.

The RUP phases in some respects parallel the classic life cycle phases—analysis,
design, development, and implementation. They are, however, targeted at managing
risks in project development. They consider that today’s development is iterative.
They are a framework geared for project leaders as opposed to architects and
developers. The RUP management discipline provides a process that software
development managers use to produce an overall project plan. The plan must be
focused on deliverables, and it must be measurable, flexible, and aligned to real
progress. The plan also must define the responsibilities and dependencies of the
development team.

Unified Modeling Language
The Unified Modeling Language (UML) is a language used for specifying,
constructing, visualizing, and documenting the components of a software system.
The UML combines the concepts of Booch, Object Modeling Technique (“OMT”),
and Object-Oriented Software Engineering (“OOSE”). The result is a standard
modeling language. The UML authors targeted the modeling of concurrent and
distributed systems; therefore, UML contains the elements required to address these
domains. UML concentrates on a common model that brings together the syntax
and semantics using a common notation.

This nonexhaustive treatment of UML is arranged in parts. First, we describe the
basic elements used in UML. Then, we discuss UML relationships among elements.
The follow-up is the resultant UML diagrams. Within each UML diagram type, the

ch03.indd 88 6/5/07 3:28:21 PM

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

model elements that are found on that diagram are listed. It is important to note
that most model elements are usable in more than one diagram. When we describe
each element, relationship and diagram in this chapter, we will use an example from
Chapter 11: A Case Study (an example SCEA part II project).

UML is an evolving language. This chapter was written when OMG UML
version 1.5 was current and 2.0 was about to become the official version.

Elements Used in UML
In UML, an element is an atomic constituent of a model. A model element is an
element that represents an abstraction drawn from the system being modeled.
Elements are used in UML diagrams, which will be covered in the following
sections. UML defines the elements listed next.

Class
As mentioned, a class is any uniquely identified abstraction that models a single
thing, and the term object is synonymous with instance. Classes have attributes and
methods. The class is represented in UML by a rectangle with three horizontal parts:
name, attributes, and operation. The name part is required and contains the class
name and other documentation-related information. For example, the name could
be data_access_object <<javabean>>. The attributes part is optional and contains
characteristics of the class. The operations part is also optional and contains method
definitions. For example (from our case study, a method that returns a hashmap of
name/value pairs describing the attributes of an order whose identifier is order_id):

method (argument(s)) return type: get_order (order_id) hashmap

Interface
An interface is a collection of operations that represent a class or that specify a set
of methods that must be implemented by the derived class. An interface typically
contains nothing but virtual methods and their signatures. Java supports interfaces
directly. The interface is represented in UML by a rectangle with three horizontal
parts: name, attributes, and operation. The name part, which is required, contains
the class name and other documentation-related information. For example, the
name could be data_access_object <<javabean>>. The attributes part (optional)

Unified Modeling Language 89

ch03.indd 89 6/5/07 3:28:21 PM

90 Chapter 3: Object-Oriented Analysis and Design

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

contains characteristics of the class. The operations part (optional) contains method
definitions. For example, in our case study we might have a method:

method (argument(s)) return type: get_order (order_id) hashmap.

Package
A package is used to organize groups of like elements. The package is the only group
type element, and its function is to represent a collection of functionally similar
classes. Packages can nest. Outer packages are sometimes called domains. Some outer
packages are depicted by an “upside-down tuning fork” symbol, denoting them as
subsystems. The package name is part of the class name—for example, given the
class accessdata in the ucny.trading.com package, the fully qualified class name is
ucny.trading.com.accessdata.

Collaboration
Collaboration defines the interaction of one or more roles along with their contents,
associations, relationships, and classes. To use collaboration, the roles must be bound
to a class that supports the operations required of the role. A use of collaboration is
shown as a dashed ellipse containing the name of the collaboration. A dashed line is
drawn from the collaboration symbol to each of the objects, depending on whether
it appears within an object diagram that participates in the collaboration. Each line
is labeled by the role of the participant.

Use Case
A use case is a description that represents a complete unit of functionality provided by
something as large as a system or as small as a class. The result of this functionality is
manifested by a sequence of messages exchanged among the system (or class) and one
or more outside actors combined with actions performed by another system (or class).

There are two types of use cases: essential and real. Essential use cases are expressed
in an ideal form that remains free of technology and implementation detail. The
design decisions are abstracted, especially those related to the user interface. A real use
case describes the process in terms of its real design and implementation. Essential use
cases are important early in the project. Their purpose is to illustrate and document
the business process. Real use cases become important after implementation, as they
document how the user interface supports the business processes documented in

ch03.indd 90 6/5/07 3:28:21 PM

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

the essential use case. In either type, a use case is represented as a solid line ellipse
containing the name of the use case. A stereotype keyword may be placed above the
name, and a list of properties is included below the name.

Component
The component represents a modular and deployable system part. It encapsulates an
implementation and exposes a set of interfaces. The interfaces represent services
provided by elements that reside on the component. A component is typically
deployed on a node. A component is shown as a rectangle with two smaller rectangles
extending from its left side. A component type has a type name: component-type.
A component instance has a name and a type. The name of the component and its
type may be shown as an underlined string, either within the component symbol or
above or below it, with the syntax component-name ‘:' component-type. Either or both
elements are optional.

Node
The node is a physical element object that represents a processing resource, generally
having memory and processing capability, for example, a JEE application server.
Obviously, nodes include computers and other devices, but they can also be human
resources or any processing resources. Nodes may be represented as types and
instances. Runtime computational instances, both objects and component instances,
may reside on node instances. A node is typically depicted as a cube. A node type
has a type name: node-type. A node instance has a name and a type name. The node
may have an underlined name within the cube or below it. The name string has the
syntax name ‘:' node-type. The name is the name of the individual node, and the
node-type says what kind of a node it is.

State
The state is a condition that can occur during the life of an object. It can also be an
interaction that satisfies some condition, performs some action, or waits for some
event. A composite state has a graphical decomposition. An object remains in a
particular state for an interval of time. A state may be used to model the status of
in-flight activity. Such an activity can be depicted as a state machine. A state is
graphically shown as a rectangle with rounded corners. Optionally, it may have an
attached name tab. The name tab is a rectangle and contains the name of that state.

Unified Modeling Language 91

ch03.indd 91 6/5/07 3:28:21 PM

92 Chapter 3: Object-Oriented Analysis and Design

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

Relationships Used in UML
The object is the center of an object-oriented (OO) system. The OO model defines
the system structure by describing objects (such as classes) and the relationships
that exist among them. Class diagrams, as you will see, comprise classes, objects,
and their relationships. The classes appear as rectangles that contain the class name.
This rectangle is divided into sections, with the class name appearing in the first
section, class attributes in the second section, class operations in the third, class
exceptions in the fourth, and so on. The object names are underlined and have
a colon as a suffix. As in any system, objects are connected by relationships. UML
defines and includes the types of relationships detailed in Table 3-2.

Diagrams Used in UML
The following sections introduce the graphical diagrams defined within UML. These
descriptions are expanded upon later in the chapter.

Relationship Description Notation

Generalization
(aka Inheritance)

A specialized version of another class Solid line with a closed arrowhead pointing
to the more general class

Association Uses the services of another class Solid line connecting the associated classes,
with an optional open arrowhead showing
direction of navigation

Aggregation A class “owns” another class A form of association with an unfilled
diamond at the “owner” end of the
association

Composition A class is composed of another class;
refers to an aggregation within which
the component parts and the larger
encompassing whole share a lifetime

A form of aggregation, shown with either a
filled diamond at the “composite” end, or
with the composite graphically containing
the “component”

Refinement A refined version of another class;
refinement within a given model can
be shown as a dependency with the
stereotype <<refines>> or one
of its more specific forms, such as
<<implements>>

Dashed line with a closed hollow arrowhead
pointing to the more refined class

Dependency A class dependent on another class Dashed line with an open arrowhead
pointing to the dependency

 TABLE 3-2 UML Relationships

ch03.indd 92 6/5/07 3:28:21 PM

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

Use Case Diagram
The use case diagram shows actors, a set of use cases enclosed by a system boundary,
communication or participation associations among the actors and the use cases, and
generalizations among the use cases (see Figure 3-1).

Class Diagram
The class diagram shows modeling elements. It may also contain types, packages,
relationships, and even instances such as objects and links. A class is the descriptor
for a set of objects that have a similar structure, behavior, and relationships. UML
provides notation for declaring, specifying, and using classes. Some modeling
elements that are similar to classes (such as types, signals, or utilities) are notated
as stereotypes of classes. Classes are declared in class diagrams and used in most of
the other diagrams. See Figure 3-2, which depicts the Java EJB SessionBean class:
AccessDataBean, its attributes and methods. Here, the class includes methods and
attributes sufficient to make and access securities trade orders. For you to do well
on the SCEA exam, your class diagrams must be well thought out and provide the
required functionality to carry out the business requirement.

Package Diagram
The package diagram is a mechanism used for dividing and grouping model elements
such as classes. In UML, a folder represents a package. The package provides a name
space so that two elements with the same name can exist by placing them in two
separate packages. Packages can also be nested within other packages. Dependencies
between two packages indicate dependencies between any two classes in the
packages (see Figure 3-3).

Unified Modeling Language 93

 FIGURE 3-1

Use case diagram

ch03.indd 93 6/5/07 3:28:22 PM

94 Chapter 3: Object-Oriented Analysis and Design

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

 FIGURE 3-2

Class diagram

ch03.indd 94 6/5/07 3:28:22 PM

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

State Diagram
The state diagram is a two-part diagram showing states and transitions. It shows
states connected by physical containment and tiling. The entire state diagram
is attached through the model to a class or a method—that is, an operation
implementation (see Figure 3-4).

Activity Diagram
An activity diagram is a special case of a state diagram in which all or most of the
states are action states and in which all or most of the transitions are triggered
by completion of the actions in the source states. The entire activity diagram is
attached via the model to a class or to the implementation of an operation or a use
case. This diagram concentrates on activity driven by internal processing as opposed
to external forces. Activity diagrams are used for situations in which all or most of
the events represent the completion of internal actions. Alternatively, ordinary state
diagrams are used for situations in which asynchronous events occur (see Figure 3-5).

Unified Modeling Language 95

 FIGURE 3-3

Package diagram

 FIGURE 3-4

State diagram

ch03.indd 95 6/5/07 3:28:23 PM

96 Chapter 3: Object-Oriented Analysis and Design

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

Sequence Diagram
A sequence diagram describes how groups of objects collaborate in some behavior
over time. It records the behavior of a single use case. It displays objects and
the messages passed among these objects in the use case. A design can have lots
of methods in different classes. This makes it difficult to determine the overall

 FIGURE 3-5

Activity diagram

ch03.indd 96 6/5/07 3:28:24 PM

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

sequence of behavior. This diagram is simple and logical, so as to make the sequence
and flow of control obvious (see Figure 3-6).

Collaboration Diagram
A collaboration diagram models interactions among objects; objects interact by
invoking messages on each other. A collaboration diagram groups together the
interactions among different objects. The interactions are listed as numbered
interactions that help to trace the sequence of the interactions. The collaboration
diagram helps to identify all the possible interactions that each object has with
other objects. See Figure 3-7, where the interactions required to make a trade in our
Chapter 11 case study are illustrated.

New in UML 2.0 is the communication diagram. It is a simplified version of the
UML 1.x collaboration diagram, which models the interactions between objects
using sequenced messages. Communication diagrams represent a combination of
information taken from class, sequence, and use case diagrams describing both
the static and dynamic parts of a system. Communication and sequence diagrams
describe similar information and can typically be transformed into one another
easily. However, communication diagrams use the free-form arrangement of objects
and links as used in object diagrams. In order to maintain the ordering of messages
in such a free-form diagram, messages are labeled with a chronological number and
placed near the link the message is sent over. Reading a communication diagram
involves starting at message 1.0, and following the messages from object to object.

Unified Modeling Language 97

 FIGURE 3-6

Sequence diagram

ch03.indd 97 6/5/07 3:28:24 PM

98 Chapter 3: Object-Oriented Analysis and Design

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

Component Diagram
The component diagram represents the high-level parts that make up the modeled
application. This diagram is a high-level depiction of the components and their
relationships. A component diagram depicts the components’ refined post-development
or construction phase. See Figure 3-8, which depicts a trading application, the JEE
application server it executes on, and the session beans used in the application.

Deployment Diagram
A deployment diagram puts it all together and captures the configuration of the
runtime elements of the application. This diagram is obviously most useful when an
application is complete and ready to be deployed. See Figure 3-9, which depicts the
nodes in our trading application, i.e., a JEE server, a database server it accesses, and
the user workstation used to access the JEE application. Each of these nodes hosts
components whose interaction is also illustrated.

 FIGURE 3-7

Collaboration
diagram

 FIGURE 3-8

Component
diagram

ch03.indd 98 6/5/07 3:28:25 PM

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

Stereotypes
A stereotype is a new class of modeling element that is introduced during modeling
time. Certain restrictions are in place: stereotypes must be based on certain existing
classes in the Meta model, and they may extend those classes only in certain
predefined ways. They provide an extensibility mechanism for UML.

Practical Use of UML Diagrams
The scope of a typical software system is one of the barriers preventing the thorough
understanding necessary for effective maintenance of systems. Even standard
visualization approaches such as graphs and flow charts are overwhelming when
attempting to depict a system. As you start to analyze such a system, you often want
to begin with a high-level understanding of the overall structure and design of the
system. You then delve into lower-level details once you have bounded the problem
at hand. And at other times, the scope of the problem requires that you continue to
work from the higher-level view.

Unified Modeling Language 99

 FIGURE 3-9

Deployment
diagram

ch03.indd 99 6/5/07 3:28:26 PM

100 Chapter 3: Object-Oriented Analysis and Design

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

UML provides a number of abstraction mechanisms to help you study the high-
level architecture of your software. Within the Unified Modeling Language notation,
diagrams are the primary representation of a system. UML will help you understand
the objects, interactions, and relationships of your system software and hardware.

Use Case Diagram
The use case lends itself to a problem-centric approach to analysis and design,
providing an understanding and a model of your system from a high-level business
perspective—that is, how a system or business works or how you wish it to work.
The use case diagram represents the functionality of a system as displayed to external
interactions as actors of the system. A use case view represents the interface or
interfaces that a system makes visible to the outside world, the external entities that
interact with it, and their interrelationships.

Each use case step is either automated or manual. The objective of each step is to
make a business decision or carry out an action. We typically assign responsibility for
each business decision and action either to the system in the case of an automated
action or to the actor in the manual case. This responsibility impacts the system
delivered because the automated steps manifest themselves as system operations to
make these decisions or execute these actions.

The diagram represents the processes within the system, which are visible to the
outside world—that is, the actors of the system being modeled and the relationships
among them.

Use cases are the functions or services of the system—those that are visible to
its actors. They constitute a complete unit of functionality provided by a system as
manifested by sequences of messages exchanged among the system and one or more
actors together with actions performed by the system.

Actors are representative of the role of an object outside of a system that interacts
directly with it as part of a complete work unit. An actor element characterizes
the role played by an outside object, where one physical object may play multiple
positions. For example, one entity may actually play different positions and assume
different identities.

You can think of use case as a model that describes the processes of a business—
order processing, for example—and its interactions with external parties such as
clients and vendors. It is helpful in identifying the fundamental components of
a system, namely the following:

■ The business processes of the system

■ External entities of the system

■ The relationships among them

ch03.indd 100 6/5/07 3:28:26 PM

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

Use case diagrams are closely connected to scenarios. A scenario is an example of
what happens when someone interacts with the system. For example, here is a scenario
for a security trade: a trader accesses an Internet-based system and chooses the type of
security he or she wants to place a trade order to buy or sell (see Figure 3-10).

Unified Modeling Language 101

 FIGURE 3-10 Annotated use case diagram

ch03.indd 101 6/5/07 3:28:26 PM

102 Chapter 3: Object-Oriented Analysis and Design

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

Figure 3-10 shows a trade use case for the online trading site. The actor is a trader.
The connection between actor and use case is a communication association. Actors
are represented by stick figures. Use cases are represented by ovals. A common issue
regarding drawing use cases is having two “actions” tied to each other, essentially
showing a “flowchart.” In Figure 3-10, the case study trading system menu is
invoked for the “Order entry and browse” functionality and subsequent calls to the
Stratus CTPS and Oracle database. Lines that link actors to use cases represent
communications.

A use case diagram is a collection of actors, use cases, and their communications.
A single use case can have multiple actors. A system boundary rectangle separates
the system from the external actors. A use case generalization shows that one use
case is a special kind of another use case. Use case diagrams are important to use
when you are

■ Determining new requirements

■ Communicating with clients—their simplicity makes use case diagrams a
good way to communicate the system to users

■ Validating the system—the different scenarios for a use case make a good set
of test cases

Class Diagram
A class diagram provides an overview of a system by showing its classes and the
relationships among them. Class diagrams are static; they display what interacts but
not what happens when they do interact. The class diagram shown in Figure 3-11
models an EJB session bean used to order equities from a securities market. The central
method is makeOrder, which creates and returns an OrderBean. Associated with
it is the makeUser, which creates and returns a UserBean. UML class notation
is a rectangle divided into three parts: class name, attributes, and operations. Names
of abstract classes, such as com.ucny.trading.ejb.sessionbeans.AccessData, are in italics.
Relationships among classes are the connecting links.

A class diagram can have three kinds of relationships:

■ Association is a relationship between instances of the two classes. An
association exists between two classes if an instance of one class must know
about the other to perform its work. In a diagram, an association is a link
connecting two classes.

ch03.indd 102 6/5/07 3:28:27 PM

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

■ Aggregation is an association in which one class belongs to a collection. An
aggregation shows a diamond end pointing to the part containing the whole.

■ Generalization is an inheritance link indicating one class is a superclass of
another. A generalization shows a triangle pointing to the superclass.

An association has two ends. An end may include a role name to clarify the
nature of the association. For example, an OrderDetail is a line item of each Order.

Unified Modeling Language 103

 FIGURE 3-11

Annotated class
diagram

ch03.indd 103 6/5/07 3:28:27 PM

104 Chapter 3: Object-Oriented Analysis and Design

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

A navigability arrow on an association shows which direction the association
can be traversed or queried. An OrderDetail can be queried about its Item, but not
the other way around. The arrow also lets you know who “owns” the association's
implementation; in this case, OrderDetail has an Item. Associations with no
navigability arrows are bidirectional.

The multiplicity of an association end is the number of possible instances of the
class associated with a single instance of the other end. Multiplicities, shown in the
following table, are single numbers or ranges of numbers. In our example, there can
be only one User for each Order, but a User can have any number of Orders.

Multiplicities Meaning

0..1 Zero or one instance; the notation n . . m indicates n
to m instances

0..* or * No limit on the number of instances (including none)

1 Exactly one instance

1..* At least one instance

Every class diagram has classes, associations, and multiplicities. Navigability and
roles are optional items placed in a diagram to provide clarity. The class notation is a
three-piece rectangle with the class name, attributes, and operations. Attributes and
operations can be labeled according to access and scope.

It is preferable that you name classes as singular nouns, such as User instead
of Users. Static members are underlined, and Instance members are not. The
operations follow this form: <access specifier> <name> (<parameter list>) : <return
type>. The parameter list shows each parameter type preceded by a colon. Access
specifiers, shown in the following, appear in front of each member.

Symbol Access

+ Public

- Private

Protected

Package Diagram
To simplify complex class diagrams, you can group classes into packages. A package
is a collection of logically-related UML elements. The diagram shown in Figure 3-12
is a business model in which the classes are grouped into packages. Packages appear

ch03.indd 104 6/5/07 3:28:27 PM

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

as rectangles with small tabs at the top. The package name is on the tab or inside the
rectangle. The dotted arrows show dependencies. One package depends on another
if changes in the other could possibly force changes in the first. Object diagrams
show instances instead of classes. They are useful for explaining small pieces with
complicated relationships, especially recursive relationships.

Sequence Diagrams
The sequence diagram shows the explicit series of interactions as they flow through
the system to cause the desired objective or result. The sequence view is especially
useful in systems with time-dependent functionality (such as real-time applications)
and for complex scenarios where time dependencies are critical. It has two dimensions:

■ One that represents time

■ Another that represents the various objects participating in a sequence of
events required for a purpose

Unified Modeling Language 105

 FIGURE 3-12 Annotated package diagram

ch03.indd 105 6/5/07 3:28:27 PM

106 Chapter 3: Object-Oriented Analysis and Design

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

Usually, only the sequence of events to which the objects of the system are
subject is important; in real-time applications, the time axis is an important
measurement. This view identifies the roles of the objects in your system through
the sequence of states they traverse to accomplish the goal. This view is an event-
driven perspective of the system. The relationships among the roles are not shown.

Class and object diagrams present static views. Interaction diagrams are
dynamic. They describe how objects collaborate or interact. A sequence diagram
is an interaction diagram that details the functionality and messages (requests and
responses) and their timing. The time progresses as you move down the page. The
objects involved in the operation are listed from left to right according to when
they take part in the message sequence. Figure 3-13 shows a sequence diagram that
illustrates the software calls and hardware used to service the calls in a sequence of
time, with synchronous messages between each object in the diagram.

Each vertical dotted line in Figure 3-13 is a lifeline, representing the time that
an object exists. Each arrow is a message call. An arrow goes from the sender to the
top of the activation bar of the message on the receiver's lifeline. The activation bar
represents the duration of execution of the message. The sequence diagram can have
a clarifying note, text inside a dog-eared rectangle. Notes can be put into any kind
of UML diagram. The UML uses the following message conventions for sequence
diagrams:

 FIGURE 3-13

Annotated
sequence diagram

ch03.indd 106 6/5/07 3:28:28 PM

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

Symbol Meaning

Simple message that may be synchronous or asynchronous

Simple message return (optional)

A synchronous message

 or

 or

An asynchronous message

Collaboration
Collaboration diagrams are also interaction diagrams. They convey the same
information as sequence diagrams, but they focus on object roles instead of the
times that messages are sent. In a sequence diagram, object roles are the vertices
and messages are the connecting links. The object-role rectangles are labeled with
either class or object names (or both). Class names are preceded by colons (:). Each
message in a collaboration diagram has a sequence number. The top-level message
is number 1. Messages at the same level (sent during the same call) have the same
decimal prefix but suffixes of 1, 2, 3, and so on, according to when they occur.

The collaboration diagram is similar to the sequence diagram in terms of the
information displayed, but it's different in its depiction. A collaboration diagram
shows the relationships among objects. It is intended to assist in the understanding
the effects on a given object. It provides a procedural perspective rather than a
chronological view. A collaboration diagram shows interactions organized around
the objects in a particular interaction, especially their links to one another.
A collaboration diagram shows the relationships among the object roles.

The collaboration diagram shown in Figure 3-14 shows you a model of the behavior
of the objects in the trading system and the messages involved in accomplishing a
purpose—in this case, making a trade (checking the trader account for sufficient funds
and sending the order to the marketplace), projected from the larger trading system of
which this collaboration is just a part. It is a representation of a set of participants and
relationships that are meaningful for a given set of functionality.

The description of behavior itself involves two characteristics:

■ The structural description of its participants

■ The behavioral description of its execution

These two characteristics are combined, but they can be separated, because at times
it is useful to describe the structure and behavior separately.

Unified Modeling Language 107

ch03.indd 107 6/5/07 3:28:28 PM

108 Chapter 3: Object-Oriented Analysis and Design

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

Collaboration diagrams can be enhanced by the inclusion of the dynamic
behavior of the message sequences exchanged among objects to accomplish a
specific purpose. This is called an interaction, and it helps in understanding the
dynamics of the system and its participating objects.

State
Objects have state or status. The state of an object depends on the current activity
or condition. A state diagram illustrates the states of the object and the input and
transitions that cause changes in the state. The state diagram shows the sequences of
states that an object passes through during its lifetime. They correspond to prompts
for input coupled with the responses and actions.

A state machine is a diagram of states and transitions that describe the response
of an object of a given class to the receipt of external stimuli, and it is generally
attached to a class or a method. A state diagram represents a state machine: a state
being a condition during the life of an object or an interaction during which it

 FIGURE 3-14 Annotated collaboration diagram

ch03.indd 108 6/5/07 3:28:29 PM

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

satisfies some condition, performs some action, or waits for some event. A state may
correspond to ongoing activity. Such activity is expressed as a nested state machine.
For example, you may reprompt the user to enter missing form items that are
required to process a transaction, such as user login. Alternatively, ongoing activity
may be represented by a pair of actions—one that starts the activity on entry to the
state and one that terminates the activity on exit from the state.

The example state diagram shown in Figure 3-15 models the login part of an
online trading system. Logging in consists of entering a valid user ID and password,

Unified Modeling Language 109

 FIGURE 3-15

Annotated state
diagram

ch03.indd 109 6/5/07 3:28:29 PM

110 Chapter 3: Object-Oriented Analysis and Design

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

and then submitting the information for validation against a security database of
valid users and their passwords. Logging in can be factored into four nonoverlapping
states: checking whether user ID is logged in, getting user ID and password,
validating same, and rejecting/accepting the user. From each state comes a complete
set of transitions that determine the subsequent state.

Activity Diagram
An activity diagram is essentially a fancy flowchart. Activity diagrams and state
diagrams are related. An activity diagram—in a similar manner to the relationship
between an object and class diagram—is a special case of a state diagram in which
all the states are action states and all the transitions are triggered by completion of
the actions in the source states. The entire activity diagram is attached to a class or a
use case. The purpose of this diagram is to focus on the functionality that flows from
internal processing. Activity diagrams are used in situations for which the events
represent the completion of internally generated actions—that is, procedure flow.
State diagrams, on the other hand, are used in situations for which asynchronous
events predominate. Figure 3-16 shows the process for making a trade.

Component
Component diagrams are physical versions of class diagrams. A component
diagram shows the relationships and dependencies between software components,
including Java source code components, Java class components, and Java deployable
components—JAR (Java Archive) files. Within the deployment diagram, a software
component may be represented as a component type.

With respect to Java and J2EE, some components exist at compile time (such
as makeTrade.java), some exist at archive time (makeTrade.class), and some exist
at runtime (Trade.ear); some exist at more than one time. So, you can say that a
compile-only component is one that is meaningful only at compile time; the runtime
component in this case would be an executable program. You can think of this
diagram as a kind of compile, JAR, and deploy description.

Deployment Diagram
Deployment diagrams show the physical configurations of software and hardware.
The deployment diagram complements the component diagram. It shows the
configuration of runtime processing elements such as servers and other hardware
and the software components, processes, and objects that they comprise. Software
component instances represent runtime manifestations of classes. Components that
do not exist as runtime entities (such as makeTrade.java) do not appear on these
diagrams; they are shown on component diagrams. A deployment diagram is

ch03.indd 110 6/5/07 3:28:30 PM

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

 FIGURE 3-16 Annotated activity diagram

Unified Modeling Language 111

ch03.indd 111 6/5/07 3:28:31 PM

112 Chapter 3: Object-Oriented Analysis and Design

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

a graphical representation of nodes connected by communication links or
associations. Nodes may contain component instances, which indicate that the
component resides and runs on the node. Components may contain objects, which
indicate that the object is part of the component. The deployment diagram can be
used to show which components run on which nodes. The migration of components
from node to node or objects from component to component may also be
represented. The deployment diagram shown in Figure 3-17 depicts the relationships
among software and hardware components involved in security trading transactions.

 FIGURE 3-17

Annotated
deployment
diagram

ch03.indd 112 6/5/07 3:28:31 PM

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

CERTIFICATION SUMMARY
The UML is a language used for specifying, constructing, visualizing, and
documenting the components of a software system. The primary design goals of the
UML areas follow:

■ Provide users with a visual modeling language to develop and exchange
comprehensive models.

■ Provide mechanisms for extensibility and specialization that extend the core
concepts.

■ Create a standard specification that is independent of particular computing
languages.

■ Provide a formal base for a modeling language.

■ Support high-level development concepts such as components,
collaborations, frameworks, and patterns.

■ Integrate best practices.

Unified Modeling Language 113

ch03.indd 113 6/5/07 3:28:32 PM

114 Chapter 3: Object-Oriented Analysis and Design

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

TWO-MINUTE DRILL

State the Effect of Encapsulation, Inheritance, and use of
Interfaces on Architectural Characteristics.
UML defines the following elements:

❑ Class Any uniquely identified abstraction that models a single thing, where
the term object is synonymous with instance. Classes have attributes and methods.

❑ Interface A collection of operations that represents a class or specifies a
set of methods that must be implemented by the derived class. An interface
typically contains nothing but virtual methods and their signatures.

❑ Package Used to organize groups of like kind elements. The package is
the only group type element and its function is to represent a collection of
functionally similar classes.

❑ Collaboration Defines the interaction of one or more roles along with their
contents, associations, relationships, and classes.

❑ Use Case A description that represents a complete unit of functionality
provided by something as large as a system or as small as a class.

❑ Component Represents a modular and deployable system part. It
encapsulates an implementation and exposes a set of interfaces.

❑ Node A physical element object that represents a processing resource,
generally having memory and processing capability, such as a server.

❑ State A condition that can occur during the life of an object. It can also be
an interaction that satisfies some condition, performs some action, or waits
for some event.

UML defines the following relationships:

❑ Generalization A specialized version of another class.

❑ Association Uses the services of another class.

❑ Aggregation A class “owns” another class.

❑ Composition A class is composed of another class. Refers to an aggregation
within which the component parts and the larger encompassing whole share
a lifetime.

✓

ch03.indd 114 6/5/07 3:28:32 PM

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

❑ Refinement A refined version of another class.

❑ Dependency A class dependent on another class.

UML defines the following diagrams:

❑ Use case diagram Used to identify the primary elements and processes that
form the system. The primary elements are termed as actors and the processes
are called use cases. The use case diagram shows which actors interact with
each use case.

❑ Class diagram Used to define a detailed design of the system. Each class in
the class diagram may be capable of providing certain functionalities. The
functionalities provided by the class are termed methods of the class.

❑ Package diagram Groups objects or classes.

❑ State diagram Represents the different states that objects in the system
undergo during their life cycle. Objects in the system change states in
response to events.

❑ Activity diagram Captures the process flow of the system. An activity
diagram also consists of activities, actions, transitions, and initial and final
states.

❑ Sequence diagram Represents the interaction between different objects
in the system. The important aspect of a sequence diagram is that it is time
ordered. Objects in the sequence diagram interact by passing messages.

❑ Collaboration diagram Groups together the interactions between different
objects. The interactions are listed as numbered interactions that help to
trace the sequence of the interactions. The collaboration diagram helps to
identify all the possible interactions that each object has with other objects.

❑ Component diagram Represents the high-level parts that make up the
system. This diagram depicts what components form part of the system and
how they are interrelated. It depicts the components culled after the system
has undergone the development or construction phase.

❑ Deployment diagram Captures the configuration of the runtime elements
of the application. This diagram is useful when a system is complete and
ready for deployment.

Two-Minute Drill 115

ch03.indd 115 6/5/07 3:28:33 PM

116 Chapter 3: Object-Oriented Analysis and Design

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

UML can be used to view a system from various perspectives:

❑ Design view Structural view of the system; class diagrams and package
diagrams form this view of the system.

❑ Process view Dynamic behavior of a system; state diagrams, activity
diagrams, sequence diagrams, and collaboration diagrams form this view.

❑ Component view Software and hardware modules of the system modeled
using the component diagram.

❑ Deployment view The deployment diagram of UML is used to combine
component diagrams to depict the implementation and deployment of a
system.

❑ Use Case view View a system from this perspective as a set of activities or
transactions; use case diagrams.

ch03.indd 116 6/5/07 3:28:33 PM

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

SELF TEST
The following questions will help you measure your understanding of the material presented in this
chapter. Read all the choices carefully because there may be more than one correct answer. Choose
all correct answers for each question.

Interpret UML Diagrams
 1. Which one of the following items is not one of the phases of the Unified Process?
 A. Inception
 B. Design
 C. Construction
 D. Transition

 2. What is true about a use case?
 A. It is a complete end-to-end business process that satisfies the needs of a user.
 B. It is a description that represents a complete unit of functionality provided by something

as large as a system or as small as a class.
 C. It defines the interaction of one or more roles along with their contents, associations, rela-

tionships, and classes.
 D. It is a collection of operations that represents a class or specifies a set of methods that must

be implemented by the derived class.

 3. Which item is not true when speaking of a class?
 A. A class is a nonunique structure.
 B. An instance is one computer executable copy of a class, also referred to as an object.
 C. Multiple instances of a particular class can exist in a computer's main memory at any

given time.
 D. A class is a structure that defines the attribute data and the methods or functions that

operate on that data.

 4. What is not true about use cases?
 A. There are three types of use cases: essential, real, and virtual.
 B. A virtual use case describes the user's virtual view of the problem and is technology

independent.
 C. A real use case describes the process in terms of its real design and implementation.
 D. Essential use cases are of importance early in the project. Their purpose is to illustrate and

document the business process.

Self Test 117

ch03.indd 117 6/5/07 3:28:34 PM

118 Chapter 3: Object-Oriented Analysis and Design

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

 5. What is not true about a sequence diagram?
 A. It has two dimensions.
 B. One sequence diagram dimension represents time.
 C. One sequence diagram dimension represents the different objects participating in a

sequence of events required for a purpose.
 D. Sequence diagrams are static model views.

 6. Which item is not an example of things that a state diagram could effectively model?
 A. Life could be modeled: birth, puberty, adulthood, death.
 B. A computer system infrastructure.
 C. A banking transaction.
 D. A soccer match could be modeled: start, half time, injury time, end.

 7. What is not true about a collaboration diagram?
 A. A collaboration diagram models interactions among objects, and objects interact by

invoking messages on each other.
 B. A collaboration diagram groups together the interactions among different objects.
 C. The interactions in a collaboration diagram are listed as alphabetically collated letters that

help to trace the sequence of the interactions.
 D. The collaboration diagram helps to identify all the possible interactions that each object

has with other objects.

State the Effect of Encapsulation, Inheritance, and use of Interfaces on
Architectural Characteristics.
 8. What item is not true about a component?
 A. A component represents a modular and deployable system part. It encapsulates an

implementation and exposes a set of interfaces.
 B. The component interfaces represent services provided by elements that reside on the

component.
 C. A node may be deployed on a component.
 D. A component is shown as a rectangle with two smaller rectangles extending from its left

side. A component type has a type name component-type.

 9. Which item(s) is not part of a class in a UML class diagram?
 A. Name
 B. Attributes

ch03.indd 118 6/5/07 3:28:34 PM

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

 C. Method
 D. Comments

 10. Which item is not one of the three kinds of relationships a class diagram can have?
 A. Association
 B. Aggregation
 C. Generalization
 D. Specialization

 11. In a class diagram, what does a line with an arrow from one class to another denote?
 A. Attribute visibility
 B. Class visibility
 C. Method visibility
 D. Global visibility

 12. What is not a type of visibility between objects?
 A. Local
 B. Method
 C. Attribute
 D. Global

 13. Which statement is not true about state machine and state diagrams?
 A. A state machine is basically a diagram of states and transitions that describes the response

of an object of a given class to the receipt of external stimuli, and it is generally attached to
a class or a method.

 B. The state diagram shows the sequences of states that an object passes through during its
lifetime.

 C. A state diagram represents a state machine: a state being a condition during the life of an
object or an interaction during which it satisfies some condition, performs some action, or
waits for some event.

 D. State diagrams are used in situations for which all or most of the events represent the
completion of internally generated actions (that is, procedural flow of control).

 14. Which of the following UML diagrams may be best suited for a business analyst?
 A. Deployment
 B. Class
 C. Use case

Self Test 119

ch03.indd 119 6/5/07 3:28:34 PM

120 Chapter 3: Object-Oriented Analysis and Design

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

 D. Activity
 E. Collaboration
 F. Sequence

 15. In a UML class diagram, Private, Protected, and Public attributes are shown by which one of
the following sets of symbols?

 A. –, +, #
 B. +, –, #
 C. #, –, +
 D. –, #, +
 E. +, #, –
 F. #, +, –

ch03.indd 120 6/5/07 3:28:34 PM

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

SELF TEST ANSWERS

Interpret UML Diagrams
 1. ®✓ B is correct because design is not a phase in the unified process.

®̊ A, C, and D are incorrect because the phases of the unified process include inception,
whose focus is the scope of the project; elaboration, in which the architecture and the
requirements of the product being built must be defined by the end of this phase; construction,
during which the software must be developed or constructed; and transition, during which the
software must be rolled out to users.

 2. ®✓ A and B are correct because a use case is a complete end-to-end business process
that satisfies the needs of a user. It is also a description that represents a complete unit of
functionality provided by something as large as a system or as small as a class.
®̊ C and D are incorrect because a collaboration defines the interaction of one or more roles
along with their contents, associations, relationships, and classes. A class diagram is a collection
of operations that represents a class or specifies a set of methods that must be implemented by
the derived class.

 3. ®✓ A is correct because a class is unique.
®̊ B, C, and D are incorrect because they are true. A class is a unique structure that defines
the attribute data and the methods or functions that operate on that data. An instance is
one computer executable copy of a class, also referred to as an object. Multiple instances of a
particular class can exist in a computer's main memory at any given time.

 4. ®✓ A and B are correct because they are false. There are two types of use cases: essential and
real.
®̊ C and D are incorrect because they are true. Essential use cases are expressed in an ideal
form that remains free of technology and implementation detail. The design decisions are
abstracted, especially those related to the user interface. A real use case describes the process in
terms of its real design and implementation. Essential use cases are of importance early in the
project. Their purpose is to illustrate and document the business process. Real use cases become
important after implementation, as they document how the user interface supports the business
process documented in the essential use case.

 5. ®✓ D is correct because it is false. Class and object diagrams are static model views; sequence
diagrams are dynamic.
®̊ A, B, and C are incorrect because they are true. The sequence diagram shows the explicit
sequence of interactions as they flow through the system to affect a desired operation or result.
It has two dimensions; one dimension represents time, and another dimension represents the

Self Test Answers 121

ch03.indd 121 6/5/07 3:28:35 PM

122 Chapter 3: Object-Oriented Analysis and Design

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

different objects participating in a sequence of events required for a purpose. Class and object
diagrams are static model views.

 6. ®✓ B is correct because it is false. A computer system infrastructure does not have dynamic
states; it is more or less static and the modeler would use a deployment diagram to depict the
infrastructure.
®̊ A, C, and D are incorrect because they are true. Life could be modeled. A banking
transaction and a soccer match could also be modeled.

 7. ®✓ C is correct because it is false. The interactions in a collaboration diagram are listed as
numbered interactions that help to trace the sequence of the interactions.
®̊ A, B, and D are incorrect because they are true. A collaboration diagram models
interactions among objects, and objects interact by invoking messages on each other.
A collaboration diagram groups together the interactions among different objects. The
interactions in a collaboration diagram are listed as numbered interactions that help to trace
the sequence of the interactions.

State the Effect of Encapsulation, Inheritance, and use of Interfaces on
Architectural Characteristics.

 8. ®✓ C is correct because it is false. A component may be deployed on a node.
®̊ A, B, and D are incorrect because they are true. A component represents a modular and
deployable system part. It encapsulates an implementation and exposes a set of interfaces. The
interfaces represent services provided by elements that reside on the component. A component
is shown as a rectangle with two smaller rectangles extending from its left side.

 9. ®✓ D is correct because it is false. A comment is not part of a UML class diagram.
®̊ A, B, and C are incorrect because they are true. UML class notation is a rectangle divided
into three parts that include class name, attributes, and operations.

 10. ®✓ D is correct because it is false. Specialization is not a relationship type.
®̊ A, B, and C are incorrect because they are true. Association is a relationship between
instances of the two classes. An association exists between two classes if an instance of one class
must know about the other to perform its work. In a diagram, an association is a link connecting
two classes. Aggregation is an association in which one class belongs to a collection. An
aggregation has a diamond end pointing to the part containing the whole. Generalization is an
inheritance link indicating one class is a superclass of the other. A generalization has a triangle
pointing to the superclass.

 11. ®✓ A is correct.
®̊ B, C, and D are incorrect.

ch03.indd 122 6/5/07 3:28:35 PM

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 3

 12. ®✓ B is correct.
®̊ A, C, and D are incorrect.

 13. ®✓ D is correct because it is false. Activity diagrams are used in situations for which all or most
of the events represent the completion of internally generated actions (that is, procedural flow
of control). State diagrams, on the other hand, are used in situations for which asynchronous
events predominate.
®̊ A, B, and C are incorrect because they are true. The state diagram shows the sequences
of states through which an object passes during its lifetime. They correspond to prompts for
input couples with the responses and actions. A state machine is basically a diagram of states
and transitions that describe the response of an object of a given class to the receipt of external
stimuli, and it is generally attached to a class or a method. A state diagram represents a state
machine: a state being a condition during the life of an object or an interaction during which it
satisfies some condition, performs some action, or waits for some event.

 14. ®✓ C is correct because use case diagrams show a set of use cases and actors and their
relationships. Use case diagrams show the static view of a system. These diagrams are especially
important in organizing and modeling the behaviors of a system. Use case diagrams are
frequently used by business analysts to capture business requirements of a system.
®̊ A, B, D, E, and F are incorrect. Deployment diagrams show the configuration of runtime
processing nodes and the components that live within these nodes. Deployment diagrams
address the static view of the architecture. Architects frequently use deployment diagrams.
A class diagram shows a set of classes, interfaces, and collaborations and their relationships.
Class diagrams address the static design view of a system. Software designers frequently use
class diagrams. Activity diagrams are a special kind of state chart diagram that shows the flow
from activity to activity within the system. This type of diagram is important in modeling
the function of a system and emphasizing the flow of control among objects. Designers and
developers frequently use activity diagrams. A collaboration diagram is an interaction diagram
that emphasizes the structural organization of objects that send and receive messages. Designers
and developers frequently use interaction diagrams.

 15. ®✓ D is correct because in UML notation, access modifiers are shown by the –, #, and +
symbols to represent private, protected, and public, respectively.
®̊ A, B, C, E, and F are incorrect because they do not have the right combination.

Self Test Answers 123

ch03.indd 123 6/5/07 3:28:35 PM

