CERTIFICATION OBJECTIVES

Applicability
of |EE Technology

4.0l

4.02

4.03

4.04
4.05

4.06
4.07

Explain the JEE Architecture and
System Requirements

Explain the Use of Patterns in the JEE
Framework

Describe the Concepts of “Best
Practices” and “Guidelines”

lllustrate the Use of JEE for Workflow

Review Best Practices Applicable for
All Tiers

Review Best Practices for the Client Tier

Enumerate the Components and
Categories of the Web Tier

4.08

4.09

4.10

4.11

Q&A

Explain How to Apply MVC to the
Web Tier

Review the Best Practices for the
Presentation Layer

Review the Internationalization and
Localization

lllustrate When to Use JEE Technology
for Given Situations

Two-Minute Drill

Self Test

I 26 Chapter 4: Applicability of JEE Technology

hin-client multi-tiered applications are difficult to develop because they involve many

lines of intricate program code and configuration files to handle transaction and state

management, multithreading, resource pooling, and other complex low-level details. The
component-based and platform-independent JEE architecture facilitates such development because
business logic is organized into reusable components. Moreover, the JEE server provides underlying
services in the form of a container for every component type. In this chapter, we will explore this
architecture in detail and discuss when and why JEE is a better architectural choice.

CERTIFICATION OBJECTIVE 4.01

Explain the JEE Architecture
and System Requirements

The Java Enterprise Edition (JEE) platform uses a multi-tiered distributed
application model, in which application logic is divided into components according
to function. The various components that a JEE application comprises are installed
on different machines. A component’s location depends on which tier or layer that
component belongs to in the multi-tiered JEE environment. Figure 4-1 shows two
multi-tiered JEE applications divided into the tiers described here:

B Client tier components run on the client machine.
B Web tier components run on the JEE server.

B Business tier components run on the JEE server.

|

Enterprise Information System (EIS) tier software runs on the EIS server.

JEE Technology Layers Applied

While a JEE application can consist of three or more tiers, JEE multi-tiered
applications are generally considered to be three-tiered applications, because they
are distributed across three different locations: client machines, the JEE server
machine, and the database or legacy machines at the back end. Three-tiered
applications that run in this way extend the standard two-tiered client/server model
by placing a multithreaded application server between the client application and
back-end storage.

Multi-tiered JEE
applications

Explain the JEE Architecture and System Requirements

127

J2EE J2EE
application | applicaton 2
Application Dynamic Client Client
client HTML pages tier machine
Web
SP
ISP pages tier J2EE
server
Enterprise Enterprise Business | Machine
Beans Beans tier
ElS Database
Database Database - server
tier .
machine

The Client Layer

The client layer or tier of a web application is typically implemented as Hypertext
Markup Language (HTML) displayed in a web browser running on the user’s machine.
It may also be implemented using Java. Its function is to display data, providing the
user with a place to enter and update data. Generally, one of two common approaches
is used for building the client layer:

B A pure HTML-only client In this scenario, virtually all of the intelligence
is placed in the middle tier. When the user submits the web pages, all the
validation is done on the JEE server (the middle tier). Errors are then posted
back to the client.

B A hybrid HTML/Asynchronous JavaScript and XML (AJAX)/JavaScript
client In this scenario, some intelligence is included in the web pages,
which run on the client. The client will do some basic validations (for
example, ensuring that mandatory columns are completed before allowing
users to submit information). The client may also include some AJAX for
functions such as hiding fields when they are no longer applicable due to

earlier selections.

The pure HTML approach is less efficient for end users because all operations
require the server for even the most basic functions. On the other hand, as long as
the browser understands HTML, it will generally work with this basic approach,
making it possible to work on basic wireless or text-only browsers. The second

I 28 Chapter 4. Applicability of JEE Technology

argument in favor of this approach is that it provides a better separation of business
logic and presentation. The hybrid client approach is more user-friendly, requiring
fewer trips to the server. Typically, AJAX and JavaScript are written to work with
more recent versions of mainstream browsers.

As mentioned, the JEE application client may also provide client layer functionality,
providing the user with a place to maintain data. A JEE application client is a
thick (RMI-IIOP [Remote Method Invocation—Internet Inter-ORB Protocol]) Java
application; it differs from a stand-alone Java application client in that it is a JEE
component. Like other JEE components, a JEE application client is created with the
application deployment tool and added to a JEE application.

Because it is part of a JEE application, a JEE application client has two advantages
over a stand-alone Java application client: First, a JEE application client is bundled
in an Enterprise Archive (EAR) file with all the required software making it easily
portable—that is, it will run on any JEE-compliant server. Second, because it is
bundled with the required libraries, it has access to the full array of JEE services. Its
weight sometimes makes it a poor choice, and the emergence of the JavaServer Page
(JSP) has curbed its popularity.

The Presentation Layer

The presentation layer generates web pages and any dynamic content in the web
pages. The dynamic content is typically obtained from a database; for example,
content may consist of a list of transactions conducted during the last month. The
other major job of the presentation layer is to package requests contained on the
web pages coming back from the client.

The presentation layer can be built with a number of different tools. The
presentation layers for the first web sites were built as Common Gateway Interface
(CGI) programs. Netscape servers also offered server-side JavaScript for web sites.
Contemporary web sites generally have presentation layers built using the Microsoft
solution, Active Server Pages (ASP), which may be generated by Visual InterDev,
or they use the Java solution, which utilizes some combination of servlets and JSP.
Tools provide methods to facilitate embedding dynamic content inside other static
HTML in the web page. They also provide tools for simple parsing of the web pages
coming back from the client to extract the user-entered information.

The presentation layer is generally implemented inside a web server (such as
Microsoft I1IS, BEA WebLogic, or IBM WebSphere). The web server typically handles
requests for several applications in addition to requests for the site’s static web pages.
Based on the initial configuration, the web server knows to which application to
forward the client-based request (or which static web page to serve up).

Explain the JEE Architecture and System Requirements | 29

The Business Logic Layer

The bulk of the application logic is written in the business logic layer. The challenge
here is to allocate adequate time and resources to identify and implement this logic.
Business logic includes the following:

B Performance of all required calculations and validations
B Workflow management (including keeping track of session data)

B Management of all data access for the presentation layer

In modern web applications, business logic is frequently built using the Java
solution, with Enterprise JavaBeans (EJB) that are built to carry out the business
operations. Language-independent Common Object Request Broker Architecture
(CORBA) objects can also be built and accessed with a Java presentation tier. The
main component of CORBA is the Object Request Broker (ORB). It encapsulates
the communication infrastructure necessary to locate objects, manage connections,
and deliver data. The ORB core is responsible for the communication of requests.
The basic functionality provided by the ORB consists of passing the requests from
clients to the object implementations on which they are invoked. The ORB then
transfers the request to the object implementation, which receives the request,
processes it, and returns an object result.

Much like the presentation layer, the business logic layer is generally
implemented inside the application server. The application server automates many
services, such as transactions, security, persistence/connection pooling, messaging,
and name services. Isolating the business logic from the need to manage resources
allows the developer to focus on building application logic. In the application server
marketplace, vendors differentiate their products based on manageability, security,
reliability, scalability, and tools support.

The Data Layer

The data layer is responsible for data management. A data layer may be as simple
as a modern relational database; on the other hand, it may include data access
procedures to other data sources such as nonrelational databases, legacy files, or
message-oriented middleware. The data layer provides the business logic layer with
required data when needed and stores data when requested.

To avoid making an application less interoperable, the architect should strive to
keep validation and business logic out of the data layer; that logic belongs in the
business logic layer. Sometimes basic database design rules can overlap with business
logic. There is usually some basic business logic in the data tier. For example,

I 30 Chapter 4: Applicability of JEE Technology

both not null constraints and foreign key constraints, which designate that certain
columns must have a value and that the value must match an existing foreign
row’s corresponding key value, could be considered “business rules” that should be
known only to the business logic layer. Most product designers would agree that
it is necessary to include such simple constraints in the database to maintain data
integrity, changing them as the business rules evolve.

JEE Application Components

JEE applications are made up of components: self-contained functional software units
assembled into JEE applications with their related classes and files. These components
communicate with other components. The JEE specification defines the following
components:

B Client components Application clients and applets
B Web components Java Servlet and JSP technology

B Business components EJB components

These components are written in the Java programming language and compiled
in the same manner as any other program written in Java. When working with
the JEE platform, the difference is that JEE components are assembled into a JEE
application, where it is verified that they are well formed and compliant with the
JEE specification. They are then deployed to production, where they are run and
managed by the JEE server.

Client Components

A JEE application can either be web-based or non-web-based. Non-web-based
components are an extension of the heretofore common client/server applications.
In a non-web-based JEE application, an application client executes on the client
machine. For a web-based JEE application, the web browser downloads web pages
and applets to the client machine.

Application Clients Application clients run on a client machine, providing a
way for users to handle tasks such as JEE system or application administration. Usually,
a graphical user interface (GUI) is created using Swing APIs; however, a command-
line interface is also possible. Application clients directly access enterprise beans that
run in the business tier. On the other hand, an application client can open an HTTP

Explain the JEE Architecture and System Requirements | 3 ||

connection establishing communication with a servlet running in the web tier if
warranted by the JEE application.

Web Browsers The user’s web browser downloads static or dynamic HTML,
Wireless Markup Language (WML), eXtensible Markup Language (XML), or pages
in other formats from the web tier. Servlets and JSPs running in the web tier provide
the ability to generate dynamic web pages.

Applets Web pages downloaded from the web tier can include embedded applets.
These are small client applications, written in the Java programming language,
which execute in the Java Virtual Machine (JVM) installed in the web browser.
Client systems often need an additional Java plug-in and perhaps even a security
policy file so that the applet can successfully execute in the web browser.

JSPs are the preferred API for the creation of web-based client programs, where
plug-ins and security policy files are not necessary on the client system. In addition,
JSPs enable cleaner, more modular application designs because they provide a way
to separate application programming from web-page design. This means web-page
designers do not need to know Java to do their jobs.

Applets running in other network-based systems such as handheld devices and
cell phones are able to render WML pages generated by a JSP or servlets running on
the JEE server. The WML page is delivered using the Wireless Application Protocol
(WAP). The network configuration requires a gateway to translate WAP to HTTP
and back again. This gateway translates the WAP request from the handheld device
to an HTTP request for the JEE server, translating the HTTP server response and
WML page to a WAP server response and WML page for display on the device.

JavaBeans Component Architecture The client tier sometimes includes a
component based on the JavaBeans component architecture for managing data flow
between the application client or applet and components running on the JEE server.
The JEE specification does not regard JavaBeans components as components. As
will be explained later in this book, JavaBeans are not the same as E]Bs. JavaBeans
components have instance variables as well as get and set methods for accessing

the data in those instance variables. When used in this manner—that is, as a place
to persist user entered data—JavaBeans components tend to be simple in design
and implementation. They should, however, conform to the naming and design
conventions specified in the JavaBeans component architecture.

I 32 Chapter 4. Applicability of JEE Technology

Elements of the
client tier

Client tier

Web browser
Web pages, applets, Web Business
and optional tier tier

JavaBeans class

Application client
and optional
JavaBeans class

J2EE server

JEE Server Communications Figure 4-2 shows the various elements that make
up the client tier. The client communicates with the business tier running on the
JEE server either directly (as in the case of a client running in a browser) or by going
through JSPs or servlets running in the web tier.

Thin Clients]JEE applications use a lightweight interface to the application,
known as a thin client, which does not perform functions such as querying databases,
executing complex business rules, or connecting to legacy applications. Instead, these
operations are off-loaded to web or enterprise beans that execute on the JEE server.
Here, the security, speed, services, and reliability of JEE server-side technologies
are maximized.

Web Components

JEE web components are either JSP pages or servlets. Servlets are Java classes that
dynamically process requests and construct responses. JSP pages are text-based
documents containing static content along with snippets of Java code used to
generate dynamic content. When a JSP page loads, a background servlet executes
the code snippets, returning a response.

Although static HTML pages and applets are bundled with web components
during application assembly, they are not considered web components by the JEE
specification. In the same manner, server-side utility classes are often bundled with
web components yet are not themselves considered web components.

The web tier, shown in Figure 4-3, might include JavaBeans objects for managing
user input, sending that input to enterprise beans running in the business tier to be
processed. JavaBeans that encapsulate Ul controls or other dynamic functionality
can be used to emulate the client/server user interface on a web-based page.

Elements of the
web tier

Business and
EIS tiers

Explain the JEE Architecture and System Requirements

133

Web tier

Web browser
Web pages, applet,
and optional
JavaBeans class

JavaBeans
class
(optional)

Business
tier

JSP Pages
servlets

Application client
and optional
JavaBeans class

4

J2EE server

Business Components

Business code is logic that solves the functional requirements of a particular business
domain such as banking, retail, or finance. This code is handled by enterprise

beans that run in the business tier. Figure 4-4 demonstrates how an enterprise bean
receives data from client programs, processes it, and then sends it to the enterprise
information system tier to be stored. In addition, an enterprise bean retrieves data
from storage, processes it, and then sends it back to the client program.

There are three kinds of enterprise beans: session beans, entity beans, and message-
driven beans. Session beans represent transient conversations with a client. When
the client completes execution, the session bean and its accompanying data are gone.
On the other hand, entity beans represent persistent data, which typically is stored
in one row of a database table. Entity beans can map to more than one row/record of
a relational database table or legacy data store. If the client quits or the server shuts
down, underlying services ensure that the entity bean data is saved. Message-driven
beans feature a session bean and a Java Message Service (JMS) message listener. They
allow business components to receive asynchronous JMS messages.

Business tier EIS tier
Web browser < JavaBeans] "
Web Zages, appllets, JSP pages class sEnt{ty bt:aans Dat;(base
i ession beans
and optiona servlets (optional) M D
JavaBeans class essage-Driven legacy
beans systems
Application client <

and optional
JavaBeans class

J2EE server

I 34 Chapter 4. Applicability of JEE Technology

Enterprise Information System Tier The EIS tier is a giant “catch-all”

for handling EIS software. It includes enterprise infrastructure systems such as
Enterprise Resource Planning (ERP), mainframe transaction processing, database
systems, and other legacy information systems. JEE application components access
EISs for functions such as database connectivity. The reality is that most enterprise
computing environments typically have a legacy system to maintain the so-called
“books and records” of the firm. Moreover, new applications based on JEE will
have to be able to interface and communicate request and response processing with
the legacy systems. Architects must be able to build and use EIS to handle this
important requirement.

To this end, the JEE Connector Architecture (JCA) is a standard architecture
for connecting to EIS from the JEE platform. The JCA architecture defines a set of
scalable, secure, and transactional mechanisms that describe the integration of EISs
to an application server and enterprise applications. This architecture enables an
EIS vendor to provide a resource adapter for its EIS that can be plugged into any
application server that supports the JEE Connector Architecture. IBM in particular
has embraced this standard to open access to mainframe-based online transaction
processing (OLTP) systems such as Customer Information Control Systems (CICS).

JEE Architecture

Typically, thin-client, multi-tiered applications are difficult to write because

they involve complex programming for handling transaction management,
multithreading, database connection pooling, and other low-level details.

The component-based and platform-independent JEE architecture makes JEE
applications desirable and easier to develop because business logic is organized into
reusable components, and the JEE server provides underlying services in the form of
a container for every component type.

Containers and Services

Components are installed in their containers during deployment. Containers are the
interface between a component and the platform-specific functionality supporting
that component. Before a web component can be executed, it must first be assembled
into a JEE application and then deployed into its container.

The process of assembly involves specifying container settings for each component
within the JEE application as well as for the application itself. These settings customize
the underlying support provided by the JEE server, including services such as security,

Explain the JEE Architecture and System Requirements | 3 §

transaction management, Java Naming and Directory Interface (JNDI) lookups, and
remote connectivity. Following are some examples:

B The JEE security model allows configuration of a web component or enterprise
bean so that only authorized users can access system resources.

B The JEE transaction model provides for relationships among methods that
make up a single transaction; therefore, all methods in one transaction are
treated as a single unit of work.

B JNDI lookup services provide an interface to multiple naming and directory
services in the enterprise, e.g., LDAP, allowing application components to
access naming and directory services.

The JEE remote connectivity model manages the communication between clients
and enterprise beans. After an enterprise bean is created, methods are invoked on it
by the client as if it were in the same virtual machine.

Because the JEE architecture provides configurable services, application components
within the same JEE application can behave differently, depending on where they are
deployed. For instance, an enterprise bean can have security settings, allowing it a
certain level of access to database data in one production environment and a different
level of database access in another production environment.

Containers also manage services such as enterprise bean and servlet life cycles,
database connection resource pooling, data persistence, and access to the JEE
platform APIs. Although data persistence is a nonconfigurable service, the JEE
architecture allows you to include code in your enterprise bean implementation to
override container-managed persistence (CMP) when more control is desired than
the default provided by CMP. For example, bean-managed persistence (BMP) may be
used to implement your own finder methods or to create a customized database cache.

Container Types

The deployment process installs JEE application components in the JEE containers, as
shown in Figure 4-5. An EJB container manages the execution of all enterprise beans for
a single JEE application. Enterprise beans and their accompanying containers run on the
JEE server. A web container manages the execution of all JSP and servlet components
for a single JEE application. Web components and their accompanying containers
run on the JEE server. An application client container manages the execution of all
application client components for a single JEE application. Application clients and their
accompanying containers run on the client machine. An applet container is the web
browser and Java plug-in combination that runs on the client machine.

I 36 Chapter 4 Applicability of JEE Technology

Application
components and
JEE containers

J2EE server

A
v

Browser Serviet JSP page

4— P Database

Web container

A
v

Application client

Application client < Enterprise Enterprise
container bean bean

v

EJB container

Client machine

EXERCISE 4-1

JEE Architecture and the Nonfunctional Requirements of a System

Question Describe how JEE architecture affects the nonfunctional requirements
of a system.

Answer The success of a software development project is dependent on many
factors in addition to software functionality. It is important that you differentiate
between functional and nonfunctional requirements. Nonfunctional requirements
include the environment, platforms, tools, and networking components within which
an application is implemented; they include quality-related issues such as scalability,
speed of execution and response time, ease of installation, maintainability, and
reliability. These nonfunctional requirements affect the capabilities of the functional
requirements.

The JEE architect actively needs to account for all requirements, functional and
nonfunctional, and needs to include all aspects of the project, including the packaging,
installation, deployment, and maintenance of a software solution. Architects are
often tasked with providing infrastructure design and layout for applications based
on JEE technology. The JEE infrastructure provided by compliant and certified
application servers typically offers techniques that meet nonfunctional requirements
such as scalability, compatibility, and so on.

Explain the JEE Architecture and System Requirements | 37

Nonfunctional requirements are specific. The ability to support a specified
number of concurrent users, expected transaction throughput, maximum allowable
response time, supported data growth rate, and acceptable end-to-end latency are
important nonfunctional requirements that must be satisfied if the application is to
be successful.

These JEE application server solutions have evolved to a point wherein
nonfunctional requirements are addressed by built-in feature sets from these
application infrastructure services. This allows application developers to focus
their efforts on building functionality or business services. These applications use
basic JEE services that are already built into servers sold by multiple vendors. For
example, multithreading, concurrency handling, connection pooling, state/session
synchronization, container-managed transactions, and persistence are feature sets of
the application servers that address the nonfunctional requirements.

The nonfunctional requirements supported by JEE are divided into six categories:

B Scalability Concurrent connections, data growth rates, user-population
growth rates, storage capacity, compute capacity, performance characteristics,
and response-time requirements can be solved by connection pooling and
application server clustering.

B Security Application-level security is handled by JEE via deployment
descriptors, protection domains as well as network security, OS security, and
database security.

B Adaptability Extensibility of the application; flexibility of the
configuration; and the adaptive nature of the compute, storage, and network
resources to changing demands from the application and application
infrastructure are supported by JEE.

B Compatibility JEE provides multiplatform support (all UNIX, Win XP),
cross-certification of application infrastructure solutions, multiple client
devices, and back-end connectivity to legacy resources.

B Manageability Change management, problem management, asset
management, and network/systems management.

B Availability Platform reliability, application infrastructure stability, and
uptime requirements.

I 38 Chapter 4. Applicability of JEE Technology

Development Methodology and Process

A JEE application is usually assembled from two different types of modules: enterprise
beans and web components. Both of these modules are reusable; therefore, new
applications can be built from preexisting enterprise beans and components. The
modules are also portable, so the application that comprises them will be able to run
on any JEE server conforming to the specifications. To build these modules, you will
first need to consider designing the application using a modeling tool before using

a development tool to implement code. The remainder of this section will take a
look at each of these areas before moving into a discussion of what makes up a JEE
application and the development phases of a JEE project.

Modeling Tools

Modeling is the visual process used for constructing and documenting the design
and structure of an application. The model is an outline of the application, showing
the interdependencies and relationships among the components and subsystems.
Tools are available to facilitate this process, allowing you to show a high-level view
of many objects. The Unified Modeling Language (UML) was created to unify the
many proprietary and incompatible modeling languages that existed.

The use of modeling tools makes sense with the increasing complexity of
Enterprise Java applications and components. However, learning to model comes
from experience and from sharing knowledge about best practices and bad practices.
Today, modeling involves the use and reuse of patterns. A pattern is commonly
defined as a three-part rule that expresses a relationship between a certain context,
a problem, and a solution. In other words, a pattern can represent a solution to a
recurring problem or issue.

Development Tools

To be productive with technology such as JEE, analysts and programmers will
inevitably need visual development tools for building JEE applications and
components, e.g., Eclipse. When constructing a JEE application, a developer must
not only create Java code but also build an archive file to house the classes and other
supporting files, including XML deployment descriptors and reference resolutions.
This archive must then be deployed to a server and tested. These sets of tasks will be
repeated several times over before the application is finally ready to be deployed to a
production environment. All of these tasks typically need to be coordinated among
multiple developers. The tools available at this time are still maturing, and tool
vendors frequently release newer versions of tools to ease the development process.

Explain the JEE Architecture and System Requirements | 39

In addition to the tools themselves, application frameworks provide components
and services based on the best patterns, practices, and standards available. The
ideal framework would implement extendable design patterns on the presentation,
business, and data/services layers. These implementations should work for any JEE-
certified server.

The use of a framework or “best practice” may be helpful in preparing for and
completing Part 2 of the SCEA exam. The following frameworks and guidelines are
a non-exhaustive sample of what is available:

B Spring framework Supports all of the major JEE technologies, on all
tiers (web, EJB, and data access). See www.springframework.org for more
information.

M Struts framework An implementation of the Model View Controller
(MVCQC) pattern. This classic framework can be used when developing web
components consisting of]SPs and servlets. See jakarta.apache.org for more
information.

B Sun’s JEE BluePrints (Pet Store) A set of “best practice” guidelines
for developing JEE applications. Along with the guidelines is a practical
implementation of them, known as the Pet Store application. This application
is the classic web shopping cart for buying a pet. This application is a good one
to study and know before taking Part 2 of the exam, as it can provide some
good working JEE code examples.

Contents of a JEE Application

The hierarchy of a JEE application is shown in Figure 4-6. A JEE application may
contain any number of enterprise beans, web components, and JEE application
clients. The deployment descriptor in Figure 4-6 refers to a file that defines structural
information such as class names, location, and other attributes to facilitate the
deployment of the web or enterprise application.

Enterprise beans comprise three class files: the E]JB class, the remote interface,
and the home interface. Web components may contain files such as servlet classes,
JSPs, HTML files, and GIFs. A JEE application client is a Java application, typically
Java classes providing a user interface that runs in a container and is allowed access
to JEE services.

Each JEE application, web component, and enterprise bean includes an XML
file called a deployment descriptor (DD) that describes the component. An EJB
DD has functions to declare transaction attributes and security authorizations for

140 Chapter 4. Applicability of JEE Technology

Contents of
a JEE application

J2EE application

J2EE application DD

.ear file

J2EE application client Enterprise bean Web component
J2EE application DD E/B DD Web ersnpp;;ent DD
J2EE application EB class Servlet class

e GIF file
ome HTML file
Jjar file Jjar file .war file

an enterprise bean. This information is declarative; it can be changed without
subsequent modification to the bean’s source code. The JEE server reads this
information at runtime, acting upon the bean accordingly. Each module is bundled
into a file with a particular format, as seen in Table 4-1. While it won’t affect

the exam per se, it is important to note that the Java EE 5 platform introduces a
simplified programming model and eliminates much of the boilerplate that earlier
releases required. With Java EE 5 technology, DDs are optional. You can now enter
the information as an annotation directly into a Java object. Annotations are a new
feature, originally introduced in Java 2 Platform, Standard Edition (J2SE) 5.0. They
are a form of metadata with a very simple syntax and recognizable. They begin with
a leading at sign (@). Annotations are generally used to embed in a program data
that would otherwise be furnished in a deployment descriptor. With annotations,
you put the specification information right in your code next to the program
element that it affects.

As the EISs repaired before the year 2000 refuse to go away, implementations
that utilize user-developed or vendor-based APIs to access these systems with JEE
are growing in popularity. To facilitate these APIs, a resource adapter is a JEE
component that implements the JEE connector architecture (JCA) for a specific
EIS. It is through the resource adapter that a JEE application communicates with
an EIS. Stored in a Resource Adapter Archive (.rar) file, a resource adapter may be
deployed on any JEE server, much like the .ear file of a JEE application.

Explain the JEE Architecture and System Requirements | 4 ||

File Content il B

Files Used in
JEE Applications

JEE Enterprise Application .ear
JEE application deployment descriptor xml
Enterprise JavaBeans jar
EJB deployment descriptor xml
EJB class .class
Remote interface .class
Home interface .class
Web application component .war
Web component deployment descriptor xml
JSP file .isp
Resource Adapter Archive file .rar
Servlet class .class
Image files .gif and .jpg
HTML file html
JEE application client jar
JEE application client deployment descriptor xml
Java class .class

Development Phases of JEE Applications

JEE applications may pass through the following developmental phases:

B Enterprise bean creation
B Web component creation
B Application assembly

B Application deployment

In larger organizations, separate individuals or teams may perform each of these
phases. This division of labor is made more feasible by the creation of a portable file
output by each phase. This file contains the input for the subsequent phase. In the
optional enterprise bean creation phase, for example, a developer delivers EJB JAR
files. In the web component creation phase, for example, a developer delivers web
components in a WAR file. These phases are not sequential, but the assembly and

I 42 Chapter 4: Applicability of JEE Technology

FIGURE 4-7

Development
phases of a JEE
application

deployment phases are sequential and required. During the application assembly
phase, another developer combines these files into a JEE application, saving it in an
EAR file. Ultimately, a system administrator uses that EAR file to install the JEE
application into an application server at deployment time. These final stages are
illustrated in Figure 4-7.

Java and XML is a natural match for the creation of applications that exploit
the web of information, where different classes of clients consume and generate
information that is exchanged between servers that run on various system platforms.
The portability and extensibility of both XML and Java make them the ideal choices
for the flexibility and wide availability requirements of the web. The following
sections summarize the development phases for JEE applications. Because a JEE
application does not necessarily need both enterprise beans and web components,
one of the first two phases is often skipped; all other phases are required.

Enterprise Bean Creation Enterprise bean creation is performed by software
developers, who are responsible for coding and compiling the Java source code needed
by the enterprise bean, specifying the deployment descriptor for the enterprise bean,
and bundling the .class files and deployment descriptor into an EJB JAR file. That
EJB JAR file is subsequently delivered to facilitate the next step. See Chapter 7 for
more information.

Web component Enterprise bean
(-war file) (EJB jar file)
Assembly phase \ /

J2EE application
(.ear file)

Deployment phase

J2EE
server

Explain the JEE Architecture and System Requirements | 43

Web Component Creation Web component creation can be performed by
web designers, who create the JSP components, along with software developers, who
are responsible for the servlets. Java source code for the servlet is developed and
compiled, JSP and HTML files are written, the deployment descriptor for the web
component is specified, and the .class, JSP, HTML, and deployment descriptor files
are bundled into the WAR file. That WAR file is delivered to facilitate the next step.

JEE Application Assembly The application assembler is the person who takes
an EJB archive file (EJB JAR) and a web components archive file (WAR) and as-
sembles them into a JEE Enterprise Archive, or EAR, file. The next step is to resolve
any references, which include the following:

Database connection pools
Mail sessions
URL connections

JMS queues and topics

EJB references

This process is handled by defining elements in one or more additional XML
documents, also known as deployment descriptors or deployment plans. The
assemblers or deployers can edit the deployment properties directly or use tools
that add these XML tags. These additional files map internal references along with
server-specific properties to JNDI or other names that exist in the destination JEE
application server. The application assemblers perform the following tasks to deliver
an EAR file containing the JEE application:

B Assemble EJB JAR and web components (WAR) files created in the previous
phases into a JEE application (EAR) file.

B Specify the deployment descriptor for the JEE application.

B Verify that the contents of the EAR file are well formed and comply with the
JEE specification.

The final deliverable for this stage is the completed EAR file containing the JEE
enterprise application.

JEE Application Deployment The deployer is the person who configures
and deploys the JEE application, administers the computing and networking

I 44 Chapter 4: Applicability of JEE Technology

infrastructure where JEE applications run, and oversees the runtime environment.
Duties include setting security attributes, setting transaction controls, and specifying
database connection pools. During configuration, the deployer follows instructions
supplied by the application component provider to resolve external dependencies,
specify security settings, and assign transaction attributes. During installation, the
deployer is responsible for moving the components to the server and generating the
classes and interfaces specific to the destination container.

The deployer performs the following tasks to install and configure a JEE application:

B Stage the initial JEE application (EAR) file created in the preceding phase to
the JEE server.

B Configure the JEE application for the operational environment by modifying
the DD of the JEE application.

B Verify that the contents of the EAR file are well formed and comply with the
JEE specification.

B Deploy (install) the JEE application EAR file into the JEE server.

CERTIFICATION OBJECTIVE 4.02

Explain the Use of Patterns in the JEE Framework

In the context of computer architecture, design patterns are proven solutions to
recurring business problems. They consider the particular context of the problem
and the consequences of the solution. A good designer will use a pattern because

it is proven—that is, the designer has used it before successfully or has built and
validated a proof of concept. Good architects use the experience, knowledge, and
insights of developers who have used these patterns successfully in their own work.
When a problem is common, a good designer doesn’t have to devise a new solution;
instead, he or she follows the pattern and adapts it to the current environment.

Use of Patterns in the JEE Framework

The JEE framework employs patterns to support these capabilities. These patterns will
be covered in greater detail in Chapter 5, but to cover exam specifics, we will examine
patterns that are prominent in the JEE framework. JEE uses the following core patterns

Explain the Use of Patterns in the JEE Framework | 4.8

Pattern Use JEE Implementation

Patterns Used
with the JEE
Framework

Proxy Provides method calls to a principal EJB remote interface
object to occur indirectly through a
proxy object that acts as an agent for the
principal object, delegating method calls
to that object

Decorator Extends the functionality of a class such ~ EJBObject
that it is transparent to its clients

Factory Method Provides a reusable class independent EJBHome interface
of the classes it instantiates because it
delegates the choice of which class to
instantiate to another object; refers to
the newly created object via a common
interface

Abstract Factory ~ Provides a way to create instances EJBHome interface
of those abstract classes from a
corresponding set of concrete subclasses

to enable flexible association of EJB classes with other components. The Proxy
pattern provides a separate implementation of interface and working code for location
transparency. The Decorator provides a similar contract for a class but with added
functionality. The Factory Method provides ability to define a contract for creating an
object but defers instantiation to subclasses. The Abstract Factory provides a contract
for creating families of related or dependent objects without specifying concrete
classes. Table 4-2 details the patterns used with the JEE framework.

The Proxy Pattern

The Proxy pattern (as shown in Figure 4-8) decouples interface and implementation
by providing two objects. If the implementation class changes, the proxy remains
the same. This is because the proxy interface includes only the method invocations
and their signatures. So, it is lightweight in comparison to the implementation class
(the working code). As architects, we typically examine what types of operations
are expensive. For example, object creation and initialization is usually expensive.
To improve application performance, it is a sound approach to defer object creation
and object initialization to the time when you need the object. The Proxy pattern
reduces the cost of accessing objects. It accomplishes this cost reduction because it

146 Chapter 4. Applicability of JEE Technology

FIGURE 4-8

Proxy pattern

Proxy Work code
+ getAl() * getg()
- gerB() | ferel

uses another object (the proxy) to act as a stand-in for the real object. The proxy
creates the implementation object only if the user requests it. An example of the
proxy pattern implemented in JEE is the EJB remote interface.

Decorator Pattern

The Decorator pattern provides the same contract for a class but with extended
functionality. The pattern is used when functionality needs to be added to objects
dynamically. The solution involves encapsulating the original object inside

an abstract wrapper interface. Both the decorator objects and the base object
inherit from this abstract interface. The interface is generic such that it allows a
theoretically unlimited number of decorative layers to be added to each base object.
Decorators would seem to be especially useful when you wish to add functionality
when you do not have the actual code source of the class. If you know enough about
the object—that is, the interface—when you want to decorate, you can provide a
decoration for it.

[t is important to note that the decorator is a subclass of the component class
that it decorates. This is counterintuitive because the instance is a parent of the
component it decorates. Decorators share the “wrapper” approach. The difference,
however, is intent. The decorator has value only if it changes the behavior of the
“wrapee.” The E]JBObject is a decorator for the bean because the bean’s functionality
is expanded to include remote behavior.

Factory Method Pattern

The Factory Method pattern (as shown in Figure 4-9) provides the ability to define an
interface for creating an object but defers instantiation to subclasses. JEE technology
uses this pattern for the EJBHome interface, which creates new EJBObjects. (For more
information, see Chapter 5 and perhaps consult the book Design Patterns: Elements of
Reusable Object-Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides [Addison-Wesley, 1995].)

Factory Method

Explain the Use of Patterns in the JEE Framework | 47

C javax.ejb.EJBObject)

Lll

Account | javax.ejb.EntityBean
<<interface>> AN
7~ |

| AccountE]BObject AccountBean

Abstract Factory Pattern

The Abstract Factory pattern provides an interface for creating families of related
or dependent objects without specifying concrete classes. JEE technology uses this
pattern for the EJBHome interface, which creates new EJBObjects.

EXERCISE 4-2

Patterns in the JEE Framework and Development

Question Describe the use of patterns in the JEE framework and development.

Answer A pattern is a recurring solution to a problem in a context. A context is
the environment, surroundings, situation, or interrelated conditions within which
something exists. A problem is an unsettled question, something that needs to be
investigated and solved. A problem can be specified by a set of causes and effects.
Typically, the problem is constrained by the context in which it occurs. Finally, the
solution refers to the answer to the problem in a context that helps resolve the issues.
In addition to the framework patterns used by JEE, patterns are used in development
and are typically listed according to functionality. The presentation tier patterns
contain the patterns related to servlets and JSP technology. The business tier patterns
contain the patterns related to the enterprise beans technology. The integration tier
patterns contain the patterns related to J]MS and JDBC. Tables 4-3, 4-4, 4-5, and 4-6
contain partial lists of applicable patterns along with descriptions to provide a high-
level overview of the patterns. The presentation tier patterns, business tier patterns,
and integration tier patterns will all be discussed in detail in later chapters.

148 Chapter 4. Applicability of JEE Technology

Pattern Name Description JEE Implementation
Framework Proxy Provides method calls to a EJB remote interface
Patterns principal object to occur indirectly

through a proxy object that acts as
an agent for the principal object,
delegating method calls to that

object
Decorator Extends the functionality of a class EJBObject
such that it’s transparent to its
clients
Factory Method Provides a reusable class EJBHome interface

independent of the classes it
instantiates, because it delegates
the choice of which class to
instantiate to another object,
referring to the newly created
object via common interface

Abstract Factory Provides a way to create instances EJBHome interface
of those abstract classes from a
corresponding set of concrete

subclasses
TABLE 4-4 Pattern Name Description
Presentation Decorating Filter Facilitates pre- and post-processing of a request
Tier Patterns Front Controller Provides a centralized controller for managing the
handling of a request
View Helper Encapsulates logic that is not related to presentation
formatting into Helper components
Composite View Creates an aggregate View from atomic
subcomponents
Service To Worker Combines a Dispatcher component in coordination
with the Front Controller and View Helper Patterns
Dispatcher View Combines a Dispatcher component in coordination
with the Front Controller and View Helper Patterns,
deferring many activities to View processing

Describe the Concepts of “Best Practices” and “Guidelines” | 49

Pattern Name Description

Business Business Delegate Decouples presentation and service tiers and provides
Tier Patterns a facade and proxy interface to the services
Value Object Exchanges data between tiers
Session Facade Hides business object complexity, and centralizes
workflow handling
Aggregate Entity Represents a best practice for designing coarse-
grained entity beans
Value Object Assembler Builds composite value object from multiple data
sources
Value List Handler Manages query execution, results caching, and result
processing
Service Locator Hides complexity of business service lookup and

creation; locates business service factories

Pattern Name Description

Integration Data Access Object Abstracts data sources; provides transparent access
Tier Patterns to data
Service Activator Facilitates asynchronous processing for EJB
components

CERTIFICATION OBJECTIVE 4.03

Describe the Concepts of “Best Practices”
and “Guidelines”

Successful companies establish the use of refactoring, best practices, patterns,
and tools; they spread the awareness of these among their JEE programmers and
architects. Successful developers share their knowledge and pass on their proven
techniques to others. The net result is productivity. The ultimate product is the
implementation of solid applications.

I 50 Chapter

4: Applicability of JEE Technology

The challenges we face in software development today as always are twofold:

B Obtaining and maintaining the architectural and developmental skills to
build effective enterprise systems

B Meeting market-driven time lines for developing new applications while
maintaining quality in our implementations

Experienced architects often make trade-offs to meet deadlines. These trade-
offs include the use of refactoring and other techniques to optimize development
time and address the inherent performance considerations. We tend to hold onto
our software designs for too long. Even after they become unwieldy, we continue to
use and reuse code that is no longer maintainable—because it works, we are afraid
to modify it. But this is typically not cost effective. When we refactor, we remove
redundancy, eliminate unused functionality, and reengineer designs. Refactoring
throughout the entire project life cycle saves time and increases quality. Refactoring
keeps the design simple, and avoids needless complexity, keeps code clean and
concise, and makes it easier to understand, modify, and extend the code. Moreover,
application behavior is known to change throughout the application life cycle—
that is, from development to production. As performance and stability issues are
discovered, the application should be amended and improved.

Experience yields BluePrints for solving recurring problems: therefore, the term
best practice. A best practice is a technique used to drive design at the component
level. For example, a best practice might be to use session beans as facades to entity
beans. On the other hand, a guideline is a rule applied horizontally to the design. For
example, to minimize network traffic, the architect attempts to maximize the content
of data requests—that is, we try to get as much as we can out of each request.

As mentioned, the JEE architecture typically consists of three basic tiers in the
platform, as shown in Figure 4-10. With respect to each tier, we will introduce and
review some of the best practices.

Browser

Client

BE 3
E]
J Presentation Business Integration
tier tier tier .
Enterprise
Information
(Web) (BB) System (EIS)
Middle Backend

Describe the Concepts of “Best Practices” and “Guidelines” | § |

Identifying the Need for Best Practices

In development, the question should not be “Is there a best practice?” Instead, it
should be “Will this best practice improve our application?” For example, caching

of frequently used data and references will benefit any JEE application; however,
determining what is frequently used can be difficult in development. By testing early
releases of an application, developers can locate and correct inappropriate design
decisions.

In the quality assurance (QA) stage of an application life cycle, it is often
assumed that best practices and appropriate patterns have already been applied. The
typical QA team is unlikely to have the expertise needed to identify the need for
best practices. If the application is deemed to perform poorly or fail, it will have to
be amended by the development team at a great expense. It is therefore extremely
important to determine the application hot spots and suggest the primary candidates
for reworking.

In the enterprise production environment, applying new design patterns and
best practices to a production system is more than difficult—both technically
and politically. It can, however, be essential to creating a mature and ultimately
successful application. Interrupting service to clients to redeploy a production
application will commonly happen if the application fails or is unusable. What the
good architect has is the uncommon ability to identify when performance is under
par and justify expending additional resources to refactor by specifying the nature
of the problem.

You can apply best practices and guidelines in each tier, including the client tier,
web tier (presentation), EJB tier (business logic), and database or EIS integration
tier (integration). You can also apply refactoring and guidelines to orthogonal
services that span tiers including security and transaction processing.

Best Practice: Client Tier

The client tier serves as an interface with any number of other systems. A transaction
enters the workflow, for example, as an HTML request from a standard web browser
or as an XML-formatted electronic message from another system. You should
decouple the client type from the enterprise application by using an HTML browser,
an applet, a Java application, and, last and but certainly not least, a non-Java
application.

I $2 Chapter 4. Applicability of JEE Technology

CERTIFICATION OBJECTIVE 4.04

lllustrate the Use of JEE for Workflow

A common method for designing applications is to organize them around an event-
driven user interface. In this design pattern, the developer creates the interface

and subsequently writes code that will execute the desired application actions in
response to user gestures. This structure can be successful for small, single-user
systems that will require little alteration to the functionality over time. However, it
is not suitable for larger, distributed projects for the following reasons:

More sophisticated applications may require data to be viewed and
manipulated in several different ways. When business logic is implemented in
the display code, display inconsistencies can result because the logic can be
copied and modified in one object and not another. In addition, any change
to the data display requires updates in several places.

When data manipulation logic, format and display code, and user event
handling are entangled, application maintenance can be very difficult,
especially over a long span of time.

User interfaces cannot be reused if the application logic has been combined
with the code for an existing interface.

Added functionality may require several changes to existent code, which may
be difficult to locate.

Business logic code may access a vendor-specific product (a database, for
example), thus making the application much less portable.

Changes to a single piece of code may have far-reaching side effects.
Development cannot occur on a modular basis, as everything is dependent
on everything else. This problem is amplified on large-scale development
projects because it is difficult for a large team of developers to split tasks.
Code is less reusable, because components are dependent on one another;
therefore, they are less usable in other contexts.

To overcome these shortcomings, utilizing the MVC design pattern best practice
results in a separation of the application data from the ways that the data can be
accessed or viewed as well as from the mapping between system events (such as user
interface events) and application behaviors.

lllustrate the Use of JEE for Workflow | §3

Best Practice: MVC Pattern

Relationships
among
components

The MVC pattern consists of three component types:

B Model Represents the application data along with methods that operate on
that data.

B View Displays that data to the user.

B Controller Translates user actions such as mouse movement and keyboard
input and dispatches operations on the Model.

As a result, the Model will update the View to reflect changes to the data.
Figure 4-11 illustrates the functions of each of these component types as well as the
relationships among them.

When this best practice is used properly, the Model should have no involvement
in translating the format of input data. This translation should be performed by
the Controller. In addition, the Model should not carry any responsibility for
determining how the results should be displayed.

Table 4-7 displays the participants and collaborations involved with the three
components.

The MVC model should be used as follows:

B For distributed applications

B For larger applications

B For applications with a long lifetime
[

Where interface and back-end portability are important

Http request
or post Controller - Business
(action servlet) Dispatch logic

<2]

Client !
Forward Update
browser
v

View
Response (JSP page)

I

Model
(server side)

Extract

I $4 Chapter 4. Applicability of JEE Technology

TABLE 4-7
_ Component

MVC Model
Participants and

Collaborations

Participants

Extrapolates the business logic
of the application

Maintains the application state
Provides access to functions of
the application

Manages persistence

Extracts data for the View
component

Informs interested parties of
changes to data

Collaborations

Informs the View when it makes
changes to the application data
Can be queried by the View
Gives the Controller access to
application functionality

View

Extrapolates data presentation
Responds to users with data
Maintains consistency with
Model data

Provides Model data for the user
Refreshes display when informed of
data changes by the Model
Transfers user input to the
Controller

Controller

Extrapolates user interaction/
application semantic map
Transforms user actions into
application actions

Determines the appropriate data

display based on user input and
context

Transforms user inputs and
dispatches class logic or application
actions on the Model

Selects the View to present based
on user input and Model action
outcomes

To facilitate maintenance

To allow division of labor by skill set

To facilitate unit testing

MVC offers the following benefits:

Where data must be viewed and manipulated in multiple ways

To support simultaneous, modular development by multiple developers

When employing enterprise beans that are reusable across applications

B Clarifies application design through separation of data modeling issues from

data display and user interaction

B Allows the same data to be viewed in many ways and by many users

B Simplifies impact analysis, thereby improving extensibility

B Facilitates maintenance by encapsulating application functions behind

trusted APIs

lllustrate the Use of JEE for Workflow | § §

Enhances reusability by separating application functionality from presentation

Facilitates distribution of the application, as MVC boundaries are natural
distribution interface points

Can be used to divide deployment as well as make incremental updates possible
Forces clear designation of responsibilities and functional consistency, thereby
facilitating testability

Increases flexibility, because data model, user interaction, and data display
can be made “pluggable”

MVC designs may encounter the following problems:

Components aren’t able to take advantage of knowledge of other components’
implementation details. This may have a negative effect on application
performance. Skillful API design that optimizes the length of the code path
(number of machine cycles) for each API function can assist in avoiding this
problem to some extent.

Communication volume and other latency issues must be carefully addressed;
otherwise, MVC may not scale well in distributed systems. Latency comes from
several sources. Web application servers may take some time to process

a request, especially if they are overloaded and model components are

not local. Web clients can add delay if they do not efficiently handle the
retrieved data and display it for the user. Latency caused by client or sluggish
servers, however, can in principle be solved simply by providing a faster server
or clustering.

Maintenance of an MVC application may be difficult if the Model API is unstable,
because the Controller is written in terms of the Model API. There should be a
decoupling between the sender and the receiver. A sender is an object that
invokes an operation, and a receiver is an object that receives the request
to execute a certain operation. The term request here refers to the command
that is to be executed. This also allows us to vary when and how a request is
fulfilled. This decoupling provides us with flexibility as well as extensibility.
The command pattern turns the request into an object that can be stored
and passed around in the same way as other objects. This provides a hook
for Controller extensions to handle new Model functions. In addition, an
adapter can often provide backward APl compatibility.

I 56 Chapter 4. Applicability of JEE Technology

MVC and the Struts Framework

The Struts framework has been developed by the Jakarta Project, which is sponsored
by the Apache Software Foundation, to provide an open-source framework for
building web applications with Java Servlet and JavaServer Pages (JSP) technology.
The Struts framework is not the most popular framework for new development but
it is probably the most prevalent. Struts supports application architectures based on
the MVC design paradigm. The official Struts home page can be found at http://
jakarta.apache.org/struts.

The primary areas of functionality included in Struts are:

B A controller servlet Dispatches requests to appropriate Action classes
provided by the application developer

B JSP custom tag libraries Facilitate creation of interactive, form-based
applications

B Utility classes Provide support for XML parsing, automatic population of
JavaBeans properties, and internationalizing prompts and messages

Struts applications adhere to the MVC design pattern. The three major
components are the servlet Controller, JavaServer Pages (the View), and the
application’s business logic (the Model), as shown in Figure 4-12.

The following text describes the process illustrated in Figure 4-12.

First, the user request goes to a Controller that initializes the context/session for
the overall transaction and alerts Page A’s Model. The Controller then forwards
execution to Page A’s View (JSP).

Page A posts back to the Controller, which calls Model A to validate the posted
form data. If the input is invalid, Model A returns a result that the Controller uses to
forward/redisplay Page A. The entire HttpServletRequest might be made available to
the Model A bean, or the Controller might be clever enough to call setters for each
posted form field via introspection.

The Controller determines who is next in the chain through use of a multitude of
options: straight if-else (or switch-case) code, an XML document, database records,
or a rules engine.

The Controller is the centralized “traffic cop” that knows when all required steps
in a transaction are complete. The Model preserves the “state” (posted form fields)
and holds validation logic. If the user action is invalid, the Controller is alerted to
redisplay the same View/JSP.

The Controller bundles and directs HTTP requests to other objects in the
framework, including JSP. After it has been initialized, the Controller parses

Simple MVC/
Struts example
flow

lllustrate the Use of JEE for Workflow | §7

Label :] Label C]
URL tabel () el ()

request
initial get Next
7'y A
Post Post
Network
v v
Controller
7'y A
v v
Ajsp B.jsp
View v View v
> Aljava B B.java
Model Model
bean bean

a configuration resource file. This resource file defines the action mappings for the
application. These mappings are used by the Controller, turning HTTP requests into
application actions.

At the very least, a mapping must specify a request path as well as what object
type is to act upon the request. The action object either handles the request and
responds to the client (usually a web browser) or indicates that control should be
forwarded to another action.

Because action objects are linked to the application’s Controller, they have access
to that servlet’s methods. When an object is forwarding control, it can indirectly
forward one or more shared objects, such as JavaBeans, by putting them in a
standard collection shared by Java Servlets.

Most of the business logic in a Struts application can be represented using
JavaBeans. In addition, JavaBeans can be used to manage input forms, eliminating the
common problem with retaining and validating user input between requests. Using
Struts, data can be stored in a form bean. The bean can then be saved in a shared
context collection, making it accessible to other objects, especially action objects.

I $8 Chapter 4: Applicability of JEE Technology

It could be used by a JSP to collect data, by an action object to validate user input,
and then by the JSP again to repopulate the form fields.

In the case of validation errors, Struts has a shared mechanism for raising and
displaying error messages. Struts form beans are defined in the configuration resource
and then linked to an action mapping via a common property name. When a request
calls for an action that utilizes a form bean, the controller servlet will either retrieve
the form bean or create one. That form bean is passed to the action object. The action
object checks the contents of the form bean before its input form is displayed, queuing
messages that are to be handled by the form. When the action object is ready, it can
return control by forwarding to its input form, which is usually a JSP. The controller is
then able to respond to the HTTP request, directing the client to the JSP.

Custom tags are included within the Struts framework. They have the ability
to automatically populate fields from a form bean. Most JSPs must know only the
proper field names and where to submit the form. Components such as messages set
by the action object can be output using a single custom tag. Application-specific
tags can be defined to hide implementation details from the JSP pages.

These custom tags are designed to use the Java platform internationalization
features. All field labels and messages can be retrieved from a message resource, with
Java automatically providing correct resources for the client’s country and language.
Providing messages for another language requires only the addition of another
resource file.

Other benefits of custom tags are consistent labeling between forms and the
ability to review all labels and messages from a central location.

In most applications, action objects should pass requests to other objects, primarily
JavaBeans. To enable reuse on other platforms, business logic JavaBeans should not
refer to any web application objects. Action objects should translate required details
from the HTTP request, passing those along to business-logic beans as regular Java
variables.

In database applications, business-logic beans may connect to and query the
database, returning the result set to the action’s servlet, where it is stored in a form

bean and then displayed by the JSP.

The Model

The Model in an MVC-based application can be divided into two parts: the internal
state of the system and the actions that can be taken to alter that state.

A web application using the Struts framework typically represents the internal
state of the system as a set of one or more JavaBeans with properties that represent
the details of that state. These beans may be self-contained and able to save their

lllustrate the Use of JEE for Workflow | §9

state information persistently. Additionally, they may be facades that know how to
retrieve information from external sources such as databases when that information
is requested. Entity E]Bs (Enterprise JavaBeans) can also be used to represent
internal state.

Larger applications often represent possible business logic actions for a system as
methods. Other systems may represent possible actions separately, often as Session
EJBs. Smaller-scale applications may embed the available actions within the Action
classes that are part of the Controller role. This is effective only when the logic is
simple and reuse is not an issue. It is a good idea always to separate the business logic
from the roles of the Action classes.

The View

Struts-based applications generally utilize JSPs to construct the View component. The
JSP environment includes a set of standard action tags such as <jsp:useBeans as
well as the ability to define custom tags and organized custom tag libraries. In addition,
it is sometimes necessary for business objects to render themselves in HTML or XML,
depending on their state at request time. It is easy to include the output from these
objects in a resulting JSP page by using the <jsp: include> standard action tag.

The Controller

The Controller portion of the application focuses on receiving requests from the
client (most often a user running a web browser), deciding what business logic
function is to be performed, and delegating responsibility for producing the next
phase of the user interface to an appropriate View component. Struts utilizes a
servlet of class ActionServlet as the main component of the Controller. This servlet is
configured through definition of a set of mappings that are described by a Java class
ActionMapping. Each mapping defines a path, matched against the request URI of
the incoming request as well as the fully qualified class name of an Action class. The
Action class is responsible for performing the desired business logic and subsequently
dispatching control to the appropriate View component to create the response.

In addition, Struts supports the ability to use ActionMapping classes with
additional properties beyond the standard ones needed to operate the framework.
This enables storage of additional application-specific information while utilizing
the remaining features of the framework. Furthermore, Struts allows definition of
logical names for the forwarding of the control. The method can ask for the logical
name of the page without knowing the actual name of the corresponding JSP page.

1 60 Chapter 4: Applicability of JEE Technology

MVC and other Frameworks

As Struts popularity has peaked, a number of new MVC Frameworks have emerged.
For example:

B JavaServer Faces (JSF) One of the most popular MVC Frameworks. It
uses a component-based architecture making it the best supported framework
for pluggable third-party visual controls. See http://java.sun.comfjavace/
javaserverfaces for more information.

B WebWork An open-source MVC Framework that it is being integrated
into Struts as Struts 1. See www.opensymphony.com/webwork/ for more
information.

B Tapestry An open-source MVC Framework that emphasizes simplicity of
development and scalability of applications. See http://tapestry.apache.org for
more information.

EXERCISE 4-3

Structuring Development

Question When building a JEE application within an enterprise where valuable
legacy systems exist and Java with JEE is growing in use but not the strong suite

in the skill set of the current majority of the enterprise developers, how can you
structure the development to maximize productivity?

Answer Productivity with a new technology can generally be achieved by striving
for the following goals:

B Code and design reuse Maximize code reuse so as to decrease the cost
for development, provide incremental quality improvements, and establish
design best practices that everyone in the organization understands.

B Rational functional decomposition Every class in the design should play
a clearly defined role in the application. The resulting design clarity will
facilitate maintenance, impact analysis and system extension, and flatten the
learning curve for new developers.

B Development tasks isolated by skill sets The design should partition
the application into chunks that reflect the skill sets of subteams in the

lllustrate the Use of JEE for Workflow | @ |l

development group. For example, the design specifies using JSP tag libraries,
instead of JSP pages with embedded code, and then web page designers with
no knowledge of programming can operate in parallel with programmers, and
programmers can focus on solving coding problems.

Decouple classes with differing rates of change Design such that parts

of the application that change quickly will require both ease of change and
looser coupling to the rest of the system. Subsystems that change more slowly
can be more tightly coupled, providing efficiency opportunities.

Extensibility The application functionality must be able to keep up with
organizational growth and technological change.

Modularity We should break the design into modules that interact
through well-defined interfaces, thereby allowing the developer to work
independently, enhance maintainability and testability, and provide
opportunities for using purchased components and outsourcing some
development.

Security Data security enforcement is crucial, especially if the application is
performing financial transactions, for the privacy and security of customers.

Common look-and-feel The application GUI should be designed such that
the user can always intuitively know where to look for desired information.

Minimize network traffic The application should avoid transmitting data
needlessly or redundantly.

Allow for multiple user interfaces The data should be represented in a way
most appropriate for the task at hand. New types of user interfaces should be
easy to add.

Persistent data must always be consistent The design should fulfill the
goal by using the MVC design pattern to separate form, function, and data;
by dividing the application into functional modules and multiple tiers; and by
applying several design patterns, which are common problem solutions that
have been found to work well in the past. The existing legacy systems can
be accessed via the JEE components by using the Proxy, Adapter, or Facade
patterns to “wrap” legacy systems with Java-based APIs such as JNI (Java
Native Interface) so that legacy developers can continue their work and JEE
developers can interface with the technology, obviating the need to rebuild
the legacy functionality in JEE. The legacy systems are given a new life, as
they are now JEE-enabled.

I 62 Chapter 4. Applicability of JEE Technology

EXERCISE 4-4

Defining Best Practice and Guideline

Question Define the concepts of best practice and guideline.

Answer A best practice is a technique used to drive design at the component
level. A best practice is an optimal process that is recognized by peers in similar situ-
ations. It is applicable to a cross-section of scenarios with varying resources and sizes.
[t takes design requirements into consideration. For example, a best practice might
be to use session beans as facades to entity beans.

On the other hand, a guideline is a rule applied horizontally to the design.
Guidelines reflect agreements on practices or operations by recognized professional
associations. This includes formal, approved standards, as contrasted to de facto
standards and proprietary standards that are exceptions to this concept. For example,
to minimize network traffic, the architect attempts to maximize the content of a
data request—that is, we try to get as much as we can out of each request.

CERTIFICATION OBJECTIVE 4.05

Review Best Practices Applicable for All Tiers

The MVC best practice is a design pattern that can be applied across all tiers.

The MVC architecture is a way to divide functionality among objects involved in
maintaining and presenting data so as to minimize the degree of coupling between
the objects. The MVC architecture was originally developed to map the traditional
input, processing, and output tasks to the graphical user interaction model. However,
it is straightforward to map these concepts into the domain of multi-tier web-based
enterprise applications.

In the MVC architecture, the Model represents application data and the business
rules that govern access and modification of this data. The Model can be represented
in many ways, including but not limited to E]Bs and JavaBeans. The Model notifies
views when it changes and provides the ability for the View to query the Model

Review Best Practices for the ClientTier | &3

about its state. It also provides the ability for the Controller to access application
functionality encapsulated by the Model. The View renders the contents of a Model.
It is usually implemented as a JSP. It accesses data from the Model and specifies how
that data should be presented. When the Model changes, it is the responsibility of
the View component to maintain consistency in its presentation. The View forwards
user gestures to the controller.

A Controller defines application behavior; it interprets user gestures and maps
them into actions to be performed by the model. The servlet best fits this task.
In a stand-alone GUI client, these user gestures could be button clicks or menu
selections. In a web application, they appear as GET and PoST HTTP requests to the
web tier. The actions performed by the Model include activating business processes
or changing the state of the Model. Based on the user gesture and the outcome of
the Model commands, the Controller selects a View to be rendered as part of the
response to this user request. Usually, one Controller exists for each set of related
functionality.

The implementation of MVC pattern offers the following benefits:

B Clarifies application design through separation of data modeling (Model)
issues from data display (View) and user interaction (Controller)

B Facilitates distribution of the application, as MVC boundaries are natural
distribution interface points

CERTIFICATION OBJECTIVE 4.06

Review Best Practices for the ClientTier

Thin-client solutions (HTML on a browser) are important to Internet-based
applications. The browser acts as your client for rendering the presentation as
encoded in HTML.

In addition to content that can be rendered with static HTML, the following
items can be used to create web content: JSPs, servlets, applets, and JavaScript can
be used to enhance the browser interface.

I 64 Chapter 4. Applicability of JEE Technology

CERTIFICATION OBJECTIVE 4.07

Enumerate the Components and Categories
of the Web Tier

The web tier produces responses that can be handled by the use of web component,
a software entity that provides a response to a request. A web component typically
generates the user interface for a web-based application. The JEE platform specifies
two types of web components: servlets and JSP pages.

Web components are hosted by servlet containers, JSP containers, and web
containers. In addition to standard container services, a servlet container provides
network services by which requests and responses are sent, decodes requests, and
formats responses. All servlet containers must support HTTP as a protocol for
requests and responses, but they may also support additional request-response
protocols such as HTTPS. A JSP container provides the same services as a servlet
container and an engine that interprets and processes a JSP page into a servlet. A
web container provides the same services as a JSP container and provides access to
the JEE service and communication APIs.

CERTIFICATION OBJECTIVE 4.08

Explain How to Apply MVC to the Web Tier

The MVC design pattern can be applied to the web tier because it results in a
separation of the application data from the ways that the data can be accessed or
viewed as well as from the mapping between system events (such as user-interface
events) and application behaviors.

As mentioned, the MVC pattern consists of three component types. The Model
represents the application data along with methods that operate on that data.
The View component displays that data to the user. The Controller translates user
actions such as mouse movement and keyboard input and dispatches operations on
the Model. As a result, the Model will update the View to reflect changes to the
data. The View consists of JSP amended with JavaScript and embedded tags that can
provide the full function user interface. The Controller is usually a servlet, and the
Model can be a JavaBean or an E]B.

Review the Best Practices for the Presentation Layer | § 8

CERTIFICATION OBJECTIVE 4.09

Review the Best Practices
for the Presentation Layer

To avoid needlessly complex presentation components in the web tier, follow these
practices:

EXERCISE 4-5

Separate HTML from Java.

Try to place business logic in JavaBeans.

Factor general behavior out of custom tag handler classes.
Favor HTML in Java handler classes over Java in JSPs.
Use an appropriate inclusion mechanism.

Use a JSP template mechanism.

Use style sheets.

Use the MVC pattern.

Use available custom tag libraries.

Determine the appropriate level of XML compliance.
Use JSP comments in most cases.

Follow HTML best practices.

Utilize the JSP exception mechanism.

lllustrate the Use of JEE for Workflow

Question In a web application, what type of component is usually used for the
View and Controller elements of the MVC pattern? What type of component is
usually used for the Model element?

Answer Most applications implementing the MVC generally utilize JSPs to
construct the View component. Most applications generally utilize a servlet as the
main component of the Controller. An application typically represents the Model,
which is the internal state of the system, as a set of one or more JavaBeans with
properties that represent the details of that state. These beans may be self-contained,

I 66 Chapter 4. Applicability of JEE Technology

and they are able to save their state information persistently. Additionally, they
may be facades that know how to retrieve information from external sources such
as databases when that information is requested. Entity EJBs can also be used to
represent internal state.

CERTIFICATION OBJECTIVE 4.10

Review the Internationalization and Localization

To operate in a global economy, JEE information systems must address a number of
additional requirements, including the following:

B Language requirements Users of a globally available application may
speak different languages. The relationship between geographic region and
language spoken is not simple. Representation of such quantities as numbers,
dates, times, and currency vary by region.

B Legal differences Countries vary in customs law and information privacy
requirements. Some governments place limitations on ideas, images, or speech.

B Financial considerations Currencies are not necessarily freely convertible.
Forms of payment may differ; for example, not all customers can be assumed
to have a credit card or purchase order number. Governments have different
requirements for customs restrictions, tariffs, and taxes.

Internationalization terminology is commonly used inconsistently, even
within the internationalization field. This section presents definitions of common
internationalization terms as they are used in the rest of the chapter.

Internationalization, Localization, and Locale

The set of location-specific elements represented in an application is called a
locale. To be effective, applications should customize data presentation to each
user’s locale. Internationalization is the process of separating locale dependencies
from an application’s source code. Interestingly, internationalization is also known
as “I18n” because the first character is I, and between the first and last character
there are 18 characters with a last character of n. Examples of locale dependencies
include messages and user interface labels, character sets, encoding, and currency

The EJBTier | 67

and time formats. Localization (also called “L10n”) is the process of adapting an
internationalized application to a specific locale. An application must first be
internationalized before it can be localized. Internationalization and localization
make a JEE application available to a global audience.

An internationalized JEE application does not assume the locale. If requests
from clients arrive with an associated locale, then the response should be tailored
for the locale. Internationalizing an existing application requires refactoring.
Internationalization is fundamentally an architectural issue. Internationalization
is facilitated if it is integrated into the application design. A project’s design phase
should identify and separate locale dependencies if the application might ever need
to support multiple locales.

EXERCISE 4-6

Localization and Internalization

Question Describe the use of localization and internalization.

Answer Internationalization, also known as [18n, is the process of separating
locale dependencies from an application’s source code. Examples of locale
dependencies include messages and user interface labels, character sets, encoding,
and currency and time formats. Localization, also called L10n, is the process of
adapting an internationalized application to a specific locale. An application
must first be internationalized before it can be localized. Internationalization and
localization make a JEE application available to a global audience.

The E)JB Tier

The EJB tier hosts the application-specific business objects and the system-level
services (such as transaction management, concurrency control, and security).
The E]B tier is a critical link between the web tier and the EIS integration tier. It
typically hosts the entity beans and session beans, data access objects and value
objects, and perhaps master-detail modeling using enterprise beans.

I 68 Chapter 4: Applicability of JEE Technology

JEE Best Practices: Data Access Objects

Unfortunately, most systems in use today rely on specific features of the enterprise’s
standard system resources, such as a vendor DBMS; they merge business logic

and data access mechanisms. The result is lack of portability. As these standard
resources become obsolete, the application systems tied to a resource become a real
chore to upgrade. A good architect wants to avoid tying an application’s business
logic components to a resource, so the architect upgrades to a system with the least
amount of resistance.

The data-access object (DAQO) pattern separates the interface to a system
resource from the code used to access that resource by encapsulating the access to
the data. Each enterprise bean that accesses a back-end resource in the application
may have an associated DAO class, which defines an abstract API of operations on
the resource. This allows a clean separation of bean and database access code. This
also ensures easier migration to and from bean to container-managed persistence for
entity beans and allows for cross-database and cross-schema capability. This abstract
API makes no reference to how the resource is implemented. The DAQO simply has
to know how to operate from the persistent store given some identity information
such as a filename. For example, an enterprise bean uses data it obtains from the
DAOQO, not directly from the database. In this way, the enterprise bean defers its
persistence mechanism to the DAQO, allowing it to concentrate entirely
on implementing business methods.

JEE Best Practices:Value Objects

Some enterprise information objects have values that are used together. For
example, in a shopping cart application, the fields of the Address object are always
used together. Using a complete remote interface for such entity beans is overkill
and results in unacceptably high server communication.

The data for an Address object can be retrieved once, sent to the client from the
server in serialized form, and instantiated on the client. From then on, the local
copy of the Address information can serve as a proxy for the Address property of
the remote Order object. Subsequent accesses to the Address object’s state are local,
require no server communication, and use fewer resources. If the Address object is
updated and sent to the server to update the server-side object, the entire object is
sent. Furthermore, local accesses obviously have lower latency than accesses deferred
through a remote interface.

The EjBTier | 69

Such a client-side object is called a Value Object, because it represents a
composite value from the server, not a reference to an object on the server. Value
Objects tend to be more-or-less ad hoc groupings of data values to support a use case
(or group of use cases).

Use Value Objects for business objects that represent structure with accessor get
and set behavior only.

You should use a Value Object when the business entity being modeled has

B Only methods that get values from the object’s internal state (that is,
immutable state)

B A life cycle that is completely controlled by another object

B A relatively small size

Whenever you update a bean by passing it a Value Object, the code should
inspect all attributes of the Value Object and update the corresponding model bean
attributes with their values. It should also check whether the version number of the
Value Object is different from the model bean’s version number. If this is the case,
it should throw an exception, which indicates that the bean has been updated by
another client.

JEE Best Practices: Session Bean Facade

The session bean facade (SBF), shown in Figure 4-13, provides a simple, single
point of entry to shared entity beans. It shields the client from complex entity

bean relationships. The most obvious rationale for using session beans to abstract
entity beans is that the approach also abstracts the structure of your data stores.
The presumption is that you do not want to expose the inner workings of your
application’s data store (such as the database tables and columns), or even the
specifics of how that data is stored. In other words, letting users (potential hackers)
know your database schema is a not a good idea. Problems can arise when you allow
direct access to the entity bean layer.

The methods in entity beans typically map directly to underlying fields in the
data schema. This will become more important as service-based computing increases.
Instead of providing complete applications, the JEE specification (or Web Services:
UDDI, SOAP) indicates that organizations are focusing more on components
than on complete applications. Interchanging data components from enterprise
A’s application with presentation components from enterprise B’s application is

I 70 Chapter 4. Applicability of JEE Technology

Session bean
facade

4)

Application server

Invocation

Session Invocation

bean

Invocation

Network

Invocation

Invocation

Session
bean

Invocation

Invocation

- /

becoming the standard. As a result, it is unsafe to assume that only your enterprise
will be accessing your business layer and E]Bs. For these reasons, a sound design of
the business layer can save trouble when beans you worked on must be accessible by
a new business partner.

By interjecting a layer of indirection in the form of a session bean, these problems
were easily solved (as shown in Figure 4-13). The session beans become responsible
for determining user permissions, providing greater flexibility and reuse. Session
beans perform collections of calls to the entity beans on behalf of the remote clients,
reducing network traffic. The transactional scope can be applied to methods that
call groupings of entity beans, thus reducing the transactional overhead. Client-tier
code requirements are simplified as more business logic is executed on the server.

JEE Best Practices: Master Detail

In a master-detail relationship, one object serves as a parent node to another. A
master-detail relationship is a one-to-many type relationship. For example, if you
receive an order and a set of items placed for each order, a master-detail relationship

The EJBTier |71

is created by having the order number as a common field between the two. An
application can use this master-detail relationship to enable users to navigate
through the order data and see the detailed item data for orders placed.

When modeling a master-detail relationship as enterprise beans, the guidelines
for using entity or session beans still hold. The choice is not affected by the master-
detail relationship. However, the relationship is relevant when designing the
behavior of the master. For example, suppose the master object should be modeled as
a session bean and the details object should be an entity bean. In analyzing various
possible combinations of session beans, entity beans, or value objects to represent
master and detail objects, these questions are relevant only when the details are
entity beans. For this case, two scenarios are possible:

B If the client modifies the detail entity object, the master object needs to
expose the underlying entity object to the clients.

B If the client does not modify the detail entity object, the master object can
have the necessary business logic to know which detail bean to access to
construct the logical master-detail object. The client should not be exposed
to the logic associated with accessing and aggregating the entity beans
representing the details.

EXERCISE 4-7

Data Access Objects

Question Define data access objects and describe their purpose.

Answer The DAQ pattern separates the interface to a system resource from

the code used to access that resource. The DAO class defines an abstract API of
operations on the resource. The DAO knows how to operate from a persistent store,
based on some identity information such as a filename. The enterprise bean defers
its persistence mechanism to the DAQO, allowing the EJB to concentrate entirely
on implementing business methods. Use the DAQO to encapsulate access to data,
maintain clean separation of bean and database access code, ensure easier migration
to container-managed persistence for entity beans, and allow for cross-database and
cross-schema capability.

I 72 Chapter 4: Applicability of JEE Technology

EXERCISE 4-8

Value Objects

Question Define Value Objects and describe their purpose.

Answer A Value Object represents a composite value from the server, not a refer-
ence to an object on the server. Value Objects are ad hoc groupings of data values to
support a use case (or group of use cases).Value Objects can be used for fine-grained
business objects that represent structure with get/set behavior only. Use a Value Object
when the business entity being modeled has

B Only methods that get values from the object’s internal state (that is,
immutable state)

B A life cycle that is completely controlled by another object

B A relatively small size

EXERCISE 4-9

Facades

Question Describe the use of session bean facades and their purpose.

Answer The SBF provides a simple, single point of entry to shared entity beans. It
shields the client from complex entity bean relationships. SBF manages workflow on the
client’s behalf, and it reduces remote calls to the server. Architects using EJB technologies
discovered almost immediately that providing access to entity beans from the client layer
presents multiple problems, such as an overabundance of network traffic and latency,
awkward security management, inefficient transactional behavior, and limits in reusability.

JEE Best Practices: EIS Integration Tier

The EIS Integration tier provides the information infrastructure for an enterprise.
Accessing EIS can be complex, requiring vendor-specific knowledge of the following:
B Application programming model
B Transactions

B Security

The
heterogeneous
enterprise
architecture

The EjBTier |73

JEE reduces the complexity of accessing an enterprise information system by relying
on the web and EJB containers to handle transactions, security, and scalability. JDBC
accesses relational data. JNDI accesses enterprise name and directory services. JMS
sends and receives messages using enterprise messaging systems. JavaMail sends and
receives mail. JavalDL calls CORBA services. JNI calls services written in other
languages—]NI can interact with native languages.

As more businesses move toward an e-business strategy, integration with existing
EISs becomes the key to success. Enterprises with successful e-businesses need to
integrate their existing EISs with new web-based applications, possibly using the
JEE APIs that match the existing EIS functionality. JEE APIs extend the reach of
the EISs to support business-to-business (B2B) transactions.

Before the JEE Connector architecture was defined, no specification for the
Java platform addressed the problem of providing a standard architecture for
integrating heterogeneous EISs. Most EIS vendors and application server vendors
use nonstandard vendor-specific architectures to provide connectivity between
application servers and EISs. Figure 4-14 illustrates the complexity of a heterogeneous
environment.

The JEE Connector architecture provides a Java solution to the problem of
connectivity among the many application servers and EISs already in existence. By
using the JEE Connector architecture, EIS vendors no longer need to customize their
products for each application server. Application server vendors who conform to the
JEE Connector architecture do not need to add custom code whenever they want to
add connectivity to a new EIS.

EIS tier

Enterprise
services

Middle-tiers

Clients Device

I 74 Chapter 4: Applicability of JEE Technology

The JEE Connector architecture is based on the technologies that are defined and
standardized as part of the JEE.

JEE Connector Overview

The JEE
Connector
architecture

The JEE Connector architecture defines a standard architecture for connecting

the JEE platform to heterogeneous EISs. Examples of EISs exist in almost any
enterprise computing environment. A nonexhaustive list includes ERP, mainframe
transaction processing, database systems, and legacy applications not written in the
Java programming language. By defining a set of scalable, secure, and transactional
mechanisms, the JEE Connector architecture enables the integration of EISs with
application servers and enterprise applications.

The JEE Connector architecture enables an EIS vendor to provide a standard
resource adapter for its EIS. The resource adapter plugs into an application server,
providing connectivity among the EIS, the application server, and the enterprise
application. If an application server vendor has extended its system to support the
JEE Connector architecture, it has connectivity to multiple EISs. An EIS vendor
needs to provide just one standard resource adapter that has the capability to plug
into any application server that supports the JEE Connector architecture.

Multiple resource adapters (that is, one resource adapter per type of EIS) are
pluggable into an application server. This capability enables application components
deployed on the application server to access the underlying EISs.

Figure 4-15 illustrates the JEE Connector architecture.

Container-component
contract

Application
component

Application server

Application contract

Connection
manager

Transaction
manager

System contract

Resource adapter

Security
manager

EIS specific interface

Enterprise Information System

Connection management
Security management
Transaction management

The EJBTier |78

Resource Adapter

To achieve standard, system-level pluggability between application servers and EISs,
the JEE Connector architecture defines a standard set of system-level contracts
between an application server and EIS. The resource adapter implements the EIS
side of these system-level contracts.

A resource adapter is a system-level software driver used by an application server or
an application client to connect to an EIS. By plugging into an application server, the
resource adapter collaborates with the server to provide the underlying mechanisms,
the transactions, security, and connection pooling mechanisms. A resource adapter is
used within the address space of the application server.

System Contract

An application server and an EIS collaborate to keep all system-level mechanisms,
such as transactions, security, and connection management, transparent from the
application components. As a result, an application component provider focuses on
the development of business and presentation logic for its application components
and need not get involved in the system-level issues related to EIS integration.
This promotes easier and faster development of scalable, secure, and transactional
enterprise applications that require connectivity with multiple EISs.

The JEE Connector architecture defines the following set of system-level
contracts between an application server and EIS:

B A Connection Management contract that lets an application server pool
connect to an underlying EIS and lets application components connect to an
EIS. This leads to a scalable application environment that can support a large
number of clients requiring access to EISs.

B A Transaction Management contract between the transaction manager and
an EIS that supports transactional access to EIS resource managers. This
contract lets an application server use a transaction manager to manage
transactions across multiple resource managers. This contract also supports
transactions that are managed internal to an EIS resource manager without
the necessity of involving an external transaction manager.

B A Security Contract that enables a secure access to an EIS. This contract
provides support for a secure application environment, which reduces security
threats to the EIS and protects valuable information resources managed by

the EIS.

I 76 Chapter 4. Applicability of JEE Technology

Common Client Interface (CCI)

The JEE Connector architecture also defines a common client interface (CCI) for
EIS access. The CCI defines a standard client API for application components. The
CCI enables application components and enterprise application integration (EAI)
frameworks to drive interactions across heterogeneous EISs using a common client

API. The CCl is intended for use by the EAI and enterprise tools vendors.

CERTIFICATION OBJECTIVE 4.11

lllustrate When to Use JEE Technology
for Given Situations

This scenario illustrates the use of the JEE Connector architecture in a B2B
e-commerce scenario. Morris Phillips Corp. is a manufacturing firm that aims to
adopt an e-business strategy. Morris Phillips has huge existing investments in its
EIS systems, which include an ERP system and a mainframe transaction processing
system. Morris Phillips needs to drive B2B interactions with its multiple supplier
vendors, and it wants to leverage its existing EIS investment while adopting the new
e-business architecture.

With these goals in mind, Morris Phillips buys a JEE-based server (called the B2B
server) from B2B, Inc. The B2B server can drive B2B interactions with multiple
buyers and suppliers. The B2B interactions are driven using XML over HTTP (or
HTTPS). The JEE Connector architecture enables Morris Phillips to integrate
its existing EISs with the B2B server. Morris Phillips buys off-the-shelf resource
adapters for its existing set of EISs. It then integrates its B2B server and applications
(deployed on the B2B server) with its EISs using these connectors.

The applications deployed on the B2B server extract data from the underlying
EISs. The extracted data may be in XML or converted into XML by the applications.
The loosely coupled B2B interactions with suppliers are then driven by exchanging
XML data over the HTTP (or HTTPS) protocol.

Figure 4-16 illustrates Morris Phillips’ use of the JEE Connector architecture to
run its business.

EISs provide the information infrastructure critical to the business processes of an
enterprise. Examples of EISs include relational databases, ERP systems, mainframe
transaction processing systems, and legacy database systems.

Morris Phillips’
use of the JEE
Connector
architecture

lllustrate When to Use JEE Technology for Given Situations | 77

Internet

Buyer i Connector
i contracts
Supplier | XMUHTTP__ Web B
i container container
eMarket i
i J2EE-based B2B server
i Mainframe TP system

The EIS integration problem has assumed great importance because enterprises
are striving to leverage their existing systems and resources while adopting and
developing new technologies and architectures. Today, enterprise application
development is more about integration rather than developing an enterprise
application from scratch. Enterprises cannot afford to discard their investments
in existing applications and EISs. The emergence of web-based architectures and
Web services has made it more imperative for enterprises to integrate their EISs and
applications and expose them to the web.

The EIS integration problem is one part of the broader scope of EAI. EAI entails
integrating applications and enterprise data sources so that they can easily share
business processes and data. We will focus on the following aspects of EAI including
discussions of recommended guidelines:

B Application integration Existing enterprise applications may be off-the-
shelf bundled applications, or they may be developed in-house. Two examples
are supply chain management (SCM) and customer relationship management
(CRM) applications. While such applications expose business-level
functionality used directly by end users or integrated with other enterprise
applications, they usually do not expose the underlying data on which the
business functionality is built.

B Data integration An enterprise environment often contains more than one
database system upon which its business processes run. These database systems
may be relational, object-based, hierarchical, file-based, or legacy stores. Data
integration focuses on integrating existing data with enterprise applications.
For example, an integration might entail integrating a web-based order
management system with an existing order and customer database.

I 78 Chapter 4: Applicability of JEE Technology

B Legacy integration Legacy integration involves integrating new enterprise
applications with applications and EISs that have been in operation for some
time, often referred to as an enterprise’s legacy systems. An enterprise cannot
afford any disruption in these legacy systems.

EIS Guidelines: Data Access

Here, the architect must rely on vendor tools for EIS integration, such as data and
function mining tools, object-oriented analysis and design tools, application code
generation tools, application composition tools, and of course deployment tools.
In-house deployers who are knowledgeable in the enterprise organization should be
charged to set transaction, security, and deployment requirements.

EIS Access Objects

Access objects abstract complex, low-level details of EIS system access into access
objects; provide a common, consistent access to various types of EISs; and separate
access objects from business objects. Access objects can be made into well-known
JavaBeans for use in development tools.

When implementing access objects, do not make assumptions about environments
outside access objects. Architects should strive to design for reusability across tiers
and components. Access objects should not define declarative transactions or security
requirements. It is important to maintain consistency in programming restrictions
between business objects and access objects.

Guidelines: Connections

Components should acquire and release connections within a single method. They
should account for differences across component types in connection management
such as JSP and servlets, stateful and stateless session beans, and entity beans.
Components should avoid opening multiple concurrent connections to a single
database, because this is not supported by some JDBC drivers.

Performance-Related Best Practices: Data Caching

Much of the interesting data in a system can remain unchanged for minutes, hours,
or even longer. When accessing interesting information of such a static nature, or in
noncrucial use cases wherein a client does not require real-time data, network traffic

lllustrate When to Use JEE Technology for Given Situations | 79

and database usage can be greatly reduced through the use of data caching. Here are
some tips:

B [f clients have slow back-end connections, consider compressing data for
network communication.

B Minimize the number of network round trips required by the application.

B For applications to scale to many users, minimize the amount of shared
memory that requires updating.

B Cache data to minimize lookup time, although this can reduce scalability if
locks are required to access the cache.

B If there are more accesses than updates to a cache, share the access lock

among all the accessors, but be aware that this reduces the window for
updaters to lock the cache.

Eliminate memory leaks before tuning execution speed.

B Ensure that the development environment approximates/simulates the
production deployment environment.

B Consider metrics: maximum response ratio and CPU utilization under various
activity loads. How well does the application scale when additional users are

added?

B Spend your time wisely: For example, improving the performance of a method
that is called 1000 times is better than improving the performance of a method
that is called only 10 times.

B Don’t cache data unless you know how and when to invalidate the cached
entries.

JEE Best Practices: Services

The Service-locator is used when accessing common services within JEE, such as
JMS factories, data sources, EJBHome objects, and so on. The application will use
the JNDI API. This will require the creation of an initial context object (the root
of the naming service), followed by a lookup or search for the desired resource
or service. This lookup (if successful) results in the transferring of that resource’s
serializable representative to the interested party.

Some major design problems become evident when the clients are co-located and
not local to the EJB or other accessed service:

I 80 Chapter 4: Applicability of JEE Technology

Entire seconds can go by each time these operations are carried out.

Each interested client must be complicated by the inclusion of]NDI-API-
specific code.

Unnecessary network traffic is added to the system.

Avoid some of this overhead by caching references to the service object (for
example, EJBHome references) to avoid JNDI lookup overhead. An EJB call is
expensive, owing to the requirements for an EJB. For example, a method call from
the client could cover all the following: get Home reference from the NamingService
(one network round trip); get EJB reference (one or two network round trips plus
remote creation and initialization of Home and EJBObjects); call method and return
value on EJBObject (two or more network round trips: client/server and [multiple]
server-DB; several costly services used such as transactions, persistence, security, and
so on; multiple serializations and deserializations).

To prevent performance problems, do the following:

If an EJB service for an object is overkill (for example, if the object will only
be accessed locally), use a plain Java object and not an EJBObject.

You can use local interfaces (from EJB2.0) if E]B calls another E]B (or a servlet
calling an EJB) from the same container and the same virtual machine.

Wrap entity beans in a session bean to change multiple EJB remote calls
into one session bean remote call and several local calls. (This is the pattern
discussed earlier in the chapter, known as the session bean facade.)

Change multiple remote method calls into one remote method call with all
the data combined into a parameter object.

Control serialization by modifying unnecessary data variables with a transient
keyword to avoid unnecessary data transfer over network.

Cache EJBHome references to avoid JNDI lookup overhead (as we just
discussed the pattern called ServiceLocator).

Declare nontransactional methods of session beans with NotSupported

or Newer transaction attributes (in the ejb-jar.xml deployment descriptor
file). If the code calling a method in this bean has a transaction running,
suspend that transaction until the method called in this bean completes. No
transaction context is created for this bean.

Transactions should span the minimum time possible as transactions lock

database rows. This depends on transaction isolation that is defined in terms
of isolation levels called dirty reads, repeatable reads, and phantom reads.

Security

Security |81

A repeatable read is when the data read is guaranteed to look the same if
read again during the same transaction. Repeatable reads typically means
that the data read is locked against changes. If the data is locked, it cannot
be changed by any other transaction until this transaction ends. A dirty
read occurs when the first transaction reads uncommitted changes made
by a second transaction. If the second transaction is rolled back, the

data read by the first transaction becomes invalid because the rollback
undoes the changes. The first transaction won’t be aware that the data it
has read has become invalid. Phantom reads occur when new rows added
to the database are detectable by transactions that started prior to the
insert. Queries will include rows inserted by other transactions after their
transaction has started.

Threats to enterprise-critical assets can include such events as disclosure of
confidential information, the modification or destruction of information, the
misappropriation of protected resources, the compromise of accountability,
and misappropriation that compromises availability. Exposure to threats can
be mitigated using software that provides authentication, authorization, and
auditing.

A good security guideline is to support consistent end-to-end security architecture.
This is accomplished by integrating with existing security environments. This is
known as identity management. Large firms have provisioning systems that manage
user accounts across different application domains and operating systems. The
proper security guidelines should support authentication and authorization. Another
objective of good security is to be transparent to application components and enable
applications to be portable across security environments. A good technique is to have
the user identity passed from the calling application.

Security Terminology

An entity is something that can have access rights applied to it. A principal is an
entity to which privileges can be assigned. A role is a collection of privileges.
Authentication is a mechanism by which callers and service providers prove that they

I 82 Chapter 4. Applicability of JEE Technology

are acting on behalf of specific users or systems. Web-tier authentication consists
of HTTP basic authentication, form-based authentication, and HTTPS mutual
authentication.

Authentication in the EJB and EIS Integration Tiers

The EJB tier authentication can be accomplished using protection domains, by
placing a protected web resource in front of a protected EJB resource, or by linking
protected web resources on every web resource that calls E]JB resources. On the
EIS integration tier, authentication can be accomplished using container-managed
resource manager sign-on or an application-managed resource manager sign-on.

Protection Domains

In a JEE application, protection domain refers to a set of entities that are assumed, or
known to trust each other. When a component interacts with components in the
same protection domain, no constraint is placed on the identity that it associates
with its call. The caller may propagate the caller’s identity, or choose an identity
based on knowledge of authorization constraints imposed by the called component,
since the caller’s ability to claim an identity is based on trust. If the concept of
protection domains is employed to avoid the need for authentication, there must be
a means to establish the boundaries of protection domains, so that trust in unproven
identities does not cross these boundaries.

In JEE, a container provides an authentication boundary between external
callers and the components it hosts. Containers enforce the boundaries, and
implementations are likely to support protection domains that span containers.

A container is not required to host components from different protection domains,
although an implementation may choose to do so.

Authorization

Authorization entails applying security policies to regulate what specific users, or
groups of users, can access in the system. An access control limits the resources a
user has access to according to that user’s permissions. Access control can also be
used to limit the type of access a user has to a resource, such as read or write access.
Two approaches can be used to define access control rules: the capabilities are
examined to focus on what a caller can do, and permissions focus on who can do
what. The JEE application programming model focuses on permissions.

Security | 83

With declarative authorization, the container-enforced access control rules
associated with a JEE application are established by the deployer. The deployer uses
a deployment tool to map an application permission model to policy specific to the
operational environment. The application permission model is contained in
a deployment descriptor.

The deployment descriptor defines logical privileges, called security roles, and
associates them with components to define the privileges required to be granted
permission to access components. The deployer assigns these logical privileges to
specific callers to establish the capabilities of users in the runtime environment.
Callers are assigned logical privileges based on the values of their security attributes.

The EJB container grants permission to access a method to callers that have at
least one of the privileges associated with the method. Security roles also protect
web resource collections—that is, a URL pattern and an associated HTTP method,
such as GET. The web container enforces authorization requirements similar to those
for an EJB container. Note that when a resource has no associated security role,
permission to access the resource will be granted to all.

In both tiers, access control policy is defined at deployment time, rather than
application development. The deployer can modify the policy provided by the
application assembler. The deployer refines the privileges required to access the
components and defines the correspondence between the security attributes
presented by callers and the container privileges. In any container, the mapping
from security attributes to privileges is scoped to the application, so that the
mapping applied to the components of one application may be different from that
of another application.

With programmatic authorization, a JEE container makes access control
decisions before dispatching method calls to a component. As a result, the
state of a component doesn’t affect the access decisions. A component can use
two methods, EJBContext . isCallerInRole for enterprise bean code and
HttpServletRequest.isUserInRole for web components. A component uses
these methods to determine whether a caller has been granted a privilege selected by
the component, basing its choice on the parameters, the state of the component, or
factors such as the time of the call.

The application component provider of a component that calls one of these
functions must declare the complete set of distinct roleName values used in all of
its calls. These declarations appear in the deployment descriptor as security-
role-ref elements. Each security-role-ref element links a privilege name
embedded in the application as a roleName to a security role. It is ultimately the
deployer that establishes the link between the privilege names embedded in the

I 84 Chapter 4. Applicability of JEE Technology

application and the security roles defined in the deployment descriptor. The link
between privilege names and security roles may differ for components in the same
application.

Use declarative authorization where possible and programmatic authorization
when more functionality is required. When using declarative authorization, ensure
that access control is not bypassed. Apply the same access control rules to all
the methods in a component. There is a trade-off between the external access
control policy configured by the deployer and the internal policy embedded in the
application code. The former is flexible after the application has been written. The
latter provides more options in terms of functionality. The former is transparent and
completely comprehensible. The latter is hidden in the application code and may be
understood only by the application developers. These trade-offs should be considered
in choosing the authorization model.

Controlling Access to Resources

To control access to web resources, specify the constraint in the deployment descriptor.
To control access to EJB resources, specify the roles in the deployment descriptor. You
can also specify the methods of the remote and home interface that each security role
is allowed to invoke. The proper assignment of users to roles determines whether a
resource is protected.

To ensure message integrity, the following measures can be used:

B Message signature A cryptographically enciphered message digest of the
message contents

B Message confounder Ensures message authentication is useful only once

Message signatures might be required for component-to-component invocations
that traverse unprotected networks. Specify message protection only for critical
messages and components in the deployment descriptor.

Transactions

A transaction is a bracket of processing that represents a logical unit of work; it is an
“all-or-nothing” contract, and all of the processing must be completed or else the
transaction management should restore the application to the status quo ante—as
it was before the transaction. Transactions are basically a specific sequence of
operations on resources, typically the data actions select, insert, and update, which

Context ic

Security | 85

transform the system from one consistent state to another. To reflect the correct
state of the system, a transaction should have the following properties:

B Atomicity This is the all-or-nothing property. Either the entire sequence of
operations is successful or the sequence is entirely unsuccessful. Completed
transactions are committed. Partially executed transactions are rolled back.

B Consistency A transaction maps one consistent state of the resources to
another. Consistency is concerned with correctly reflecting the reality of the
state of the resources.

B Isolation A transaction should not reveal its results to other concurrent
transactions before it commits. Certain isolation levels (serialization) assure
that transactions do not access data that is being concurrently updated.

B Durability The results of the committed transactions are permanent.
Resource managers ensure that the results of a transaction are not altered due
to system failures.

Transactions ensure data integrity by controlling access to data. This frees
an application programmer from the complex issues of failure recovery and
multiple-user programming. Transactions are a mechanism used for simplifying
the development of distributed multiuser enterprise applications. Two types of
transaction demarcation can be used: bean-managed and container-managed. In
container-managed transaction demarcation, six different transaction attributes—
Required, RequiresNew, NotSupported, Supports, Mandatory, and
Never—can be associated with an enterprise bean’s method.

Transaction Guidelines in the Web Tier

A servlet or JSP can use JNDI to look up a UserTransaction and use the Java
Transaction API (JTA) to demarcate transactions. A servlet should start a
transaction only in its service method. A transaction should not span multiple web
requests. It is typically bracketed by a begin and a commit or rollback, as the following
code snippet illustrates.

new InitialContext () ;UserTransaction

t =(UserTransaction)ic.lookup ("java:comp/UserTransaction") ;t.begin() ;
// perform processingif (everything worked) {t.commit () ;}else{t.rollback() ;}

In a multi-tier environment, when using EJB, the use of JTA in the web tier is
not recommended. In bean-managed transaction demarcation, the E]JB bean uses
UserTransaction. Only session beans can choose to use bean-managed transactions.

I 86 Chapter 4: Applicability of JEE Technology

In container-managed transaction demarcation, the EJB container is responsible for
transaction demarcation. Moreover, you should use container-managed transaction
demarcation because it is less prone to error, and you should let the container handle
transaction demarcation automatically. It frees the component provider from writing
transaction demarcation code in the component. It is easier to group enterprise
beans to perform a certain task with specific transaction behavior. The bottom line
is that the application assembler can customize the transaction attributes in the
deployment descriptor without modifying the code.

E)JB Tier—Container-Managed
Transaction demarcation is the vehicle by which transaction behavior of EJB is
specified declaratively; it frees the developer from writing code. It is less error-prone
because the container handles all the transaction servicing. It is easier to compose
multiple enterprise beans to perform a certain task with transaction behavior. It
can result in improved performance. A transaction attribute supports declarative
transaction demarcation and conveys to the container the intended transactional
behavior of the associated EJB component’s method.

Six transactional attributes are possible for container-managed transaction
demarcation:

B NotSupported The bean runs outside the context of a transaction. Existing
transactions are suspended during method calls. The bean cannot be invoked
within a transaction. An existing transaction is suspended until the method
called in this bean completes.

B Required Method calls require a transaction context. If one already exists,
it will be used; if one does not exist, it will be created. The container starts a
new transaction if no transaction exists. If a transaction exists, the bean uses
that transaction.

B Supports Method calls use the current transaction context if one exists
but don’t create one if none exists. The container will not start a new
transaction. If a transaction already exists, the bean will be included in
that transaction. Note that with this attribute, the bean can run without a
transaction.

B RequiresNew Containers create new transactions before each method call
on the bean and commit transactions before returning. A new transaction is
always started when the bean method is called. If a transaction already exists,
that transaction is suspended until the new transaction completes.

Security | 87

B Mandatory Method calls require a transaction context. If one does not
exist, an exception is thrown. An active transaction must already exist. If no
transaction exists, the javax.ejb. TransactionRequired exception is thrown.

B Never Method calls require that no transaction context be present. If one
exists, an exception is thrown. The bean must never run with a transaction.
If a transaction exists, the java.rmi.RemoteException exception is thrown.

With respect to transaction attributes, you should use Required for the default
transaction attribute. The RequiresNew attribute is useful when the bean methods
need to commit unconditionally. The NotSupported attribute can be used when the
resource manager is not supported by the JEE product. The BluePrint recommends
not using the attribute Supports. Mandatory and Newver can be used when it is
necessary to verify the transaction is associated with the client.

Transaction Guidelines in EIS

For proper handling of transactions within the EIS integration tier, it is recommended
that a component uses] TA whenever possible when accessing EIS systems. Using
JTA transaction allows multiple components accessing EIS to be grouped in a single
transaction. If a component marks the transaction as rollback only, all EIS work will
be rolled back automatically. With local transactions, each EIS accessed will have to
be committed or rolled back explicitly. In addition, components need extra logic to
deal with individual EIS rollbacks or failures.

To handle a group of EIS operations to work as a transaction, you might need
compensating transactions. For example, in an “identity management system,” let’s
say that when a new user starts his job, E]JBs are used to create a Windows NT ID, a
UNIX ID, and a mainframe ID. We want this group of provisioned applications to
be a transaction. Suppose the NT and UNIX IDs are created but the mainframe fails;
we need to compensate or undo the transactions for the NT and UNIX IDs.

A compensating transaction is a transaction, or group of operations, used to undo
the effect of a previously committed transaction. They are useful if a component
needs to access an EIS that does not support JTA.

A number of problems can arise when using compensating transactions: It is
not always possible to undo the effect of a committed transaction, and the required
atomicity could be broken if the server crashes when a compensating transaction is
used. In addition, database “locks” notwithstanding, inconsistent data might be seen
by concurrent EIS access.

I 88 Chapter 4: Applicability of JEE Technology

EXERCISE 4-10

Security Guidelines

Question Describe security guidelines, terminology, and forms of authentication.

Answer A good security guideline is to provide a consistent end-to-end security
architecture. This is accomplished by seamlessly integrating with existing security envi-
ronments such as EIS support authentication and authorization. Another objective of
good security is to be transparent to application components and enable applications to
be portable across security environments.

With respect to security terminology, an entity is something that can have access
rights applied to it. A principal is an entity to which privileges can be assigned. A role
is a collection of privileges. An authentication mechanism is one by which callers and
service providers prove that they are acting on behalf of specific users or systems.
Good web-tier authentication can consist of HT TP basic authentication, form-based
authentication, and HTTPS mutual authentication for transactions that need added
security for sensitive data.

EXERCISE 4-11

The Role of Transactions

Question Describe the role of transactions.

Answer Transactions ensure data integrity by controlling access to data. Transactions
free an application programmer from the complex issues of failure recovery and multiple-
user programming. Transactions are a mechanism for simplifying the development of
distributed multiuser enterprise applications. Transactions span across all tiers.

Security | 89

CERTIFICATION SUMMARY |

As you have seen, the JEE platform is a multi-tiered distributed application model,
where application logic is divided into components according to their function.
The various components of a JEE application are installed on different machines.
A component’s location depends on which tier or layer in the multi-tiered JEE
environment that component belongs to. These components will already exist
(legacy, client/server databases, messaging) and must be integrated with the JEE
components. The enterprise architect must be aware of the way in which the JEE
application framework can be used to integrate seamlessly with the existing myriad
of business components that make up the enterprise environment.

As you have seen in the chapter, these components reside at various tiers in the
framework. The architect must understand the client tier components, web tier
components, and business tier components that run on the JEE server, and, probably
most important for the enterprise, the EIS tier.

1 90 Chapter 4: Applicability of JEE Technology

TWO-MINUTE DRILL

Explain the JEE Architecture and System Requirements
Q While a JEE application can consist of three or more tiers or layers, JEE
multi-tiered applications are generally considered to be three-tiered
applications because they are distributed across three different locations:
client machines, JEE server machine, and the database or legacy machines
at the back end. JEE applications consist of client components, web
components, and business components.

Q JEE applications are made up of components: self-contained functional
software units assembled into JEE applications with their related classes and
files. These components communicate with other components.

QO The component-based and platform-independent JEE architecture facilitates
development, because business logic is organized into reusable components,
and the JEE server provides underlying services in the form of a container for
every component type.

Q A JEE application is usually assembled from two different types of modules:
enterprise beans and web components. Both of these modules are reusable;
therefore, new applications can be built from pre-existing enterprise beans and
components. The modules are also portable, so the application that comprises
them will be able to run on any JEE server conforming to the specifications.

Explain the Use of Patterns in the JEE Framework

Q The JEE framework employs design patterns to support these capabilities. JEE
uses the following core patterns to enable flexible association of EJB classes
with other components. The Proxy pattern provides a separate implementation
of interface and working code for location transparency. The Decorator
provides a similar contract for a class but with added functionality. The Factory
Method provides ability to define a contract for creating an object but defers
instantiation to subclasses. The Abstract Factory provides a contract for creating
families of related or dependent objects without specifying concrete classes.

O The use of best practices, design patterns, and guidelines is important for JEE
architects. Successful architects and developers share their knowledge and
pass on their proven techniques to others. The net result is productivity. The
ultimate product is the implementation of solid applications.

Two-Minute Drill | Q |l

Describe the Concepts of ‘“Best Practices” and “Guidelines”

Q A best practice is an optimal process that is recognized and approved by
peers in similar situations. It is applicable to a cross-section of scenarios with
varying resources and sizes. [t takes design requirements into consideration.

Q A guideline is a rule applied horizontally to the design. Guidelines reflect
agreements on practices or operations by recognized professional associations.
This includes formal, approved standards, as contrasted to de facto standards
and proprietary standards that are exceptions to this concept.

lllustrate the Use of JEE for Workflow

QO A common method for designing applications is to organize them around an
event-driven user interface. Utilizing the MVC design pattern best practice
results in a separation of the application data from the ways that the data can
be accessed or viewed as well as from the mapping between system events
(such as user interface events) and application behaviors.

Review Best Practices Applicable for All Tiers
Q The Enterprise JavaBeans (E]JB) tier hosts the application-specific business
objects and the system-level services (such as transaction management,
concurrency control, and security). The EJB tier is a critical link between the
web tier and the EIS integration tier. It typically hosts the entity beans and
session beans, data access objects and value objects, and perhaps master-detail
modeling using enterprise beans.

Review Best Practices for the ClientTier

Q Thin-client solutions (HTML on a browser) are important to Internet-based
applications. The browser acts as your client for rendering the presentation as
encoded in HTML.

Q In addition to what can be rendered with static HTML, the following items
can be used to create web content: JSPs, servlets, applets, and JavaScript can
be used to enhance the browser interface.

Enumerate the Components and Categories of the Web Tier

Q The two types of components currently specified for the web tier are servlets
and JSP pages.

1 92 Chapter 4. Applicability of JEE Technology

Web components are hosted by servlet containers,]SP containers, and web
containers.

In addition to standard container services, a servlet container provides
network services by which requests and responses are sent and that decode
requests and format responses. All servlet containers must support HTTP as
a protocol for requests and responses, but they may also support additional
request-response protocols such as HTTPS.

A JSP container provides the same services as a servlet container and an
engine that interprets and processes a JSP page into a servlet.

A web container provides the same services as a JSP container and provides
access to the JEE service and communication APIs.

Explain How to Apply MVC to the Web Tier

a

MVC is applied to the web tier by separating the application data from the
ways that the data is accessed or viewed. The MVC pattern consists of three
component types:

The Model, usually a JavaBean or an EJB, represents the application data
along with methods that operate on that data.

The View component, usually a JSP, displays the data to the user.

The Controller, which is usually a servlet, translates user actions such as mouse
movement and keyboard input and dispatches operations on the Model.

Review the Best Practices for the Presentation Layer

a

OO0 00000000

Separate HTML from Java.

Try to place business logic in JavaBeans.

Factor general behavior out of custom tag handler classes.
Favor HTML in Java handler classes over Java in JSPs.
Use an appropriate inclusion mechanism.

Use a JSP template mechanism.

Use style sheets.

Use the MVC pattern.

Use available custom tag libraries.

Determine the appropriate level of XML compliance.

Use JSP comments in most cases.

Two-Minute Drill | 93

Q Follow HTML best practices.

Q Utilize the JSP exception mechanism.

Review the Internationalization and Localization

Q The set of political, cultural, and region-specific elements represented in an
application is called a locale. Applications should customize data presentation
to each user’s locale. Internationalization, also known as [18n, is the
process of separating locale dependencies from an application’s source code.
Examples of locale dependencies include messages and user interface labels,
character sets, encoding, and currency and time formats. Localization (also
called L10n) is the process of adapting an internationalized application to a
specific locale. An application must first be internationalized before it can
be localized. Internationalization and localization make a JEE application
available to a global audience.

lllustrate When to Use JEE Technology for Given Situations

Q With respect to security, an entity is something that can have access rights
applied to it. A principal is an entity to which privileges can be assigned. A
role is a collection of privileges.

Q Authentication is a mechanism by which callers and service providers
prove that they are acting on behalf of specific users or systems. Web-
tier authentication consists of HT TP basic authentication, form-based
authentication, and HTTPS mutual authentication.

Q Authorization entails applying security policies to regulate what specific
users, or groups of users, can access in the system. An access control limits the
resources a user can access based on permissions. Access control can also be
used to limit the type of access a user has to a resource, such as read or write
access. There are two approaches to defining access control rules: capabilities
are examined to focus on what a caller can do, and permissions focus on who
can do what.

Q For proper handling of transactions within the EIS integration tier, it is
recommended that a component uses JTA whenever possible when accessing
EIS systems. Using JTA transaction allows multiple components accessing
EIS to be grouped in a single transaction. If a component marks the
transaction as rollback only, all EIS work will be rolled back automatically.

I 94 Chapter 4. Applicability of JEE Technology

SELFTEST

The following questions will help you measure your understanding of the material presented in this
chapter. Read all the choices carefully because there might be more than one correct answer. Choose
all correct answers for each question.

Explain the JEE Architecture and System Requirements

I. Which of the following is not true about JEE containers?

A

D.

An EJB container manages the execution of all enterprise beans for a single JEE application.
Enterprise beans and their accompanying containers run on the JEE server.

A web container manages the execution of all JSP and servlet components for a single JEE
application. Web components and their accompanying container run on the JEE server.

An application client container manages the execution of all application client components
for a single JEE application. Application clients and their accompanying containers run on
the JEE server.

An applet container is the web browser and Java plug-in combination that runs on the
client machine.

2. Which statement is not true when discussing the EJB tier?

A

B.

C.
D.

The Enterprise JavaBeans (EJB) tier hosts the application-specific business objects.

The Enterprise JavaBeans (EJB) tier does not host system-level services (such as transaction
management, concurrency control, and security); they are hosted on the EIS tier.

The EJB tier is a link between the web tier and the EIS integration tier.

The EJB tier hosts the entity beans and session beans, data access objects and value objects,
and perhaps master-detail modeling using enterprise beans.

3. Which of the following is not true when put in the context of JEE transaction processing?

A

A compensating transaction is a transaction, or group of operations, used to undo the effect
of a previously committed transaction.

When choosing a transaction attribute, use Required for the default transaction attribute.
When choosing a transaction attribute, use RequiresNew when the bean methods need to
commit unconditionally.

When using a compensating transaction, it is always possible to undo the effect of

a committed transaction.

Self Test | 98

Explain the Use of Patterns in the JEE Framework
4.]EE uses the core patterns to enable flexible association of EJB classes with other components.
Which of the following is not used by JEE?
A. Proxy
B. Decorator
C. Designer
D. Factory

Describe the Concepts of ‘“Best Practices” and ‘“Guidelines”

5. Which statement is not true when discussing best practices?

A. Data access objects are a useful best practice, as they encapsulate access to data and
maintain a clean separation of bean and database access code.

B. A session bean facade provides a simple, single point of entry to shared entity beans.

C. A session bean facade does not shield the client from complex entity bean relationships and
manages workflow on a client’s behalf.

D. A session bean facade avoids the problems associated with access to entity beans from the
client layer—namely overabundance of network traffic and latency and awkward security
management.

Review Best Practices Applicable for All Tiers

6. In which of the following cases would an application not necessarily benefit from the use of
Enterprise JavaBeans?
A. Small-scale deployment
B. Large-scale deployment
C. Requirements transactional in nature
D. No transactional requirements

7. The JEE platform uses a multi-tiered distributed application model; which of the following is
not considered a tier in this architecture?
A. Client tier
B. Web tier
C. Enterprise information system (EIS) tier
D. Security tier

I 96 Chapter 4. Applicability of JEE Technology

8. Which of the following are “best practices” for large distributed systems?

A

Avoid business logic implementation in the display code; display inconsistencies can result
because the logic can be copied and modified in one object and not another.

Coding data manipulation logic, format and display code, and user event handling together
can make application maintenance simple.

Facilitate reuse of user interfaces by segregating application logic from the code for

an existing interface.

Utilizing the MVC design pattern results in a separation of the application data from the
ways that the data can be accessed or viewed as well as from the mapping between system
events (such as user interface events) and application behaviors.

9. Which of the following are not benefits of using the MVC best practice?

A

B.

C.
D.

Clarifies application design through separation of data modeling issues from data display
and user interaction

Enhances reusability by separating application functionality from presentation
Facilitates maintenance by encapsulating application functions behind trusted APIs

Simplifies database design because only the View components access the database

10. Which of the following is not true of using the MVC best practice?

A

C.
D.

The Model in an MVC-based application can be divided into two parts: the internal state
of the system and the actions that can be taken to alter that state.

The Controller portion of the application focuses on receiving requests from the client
(most often a user running a web browser), deciding what business logic function is to be
performed, and delegating responsibility for producing the next phase of the user interface
to an appropriate View component.

The Model determines how the results should be displayed.

The View transfers user input to the Controller.

Explain How to Apply MVC to the Web Tier
Il. Which of the following are not components of the MVC?

A
B.

C.

D.

Model
Calculator
View

Controller

12. Which of the following is not true of the MVC?

A.
B.

The View extrapolates data presentation and responds to users with data.

The Controller extrapolates the user interaction/application semantic map and transforms
user actions into application actions.

Self Test | Q7

C. The Model manages persistence.

D. The Controller maintains the application state.

Review the Best Practices for the Presentation Layer

13. Which of the following is not typically considered a threat to enterprise-critical assets?
A. The disclosure of confidential information
B. The modification or destruction of information
C. The misappropriation of protected resources
D

A misappropriation that does not compromise availability

lllustrate When to Use JEE Technology for Given Situations

14. Which of the following are not true about screen scrapers?

A. Screen scrapers function as terminal emulators on one end and as object interfaces on the
other.

B. Screen scraping may be a useful tool when used in conjunction with the off-board servers.
C. Changes to legacy UI have little or no impact on the new GUI.
D. Screen scraping is best used when the legacy clients have loose coupling with other tiers.
I15. If the telephone company were to rewrite its existing legacy code using newer JEE technology,
what technology would you choose to accommodate both the block purchase and the individual
query?
A. Java Applet technology for the CORBA call and custom socket programming for vanity
number requests
Java Servlet API for the CORBA call and JSP for the custom socket programming
Entity EJBs for both
Session EJBs for both
JNDI for both
MQ Series with a JMS-based solution for both
16. Your company’s web site offers the customers price comparisons on a variety of different

products. You are in charge of converting the web-based solution over to the appropriate JEE
technology. Which of the following should you use?

A. JSP, servlets

JSP, servlets, E]Bs
Applets, E]Bs

No need to change it

mTmo N

moQO®

Perl/CGI scripts is the best solution

I 98 Chapter 4: Applicability of JEE Technology

17. Regarding the JEE EIS integration, which of the following statements is not true?

A

C.

Before the JEE Connector architecture was defined, no specification for the Java platform
addressed the problem of providing a standard architecture for integrating heterogeneous
EISs.

The JEE Connector architecture provides a Java solution to the problem of connectivity
between the many application servers and only new EISs, not those already in existence.
Application server vendors who conform to the JEE Connector architecture do not need to
add custom code whenever they want to add connectivity to a new EIS.

18. Regarding the JEE EIS integration contracts, which of the following statements is not true?

A

B.

A Connection Management contract allows an application server to pool connections to
an underlying EIS.

A Transaction Management contract lets an application server use a transaction manager
to manage transactions across multiple resource managers.

A Security Contract provides support for a secure application environment, which reduces
security threats to the EIS and protects valuable information resources managed by the EIS.
A Transaction Management contract does not support transactions that are managed inter-
nal to an EIS resource manager without the necessity of involving an external transaction
manager.

19. Which is the following is not true about enterprise applications and integration?

A

Data integration focuses on integrating existing data with enterprise applications. For ex-
ample, an integration might entail integrating a web-based order management system with
an existing order and customer database.

Legacy integration involves integrating new enterprise applications with applications and
EISs that have been in operation for some time, often referred to as an enterprise’s legacy
systems.

Application integration occurs when existing enterprise applications may be off-the-shelf
bundled applications or they may be developed in-house.

Enterprise application development is about building an enterprise application from
scratch.

Self Test Answers | 99

SELF TEST ANSWERS

Explain the JEE Architecture and System Requirements

l. C is correct. An application client container manages the execution of all application
client components for a single JEE application. Application clients and their accompanying
container run on the client’s machine and not the JEE server.

X A, B, and D are incorrect because they are true.

2. 4 Bis correct. The Enterprise JavaBeans (EJB) tier does host system-level services such as
transaction management, concurrency control, and security.
A, C, and D are incorrect because they are true.

3. D is correct. When using a compensating transaction, it is not always possible to undo the
effect of a committed transaction, even if the server crashes.
A, B, and C are incorrect because they are true.

Explain the Use of Patterns in the JEE Framework

4. 1 Cis correct. JEE uses the core patterns to enable flexible association of E]JB classes with
other components. The Designer pattern is not one of them.
& A, B, and D are incorrect because they are true. Decorator, factory, and proxy are core
patterns to enable flexible association of E]B classes with other components.

Describe the Concepts of ‘“Best Practices” and ‘“Guidelines

5. C is correct. A session bean facade does shield the client from complex entity bean
relationships and manages workflow on the client’s behalf.
A, B, and D are incorrect because they are true.

Review Best Practices Applicable for All Tiers

6. M A and D are correct. Enterprise JavaBeans are best used with large and complex enterprise
applications with high deployment and transactional requirements.
& B and C are incorrect.

7. K D is correct. The security tier is not considered a JEE tier.
& A, B, and C are incorrect because they are true—client, web, and EIS are JEE tiers.

8. 4 B is correct. Coding data manipulation logic, format and display code, and user event
handling together can complicate and make application maintenance problematic and costly.
A, C, and D are incorrect because they are true.

200 Chapter 4: Applicability of JEE Technology

9. D is correct. Does not necessarily simplify database design and typically, the model and not
the view component accesses the database.
X A, B, and C are incorrect because they are true.

10. C is correct. The View and not the Model determines how the results should be displayed.
X A, B, and D are incorrect because they are true.

Explain How to Apply MVC to the Web Tier

Il. 4 B iscorrect. The Calculator is not a component of the MVC pattern.
E A, C, and D are incorrect because they are true, as Model, View, and Controller are the
components of the MVC pattern.

12. @ D is correct. The Model, not the Controller, maintains the application state.
& A, B, and C are incorrect because they are true.

Review the Best Practices for the Presentation Layer

13. D is correct. A misappropriation that does not compromise availability is not typically
considered a threat to enterprise-critical assets.
X A, B, and C are incorrect because they are true. The disclosure of confidential information,
the modification or destruction of information, and the misappropriation of protected resources
are typically considered threats to enterprise-critical assets.

lllustrate When to Use JEE Technology for Given Situations

14. 4 C and D are correct. When using screen scrapers, any changes to the legacy user interface
will also affect the new GUI. In addition, screen scraping is the best alternative only if the
existing Ul is tightly coupled with the business tier of the legacy application. Therefore, choices
C and D are false and, therefore, the correct choices.

X A and B are true about screen scrapers and, therefore, the incorrect choices.

15. D is correct. Session beans can be used for making both the CORBA call for block
purchase of telephone numbers and the custom synchronous call to request a special vanity
number.

& A, B, C, E, and F are incorrect. Both operations represent business processes involving
partner OSS integration. Applets are not used for modeling the business workflow of a system.
Therefore, choice A is incorrect. JSP represents the view construction process in an MVC
application. It should not be used for processing business logic. Therefore, B is incorrect. Entity
beans represent the business model of an application and provide a representation of enterprise
data. They are not to be used for workflow processing, which is better accomplished by using

Self Test Answers 20 |

session beans. Therefore, C is incorrect. JNDI provides Naming and Directory interfaces, not
workflow processing. Therefore, choice E is incorrect. The question specifically says that a
synchronous mechanism is to be used for the vanity number request. The CORBA RPC call for
TN reservation is also synchronous. MQ Series is a MOM used for messaging. Messaging is an
inherently asynchronous communication mechanism. Therefore, choice F is incorrect.

A is correct as using JSP and servlets is the best option.

B, C, D, and E are incorrect. The important element to this question is that the revenue is
generated by click-through sales. This implies that there are no transactions involved and you
do not need to use E]JBs. Therefore, choices B and C are not the best options. Perl/CGI scripts
are harder to maintain than Java code. Therefore, choice E is not the best option.

M B is correct. The JEE Connector architecture provides a Java solution to the problem of
connectivity between the many application servers and most EISs, not just those already in
existence.

A, C, and D are incorrect because they are true.

D is correct. A Transaction Management contract does support transactions that are
managed internal to an EIS resource manager without the necessity of involving an external
transaction manager.

A, B, and C are incorrect because they are true.

D is correct. Enterprise application development is about building an enterprise application
from scratch or integrating new enterprise applications with applications and EISs that have
been in operation for some time; they are often referred to as an enterprise’s legacy systems.

& A, B, and C are incorrect because they are true.

