
CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5
Blind Folio 203

5
Design Patterns

CERTIFICATION OBJECTIVES

 5.01 Identify the Benefits of Using Design
Patterns

 5.02 Identify the Most Appropriate Design
Pattern for a Given Scenario

 5.03 State the Name of a Gamma et al. Design
Pattern Given the UML Diagram and/or
a Brief Description of the Pattern’s
Functionality

 5.04 Identify Benefits of a Specified Gamma
et al. Design Pattern

 5.05 Identify the Gamma et al. Design Pattern
Associated with a Specified Java EE
Technology Feature

✓ Two-Minute Drill

Q&A Self Test

ch05.indd 203 6/6/07 2:26:51 PM

204 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

Design patterns, or patterns, are solutions to recurring problems in a given context amid
competing concerns. They try to bring together and document the core solution to
a given problem. They are identified and documented in a form that’s easy to share,

discuss, and understand. They are useful problem-solving documentation for software designers
and are used repeatedly to help solve common problems that arise in the course of software
engineering. Documentation for the design pattern should provide a discussion on the difficulties
and interests surrounding the problem and arguments as to why the given solution balances these
competing interests or constraints that are inherent in the issue being solved.

The value of the pattern is not just the solution to the problem; value can also be
found in the documentation that explains the underlying motivation, the essential
workings of the solution, and why the design pattern is advantageous. The pattern
student will be able to experience all or at least some of the experience and insight
that went into providing the solution. This will undoubtedly help the designer to use
the pattern and possibly adapt it or adjust it further to address needs accordingly.

Patterns can be combined and used in concert to solve larger problems that
cannot be solved with just one pattern. Once the pattern student has become more
familiar with these patterns, their combined applicability to a new set of problems
will become much easier to identify.

CERTIFICATION OBJECTIVE 5.01

Identify the Benefits of Using Design Patterns
Design patterns are beneficial because they describe a problem that occurs
repeatedly, and then they explain the solution to the problem in a way that can be
used many times over. Design patterns are helpful for the following reasons:

■ They help designers quickly focus on solutions if the designers can recognize
patterns that have been successful in the past.

■ The study of patterns can inspire designers to come up with new and unique
ideas.

■ They provide a common language for design discussions.

■ They provide solutions to real-world problems.

■ Their format captures knowledge and documents best practices for a domain.

■ They document decisions and the rationale that lead to the solution.

ch05.indd 204 6/6/07 2:26:51 PM

Identify the Most Appropriate Design 205

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

■ They reuse the experience of predecessors.

■ They communicate the insight already gained previously.

■ They describe the circumstances (when and where), the influences (who and
what), and the resolution (how and why it balances the influences) of a solution.

Nevertheless, patterns are not the be-all and end-all, they are by no means a
“silver bullet” or panacea, and they cannot be universally applied to all situations.
You can’t always find the solution to every problem by consulting the pattern
playbook. Patterns have been excessively hyped and have been used by designers to
make them appear knowledgeable.

Design Patterns by Gamma et al.,
Also Known as the Gang of Four (GoF)

The Gang of Four (or GoF, which consists of Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides, authors of the classic reference Design Patterns:
Elements of Reusable Object-Oriented Software [Addison-Wesley, 2005]) described
patterns as “a solution to a problem in a context.” These three elements—problem,
solution, and context—are the essence of a pattern. As with all pattern creators,
the GoF used a template to document patterns. Before we review the 23 patterns
documented by the GoF, let’s take a look at the format for these patterns.

Format for the GoF Design Patterns
Table 5-1 shows the elements and sections for the GoF Design Patterns format.

If you are new to patterns, Table 5-2 will be useful. It is a suggestion for the sequence
in which you can easily study the GoF Design Patterns.

CERTIFICATION OBJECTIVE 5.02

Identify the Most Appropriate Design
Pattern for a Given Scenario

We will now review each of the Gamma et al. design patterns, starting first with those
that are used to create objects (Creational), and then moving on to those that are
concerned with composition of classes and objects (Structural), and finally covering
those that are concerned with the interaction and responsibility of objects (Behavioral).

ch05.indd 205 6/6/07 2:26:51 PM

206 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

GoF Creational Design Patterns
Creational design patterns are concerned with the way objects are created. These patterns
are used when a decision must be made at the time a class is instantiated. Typically, the
details of the concrete class that is to be instantiated are hidden from (and unknown
to) the calling class by an abstract class that knows only about the abstract class or the
interface it implements. The following creational patterns are described by the GoF:

■ Abstract Factory

■ Builder

■ Factory Method

■ Prototype

■ Singleton

Element/Section Description

Name Used to help convey the essence of the pattern.

Classification Categories are
Creational Patterns concerned with creation
Structural Patterns concerned with composition
Behavioral Patterns concerned with interaction and responsibility.

Intent What problem does the pattern address? What does it do?

Also Known As Other common names for the pattern.

Motivation Scenario that illustrates the problem.

Applicability Situations in which the pattern can be used.

Structure Diagram representing the structure of classes and objects in the pattern. The GoF uses
Object Modeling Technique (OMT) or Booch notation. Today, Unified Modeling
Language (UML), a unification of OMT, Booch, and others, is commonly used.

Participants Classes and/or objects participating in the design pattern along with their
responsibilities.

Collaborations How the participants work together to carry out their responsibilities.

Consequences What objectives does the pattern achieve? What are the trade-offs and results?

Implementation Implementation details (pitfalls, hints, or techniques) to consider. Are there language-
specific issues?

Sample Code Sample code.

Known Uses Examples from the real world.

Related Patterns Comparison and discussion of related patterns; scenarios where this pattern can be
used in conjunction with another.

 TABLE 5-1 Gang of Four (GoF) Design Patterns Elements, Sections, Descriptions

ch05.indd 206 6/6/07 2:26:51 PM

Identify the Most Appropriate Design 207

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

Sequence Design Pattern Comment

1 Factory Method Frequently used and also well utilized by other patterns.

2 Strategy Frequently used, so early familiarity helps.

3 Decorator Considered the “skin” to the “guts” of Strategy.

4 Composite Often used along with Chain of Responsibility, Interpreter,
Iterator, and Visitor.

5 Iterator Looping through anything is widespread in computing, so
why not through objects, too?

6 Template Method Helps to reinforce your understanding of Strategy and
Factory Method.

7 Abstract Factory Create more than one type of a group of objects.

8 Builder Another way to create, similar to Factory Method and
Abstract Factory.

9 Singleton You want only one copy of something.

10 Proxy Controlled access to a service is needed.

11 Adapter Gain access to a service with an incompatible interface.

12 Bridge Decouples the function from the implementation.

13 Mediator Yet another middleman.

14 Facade Single interface simplifying multiple interfaces in a
subsystem.

15 Observer A form of the publish/subscribe model.

16 Chain of Responsibility Passes the message along until it’s dealt with.

17 Memento Backs up and restores an object’s state.

18 Command Separates invoker from performer.

19 Prototype Similar to cloning.

20 State Object appears to change class and alter its behavior.

21 Visitor Object that represents an operation that operates on
elements of an object structure.

22 Flyweight Allows you to utilize sharing to support large numbers of
objects efficiently.

23 Interpreter Defines a grammar and an interpreter that uses the
grammar to interpret sentences.

 TABLE 5-2 Study Sequence for Gang of Four (GoF) Design Patterns

ch05.indd 207 6/6/07 2:26:51 PM

208 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

Abstract Factory
The Abstract Factory pattern’s intent is to provide an interface to use for creating
families of related (or dependent) objects without actually specifying their concrete
classes. For a given set of related abstract classes, this pattern supplies a technique
for creating instances of those abstract classes from an equivalent set of concrete
subclasses. On some occasions, you may need to create an object without having to
know which concrete subclass of object to create.

The Abstract Factory pattern is also known as Kit. The UML representation is
shown in Figure 5-1.

Benefits Following is a list of benefits of using the Abstract Factory pattern:

■ It isolates client from concrete (implementation) classes.

■ It eases the exchanging of object families.

■ It promotes consistency among objects.

 FIGURE 5-1

UML for the
Abstract Factory
pattern

ch05.indd 208 6/6/07 2:26:52 PM

Identify the Most Appropriate Design 209

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

Applicable Scenarios The following scenarios are most appropriate for the
Abstract Factory pattern:

■ The system needs to be independent of how its objects are created, composed,
and represented.

■ The system needs to be configured with one of a multiple family of objects.

■ The family of related objects is intended to be used together, and this
constraint needs to be enforced.

■ You want to provide a library of objects that does not show implementations
and only reveals interfaces.

Java EE Technology Features and Java SE API Association The Java EE
technology features associated with the Abstract Factory pattern are

■ Data Access Object (Sun)

■ Transfer Object Assembler (Sun)

The Java Platform, Standard Edition (Java SE) API associated with the Abstract
Factory pattern is java.awt.Toolkit.

Example Code Following is example Java code that demonstrates the Abstract
Factory pattern:

package javaee.architect.AbstractFactory;
public class AbstractFactoryPattern {
 public static void main(String[] args) {
 System.out.println("Abstract Factory Pattern Demonstration.");
 System.out.println("---------------------------------------");
 // Create abstract factories
 System.out.println("Constructing abstract factories.");
 AbstractFactoryIF factoryOne = new FordFactory();
 AbstractFactoryIF factoryTwo = new GMFactory();
 // Create cars via abstract factories
 System.out.println("Constructing cars.");
 AbstractSportsCarIF car1 = factoryOne.createSportsCar();
 AbstractEconomyCarIF car2 = factoryOne.createEconomyCar();
 AbstractSportsCarIF car3 = factoryTwo.createSportsCar();
 AbstractEconomyCarIF car4 = factoryTwo.createEconomyCar();
 // Execute drive on the cars

ch05.indd 209 6/6/07 2:26:52 PM

210 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 System.out.println("Calling drive on the cars.");
 car1.driveFast();
 car2.driveSlow();
 car3.driveFast();
 car4.driveSlow();
 System.out.println();
 }
}

package javaee.architect.AbstractFactory;
public interface AbstractFactoryIF {
 public AbstractSportsCarIF createSportsCar();
 public AbstractEconomyCarIF createEconomyCar();
}

package javaee.architect.AbstractFactory;
public interface AbstractSportsCarIF {
 public void driveFast();
}

package javaee.architect.AbstractFactory;
public interface AbstractEconomyCarIF {
 public void driveSlow();
}

package javaee.architect.AbstractFactory;
public class FordFactory implements AbstractFactoryIF {
 public AbstractSportsCarIF createSportsCar() {
 return new Mustang();
 }
 public AbstractEconomyCarIF createEconomyCar() {
 return new Focus();
 }
}

package javaee.architect.AbstractFactory;
public class GMFactory implements AbstractFactoryIF {
 public AbstractSportsCarIF createSportsCar() {
 return new Corvette();
 }
 public AbstractEconomyCarIF createEconomyCar() {
 return new Cavalier();
 }
}

ch05.indd 210 6/6/07 2:26:53 PM

Identify the Most Appropriate Design 211

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

package javaee.architect.AbstractFactory;
public class Mustang implements AbstractSportsCarIF {
 public void driveFast() {
 System.out.println("Mustang.driveFast() called.");
 }
}

package javaee.architect.AbstractFactory;
public class Focus implements AbstractEconomyCarIF {
 public void driveSlow() {
 System.out.println("Focus.driveSlow() called.");
 }
}

package javaee.architect.AbstractFactory;
public class Corvette implements AbstractSportsCarIF {
 public void driveFast() {
 System.out.println("Corvette.driveFast() called.");
 }
}

package javaee.architect.AbstractFactory;
public class Cavalier implements AbstractEconomyCarIF {
 public void driveSlow() {
 System.out.println("Cavalier.driveSlow() called.");
 }
}

Builder
The Builder pattern’s intent is to separate the construction of a complex object from
its representation so that the same construction process can create different objects.
The Builder pattern is useful when several kinds of complex objects with similar
rules for assembly need to be joined at runtime but result in different object types. It
achieves this by separating the process of building the object from the object itself.

The Builder pattern creates complex objects in multiple steps instead of in a
single step, as in other patterns. The UML is shown in Figure 5-2.

Benefits The following benefits are achieved when using the Builder pattern:

■ It permits you to vary an object's internal representation.

■ It isolates the code for construction and representation.

■ It provides finer control over the construction process.

ch05.indd 211 6/6/07 2:26:53 PM

212 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

Applicable Scenarios The following scenarios are most appropriate for the
Builder pattern:

■ The algorithm for creating a complex object needs to be independent of the
components that compose the object and how they are assembled.

■ The construction process is to allow different representations of the
constructed object.

Example Code Following is some example Java code that demonstrates the
Builder pattern:

package javaee.architect.Builder;
public class BuilderPattern {
 public static void main(String[] args) {
 System.out.println("Builder Pattern Demonstration.");
 System.out.println("------------------------------");
 // Create builder
 System.out.println("Constructing builder.");
 BuilderIF builder = new ConcreteBuilder();
 // Create director
 System.out.println("Constructing director.");
 Director director = new Director(builder);
 // Construct customer via director
 System.out.println("Constructing customer.");

 FIGURE 5-2

UML for the
Builder pattern

ch05.indd 212 6/6/07 2:26:53 PM

Identify the Most Appropriate Design 213

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 director.construct();
 // Get customer via builder
 CustomerIF customer = builder.getCustomer();
 // Use customer method
 System.out.println("Calling action on the customer.");
 customer.action();
 System.out.println();
 }
}

package javaee.architect.Builder;
public interface BuilderIF {
 public void buildCustomer();
 public CustomerIF getCustomer();
}

package javaee.architect.Builder;
public class ConcreteBuilder implements BuilderIF {
 CustomerIF customer;
 public void buildCustomer() {
 customer = new ConcreteCustomer();
 // You could add more customer processing here...
 }
 public CustomerIF getCustomer() {
 return customer;
 }
}

package javaee.architect.Builder;
public class ConcreteCustomer implements CustomerIF {
 public ConcreteCustomer() {
 System.out.println("ConcreteCustomer constructed.");
 }
 public void action() {
 System.out.println("ConcreteCustomer.action() called.");
 }
}

package javaee.architect.Builder;
public interface CustomerIF {
 public void action();
}

package javaee.architect.Builder;
public class Director {

ch05.indd 213 6/6/07 2:26:53 PM

214 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 BuilderIF builder;
 public Director(BuilderIF parm) {
 this.builder = parm;
 }
 public void construct() {
 builder.buildCustomer();
 }
}

Factory Method
The Factory Method pattern’s intent is to define an interface for creating an object
but letting the subclass decide which class to instantiate. In other words, the class
defers instantiation to subclasses. The client of the Factory Method never needs to
know the concrete class that has been instantiated and returned. Its client needs to
know only about the published abstract interface.

The Factory Method pattern is also known as Virtual Constructor. Figure 5-3
shows the UML.

Benefits Following is a list of benefits of using the Factory Method pattern:

■ It removes the need to bind application-specific classes into the code. The
code interacts solely with the resultant interface, so it will work with any
classes that implement that interface.

■ Because creating objects inside a class is more flexible than creating an object
directly, it enables the subclass to provide an extended version of an object.

 FIGURE 5-3

UML for the
Factory Method
pattern

ch05.indd 214 6/6/07 2:26:54 PM

Identify the Most Appropriate Design 215

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

Applicable Scenarios The following scenarios are most appropriate for the Fac-
tory Method pattern:

■ A class is not able to anticipate the class of objects it needs to create.

■ A class wants its subclasses to specify the objects it instantiates.

■ Classes assign responsibility to one of several helper subclasses, and you want
to localize the knowledge of which helper subclass is the delegate.

Java EE Technology Features and Java SE API Associations The Java EE
technology features associated with the Factory Method pattern are listed here:

■ javax.ejb.EJBHome

■ javax.ejb.EJBLocalHome

■ javax.jms.QueueConnectionFactory

■ javax.jms.TopicConnectionFactory

The Java SE APIs have many classes and interfaces that are associated with the
Factory Method pattern. Here are some examples:

■ java.text.Collator

■ java.net.ContentHandlerFactory

■ javax.naming.spi.InitialContextFactory

■ javax.net.SocketFactory

Example Code Following is some example Java code that demonstrates the Fac-
tory Method pattern:

package javaee.architect.FactoryMethod;
public class FactoryMethodPattern {
 public static void main(String[] args) {
 System.out.println("FactoryMethod Pattern Demonstration.");
 System.out.println("------------------------------------");
 // Create creator, which uses the FactoryMethod
 CreatorIF creator = new ConcreteCreator();
 // Create trade via factory method
 TradeIF trade = creator.factoryMethod();
 // Call trade action method
 trade.action();
 System.out.println();
 }
}

ch05.indd 215 6/6/07 2:26:54 PM

216 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

package javaee.architect.FactoryMethod;
public class ConcreteCreator implements Creator {
 public TradeIF factoryMethod() {
 return new ConcreteTrade();
 }
}

package javaee.architect.FactoryMethod;
public class ConcreteTrade implements TradeIF {
 public void action() {
 System.out.println("ConcreteTrade.action() called.");
 }
}

package javaee.architect.FactoryMethod;
public interface CreatorIF {
 public abstract TradeIF factoryMethod();
}

package javaee.architect.FactoryMethod;
public interface TradeIF {
 public void action();
}

Prototype
The Prototype pattern’s intent is to specify the kinds of objects that need to be
created using a prototypical instance, and then be able to create new objects by
copying this prototype. The copying of objects in Java is typically done by the
clone() method of java.lang.Object. The UML is shown in Figure 5-4.

 FIGURE 5-4

UML for the
Prototype pattern

ch05.indd 216 6/6/07 2:26:54 PM

Identify the Most Appropriate Design 217

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

Benefits Following are the benefits of using the Prototype pattern:

■ It lets you add or remove objects at runtime.

■ It lets you specify new objects by varying its values or structure.

■ It reduces the need for subclassing.

■ It lets you dynamically configure an application with classes.

Applicable Scenarios The following scenarios are most appropriate for the
Prototype pattern:

■ The classes to instantiate are specified at runtime.

■ You need to avoid building a class hierarchy of factories that parallels the
hierarchy of objects.

■ Instances of the class have one of only a few different combinations of state.

Java SE API Association The Java SE API associated with the Prototype pat-
tern is java.lang.Object.

Example Code The following is example Java code for demonstrating the Proto-
type pattern. There are two viewpoints on the Prototype pattern. The first is that it
is there to simplify creating new instances of objects without knowing their concrete
class. The second is it is there to simplify creating exact copies (or clones) of an
original object.

The following example does not contain any state information in the objects
prior to the call to getClone(). It demonstrates the first form of Prototype.

package javaee.architect.Prototype;
public class PrototypePattern {
 public static void main(String[] args) {
 System.out.println("Prototype Pattern Demonstration.");
 System.out.println("--------------------------------");
 // Create prototypes
 System.out.println("Constructing prototypes.");
 PrototypeIF prototype1 = new ConcretePrototype1();
 PrototypeIF prototype2 = new ConcretePrototype2();
 // Get clones from prototypes
 System.out.println("Constructing clones from prototypes.");
 PrototypeIF clone1 = prototype1.getClone();
 PrototypeIF clone2 = prototype2.getClone();
 // Call actions on the clones
 System.out.println("Calling actions on the clones.");
 clone1.action();

ch05.indd 217 6/6/07 2:26:55 PM

218 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 clone2.action();
 System.out.println();
 }
}

package javaee.architect.Prototype;
public class ConcretePrototype1 implements PrototypeIF {
 public ConcretePrototype1() {
 System.out.println("ConcretePrototype1 constructed.");
 }
 public PrototypeIF getClone() {
 // if required, put deep copy code here
 return new ConcretePrototype1();
 }
 public void action() {
 System.out.println("ConcretePrototype1.action() called");
 }
}

package javaee.architect.Prototype;
public class ConcretePrototype2 implements PrototypeIF {
 public ConcretePrototype2() {
 System.out.println("ConcretePrototype2 constructed.");
 }
 public PrototypeIF getClone() {
 // if required, put deep copy code here
 return new ConcretePrototype1();
 }
 public void action() {
 System.out.println("ConcretePrototype2.action() called.");
 }
}

package javaee.architect.Prototype;
public interface PrototypeIF {
 public PrototypeIF getClone(); // as opposed to Object.clone()
 public void action();
}

Singleton
The Singleton pattern’s intent is to ensure that a class has only one instance and
provides a global point of access to it. It ensures that all objects that use an instance
of this class are using the same instance. Figure 5-5 shows the UML.

ch05.indd 218 6/6/07 2:26:55 PM

Identify the Most Appropriate Design 219

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

Benefits Following are the benefits of using the Singleton pattern:

■ It controls access to a single instance of the class.

■ It reduces name space usage.

■ It permits refinement of operations and representation.

■ It can also permit a variable number of instances.

■ It is more flexible than class methods (operations).

Applicable Scenario The scenario most appropriate for the Singleton pattern is
when a single instance of a class is needed and must be accessible to clients from a
well-known access point.

Java SE API Association The Java SE API associated with the Singleton pattern
is java.lang.Runtime.

Example Code The following example Java code demonstrates the Singleton
pattern:

package javaee.architect.Singleton;
public class SingletonPattern {
 public static void main(String[] args) {
 System.out.println("Singleton Pattern Demonstration.");
 System.out.println("--------------------------------");
 System.out.println("Getting Singleton instance (s1)");
 Singleton s1 = Singleton.getInstance();
 System.out.println("s1.getInfo()="+s1.getInfo());
 System.out.println("Getting Singleton instance (s2)");
 Singleton s2 = Singleton.getInstance();
 System.out.println("s2.getInfo()="+s2.getInfo());
 System.out.println("s1.setValue(42)");
 s1.setValue(42);

 FIGURE 5-5

UML for the
Singleton pattern

ch05.indd 219 6/6/07 2:26:55 PM

220 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 System.out.println("s1.getValue()="+s1.getValue());
 System.out.println("s2.getValue()="+s2.getValue());
 System.out.println("s1.equals(s2)="+s1.equals(s2)
 + ", s2.equals(s1)="+s2.equals(s1));
 // The following will not compile
 // Singleton s3 = (Singleton) s1.clone();
 System.out.println();
 }
}

package javaee.architect.Singleton;
/*
 * Singletons really are "per classloader" and
 * in a Java EE application, many developers make
 * the mistake of assuming that a singleton really
 * is a singleton in a cluster of application servers.
 * This is not true!
*/
public final class Singleton {
 private static Singleton instance;
 private int value;
 private Singleton() {System.out.println("Singleton constructed.");}
 public static synchronized Singleton getInstance() {
 // if it has not been instantiated yet
 if (instance == null)
 // instantiate it here
 instance = new Singleton();
 return instance;
 }
 // remaining methods are for demo purposes
 // your singleton would have it's business
 // methods here...
 public String getInfo() {
 return getClass().getName() +
 // Uncomment line below to also see the loader
 //+", loaded by " + getClass().getClassLoader();
 ", id#" + System.identityHashCode(this);
 }
 public int getValue() {return value;}
 public void setValue(int parm) {value = parm;}
 public boolean equals(Singleton parm) {
 return (System.identityHashCode(this)
 == System.identityHashCode(parm));
 }
}

ch05.indd 220 6/6/07 2:26:55 PM

Identify the Most Appropriate Design 221

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

GoF Structural Design Patterns
Structural patterns are concerned with composition or the organization of classes
and objects, how classes inherit from each other, and how they are composed from
other classes.

Common Structural patterns include Adapter, Proxy, and Decorator patterns.
These patterns are similar in that they introduce a level of indirection between a client
class and a class it wants to use. Their intents are different, however. Adapter uses
indirection to modify the interface of a class to make it easier for a client class to use
it. Decorator uses indirection to add behavior to a class, without unduly affecting the
client class. Proxy uses indirection transparently to provide a stand-in for another class.

The following Structural patterns are described by GoF:

■ Adapter

■ Bridge

■ Composite

■ Decorator

■ Facade

■ Flyweight

■ Proxy

Adapter
The Adapter pattern converts the interface of a class into an interface that a client
requires. It acts as an intermediary and lets classes work together that couldn’t
otherwise because of an incompatible interface.

The Adapter pattern is also known as Wrapper. The UML is shown in Figure 5-6.

 FIGURE 5-6

UML for the
Adapter pattern

ch05.indd 221 6/6/07 2:26:56 PM

222 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

Benefits Following are the benefits of using the Adapter pattern:

■ It allows two or more previously incompatible objects to interact.

■ It allows reusability of existing functionality.

Applicable Scenarios The following scenarios are most appropriate for the
Adapter pattern:

■ An object needs to utilize an existing class with an incompatible interface.

■ You want to create a reusable class that cooperates with classes that don't
necessarily have compatible interfaces.

■ You need to use several existing subclasses but do not want to adapt their
interfaces by subclassing each one.

Java EE Technology Feature and Java SE API Association The Java EE
technology feature associated with the Adapter pattern is Java Connector Architec-
ture (JCA), from an architectural viewpoint.

The Java SE API associated with the Adapter pattern is java.awt.event.
ComponentAdapter.

Example Code The following example Java code demonstrates the Adapter
pattern:

package javaee.architect.Adapter;
public class AdapterPattern {
 public static void main(String[] args) {
 System.out.println("Adapter Pattern Demonstration.");
 System.out.println("------------------------------");
 // Create targets.
 System.out.println("Creating targets.");
 TargetIF target1 = new AdapterByClass();
 TargetIF target2 = new AdapterByObject();
 // Call target requests
 System.out.println("Calling targets.");
 System.out.println("target1.newRequest()->"+target1.newRequest());
 System.out.println("target2.newRequest()->"+target2.newRequest());
 System.out.println();
 }
}

ch05.indd 222 6/6/07 2:26:56 PM

Identify the Most Appropriate Design 223

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

package javaee.architect.Adapter;
public class Adaptee {
 public Adaptee() {
 System.out.println("Adaptee constructed.");
 }
 public String oldRequest() {
 return "Adaptee.oldRequest() called.";
 }
}

package javaee.architect.Adapter;
public class AdapterByClass extends Adaptee implements TargetIF {
 public AdapterByClass() {
 System.out.println("AdapterByClass constructed.");
 }
 public String newRequest() {
 return oldRequest();
 }
}

package javaee.architect.Adapter;
public class AdapterByObject implements TargetIF {
 private Adaptee adaptee;
 public AdapterByObject() {
 System.out.println("AdapterByObject constructed.");
 }
 public String newRequest() {
 // Create an Adaptee object if it doesn’t exist yet
 if (adaptee == null) { adaptee = new Adaptee(); }
 return adaptee.oldRequest();
 }
}

package javaee.architect.Adapter;
public interface TargetIF {
 public String newRequest();
}

Bridge
The Bridge pattern’s intent is to decouple the functional abstraction from the
implementation so that the two can be changed and can vary independently.

The Bridge pattern is also known as Handle/Body. The UML is shown in Figure 5-7.

ch05.indd 223 6/6/07 2:26:56 PM

224 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

Benefits Following is a list of benefits of using the Bridge pattern:

■ It enables the separation of implementation from the interface.

■ It improves extensibility.

■ It allows the hiding of implementation details from the client.

Applicable Scenarios The following scenarios are most appropriate for the
Bridge pattern:

■ You want to avoid a permanent binding between the functional abstraction
and its implementation.

■ Both the functional abstraction and its implementation need to be extended
using subclasses.

■ Changes to the implementation should not impact the client (not even a
recompile).

 FIGURE 5-7

UML for the
Bridge pattern

ch05.indd 224 6/6/07 2:26:57 PM

Identify the Most Appropriate Design 225

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

Example Code The following example Java code demonstrates the Bridge
pattern:

package javaee.architect.Bridge;
public class BridgePattern {
 public static void main(String[] args) {
 System.out.println("Bridge Pattern Demonstration.");
 System.out.println("-----------------------------");
 System.out.println("Constructing SportsCar and EconomyCar.");
 AbstractionIF car1 = new SportsCar ();
 AbstractionIF car2 = new EconomyCar();
 System.out.println(
 "Calling action() on SportsCar and EconomyCar.");
 car1.action();
 car2.action();
 System.out.println();
 }
}

package javaee.architect.Bridge;
public interface AbstractionIF {
 public void action();
}

package javaee.architect.Bridge;
public class SportsCarImplementor implements ImplementorIF {
 public SportsCarImplementor() {
 System.out.println("SportsCarImplementor constructed.");
 }
 public void actionImplemented() {
 System.out.println("SportsCarImplementor.actionImplemented() called.");
 }
}

package javaee.architect.Bridge;
public class EconomyCarImplementor implements ImplementorIF {
 public EconomyCarImplementor() {
 System.out.println("EconomyCarImplementor constructed.");
 }
 public void actionImplemented() {
 System.out.println("EconomyCarImplementor.actionImplemented() called.");
 }
}

ch05.indd 225 6/6/07 2:26:57 PM

226 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

package javaee.architect.Bridge;
public interface ImplementorIF {
 public void actionImplemented();
}

package javaee.architect.Bridge;
public class SportsCar implements AbstractionIF {
 ImplementorIF implementor = new SportsCarImplementor();
 public SportsCar() {
 System.out.println("SportsCar constructed.");
 }
 public void action() {
 implementor.actionImplemented();
 }
}

package javaee.architect.Bridge;
public class EconomyCar implements AbstractionIF {
 ImplementorIF implementor = new EconomyCarImplementor();
 public EconomyCar() {
 System.out.println("EconomyCar constructed.");
 }
 public void action() {
 implementor.actionImplemented();
 }
}

Composite
The Composite pattern’s intent is to allow clients to operate in a generic manner on
objects that may or may not represent a hierarchy of objects.

The UML is shown in Figure 5-8.

Benefits Following are benefits of using the Composite pattern:

■ It defines class hierarchies consisting of primitive and complex objects.

■ It makes it easier for you to add new kinds of components.

■ It provides flexibility of structure with a manageable interface.

Applicable Scenarios The following scenarios are most appropriate for the
Composite pattern:

ch05.indd 226 6/6/07 2:26:57 PM

Identify the Most Appropriate Design 227

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

■ You want to represent a full or partial hierarchy of objects.

■ You want clients to be able to ignore the differences between the varying
objects in the hierarchy.

■ The structure is dynamic and can have any level of complexity: for example,
using the Composite View from the J2EE Patterns Catalog, which is useful for
portal applications.

Example Code The following example Java code demonstrates the Composite
pattern:

package javaee.architect.Composite;
public class CompositePattern {
 public static void main(String[] args) {
 System.out.println("Composite Pattern Demonstration.");
 System.out.println("--------------------------------");
 System.out.println("Creating leaves, branches and trunk");
 // Create leaves
 Component leaf1 = new Leaf(" leaf#1");
 Component leaf2 = new Leaf(" leaf#2");
 Component leaf3 = new Leaf(" leaf#3");
 // Create branches
 Component branch1 = new Composite(" branch1");

 FIGURE 5-8

UML for the
Composite
pattern

ch05.indd 227 6/6/07 2:26:58 PM

228 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 Component branch2 = new Composite(" branch2");
 // Create trunk
 Component trunk = new Composite("trunk");
 // Add leaf1 and leaf2 to branch1
 branch1.add(leaf1);
 branch1.add(leaf2);
 // Add branch1 to trunk
 trunk.add(branch1);
 // Add leaf3 to branch2
 branch2.add(leaf3);
 // Add branch2 to trunk
 trunk.add(branch2);
 // Show trunk composition
 System.out.println("Displaying trunk composition:");
 trunk.display();
 // Remove branch1 and branch2 from trunk
 trunk.remove(branch1);
 trunk.remove(branch2);
 // Show trunk composition now
 System.out.println("Displaying trunk composition now:");
 trunk.display();
 System.out.println();
 }
}

package javaee.architect.Composite;
public abstract class Component {
 public abstract void display();
 public void add(Component c) { // override in concrete class; }
 public void remove(Component c) { // override in concrete class; }
 public Component getChild(int index) { return null; }
 public String getName() { return null; }
}

package javaee.architect.Composite;
import java.util.*;
public class Composite extends Component {
 String name = null;
 List children = new ArrayList();
 public Composite(String parm) {
 this.name = parm;
 System.out.println(parm.trim()+" constructed.");
 }

ch05.indd 228 6/6/07 2:26:58 PM

Identify the Most Appropriate Design 229

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 public String getName() { return name; }
 public Component getChild(int parm) {
 Component child;
 try {child = (Component) children.get(parm);}
 catch (IndexOutOfBoundsException ioobe) {child = null;}
 return child;
 }
 public void add(Component parm) {
 try {
 System.out.println("Adding "+parm.getName().trim()
 +" to "+this.getName().trim());
 children.add(parm);
 }
 catch (Exception e) {System.out.println(e.getMessage());}
 }
 public void remove(Component parm) {
 try {
 System.out.println("Removing "+parm.getName().trim()
 +" from "+this.getName().trim());
 children.remove(parm);}
 catch (Exception e) {System.out.println(e.getMessage());}
 }
 public void display() {
 Iterator iterator = children.iterator();
 System.out.println(this.getName()
 +(iterator.hasNext()?" with the following: ":" that is bare."));
 while (iterator.hasNext()) {((Component) iterator.next()).display();}
 }
}

package javaee.architect.Composite;
public class Leaf extends Component {
 private String name;
 public Leaf(String parm) {
 this.name = parm;
 System.out.println(parm.trim()+" constructed.");
 }
 public void display() {
 System.out.println(this.getName());
 }
 public String getName() {
 return name;
 }
}

ch05.indd 229 6/6/07 2:26:58 PM

230 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

Decorator
An alternative to subclassing to extend functionality, the Decorator pattern’s
intent is to attach flexible additional responsibilities to an object dynamically.
The Decorator pattern uses composition instead of inheritance to extend the
functionality of an object at runtime.

The Decorator pattern is also known as Wrapper. The UML is shown in Figure 5-9.

Benefits Following is a list of benefits of using the Decorator pattern:

■ It provides greater flexibility than static inheritance.

■ It avoids the need to place feature-laden classes higher up the hierarchy.

■ It simplifies coding by allowing you to develop a series of functionality-
targeted classes, instead of coding all of the behavior into the object.

■ It enhances the extensibility of the object, because changes are made by
coding new classes.

 FIGURE 5-9

UML for the
Decorator
pattern

ch05.indd 230 6/6/07 2:26:59 PM

Identify the Most Appropriate Design 231

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

Applicable Scenarios The following scenarios are most appropriate for the
Decorator pattern:

■ You want to transparently and dynamically add responsibilities to objects
without affecting other objects.

■ You want to add responsibilities to an object that you may want to change in
the future.

■ Extending functionality by subclassing is no longer practical.

Java EE Technology Feature and Java SE API Association The Java EE
technology feature associated with the Decorator pattern is javax.ejb.EJBObject.

The Java SE API associated with the Decorator pattern is java.io.BufferedReader.

Example Code The following example Java code demonstrates the Decorator
pattern:

package javaee.architect.Decorator;
public class DecoratorPattern {
 public static void main(String[] args) {
 System.out.println("Decorator Pattern Demonstration.");
 System.out.println("--------------------------------");
 // Create object decorated with A
 System.out.println("Creating component decorated with A.");
 ComponentIF decorated1 = new ConcreteDecoratorA();
 // Call action on object decorated with A
 System.out.println("Calling action() on component decorated with A.");
 decorated1.action();
 // Create object decorated with B
 System.out.println("Creating component decorated with B.");
 ComponentIF decorated2 = new ConcreteDecoratorB();
 // Call action on object decorated with B
 System.out.println("Calling action() on component decorated with B.");
 decorated2.action();
 System.out.println();
 }
}

package javaee.architect.Decorator;
public interface ComponentIF {
 public void action();
}

ch05.indd 231 6/6/07 2:26:59 PM

232 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

package javaee.architect.Decorator;
public class ConcreteComponent implements ComponentIF {
 public void action() {
 System.out.println("ConcreteComponent.action() called.");
 }
}

package javaee.architect.Decorator;
public class ConcreteDecoratorA extends Decorator {
 String addedVariable;
 public void action() {
 super.action();
 System.out.println("ConcreteDecoratorA.action() called.");
 addedVariable = "extra";
 System.out.println("ConcreteDecoratorA.addedVariable="+addedVariable);
 }
}

package javaee.architect.Decorator;
public class ConcreteDecoratorB extends Decorator {
 public void action() {
 super.action();
 System.out.println("ConcreteDecoratorB.action() called.");
 addedMethod();
 }
 private void addedMethod() {
 System.out.println("ConcreteDecoratorB.addedMethod() called.");
 }
}

package javaee.architect.Decorator;
public class Decorator implements ComponentIF {
 ComponentIF component = new ConcreteComponent();
 public void action() {
 component.action();
 }
}

Facade
The Facade pattern’s intent is to provide a unified and simplified interface to a set of
interfaces in a subsystem. The Facade pattern describes a higher-level interface that
makes the subsystem(s) easier to use. Practically, every Abstract Factory is a type of
Facade. Figure 5-10 shows the UML.

ch05.indd 232 6/6/07 2:26:59 PM

Identify the Most Appropriate Design 233

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

Benefits Following is a list of benefits of using the Facade pattern:

■ It provides a simpler interface to a complex subsystem without reducing the
options provided by the subsystem.

■ It shields clients from the complexity of the subsystem components.

■ It promotes looser coupling between the subsystem and its clients.

■ It reduces the coupling between subsystems provided that every subsystem
uses its own Facade pattern and other parts of the system use the Facade
pattern to communicate with the subsystem.

Applicable Scenarios The following scenarios are most appropriate for the
Facade pattern:

■ You need to provide a simple interface to a complex subsystem.

■ Several dependencies exist between clients and the implementation classes of
an abstraction.

■ Layering the subsystems is necessary or desired.

Java SE API Association The Java SE API associated with the Facade pattern is
java.net.URL.

Example Code The following example Java code demonstrates the Facade
pattern:

package javaee.architect.Facade;
public class FacadePattern {
 public static void main(String[] args) {
 System.out.println("Facade Pattern Demonstration.");
 System.out.println("-----------------------------");

 FIGURE 5-10

UML for the
Facade pattern

ch05.indd 233 6/6/07 2:27:00 PM

234 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 // Construct and call Facade
 System.out.println("Constructing facade.");
 Facade facade = new Facade();
 System.out.println("Calling facade.processOrder().");
 facade.processOrder();
 System.out.println();
 }
}

package javaee.architect.Facade;
public class Facade {
 public void processOrder() {
 // Call methods on sub-systems to complete the process
 SubSystem1 subsys1 = new SubSystem1();
 subsys1.getCustomer();
 subsys1.getSecurity();
 subsys1.priceTransaction();
 SubSystemN subsysN = new SubSystemN();
 subsysN.checkBalances();
 subsysN.completeOrder();
 }
}

package javaee.architect.Facade;
public class SubSystem1 {
 public void getCustomer() {
 // Place functionality here...
 System.out.println("SubSystem1.getCustomer() called.");}
 public void getSecurity() {
 // Place functionality here...
 System.out.println("SubSystem1.getSecurity() called.");}
 public void priceTransaction() {
 // Place functionality here...
 System.out.println("SubSystem1.priceTransaction() called.");}
}

package javaee.architect.Facade;
public class SubSystemN {
 public void checkBalances() {
 // Place functionality here...
 System.out.println("SubSystemN.checkBalances() called.");}
 public void completeOrder() {
 // Place functionality here...
 System.out.println("SubSystemN.completeOrder() called.");}
}

ch05.indd 234 6/6/07 2:27:00 PM

Identify the Most Appropriate Design 235

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

Flyweight
The Flyweight pattern’s intent is to utilize sharing to support large numbers of fine-
grained objects in an efficient manner. Figure 5-11 shows the UML.

Benefits Following are benefits of using the Flyweight pattern:

■ It reduces the number of objects to deal with.

■ It reduces the amount of memory and storage devices required if the objects
are persisted.

Applicable Scenarios The following scenarios are most appropriate for the
Flyweight pattern:

■ An application uses a considerable number of objects.

■ The storage costs are high because of the quantity of objects.

■ The application does not depend on object identity.

Java SE API Association The Java SE API associated with the Flyweight pat-
tern is java.lang.String.

Example Code The following example Java code demonstrates the Flyweight
pattern:

package javaee.architect.Flyweight;
public class FlyweightPattern {
 public static void main(String[] args) {
 System.out.println("Flyweight Pattern Demonstration.");

 FIGURE 5-11

UML for the
Flyweight pattern

ch05.indd 235 6/6/07 2:27:00 PM

236 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 System.out.println("--------------------------------");
 // Create states
 State stateF = new State(false);
 State stateT = new State(true);
 // Get reference to (and in doing so create) flyweight
 FlyweightIF myfwkey1 = FlyweightFactory.getFlyweight("myfwkey");
 // Get new reference to the same flyweight
 FlyweightIF myfwkey2 = FlyweightFactory.getFlyweight("myfwkey");
 // Call action on both references
 System.out.println("Call flyweight action with state=false");
 myfwkey1.action(stateF);
 System.out.println("Call flyweight action with state=true");
 myfwkey2.action(stateT);
 System.out.println();
 }
}

package javaee.architect.Flyweight;
public class ConcreteFlyweight implements FlyweightIF {
 // Add state to the concrete flyweight.
 private boolean state;
 public ConcreteFlyweight(State parm) {
 this.state = parm.getState();
 }
 public void action(State parm) {
 // Display internal state and state passed by client.
 System.out.println("ConcreteFlyweight.action("
 +parm.getState()+") called.");
 this.state = parm.getState();
 System.out.println("ConcreteFlyweight.state = "
 + this.state);
 }
}

package javaee.architect.Flyweight;
import java.util.*;
public class FlyweightFactory {
 private static Map map = new HashMap();
 public static FlyweightIF getFlyweight(String parm) {
 // Return the Flyweight if it exists,
 // or create it if it doesn’t.
 FlyweightIF flyweight = null;
 try {
 if (map.containsKey(parm)) {
 // Return existing flyweight

ch05.indd 236 6/6/07 2:27:00 PM

Identify the Most Appropriate Design 237

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 flyweight = (FlyweightIF) map.get(parm);
 } else {
 // Create flyweight with a 'true' state
 flyweight = new ConcreteFlyweight(new State(true));
 map.put(parm, flyweight);
 System.out.println("Created flyweight "+parm+" with state=true");
 System.out.println("");
 }
 } catch (ClassCastException cce) {
 System.out.println(cce.getMessage());
 }
 return flyweight;
 }
}

package javaee.architect.Flyweight;
public interface FlyweightIF {
 // method to receive and act on extrinsic state.
 public void action(State parm);
}

package javaee.architect.Flyweight;
public class State {
 private boolean state;
 public State(boolean parm) {this.state = parm;}
 public boolean getState() {return state;}
}

Proxy
The Proxy pattern’s intent is to provide a surrogate or placeholder for another object
to control access to it. The most common implementations are remote and virtual
proxy.

The Proxy pattern is also known as Surrogate. Figure 5-12 shows the UML.

Benefits Following is a list of benefits of using the Proxy pattern:

■ The remote proxy can shield the fact that the implementation resides in
another address space.

■ The virtual proxy can perform optimizations—for example, by creating
objects on demand.

ch05.indd 237 6/6/07 2:27:00 PM

238 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

Applicable Scenario The Proxy pattern is appropriate when a more versatile or
sophisticated reference to an object, rather than a simple pointer, is needed.

Java EE Technology Feature The Java EE technology feature associated with
the Proxy pattern is javax.ejb.EJBObject (EJB remote reference) in a structural sense.
Actually the “stub” object in the client’s address space provides the proxy.

Example Code The following Java code demonstrates the Proxy pattern:

package javaee.architect.Proxy;
public class ProxyPattern {
 public static void main(String[] args) {
 System.out.println("Proxy Pattern Demonstration.");
 System.out.println("----------------------------");
 // Create service proxy (instantiates service too)
 System.out.println("Creating proxy to service.");
 ServiceIF proxy = new Proxy();
 // Call action method on service via proxy
 System.out.println("Calling action method on proxy.");
 proxy.action();
 System.out.println();
 }
}

package javaee.architect.Proxy;
public class Proxy implements ServiceIF {
 // Proxy to be the service
 private Service service = new Service();
 public void action() {

 FIGURE 5-12

UML for the
Proxy pattern

ch05.indd 238 6/6/07 2:27:01 PM

Identify the Most Appropriate Design 239

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 service.action();
 }
}

package javaee.architect.Proxy;
public class Service implements ServiceIF {
 // Service to be proxied
 public Service() {
 System.out.println("Service constructed.");
 }
 public void action() {
 System.out.println("Service.action() called.");
 }
}

package javaee.architect.Proxy;
public interface ServiceIF {
 // Interface for Service and Proxy
 public void action();
}

GoF Behavioral Design Patterns
Behavioral patterns are concerned with the interaction and responsibility of objects.
They help make complex behavior manageable by specifying the responsibilities of
objects and the ways they communicate with each other.

The following Behavioral patterns are described by GoF:

■ Chain of Responsibility

■ Command

■ Interpreter

■ Iterator

■ Mediator

■ Memento

■ Observer

■ State

■ Strategy

■ Template Method

■ Visitor

ch05.indd 239 6/6/07 2:27:01 PM

240 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

Chain of Responsibility
The Chain of Responsibility pattern’s intent is to avoid coupling the sender of a
request to its receiver by giving multiple objects a chance to handle the request.

The request is passed along the chain of receiving objects until an object
processes it. Figure 5-13 shows the UML.

Benefits Following are the benefits of using the Chain of Responsibility pattern:

■ It reduces coupling.

■ It adds flexibility when assigning responsibilities to objects.

■ It allows a set of classes to act as one; events produced in one class can be
sent to other handler classes within the composition.

Applicable Scenarios The following scenarios are most appropriate for the
Chain of Responsibility pattern:

■ More than one object can handle a request, and the handler is unknown.

■ A request is to be issued to one of several objects, and the receiver is not
specified explicitly.

■ The set of objects able to handle the request is to be specified dynamically.

Java EE Technology Feature The Java EE technology feature associated with
the Chain of Responsibility pattern is RequestDispatcher in the servlet/JSP API.

Example Code The following example Java code demonstrates the Chain of
Responsibility pattern:

 FIGURE 5-13

UML for
the Chain of
Responsibility
pattern

ch05.indd 240 6/6/07 2:27:02 PM

Identify the Most Appropriate Design 241

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

package javaee.architect.ChainOfResponsibility;
public class ChainOfResponsibilityPattern {
 public static void main(String[] args) {
 System.out.println("Chain Of Responsibility Pattern Demonstration.");
 System.out.println("--");
 try {
 // Create Equity Order request.
 System.out.println("Creating Equity Order request.");
 Request equityOrderRequest = new Request(Request.EQUITY_ORDER);
 // Create Bond Order request.
 System.out.println("Creating Bond Order request.");
 Request bondOrderRequest = new Request(Request.BOND_ORDER);
 // Create a request handler.
 System.out.println("Creating 1st handler.");
 HandlerIF handler = new ConcreteHandler1();
 // Process the Equity Order.
 System.out.println("Calling 1st handler with Equity Order.");
 handler.processRequest(equityOrderRequest);
 // Process the Bond Order.
 System.out.println("Calling 1st handler with Bond Order");
 handler.processRequest(bondOrderRequest);
 } catch (Exception e) {System.out.println(e.getMessage());}
 System.out.println();
 }
}

package javaee.architect.ChainOfResponsibility;
public class ConcreteHandler1 implements HandlerIF {
 public void processRequest(Request parm) {
 // Start the processing chain here...
 switch (parm.getType()) {
 case Request.EQUITY_ORDER: // This object processes equity orders
 handleIt(parm); // so call the function to handle it.
 break;
 case Request.BOND_ORDER: // Another object processes bond orders so
 System.out.println("Creating 2nd handler."); // pass request along.
 new ConcreteHandler2().processRequest(parm);
 break;
 }
 }
 private void handleIt(Request parm) {
 System.out.println("ConcreteHandler1 has handled the processing.");
 }
}

ch05.indd 241 6/6/07 2:27:02 PM

242 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

package javaee.architect.ChainOfResponsibility;
public class ConcreteHandler2 implements HandlerIF {
 public void processRequest(Request parm) {
 // You could add on to the processing chain here...
 handleIt(parm);
 }
 private void handleIt(Request parm) {
 System.out.println("ConcreteHandler2 has handled the processing.");
 }
}

package javaee.architect.ChainOfResponsibility;
public interface HandlerIF {
 public void processRequest(Request request);
}

package javaee.architect.ChainOfResponsibility;
public class Request {
 // The universe of known requests that can be handled.
 public final static int EQUITY_ORDER = 100;
 public final static int BOND_ORDER = 200;
 // This objects type of request.
 private int type;
 public Request(int parm) throws Exception {
 // Validate the request type with the known universe.
 if ((parm == EQUITY_ORDER) || (parm == BOND_ORDER))
 // Store this request type.
 this.type = parm;
 else
 throw new Exception("Unknown Request type "+parm+".");
 }
 public int getType() {
 return type;
 }
}

Command
The Command pattern’s intent is to encapsulate a request as an object, thereby
letting you parameterize clients with different requests, queue or log requests, and
support rollback types of operations.

The Command pattern is also known as Action or Transaction. The UML is shown
in Figure 5-14.

ch05.indd 242 6/6/07 2:27:02 PM

Identify the Most Appropriate Design 243

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

Benefits Following is a list of benefits of using the Command pattern:

■ It separates the object that invokes the operation from the object that
actually performs the operation.

■ It simplifies adding new commands, because existing classes remain
unchanged.

Applicable Scenarios The following scenarios are most appropriate for the
Command pattern:

■ You need to parameterize objects according to an action to perform.

■ You create, queue, and execute requests at different times.

■ You need to support rollback, logging, or transaction functionality.

Java EE Technology Feature These are the Java EE technology features associ-
ated with the Command pattern:

■ MessageBeans invoke business logic based on content of messages dispatched
to them.

■ Servlets/JSPs are invoked corresponding to the type of HTTP request that is
received by the web container.

Example Code The following example Java code demonstrates the Command
pattern:

 FIGURE 5-14

UML for the
Command
pattern

ch05.indd 243 6/6/07 2:27:02 PM

244 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

package javaee.architect.Command;
public class CommandPattern {
 public static void main(String[] args) {
 System.out.println("Command Pattern Demonstration.");
 System.out.println("------------------------------");
 // Create receiver objects.
 System.out.println("Creating receivers.");
 ReceiverIF order = new Order();
 ReceiverIF trade = new Trade();
 // Create commands passing in receiver objects.
 System.out.println("Creating commands.");
 CommandAbstract cmdOrder = new ConcreteCommand(order);
 CommandAbstract cmdTrade = new ConcreteCommand(trade);
 // Create invokers.
 System.out.println("Creating invokers.");
 Invoker invOrder = new Invoker();
 Invoker invTrade = new Invoker();
 // Storing commands in invokers respectively.
 System.out.println("Storing commands in invokers.");
 invOrder.storeCommand(cmdOrder);
 invTrade.storeCommand(cmdTrade);
 // Call invoke on the invoker to execute the command.
 System.out.println("Invoking the invokers.");
 invOrder.invoke();
 invTrade.invoke();
 System.out.println();
 }
}

package javaee.architect.Command;
abstract class CommandAbstract {
 public abstract void execute();
}

package javaee.architect.Command;
public class ConcreteCommand extends CommandAbstract {
 // The binding between action and receiver
 private ReceiverIF receiver;
 public ConcreteCommand(ReceiverIF receive) {
 this.receiver = receive;
 }
 public void execute() {
 receiver.action();
 }
}

ch05.indd 244 6/6/07 2:27:03 PM

Identify the Most Appropriate Design 245

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

package javaee.architect.Command;
public class Invoker {
 private CommandAbstract command;
 public void storeCommand(CommandAbstract cmd) {
 this.command = cmd;
 }
 public void invoke() {
 command.execute();
 }
}

package javaee.architect.Command;
public class Order implements ReceiverIF {
 public void action() {
 System.out.println("Order.action() called.");
 }
}

package javaee.architect.Command;
public interface ReceiverIF {
 public void action();
}

package javaee.architect.Command;
public class Trade implements ReceiverIF {
 public void action() {
 System.out.println("Trade.action() called.");
 }
}

Interpreter
The Interpreter pattern’s intent is to define a representation of the grammar of a
given language, along with an interpreter that uses this representation to interpret
sentences in the language. The UML is shown in Figure 5-15.

Benefits Following is a list of benefits of using the Interpreter pattern:

■ It is easier to change and extend the grammar.

■ Implementing the grammar is straightforward.

ch05.indd 245 6/6/07 2:27:03 PM

246 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

Applicable Scenarios The following scenarios are most appropriate for the
Interpreter pattern:

■ The grammar of the language is not complicated.

■ Efficiency is not a priority.

Example Code The following example Java code demonstrates the Interpreter
pattern:

package javaee.architect.Interpreter;
import java.util.ArrayList;
import java.util.ListIterator;
import java.util.StringTokenizer;
public class InterpreterPattern {
 public static void main(String[] args) {
 System.out.println("Interpreter Pattern Demonstration.");
 System.out.println("----------------------------------");
 BookInterpreterContext bookInterpreterContext = new BookInterpreterContext();
 bookInterpreterContext.addTitle("Pickwick Papers");
 bookInterpreterContext.addTitle("Great Expectations");
 bookInterpreterContext.addTitle("Wuthering Heights");
 bookInterpreterContext.addTitle("Crossfile");
 bookInterpreterContext.addAuthor("William Shakespeare");
 bookInterpreterContext.addAuthor("Emily Bronte");
 bookInterpreterContext.addAuthor("James Marathon");
 bookInterpreterContext.addTitleAndAuthor(
 new TitleAndAuthor("Pickwick Papers", "William Shakespeare"));
 bookInterpreterContext.addTitleAndAuthor(
 new TitleAndAuthor("Great Expectations", "William Shakespeare"));
 bookInterpreterContext.addTitleAndAuthor(

 FIGURE 5-15

UML for the
Interpreter
pattern

ch05.indd 246 6/6/07 2:27:03 PM

Identify the Most Appropriate Design 247

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 new TitleAndAuthor("Wuthering Heights", "Emily Bronte"));
 bookInterpreterContext.addTitleAndAuthor(
 new TitleAndAuthor("Crossfire", "James Marathon"));
 BookInterpreterClient bookInterpreterClient
 = new BookInterpreterClient(bookInterpreterContext);
 System.out.println("show author ->"
 + bookInterpreterClient.interpret("show author"));
 System.out.println("show title ->"
 + bookInterpreterClient.interpret("show title"));
 System.out.println("show author for title <Crossfire> ->"
 + bookInterpreterClient.interpret("show author for title <Crossfire>"));
 System.out.println("show title for author <William Shakespeare> ->"
 + bookInterpreterClient.interpret(
 "show title for author <William Shakespeare>"));
 System.out.println();
 }
}
class BookInterpreterClient {
 BookInterpreterContext bookInterpreterContext;
 public BookInterpreterClient(BookInterpreterContext parm) {
 bookInterpreterContext = parm;
 }
 // language syntax:
 // show title
 // show author
 // show title for author <author-name>
 // show author for title <title-name>
 public String interpret(String expression) {
 StringTokenizer expressionTokens = new StringTokenizer(expression);
 String currentToken;
 char mainQuery = ' ';
 char subQuery = ' ';
 String searchString = null;
 boolean forUsed = false;
 boolean searchStarted = false;
 boolean searchEnded = false;
 StringBuffer result = new StringBuffer();
 while (expressionTokens.hasMoreTokens()) {
 currentToken = expressionTokens.nextToken();
 if (currentToken.equals("show")) {
 continue;//show in all queries, not really used
 } else if (currentToken.equals("title")) {
 if (mainQuery == ' ') {
 mainQuery = 'T';
 } else {
 if ((subQuery == ' ') && (forUsed)) {
 subQuery = 'T';
 }
 }
 } else if (currentToken.equals("author")) {

ch05.indd 247 6/6/07 2:27:04 PM

248 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 if (mainQuery == ' ') {
 mainQuery = 'A';
 } else {
 if ((subQuery == ' ') && (forUsed)) {
 subQuery = 'A';
 }
 }
 } else if (currentToken.equals("for")) {
 forUsed = true;
 } else if ((searchString == null) && (subQuery != ' ')
 && (currentToken.startsWith("<"))) {
 searchString = currentToken;
 searchStarted = true;
 if (currentToken.endsWith(">")) {
 searchEnded = true;
 }
 } else if ((searchStarted) && (!searchEnded)) {
 searchString = searchString + " " + currentToken;
 if (currentToken.endsWith(">")) {
 searchEnded = true;
 }
 }
 }
 if (searchString != null) {
 searchString
 = searchString.substring(1,(searchString.length() - 1));//remove <>
 }
 BookAbstractExpression abstractExpression;
 switch (mainQuery) {
 case 'A' : {
 switch (subQuery) {
 case 'T' : {
 abstractExpression = new BookAuthorTitleExpression(searchString);
 break;
 } default : {
 abstractExpression = new BookAuthorExpression();
 break;
 }
 }
 break;
 } case 'T' : {
 switch (subQuery) {
 case 'A' : {
 abstractExpression = new BookTitleAuthorExpression(searchString);
 break;
 } default : {
 abstractExpression = new BookTitleExpression();
 break;
 }
 }

ch05.indd 248 6/6/07 2:27:04 PM

Identify the Most Appropriate Design 249

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 break;
 } default : return result.toString();
 }
 result.append(abstractExpression.interpret(bookInterpreterContext));
 return result.toString();
 }
}
class BookInterpreterContext {
 private ArrayList titles = new ArrayList();
 private ArrayList authors = new ArrayList();
 private ArrayList titlesAndAuthors = new ArrayList();
 public void addTitle(String title) {titles.add(title);}
 public void addAuthor(String author) {authors.add(author);}
 public void addTitleAndAuthor(TitleAndAuthor titleAndAuthor)
 {titlesAndAuthors.add(titleAndAuthor);}
 public ArrayList getAllTitles() {return titles;}
 public ArrayList getAllAuthors() {return authors;}
 public ArrayList getAuthorsForTitle(String titleIn) {
 ArrayList authorsForTitle = new ArrayList();
 TitleAndAuthor tempTitleAndAuthor;
 ListIterator titlesAndAuthorsIterator = titlesAndAuthors.listIterator();
 while (titlesAndAuthorsIterator.hasNext()) {
 tempTitleAndAuthor = (TitleAndAuthor)titlesAndAuthorsIterator.next();
 if (titleIn.equals(tempTitleAndAuthor.getTitle())) {
 authorsForTitle.add(tempTitleAndAuthor.getAuthor());
 }
 }
 return authorsForTitle;
 }
 public ArrayList getTitlesForAuthor(String authorIn) {
 ArrayList titlesForAuthor = new ArrayList();
 TitleAndAuthor tempTitleAndAuthor;
 ListIterator authorsAndTitlesIterator = titlesAndAuthors.listIterator();
 while (authorsAndTitlesIterator.hasNext()) {
 tempTitleAndAuthor = (TitleAndAuthor)authorsAndTitlesIterator.next();
 if (authorIn.equals(tempTitleAndAuthor.getAuthor())) {
 titlesForAuthor.add(tempTitleAndAuthor.getTitle());
 }
 }
 return titlesForAuthor;
 }
}
abstract class BookAbstractExpression {
 public abstract String interpret(BookInterpreterContext parm);
}
class BookAuthorExpression extends BookAbstractExpression {
 public String interpret(BookInterpreterContext parm) {
 ArrayList authors = parm.getAllAuthors();
 ListIterator authorsIterator = authors.listIterator();

ch05.indd 249 6/6/07 2:27:04 PM

250 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 StringBuffer titleBuffer = new StringBuffer("");
 boolean first = true;
 while (authorsIterator.hasNext()) {
 if (!first) {titleBuffer.append(", ");}
 else {first = false;}
 titleBuffer.append((String)authorsIterator.next());
 }
 return titleBuffer.toString();
 }
}
class BookAuthorTitleExpression extends BookAbstractExpression {
 String title;
 public BookAuthorTitleExpression(String parm) {title = parm;}
 public String interpret(BookInterpreterContext parm) {
 ArrayList authorsAndTitles = parm.getAuthorsForTitle(title);
 ListIterator authorsAndTitlesIterator = authorsAndTitles.listIterator();
 StringBuffer authorBuffer = new StringBuffer("");
 boolean first = true;
 while (authorsAndTitlesIterator.hasNext()) {
 if (!first) {authorBuffer.append(", ");}
 else {first = false;}
 authorBuffer.append((String)authorsAndTitlesIterator.next());
 }
 return authorBuffer.toString();
 }
}
class BookTitleExpression extends BookAbstractExpression {
 public String interpret(BookInterpreterContext parm) {
 ArrayList titles = parm.getAllTitles();
 ListIterator titlesIterator = titles.listIterator();
 StringBuffer titleBuffer = new StringBuffer("");
 boolean first = true;
 while (titlesIterator.hasNext()) {
 if (!first) {titleBuffer.append(", ");}
 else {first = false;}
 titleBuffer.append((String)titlesIterator.next());
 }
 return titleBuffer.toString();
 }
}
class BookTitleAuthorExpression extends BookAbstractExpression {
 String title;
 public BookTitleAuthorExpression(String parm) {title = parm;}
 public String interpret(BookInterpreterContext parm) {
 ArrayList titlesAndAuthors = parm.getTitlesForAuthor(title);
 ListIterator titlesAndAuthorsIterator = titlesAndAuthors.listIterator();

ch05.indd 250 6/6/07 2:27:04 PM

Identify the Most Appropriate Design 251

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 StringBuffer titleBuffer = new StringBuffer("");
 boolean first = true;
 while (titlesAndAuthorsIterator.hasNext()) {
 if (!first) {titleBuffer.append(", ");}
 else {first = false;}
 titleBuffer.append((String)titlesAndAuthorsIterator.next());
 }
 return titleBuffer.toString();
 }
}
class TitleAndAuthor {
 private String title;
 private String author;
 public TitleAndAuthor(String parm1, String parm2) {
 title = parm1;
 author = parm2;
 }
 public String getTitle() {return title;}
 public String getAuthor() {return author;}
}

Iterator
The Iterator pattern’s intent is to provide a way to access the elements of an
aggregate object sequentially without exposing its underlying implementation.
java.util.Enumeration and java.util.Iterator are examples of the Iterator pattern.

The Iterator pattern is also known as Cursor. The UML is shown in Figure 5-16.

 FIGURE 5-16

UML for the
Iterator pattern

ch05.indd 251 6/6/07 2:27:05 PM

252 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

Benefits Following is a list of benefits of using the Iterator pattern:

■ It supports variations in the traversal of a collection.

■ It simplifies the interface to the collection.

Applicable Scenarios The following scenarios are most appropriate for the
Iterator pattern:

■ Access to a collection object is required without having to expose its internal
representation.

■ Multiple traversals of objects need to be supported in the collection.

■ A universal interface for traversing different structures needs to be provided
in the collection.

Java EE Technology Feature and Java SE API Association The Java EE
technology feature associated with the Command pattern is ValueListHandler in the
J2EE Patterns Catalog.

The Java SE APIs associated with the Iterator pattern are

■ java.util.Iterator

■ java.util.Enumeration

Example Code The following example Java code demonstrates the Iterator
pattern:

package javaee.architect.Iterator;
public class IteratorPattern {
 public static void main(String[] args) {
 System.out.println("Iterator Pattern Demonstration.");
 System.out.println("-------------------------------");
 System.out.println("Building string array of books.");
 String[] books = new String[8];
 books[0] = "PowerBuilder Developers Guide, 1994";
 books[1] = "Informix Developers Guide, 1995";
 books[2] = "Informix Universal Data Option, 1996";
 books[3] = "SQL Server Developers Guide, 1999";
 books[4] = "SilverStream Success I, 1999";
 books[5] = "SilverStream Success II, 2000";
 books[6] = "J2EE Unleashed, 2001";
 books[7] = "Enterprise Architect Study Guide, 2002";

ch05.indd 252 6/6/07 2:27:05 PM

Identify the Most Appropriate Design 253

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 // Turn the string array into a collection.
 System.out.println("Turning string array into a collection.");
 CollectionIF collection = new ConcreteCollection(books);
 // Get an iterator for the collection.
 System.out.println("Getting an iterator for the collection..");
 IteratorIF iterator = collection.iterator();
 // Iterate through and print each object in the list.
 System.out.println("Iterate through the list.");
 int i = 0;
 while (iterator.hasNext()) {
 System.out.println((++i)+" "+iterator.next());
 }
 System.out.println();
 }
}

package javaee.architect.Iterator;
import java.util.*;
public interface CollectionIF {
 // Interface for creating a
 // collection that needs iterating.
 public IteratorIF iterator();
 public Collection elements();

}

package javaee.architect.Iterator;
import java.util.*;
public class ConcreteCollection implements CollectionIF {
 // Builds an iterable list of elements
 private List list = new ArrayList();
 public ConcreteCollection(Object[] objectList) {
 for (int i=0; i < objectList.length; i++) {
 list.add(objectList[i]);
 }
 }
 public IteratorIF iterator() {
 return new ConcreteIterator(this);
 }
 public Collection elements() {
 return Collections.unmodifiableList(list);
 }
}

package javaee.architect.Iterator;

ch05.indd 253 6/6/07 2:27:05 PM

254 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

import java.util.*;
public class ConcreteIterator implements IteratorIF {
 private List list;
 private int index;
 public ConcreteIterator(CollectionIF parm) {
 list = (List) parm.elements();
 index = 0;
 }
 public Object next() throws RuntimeException {
 try {
 return list.get(index++);
 } catch (IndexOutOfBoundsException ioobe) {
 throw new RuntimeException("No Such Element");
 }
 }
 public boolean hasNext() {
 return (index < list.size()) ? true : false;
 }
}

package javaee.architect.Iterator;
public interface IteratorIF {
 // Interface for Iterators.
 public boolean hasNext();
 public Object next();
}

Mediator
The Mediator pattern’s intent is to define an object that encapsulates how a
set of objects interacts. It helps to promote a looser coupling by keeping objects
from referring to each other explicitly, therefore allowing any interaction to vary
independently. The UML is shown in Figure 5-17.

Benefits Following is a list of benefits of using the Mediator pattern:

■ It decouples colleagues.

■ It simplifies object protocols.

■ It centralizes control.

■ The individual components become simpler and much easier to deal with
because they do not need to pass messages to one another.

■ The components do not need to contain logic to deal with their
intercommunication and are therefore more generic.

ch05.indd 254 6/6/07 2:27:05 PM

Identify the Most Appropriate Design 255

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

Applicable Scenarios The following scenarios are most appropriate for the
Mediator pattern:

■ A set of objects communicates in complex but well-defined ways.

■ Custom behavior distributed between several objects is required without
subclassing. It is commonly used structurally in message-based systems. The
messages themselves are the means by which related objects are decoupled.

Example Code The following example Java code demonstrates the Mediator
pattern:

package javaee.architect.Mediator;
public class MediatorPattern {
 public static void main(String[] args) {
 System.out.println("Mediator Pattern Demonstration.");
 System.out.println("-------------------------------");
 // Construct mediator and colleagues
 System.out.println("Constructing mediator and colleagues.");
 MediatorIF mediator = new ConcreteMediator();
 ColleagueIF colleague1 = new ConcreteColleague1(mediator);
 ColleagueIF colleague2 = new ConcreteColleague2(mediator);
 // Display colleague values.
 System.out.println("Displaying colleague states.");
 System.out.println("colleague1.toString()="+colleague1);
 System.out.println("colleague2.toString()="+colleague2);
 // Change state on colleague1 and the mediator

 FIGURE 5-17

UML for the
Mediator pattern

ch05.indd 255 6/6/07 2:27:06 PM

256 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 // will coordinate the change with colleague2.
 System.out.println("Calling colleague1.changeState()");
 ((ConcreteColleague1) colleague1).changeState();
 // Display colleague values now.
 System.out.println("Displaying colleague states now.");
 System.out.println("colleague1.toString()="+colleague1);
 System.out.println("colleague2.toString()="+colleague2);
 // Change state on colleague2 and see what happens.
 System.out.println("Calling colleague2.changeState()");
 ((ConcreteColleague2) colleague2).changeState();
 // Display colleague values now.
 System.out.println("Displaying colleague states again.");
 System.out.println("colleague1.toString()="+colleague1);
 System.out.println("colleague2.toString()="+colleague2);
 System.out.println();
 }
}

package javaee.architect.Mediator;
public interface ColleagueIF { }

package javaee.architect.Mediator;
public class ConcreteColleague1 implements ColleagueIF {
 private MediatorIF mediator;
 // This colleague uses a boolean for it's state.
 private boolean state;
 public ConcreteColleague1(MediatorIF parm) {
 this.mediator = parm;
 this.mediator.registerColleague1(this);
 }
 public void setState(boolean parm) {
 this.state = parm;
 }
 public void changeState() {
 state = state ? false : true;
 mediator.state1Changed();
 }
 public String toString() {
 return new Boolean(state).toString();
 }
}

package javaee.architect.Mediator;
public class ConcreteColleague2 implements ColleagueIF {
 private MediatorIF mediator;
 // This colleague uses a string for its state.

ch05.indd 256 6/6/07 2:27:06 PM

Identify the Most Appropriate Design 257

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 private String state = "false";
 public ConcreteColleague2(MediatorIF parm) {
 this.mediator = parm;
 this.mediator.registerColleague2(this);
 }
 public void setState(String parm) {
 this.state = parm;
 }
 public void changeState() {
 state = state.equals("false") ? "true" : "false";
 mediator.state2Changed();
 }
 public String toString() {
 return state;
 }
}

package javaee.architect.Mediator;
public class ConcreteMediator implements MediatorIF {
 ColleagueIF colleague1;
 ColleagueIF colleague2;
 public void registerColleague1(ColleagueIF parm) {
 this.colleague1 = (ConcreteColleague1) parm;
 }
 public void registerColleague2(ColleagueIF parm) {
 this.colleague2 = (ConcreteColleague2) parm;
 }
 public void state1Changed() {
 String s = (colleague2.toString().equals("true")) ? "false" : "true";
 ((ConcreteColleague2) colleague2).setState(s);
 }
 public void state2Changed() {
 boolean b = (colleague1.toString().equals("true")) ? false : true;
 ((ConcreteColleague1) colleague1).setState(b);
 }
}

package javaee.architect.Mediator;
public interface MediatorIF {
 //Interface for communicating with colleagues
 public void registerColleague1(ColleagueIF parm);
 public void registerColleague2(ColleagueIF parm);
 public void state1Changed();
 public void state2Changed();
}

ch05.indd 257 6/6/07 2:27:06 PM

258 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

Memento
The Memento pattern’s intent is to capture and internalize an object’s internal state
so that objects can be restored to this state later. It must do this without violating
encapsulation.

The Memento pattern is also known as Token. The UML is shown in Figure 5-18.

Benefits Following is a list of benefits of using the Memento pattern:

■ It preserves encapsulation boundaries.

■ It simplifies the originator.

Applicable Scenarios The following scenarios are most appropriate for the
Memento pattern:

■ A snapshot containing enough information regarding the state of an object
can be saved so that it can be restored to the complete state using the
snapshot information later.

■ Using a direct interface to obtain the state would impose implementation
details that would break the rules of encapsulation for the object.

Java EE Technology Feature The Java EE technology feature associated with
the Memento pattern is EntityBeans using Bean-Managed Persistence (BMP).

Example Code The following example Java code demonstrates the Memento
pattern:

package javaee.architect.Memento;
public class MementoPattern {
 public static void main(String[] args) {
 System.out.println("Memento Pattern Demonstration.");
 System.out.println("-------------------------------");
 // Run the caretaker

 FIGURE 5-18

UML for the
Memento pattern

ch05.indd 258 6/6/07 2:27:07 PM

Identify the Most Appropriate Design 259

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 Caretaker.run();
 System.out.println();
 }
}

package javaee.architect.Memento;
public class Caretaker {
 public static void run() {
 // Create originator and set initial values.
 System.out.println("Creating originator and setting initial values.");
 Originator originator = new Originator();
 originator.setState(true);
 originator.setName("The Originator");
 // Create memento.
 System.out.println("Creating memento.");
 Memento memento = originator.createMemento();
 System.out.println(originator);
 // Change originator values.
 System.out.println("Changing originator values.");
 originator.setState(false);
 originator.setName("To be undone.");
 System.out.println(originator);
 // Recover state from memento.
 System.out.println("Recovering originator values from memento.");
 originator.recoverFromMemento(memento);
 System.out.println(originator);
 }
}

package javaee.architect.Memento;
public class Memento {
 private boolean state;
 private String name;
 Memento(boolean parm1, String parm2) {
 this.state = parm1;
 this.name = parm2;
 }
 boolean getState() {return this.state;}
 String getName() {return this.name;}
}

package javaee.architect.Memento;
public class Originator {
 private boolean state;
 private String name;
 private String other;
 // Create memento, save critical data in it.

ch05.indd 259 6/6/07 2:27:07 PM

260 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 public Memento createMemento() {
 return new Memento(state, name);
 }
 // Recover critical data from memento.
 public void recoverFromMemento(Memento memento) {
 this.state = memento.getState();
 this.name = memento.getName();
 }
 public void setState(boolean parm) {
 this.state = parm;
 }
 public void setName(String parm) {
 this.name = parm;
 }
 public String toString() {
 return "Originator.toString() state="+state+", name="+name;
 }
}

Observer
The Observer pattern’s intent is to define a one-to-many dependency so that when
one object changes state, all its dependents are notified and updated automatically.
Java provides support for implementing the Observer pattern via the java.util.
Observer interface and the java.util.Observable class.

The Observer pattern is also known as Dependents or Publish-Subscribe. The UML
is shown in Figure 5-19.

Benefits Following is a list of benefits of using the Observer pattern:

■ It abstracts the coupling between the subject and the observer.

■ It provides support for broadcast-type communication.

Applicable Scenarios The following scenarios are most appropriate for the
Observer pattern:

■ A change to an object requires changing other objects, and the number of
objects that need to be changed is unknown.

■ An object needs to notify other objects without making any assumptions
about the identity of those objects.

ch05.indd 260 6/6/07 2:27:07 PM

Identify the Most Appropriate Design 261

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

Java EE Technology Feature and Java SE API Association The Java EE
technology feature associated with the Observer pattern is the JMS (Java Message
Server) Publish/Subscribe Model.

The Java SE APIs associated with the Observer pattern are

■ java.lang.Observable

■ java.lang.Observer

Example Code The following example Java code demonstrates the Observer
pattern:

package javaee.architect.Observer;
public class ObserverPattern {
 public static void main(String[] args) {
 System.out.println("Observer Pattern Demonstration.");
 System.out.println("-------------------------------");
 // Constructing observers.
 System.out.println("Constructing observer1 and observer2.");
 ObserverIF observer1 = new ConcreteObserver();
 ObserverIF observer2 = new ConcreteObserver();
 // Constructing observable (subject).
 System.out.println("Constructing observerable (subject).");
 ConcreteSubject subject = new ConcreteSubject();
 // Add observer object references to the subject.
 System.out.println("Registering observers with subject.");
 subject.addObserver(observer1);

 FIGURE 5-19

UML for the
Observer pattern

ch05.indd 261 6/6/07 2:27:07 PM

262 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 subject.addObserver(observer2);
 System.out.println("Doing something in the subject over time...");
 System.out.println();
 System.out.println(" Observable Observer1 Observer2");
 System.out.println("Iteration changed? notified? notified?");
 // Use loop to simulate time.
 for(int i=0;i < 10;i++) {
 System.out.print(i+": ");
 subject.doSomething();
 System.out.println();
 }
 System.out.println();
 System.out.println("Removing observer1 from the subject...repeating...");
 System.out.println();
 subject.removeObserver(observer1);
 // Another loop to simulate time.
 for(int i=0;i < 10;i++) {
 System.out.print(i+": ");
 subject.doSomething();
 System.out.println();
 }
 }
}

package javaee.architect.Observer;
public class ConcreteObserver implements ObserverIF {
 private ConcreteSubject subject; // Reference to subject
 public void update() {
 if (subject == null) { subject = new ConcreteSubject(); }
 System.out.print(" Yes!");
 }
}

package javaee.architect.Observer;
import java.util.*;
public class ConcreteSubject implements SubjectIF {
 List observers = new ArrayList();
 public void addObserver(ObserverIF parm) {observers.add(parm);}
 public void removeObserver(ObserverIF parm)
{observers.remove(observers.indexOf(parm));}
 public void notifyObservers() {
 for (Iterator i = observers.iterator(); i.hasNext();) {
 ((ObserverIF) i.next()).update();
 }
 }
 public void doSomething() {
 double d = Math.random();

ch05.indd 262 6/6/07 2:27:08 PM

Identify the Most Appropriate Design 263

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 if (d<0.25 || d>0.75) {
 System.out.print("Yes");
 notifyObservers();
 } else {
 System.out.print("No");
 }
 }
}

package javaee.architect.Observer;
public interface ObserverIF {
 public void update();
}

package javaee.architect.Observer;
public interface SubjectIF {
 public void addObserver(ObserverIF parm);
 public void removeObserver(ObserverIF parm);
 public void notifyObservers();
}

State
The State pattern’s intent is to allow an object to alter its behavior when its internal
state changes, appearing as though the object itself has changed its class. Another view
of the intent of the State pattern is to encapsulate the states of an object as discrete
objects, with each object belonging to a separate subclass of an abstract state class.

The State pattern is also known as Objects for States and acts in a similar way to
the Receiver in the Command pattern. The UML is shown in Figure 5-20.

 FIGURE 5-20

UML for the State
pattern

ch05.indd 263 6/6/07 2:27:08 PM

264 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

Benefits Following is a list of benefits of using the State pattern:

■ It keeps state-specific behavior local and partitions behavior for different
states.

■ It makes any state transitions explicit.

Applicable Scenarios The following scenarios are most appropriate for the State
pattern:

■ The behavior of an object depends on its state and it must be able to change
its behavior at runtime according on the new state.

■ Operations have large, multipart conditional statements that depend on the
state of the object.

Example Code The following example Java code demonstrates the State
pattern:

package javaee.architect.State;
public class StatePattern {
 public static void main(String[] args) {
 System.out.println("State Pattern Demonstration.");
 System.out.println("----------------------------");
 // Construct context.
 System.out.println("Constructing context.");
 Context context = new Context();
 // Call request, make state handle the request.
 System.out.println("Calling context.request().");
 context.request();
 // Flip state.
 System.out.println("Calling context.changeState().");
 context.changeState();
 // call request.
 System.out.println("Calling context.request().");
 context.request();
 System.out.println();
 }
}

package javaee.architect.State;
public class ConcreteState1 implements StateIF {
 public void handle() {
 System.out.println("ConcreteState1.handle() called.");
 }
}

ch05.indd 264 6/6/07 2:27:08 PM

Identify the Most Appropriate Design 265

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

package javaee.architect.State;
public class ConcreteState2 implements StateIF {
 public void handle() {
 System.out.println("ConcreteState2.handle() called.");
 }
}

package javaee.architect.State;
public class Context {
 // Initial state.
 private StateIF state = new ConcreteState1();
 // Request operation.
 public void request() {
 state.handle();
 }
 // Switch states
 public void changeState() {
 if (state instanceof ConcreteState1)
 state = new ConcreteState2();
 else
 state = new ConcreteState1();
 }
}

package javaee.architect.State;
public interface StateIF {
 public void handle();
}

Strategy
The Strategy pattern’s intent is to define a family of functionality, encapsulate each
one, and make them interchangeable. The Strategy pattern lets the functionality
vary independently from the clients that use it.

The Strategy pattern is also known as Policy. The UML is shown in Figure 5-21.

Benefits Following is a list of benefits of using the Strategy pattern:

■ It provides a substitute to subclassing.

■ It defines each behavior within its own class, eliminating the need for
conditional statements.

■ It makes it easier to extend and incorporate new behavior without changing
the application.

ch05.indd 265 6/6/07 2:27:09 PM

266 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

Applicable Scenarios The following scenarios are most appropriate for the
Strategy pattern:

■ Multiple classes differ only in their behaviors. The servlet API is a classic
example of this.

■ You need different variations of an algorithm.

■ An algorithm uses data that is unknown to the client.

Example Code The following example Java code demonstrates the Strategy
pattern:

package javaee.architect.Strategy;
public class StrategyPattern {
 public static void main(String[] args) {
 System.out.println("Strategy Pattern Demonstration.");
 System.out.println("-------------------------------");
 // Construct strategies.
 System.out.println("Constructing strategies.");
 StrategyIF strategy1 = new ConcreteStrategy1();
 StrategyIF strategy2 = new ConcreteStrategy2();
 // Construct contexts.
 System.out.println("Constructing contexts.");
 Context context1 = new Context(strategy1);
 Context context2 = new Context(strategy2);
 // Execute contextInterface.
 System.out.println("Constructing context interfaces.");
 context1.contextInterface("J2EE Unleashed");
 context2.contextInterface("J2EE Unleashed");

 FIGURE 5-21

UML for the
Strategy pattern

ch05.indd 266 6/6/07 2:27:09 PM

Identify the Most Appropriate Design 267

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 context1.contextInterface("The Secret Commissions");
 context2.contextInterface("The Secret Commissions");
 System.out.println();
 }
}

package javaee.architect.Strategy;
public class ConcreteStrategy1 implements StrategyIF {
 // Switch text to all upper case.
 public void algorithmInterface(String parm) {
 System.out.println(parm.toUpperCase());
 }
}

package javaee.architect.Strategy;
public class ConcreteStrategy2 implements StrategyIF {
 // Switch text beginning with "the".
 public void algorithmInterface(String parm) {
 System.out.println((parm.toLowerCase().startsWith("the "))
 ? parm.substring (4)+ ", " + parm.substring(0,4)
 : parm);
 }
}

package javaee.architect.Strategy;
public class Context {
 // Reference to the strategy.
 StrategyIF strategy;
 // Register reference to strategy on construction.
 public Context(StrategyIF parm) {this.strategy = parm;}
 // Call strategy's method.
 public void contextInterface(String parm) {strategy.algorithmInterface(parm);}
}

package javaee.architect.Strategy;
public interface StrategyIF {
 public void algorithmInterface(String parm);
}

Template Method
The Template Method pattern’s intent is to define the skeleton of a function in an
operation, deferring some steps to its subclasses. The Template Method lets subclasses
redefine certain steps of a function without changing the structure of the function.
The HttpServlet does this in the servlet API. The UML is shown in Figure 5-22.

ch05.indd 267 6/6/07 2:27:09 PM

268 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

Benefit The Template Method pattern is a very common technique for reusing code.

Applicable Scenarios The following scenarios are most appropriate for the
Template Method pattern:

■ You want to implement the nonvarying parts of an algorithm in a single class
and the varying parts of the algorithm in subclasses.

■ Common behavior among subclasses should be moved to a single common
class, avoiding duplication.

Example Code The following example Java code demonstrates the Template
Method pattern:

package javaee.architect.TemplateMethod;
public class TemplateMethodPattern {
 public static void main(String[] args) {
 System.out.println("TemplateMethod Pattern Demonstration.");
 System.out.println("-------------------------------------");
 // Construct concrete classes.
 System.out.println("Constructing concrete classes.");
 AbstractClass class1 = new ConcreteClass1();
 AbstractClass class2 = new ConcreteClass2();
 // Call template method.
 System.out.println("Calling template methods.");
 class1.templateMethod();

 FIGURE 5-22

UML for the
Template Method
pattern

ch05.indd 268 6/6/07 2:27:10 PM

Identify the Most Appropriate Design 269

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 class2.templateMethod();
 System.out.println();
 }
}

package javaee.architect.TemplateMethod;
public abstract class AbstractClass {
 public void templateMethod() {
 System.out.println("AbstractClass.templateMethod() called.");
 primitiveOperation1();
 primitiveOperationN();
 }
 public abstract void primitiveOperation1();
 public abstract void primitiveOperationN();
}

package javaee.architect.TemplateMethod;
public class ConcreteClass1 extends AbstractClass {
 public void primitiveOperation1() {
 System.out.println("ConcreteClass1.primitiveOperation1() called.");
 }
 public void primitiveOperationN() {
 System.out.println("ConcreteClass1.primitiveOperationN() called.");
 }
}

package javaee.architect.TemplateMethod;
public class ConcreteClass2 extends AbstractClass {
 public void primitiveOperation1() {
 System.out.println("ConcreteClass2.primitiveOperation1() called.");
 }
 public void primitiveOperationN() {
 System.out.println("ConcreteClass2.primitiveOperationN() called.");
 }
}

Visitor
The Visitor pattern’s intent is to represent an operation to be performed on elements
of an object structure. The Visitor pattern allows for the addition of a new operation
without changing the classes of the elements on which it is to operate. Figure 5-23
shows the UML.

ch05.indd 269 6/6/07 2:27:10 PM

270 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

Benefits Following are the benefits of using the Visitor pattern:

■ It simplifies the addition of new operations.

■ It gathers related operations while separating unrelated ones.

Applicable Scenarios The following scenarios are most appropriate for the
Visitor pattern:

■ An object structure contains many objects with differing interfaces and there
is a need to perform operations on these objects in a way that depends on
their concrete classes.

■ Many distinct and unrelated operations need to be performed on objects
in a structure and there is a need to avoid cluttering the classes with these
operations.

■ The classes defining the object structure rarely change but you frequently
need to define new operations that perform over the structure.

Example Code The following example Java code demonstrates the Visitor pattern:

package javaee.architect.Visitor;
public class VisitorPattern {
 public static void main(String[] args) {
 System.out.println("Visitor Pattern Demonstration.");
 System.out.println("------------------------------");
 // Construct list of elements.
 System.out.println("Constructing two elements.");
 ElementIF[] elements = new ElementIF[2];

 FIGURE 5-23

UML for the
Visitor pattern

ch05.indd 270 6/6/07 2:27:10 PM

Identify the Most Appropriate Design 271

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 elements[0] = new ConcreteElementA();
 elements[1] = new ConcreteElementB();
 // Construct object structure.
 System.out.println("Constructing object structure.");
 ObjectStructure objectStructure = new ObjectStructure(elements);
 // Visit elements in object structure.
 System.out.println("Visiting elements in object structure.");
 objectStructure.visitElements();
 System.out.println();
 }
}

package javaee.architect.Visitor;
public class ConcreteElementA implements ElementIF {
 public void accept(VisitorIF parm) {
 parm.visitConcreteElementA(this);
 }
 public void operationA() {
 System.out.println("ConcreteElementA.operationA() called.");
 }
}

package javaee.architect.Visitor;
public class ConcreteElementB implements ElementIF {
 public void accept(VisitorIF parm) {
 parm.visitConcreteElementB(this);
 }
 public void operationB() {
 System.out.println("ConcreteElementB.operationB() called.");
 }
}

package javaee.architect.Visitor;
public class ConcreteVisitor implements VisitorIF {
 public void visitConcreteElementA(ConcreteElementA parm) {
 parm.operationA();
 }
 public void visitConcreteElementB(ConcreteElementB parm) {
 parm.operationB();
 }
}

package javaee.architect.Visitor;
public interface ElementIF {
 public void accept(VisitorIF parm);
}

ch05.indd 271 6/6/07 2:27:10 PM

272 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

package javaee.architect.Visitor;
import java.util.*;
public class ObjectStructure {
 private List objectStruct;
 private VisitorIF visitor;
 public ObjectStructure(ElementIF[] parm) {
 objectStruct = Arrays.asList(parm);
 }
 public void visitElements() {
 if (visitor == null) { visitor = new ConcreteVisitor(); }
 for (Iterator i = objectStruct.iterator(); i.hasNext();) {
 ((ElementIF) i.next()).accept(visitor);
 }
 }
}

package javaee.architect.Visitor;
public interface VisitorIF {
 public void visitConcreteElementA(ConcreteElementA parm);
 public void visitConcreteElementB(ConcreteElementB parm);
}

Now that we’ve covered each of the Gang of Four’s (GoF) Design Patterns, let’s
review scenarios and also identify the Design Pattern that is most appropriate as a
solution.

Sun’s J2EE Patterns
Part I of the certification exam requires that you know the GoF Design Patterns
only, but for Parts II and III, you may find it helpful to study and then include in
your solution some of the J2EE Patterns from Sun. Although we do not go into great
detail on these patterns, the next few sections will at least serve as an introduction
by covering the scenarios for which they are potential solutions.

You may find it helpful to
study and then include in your solutions
some of the J2EE Patterns from Sun. For
complete details on the J2EE Patterns, refer

to the following web sites: http://java.sun.
com/reference/blueprints and http://java.
sun.com/blueprints/patterns/index.html.

ch05.indd 272 6/6/07 2:27:11 PM

Identify the Most Appropriate Design 273

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

SCENARIO & SOLUTION

Given Scenario Appropriate Design Pattern

The system needs to be independent of how its objects are created,
composed, and represented.
The system needs to be configured with one of a multiple family of
objects.
The family of related objects is intended to be used together and this
constraint needs to be enforced.
You want to provide a library of objects that does not show
implementations but only reveals interfaces.

Abstract Factory

The algorithm for creating a complex object needs to be independent of
the components that compose the object and how they are assembled.
The construction process is to allow different representations of the
constructed object.

Builder

A class is not able to anticipate the class of objects it needs to create.
A class wants its subclasses to specify the objects it instantiates.
Classes delegate responsibility to one of several helper subclasses, and
you want to localize the knowledge of which helper subclass is the
delegate.

Factory Method

The classes to instantiate are specified at runtime.
You want to avoid building a class hierarchy of factories that parallels
the hierarchy of objects.
Instances of the class have one of only a few different combinations of
state.

Prototype

A single instance of a class is needed, and it must be accessible to clients
from a well-known access point.

Singleton

You want to utilize an existing class with an incompatible interface.
You want to create a reusable class that cooperates with classes that
don’t necessarily have compatible interfaces.
You need to use several existing subclasses but do not want to adapt
their interfaces by subclassing each one.

Adapter

You want to avoid a permanent binding between the functional
abstraction and its implementation.
Both the functional abstraction and its implementation need to be
extended using subclasses.
Changes to the implementation should not impact the client (not even
a recompile).

Bridge

ch05.indd 273 6/6/07 2:27:11 PM

274 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

SCENARIO & SOLUTION

Given Scenario Appropriate Design Pattern

You want to represent a full or partial hierarchy of objects.
You want clients to be able to ignore the differences between the
varying objects in the hierarchy.
The structure is dynamic and can have any level of complexity.

Composite

You want to transparently and dynamically add responsibilities to
objects without affecting other objects.
You want to add responsibilities to an object that you may want to
change in the future.
Extending functionality by subclassing is no longer practical.

Decorator

You want to provide a simpler interface to a more complex subsystem.
Several dependencies exist between clients and the implementation
classes of an abstraction.
You want to layer the subsystems.

Facade

The application uses a considerable number of objects.
The storage costs are high because of the quantity of objects.
The application does not depend on object identity.

Flyweight

You need a more versatile or sophisticated reference to an object, rather
than a simple pointer.

Proxy

More than one object can handle a request and the handler is unknown.
A request is to be issued to one of several objects and the receiver is not
specified explicitly.
The set of objects able to handle the request is to be specified
dynamically.

Chain of Responsibility

You need to parameterize objects by an action to perform.
You specify, queue, and execute requests at different times.
You need to support rollback, logging, or transaction functionality.

Command

The grammar of the language is not complicated and efficiency is not a
priority.

Interpreter

Access to a collection object is required without having to expose its
internal representation.
You need to support multiple traversals of objects in the collection.
You need to provide a universal interface for traversing different
structures in the collection.

Iterator

ch05.indd 274 6/6/07 2:27:11 PM

Identify the Most Appropriate Design 275

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

SCENARIO & SOLUTION

Given Scenario Appropriate Design Pattern

A set of objects communicates in complex but well-defined ways.
Custom behavior distributed between several objects is required without
subclassing.

Mediator

A snapshot containing enough information regarding the state of an
object can be saved so that it can be restored to the complete state using
the snapshot information later.
Using a direct interface to obtain the state would impose
implementation details that would break the rules of encapsulation for
the object.

Memento

A change to an object requires changing other objects, and the number
of objects that need to be changed is unknown.
An object needs to notify other objects without making any assumptions
about the identity of those objects.

Observer

The behavior of an object depends on its state and it must be able to
change its behavior at runtime according on the new state.
Operations have large multipart conditional statements that depend on
the state of the object.

State

Multiple classes differ only in their behavior.
You need different variations of an algorithm.
An algorithm uses data that is unknown to the client.

Strategy

You want to implement the nonvarying parts of an algorithm in a single
class and the varying parts of the algorithm in subclasses.
Common behavior among subclasses should be moved to a single
common class, avoiding duplication.

Template Method

An object structure contains many objects with differing interfaces and
you need to perform operations on these objects in a way that depends
on their concrete classes.
Many distinct and unrelated operations need to be performed on objects
in a structure and you need to avoid cluttering the classes with these
operations.
The classes defining the object structure rarely change but you
frequently need to define new operations that perform over the
structure.

Visitor

ch05.indd 275 6/6/07 2:27:11 PM

276 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

Similar to the GoF Design Patterns, the J2EE Patterns are broken down into the
various sections that address the tiers (or layers) that make up an application:

■ Presentation Tier

■ Business Tier

■ Integration Tier

Presentation Tier J2EE Patterns
The presentation tier encapsulates the logic required to service the clients accessing
a system. Presentation tier patterns intercept a client request and then provide
facilities such as single sign-on, management of the client session, and access to
services in the business tier before constructing and delivering the response back to
the client.

The J2EE patterns available for the presentation layer follow:

■ Composite View

■ Dispatcher View

■ Front Controller

■ Intercepting Filter

■ Service To Worker

■ View Helper

The next table lists scenarios along with suggestions of one or more of the
presentation tier J2EE patterns to aid in the solution.

Business Tier Patterns
The business tier provides the services required by application clients and contains
the business data and logic. All business processing for the application is gathered
and placed into this tier. Enterprise JavaBean (EJB) components are one of the ways
to implement business processing in this tier.

Here are the J2EE patterns available for the business tier:

■ Business Delegate

■ Composite Entity (formally Aggregate Entity)

■ Service Locator

■ Session Facade

■ Transfer Object (formally Value Object)

ch05.indd 276 6/6/07 2:27:11 PM

Identify the Most Appropriate Design 277

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

■ Transfer Object Assembler (formally Value Object Assembler)

■ Value List Handler

The following table is a list of scenarios along with suggestions of one or more of
the business tier J2EE patterns to aid in the solution.

Integration Tier J2EE Patterns
This tier is responsible for accessing external resources and systems, such as relational
and nonrelational data stores and any legacy applications. A business tier object uses

SCENARIO & SOLUTION

Given Scenario Appropriate Presentation Tier Pattern

You have an application that needs to preprocess and/or
post-process a client request…

Intercepting Filter

You have an application that requires centralized control
for client request handling…

Front Controller and Intercepting Filter

You need to add logging, debugging, or some other behavior
to be carried out for each client request…

Front Controller and Intercepting Filter

You want to create a generic command interface for
delegating processing from the controller to the helper
components…

Front Controller

You want to delegate processing to a JSP or servlet and you
want to implement your Model View Controller (MVC)
Controller as a JSP or servlet…

Front Controller

You want to create an MVC View from multiple subviews… Composite View

You need to implement an MVC View as a JSP or servlet… View Helper

You would like to partition your MVC Model and MVC
View…

View Helper

Your application needs to encapsulate presentation-related
data formatting logic…

View Helper

You want to implement your Helper components as Custom
tags or JavaBeans…

View Helper

Your application needs to combine multiple presentation
patterns…

Service To Worker and Dispatcher View

You want to encapsulate MVC View management and
navigation logic…

Service To Worker and Dispatcher View

ch05.indd 277 6/6/07 2:27:12 PM

278 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

SCENARIO & SOLUTION

Given Scenario Appropriate Business Tier Pattern

You need to minimize coupling between presentation and
business layers…

Business Delegate

You need to cache business services for clients… Business Delegate

Your application needs a simpler interface to clients… Business Delegate

Within the business tier you want to shield the client from
implementation (lookup/creation/access) details of business
services…

Business Delegate and Service Locator

Your application needs to separate the lookup for vendor or
other technology dependencies for services…

Service Locator

You need to provide a uniform method for service lookup and
creation…

Service Locator

You want to shield the complexity and dependencies for EJB
and JMS component lookup…

Service Locator

You need to transfer data between application tiers… Transfer Object

You have to reduce network traffic between clients and EJBs… Session Facade

You want to minimize the number of remote method
invocations by providing coarser-grained method access to
business tier components…

Session Facade

You want to manage relationships between EJB components
and hide the complexity of their interactions…

Session Facade

You need to shield components in the business tier from
clients…

Session Facade and Business Delegate

You want to provide uniform access to components in the
business tier…

Session Facade

You need to design complex, coarser-grained EJB entity
beans…

Composite Entity

You have to identify coarse-grained objects and dependent
objects for EJB entity bean design…

Composite Entity

You want to minimize or eliminate the EJB entity bean clients’
dependency on the actual database schema…

Composite Entity

You have to improve manageability and minimize number of
EJB entity beans…

Composite Entity

ch05.indd 278 6/6/07 2:27:12 PM

Identify the Most Appropriate Design 279

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

the integration tier when it requires data or services that reside at the resource level.
The components in this tier can use JDBC, Java EE connector technology, or some
other proprietary software to access data at the resource level.

Here are the J2EE patterns available for the integration tier:

■ Data Access Object

■ Service Activator

The following table is a list of scenarios along with suggestions of one or more of
the integration tier J2EE patterns to aid in the solution.

SCENARIO & SOLUTION

Given Scenario Appropriate Business Tier Pattern

You want to minimize (or eliminate) EJB entity bean to entity
bean relationships…

Composite Entity and Session Facade

You need to get the data model for the application from various
business tier components…

Transfer Object Assembler (This could
also be a DataAccessObject as well)

You want on-the-fly data model construction… Transfer Object Assembler

You want to shield the data model construction complexity
from clients…

Transfer Object Assembler

Your application needs to provide query and list processing
facilities…

Value List Handler

You want to reduce the overhead of using EJB finder
methods…

Value List Handler

You need to facilitate server-side caching of query results, with
forward and backward navigation, for clients …

Value List Handler

SCENARIO & SOLUTION
You want to reduce the amount of coupling between business and resource tiers
(layers)…

Data Access Object

You need to centralize the access to resource tiers (layers) … Data Access Object

You must reduce complexity for accessing resource from the business tier (layer) … Data Access Object

You want to provide asynchronous processing for EJB components… Service Activator

You need to send a message to an EJB… Service Activator

ch05.indd 279 6/6/07 2:27:12 PM

280 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

CERTIFICATION OBJECTIVE 5.03

State the Name of a Gamma et al. Design Pattern
Given the UML Diagram and/or a Brief Description
of the Pattern’s Functionality

Study each design pattern diagram shown earlier. The following table has a brief
description of each pattern’s functionality:

The level of detail that
we’ve provided on Sun’s core J2EE patterns
is somewhat cursory. Although you will not

need to have knowledge of them for Part I,
you will find it useful to learn more about
them and then use them in Parts II and III.

Pattern’s Functionality Pattern Name

Provides an interface for creating families of related or dependent objects
without specifying the concrete classes.

Abstract Factory

Separates construction of a complex object from its representation so that the
construction process can create different representations.

Builder

Defines an interface for creating an object, letting subclasses decide which class
to instantiate. Allows a class to defer the actual instantiation to subclasses.

Factory Method

Specifies the kinds of objects to create using a prototypical instance, and
creates new objects by copying this prototype.

Prototype

Ensures a class has only one instance, and provides a global point of access to it. Singleton

Converts the class’s interface into another interface that the client
expects. Lets classes work together that couldn’t otherwise do so because of
incompatible interfaces.

Adapter

Decouples abstraction from its implementation so that the two can vary
independently.

Bridge

ch05.indd 280 6/6/07 2:27:12 PM

State the Name of a Gamma 281

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

Pattern’s Functionality Pattern Name

Composes objects into tree structures to represent part-whole hierarchies.
Lets clients treat individual objects and compositions of objects in a uniform
manner.

Composite

Attaches added responsibilities to an object dynamically. Provides flexible
alternative to subclassing to extend functionality.

Decorator

Provides a unified interface to a set of interfaces in one or more subsystems.
Defines a higher-level interface that makes the subsystems easier to use.

Facade

Uses sharing to support large numbers of fine-grained objects in an efficient
manner.

Flyweight

Provides a placeholder or surrogate for another object to control access to it. Proxy

Avoids coupling the sender of a request to its receiver by giving more than
one object a chance to handle the request. The receiving objects are chained
together and pass the request along the chain until it is handled.

Chain Of Responsibility

Encapsulates a request as an object, allowing the client to be parameterized
with different requests, to queue or log requests, and to be able to support undo
operations.

Command

Given a language, defines a representation for its grammar along with an
interpreter of the grammar that uses the representation to interpret sentences
in the language.

Interpreter

Provides a way to access the elements of a collection (aggregate) object
sequentially without having to expose the underlying representation.

Iterator

Defines an object that encapsulates how a set of objects interacts. Promotes
loose coupling by keeping objects from referring to each other directly and
varying their interaction independently.

Mediator

Without violating encapsulation, captures and externalizes an object’s internal
state so that the object’s essential state can be restored later.

Memento

Defines a one-to-many dependency among objects so that when one object
changes state, all its dependents (subscribers) are notified and updated
automatically.

Observer

Allows an object to alter its behavior when its internal state changes; the
object will appear to change its class.

State

Defines a family of algorithms, encapsulating each one, and makes them
interchangeable. Lets the algorithm vary independently from clients that use it.

Strategy

Defines the skeleton of an algorithm (function) in an operation, deferring
some steps to subclasses. Lets subclasses redefine certain steps of an algorithm
without changing the algorithm’s structure.

Template Method

Represents an operation to be performed on the elements of an object
structure. Lets you define a new operation without changing the classes of the
elements on which it operates.

Visitor

ch05.indd 281 6/6/07 2:27:12 PM

282 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

The following table shows the alternate names for the Gamma et al. Design
Patterns:

Pattern Name Also Known As

Abstract Factory Kit

Factory Method Virtual Constructor

Adapter Wrapper

Bridge Handle/Body

Decorator Wrapper

Proxy Surrogate

Command Action or Transaction

Iterator Cursor

Memento Token

Observer Dependents or Publish-Subscribe

State Objects for States

Strategy Policy

CERTIFICATION OBJECTIVE 5.04

Identify Benef its of a Specif ied Gamma et al.
Design Pattern

Here is a list of the benefits for each of the Gamma et al. (GoF) Design Patterns:

GoF Design Pattern Benefits

Abstract Factory Isolates client from concrete (implementation) classes.
Makes the exchanging of object families easier.
Promotes consistency among objects.

Builder Permits you to vary an object’s internal representation.
Isolates the code for construction and representation.
Provides finer control over the construction process.

ch05.indd 282 6/6/07 2:27:12 PM

Identify Benef its of a Specif ied Gamma 283

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

GoF Design Pattern Benefits

Factory Method Removes the need to bind application-specific classes into the code. The code
interacts solely with the resultant interface and so will work with any classes
that implement that interface.
Because creating objects inside a class is more flexible than creating an object
directly, it enables the subclass to provide an extended version of an object.

Prototype Allows adding or removing objects at runtime.
Specifies new objects by varying its values or structure.
Reduces the need for subclassing.
Allows dynamic configuring of an application with classes.

Singleton Controls access to a single instance of the class.
Reduces name space usage.
Permits refinement of operations and representation.
Permits a variable number of instances.
Is more flexible than class methods (operations).

Adapter Allows two or more previously incompatible objects to interact.
Allows reusability of existing functionality.

Bridge Enables the separation of implementation from the interface.
Improves extensibility.
Allows the hiding of implementation details from the client.

Composite Defines class hierarchies consisting of primitive and complex objects.
Makes it easier to add new kinds of components.
Provides the flexibility of structure with a manageable interface.

Decorator Provides greater flexibility than static inheritance.
Avoids the need to place feature-laden classes higher-up the hierarchy.
Simplifies coding by allowing you to develop a series of functionality-
targeted classes, instead of coding all of the behavior into the object.
Enhances the extensibility of the object, because changes are made by coding
new classes.

Facade Provides a simpler interface to a complex subsystem without reducing the
options provided by the subsystem.
Shields clients from the complexity of the subsystem components.
Promotes looser coupling between the subsystem and its clients.
Reduces the coupling between subsystems provided that every subsystem uses
its own Facade pattern and other parts of the system use the Facade pattern to
communicate with the subsystem.

Flyweight Reduces the number of objects to deal with.
Reduces memory and storage devices if the objects are persisted.

Proxy Remote proxy shields the fact that the implementation resides in another
address space.
Virtual proxy performs optimizations—e.g., by creating objects on demand.

ch05.indd 283 6/6/07 2:27:13 PM

284 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

CERTIFICATION OBJECTIVE 5.05

Identify the Gamma et al. Design Pattern Associated
with a Specified Java EE Technology Feature

Here is a list of Java EE technology features and the associated Gamma et al. design
patterns that are used to implement them:

GoF Design Pattern Benefits

Chain of Responsibility Reduces coupling.
Adds flexibility when assigning responsibilities to objects.
Allows a set of classes to act as one; events produced in one class can be sent to
other handler classes within the composition.

Command Separates the object that invokes the operation from the object that performs
the operation.
Simplifies adding new commands, because existing classes remain unchanged.

Interpreter Makes it easier to change and extend the grammar.
Makes implementing the grammar straightforward.

Iterator Supports variations in the traversal of a collection.
Simplifies the interface to the collection.

Mediator Decouples colleagues.
Simplifies object protocols.
Centralizes control.
Individual components become simpler and much easier to deal with because
they do not need to pass messages to one another.
Components do not need to contain logic to deal with their
intercommunication and are therefore more generic.

Memento Preserves encapsulation boundaries.
Simplifies the originator.

Observer Abstracts the coupling between the subject and the observer.
Provides support for broadcast-type communication.

State Keeps state-specific behavior local and partitions behavior for different states.
Makes any state transitions explicit.

Strategy Provides a substitute to subclassing.
Defines each behavior within its own class, eliminating the need for conditional
statements.
Makes it easier to extend and incorporate new behavior without changing the
application.

Template Method Lets code be reused.

ch05.indd 284 6/6/07 2:27:13 PM

Identify the Gamma et al. Design Pattern Associated 285

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

Java EE Technology Feature Associated GoF Design Pattern

EJB Factory (javax.ejb.EJBHome,
javax.ejb.EJBLocalHome)
JMS Connection Factory
(javax.jms.QueueConnectionFactory,
javax.jms.TopicConnectionFactory)

Factory Method

EJB remote reference (javax.ejb.EJBObject) Proxy

JMS Publish/Subscribe Model Observer

CERTIFICATION SUMMARY
By studying this chapter, you now have an understanding of the GoF design patterns
and some introductory material on J2EE patterns. You should also understand which
are the most appropriate patterns to use for given scenarios.

ch05.indd 285 6/6/07 2:27:13 PM

286 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

✓ TWO-MINUTE DRILL

Here are some of the key points from each certification objective in Chapter 5.

Identify the Benefits of Using Design Patterns

❑ Help designers to focus on solutions quicker if they recognize patterns that
have been successful in the past.

❑ Give new ideas to designers who have studied patterns.

❑ Provide a common language for design discussions.

❑ Provide a solution to a real-world problem.

❑ Capture knowledge and document the best practices for a domain.

❑ Document decisions and the rationale that lead to the solution.

❑ Reuse the experience of predecessors.

❑ Communicate the insight already gained previously.

❑ Describe the circumstances (when and where), the influences (who and
what), and the resolution (how and why it balances the influences).

Identify the Most Appropriate Design Pattern
for a Given Scenario

❑ The Abstract Factory is most appropriate when the system needs to be
independent of how its objects are created, composed, and represented.

❑ The Adapter is most appropriate when you want to utilize an existing class
with an incompatible interface.

❑ The Bridge is most appropriate when you want to avoid a permanent binding
between the functional abstraction and its implementation.

❑ The Builder is most appropriate when the algorithm for creating a complex
object needs to independent of the components that compose the object and
how they are assembled.

❑ The Chain of Responsibility is most appropriate when more than one object
can handle a request and the handler is unknown.

❑ The Command is most appropriate when you need to parameterize objects by
an action to perform.

ch05.indd 286 6/6/07 2:27:13 PM

Two-Minute Drill 287

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

❑ The Composite is most appropriate when you want to represent a full or
partial hierarchy of objects.

❑ The Decorator is most appropriate when you want to transparently and
dynamically add responsibilities to objects without affecting other objects.

❑ The Facade is most appropriate when you want to provide a simpler interface
to a more complex subsystem.

❑ The Factory Method is most appropriate when a class is not able to anticipate
the class of objects it needs to create.

❑ The Flyweight is most appropriate when the application uses a considerable
number of objects.

❑ The Interpreter is most appropriate when the grammar of the language is not
complicated and efficiency is not a priority.

❑ The Iterator is most appropriate when access to a collection object is required
without having to expose its internal representation.

❑ The Mediator is most appropriate when a set of objects communicates in
complex but well-defined ways.

❑ The Memento is most appropriate when a snapshot containing enough
information regarding the state of an object can be saved so that it can be
restored to the complete state using the snapshot information later.

❑ The Observer is most appropriate when a change to an object requires
changing other objects, and the number of objects that need to be changed is
unknown.

❑ The Prototype is most appropriate when the classes to instantiate are to be
specified at runtime.

❑ The Proxy is most appropriate when you need a more versatile or
sophisticated reference to an object, rather than a simple pointer.

❑ The Singleton is most appropriate when a single instance of a class is needed,
and it must be accessible to clients from a well-known access point.

❑ The State is most appropriate when the behavior of an object depends on its
state and it must be able to change its behavior at runtime according to the
new state.

❑ The Strategy is most appropriate when multiple classes differ only in their
behavior.

ch05.indd 287 6/6/07 2:27:14 PM

288 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

❑ The Template Method is most appropriate when you want to implement the
nonvarying parts of an algorithm in a single class and the varying parts of the
algorithm in subclasses.

❑ The Visitor is most appropriate when an object structure contains many
objects with differing interfaces and you need to perform operations on these
objects in a way that depends on their concrete classes.

State the Name of a Gamma et al. Design Pattern
Given the UML Diagram and/or a Brief Description
of the Pattern’s Functionality
Review the GoF (Gamma et al.) diagrams and associated descriptions that appear
earlier in the chapter:

Identify Benefits of a Specified Gamma et al. Design Pattern
Here are the benefits for each of the Gamma et al. design patterns:

Identify the Gamma et al. Design Pattern Associated with a
Specified Java EE Technology Feature
Here is a list of Java EE technology features and the associated design patterns that
are used to implement them:

❑ The EJB Factory (javax.ejb.EJBHome, javax.ejb.EJBLocalHome) and
JMS Connection Factory (javax.jms.QueueConnectionFactory, javax.jms.
TopicConnectionFactory) use the Factory Method pattern.

❑ The EJB remote reference (javax.ejb.EJBObject) uses the Proxy pattern.

❑ The JMS Publish/Subscribe Model uses the Observer pattern.

ch05.indd 288 6/6/07 2:27:14 PM

Self Test 289

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

SELF TEST
The following questions will help you measure your understanding of the material presented in this
chapter. Read all the choices carefully because there may be more than one correct answer. Choose
all correct answers for each question.

Identify the Benefits of Using Design Patterns

 1. Which of the following is not a benefit of using Design Patterns?
 A. They provide a common language for design discussions.
 B. They provide solutions to “real-world” problems.
 C. They communicate the insight already gained previously.
 D. They provide solutions to totally novel problems.

Identify the Most Appropriate Design Pattern for a Given Scenario

 2. The Factory Method design pattern is useful when a client must create objects having
different

 A. Subclasses
 B. Ancestors
 C. Sizes
 D. Similarities

 3. What design pattern limits the number of instances a class can create?
 A. Command
 B. Limiter
 C. Strategy
 D. Singleton

 4. Iterators are useful when dealing with which of the following types of classes?
 A. Dynamic
 B. Collection
 C. Singleton
 D. Small

ch05.indd 289 6/6/07 2:27:15 PM

290 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

State the Name of a Gamma et al. Design Pattern Given the UML Diagram
and/or a Brief Description of the Pattern’s Functionality

 5. What is the Abstract Factory pattern also known as?
 A. Kit
 B. Wrapper
 C. Cursor
 D. Virtual Constructor

 6. Which pattern is shown in the diagram?

 A. Abstract Factory
 B. Factory Method
 C. Command
 D. Chain of Responsibility

 7. What pattern is also known as Virtual Constructor?
 A. Abstract Factory
 B. Memento
 C. Wrapper
 D. Factory Method

ch05.indd 290 6/6/07 2:27:15 PM

Self Test 291

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 8. Which pattern is shown in the diagram?

 A. Proxy
 B. Decorator
 C. Bridge
 D. Observer

 9. What is the Adapter pattern also known as?
 A. Surrogate
 B. Wrapper
 C. Token
 D. Proxy

ch05.indd 291 6/6/07 2:27:16 PM

292 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 10. Which pattern is shown in the diagram?

 A. Proxy
 B. Facade
 C. Adapter
 D. Bridge

 11. What pattern is also known as Handle/Body?
 A. Proxy
 B. Adapter
 C. Abstract Factory
 D. Bridge

 12. Which pattern is shown in the diagram?

ch05.indd 292 6/6/07 2:27:17 PM

Self Test 293

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 A. Chain of Responsibility
 B. Command
 C. Memento
 D. Factory Method

 13. What is the Decorator pattern also known as?
 A. Wrapper
 B. Adapter
 C. Composite
 D. Strategy

 14. Which pattern is shown in the diagram?

 A. Template Method
 B. Command
 C. Singleton
 D. State

 15. What pattern is also known as Surrogate?
 A. Observer
 B. Bridge
 C. Proxy
 D. Decorator

 16. What is the Command pattern also known as?
 A. Action
 B. Transaction

ch05.indd 293 6/6/07 2:27:17 PM

294 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 C. Wrapper
 D. Surrogate

 17. The Command design pattern ____________ a request in an object.
 A. Separates
 B. Encapsulates
 C. Processes
 D. Decouples

Identify Benefits of a Specified Gamma et al. Design Pattern

 18. Which of the following elements are parts of the Gang of Four (GoF) Design Pattern format?
 A. Problem
 B. Solution
 C. Consequences
 D. Intent

Identify the Gamma et al. Design Pattern Associated with
a Specified Java EE Technology Feature

 19. The Decorator pattern appears in which of the following Java packages?
 A. java.io
 B. java.awt
 C. java.lang
 D. java.util

 20. Which Java package contains classes that implement the Iterator design pattern?
 A. java.enumeration
 B. java.util
 C. java.math
 D. java.text

 21. What two methods are defined by the Enumeration interface?
 A. hasMoreElements()

 B. getElement()

 C. nextElement()

 D. nextelement()

ch05.indd 294 6/6/07 2:27:18 PM

Self Test Answers 295

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

SELF TEST ANSWERS

Identify the Benefits of Using Design Patterns

 1. ®✓ D is correct. Design patterns do not address totally novel problems, so this cannot be a
benefit gained.
®̊ A, B, and C are incorrect. These are benefits gained by using Design Patterns.

Identify the Most Appropriate Design Pattern for a Given Scenario

 2. ®✓ A is correct. The Factory Method design pattern is useful when a client must create objects
having different subclasses.
®̊ B, C, and D are incorrect. The Factory Method design pattern is not useful with these
situations.

 3. ®✓ D is correct. The Singleton pattern limits the number of instances a class can create.
®̊ A, B, and C are incorrect. These do not limit the number of instances a class can create.

 4. ®✓ B is correct. Iterators are useful when dealing with Collection classes.
®̊ A, C, and D are incorrect. These are not appropriate for the Iterator pattern.

State the Name of a Gamma et al. Design Pattern Given the
UML Diagram and/or a Brief Description of the Pattern’s Functionality

 5. ®✓ A is correct. The Abstract Factory pattern is also known as Kit.
®̊ B, C, and D are incorrect. These are not valid aliases for Abstract Factory.

 6. ®✓ B is correct. The diagram depicts the Factory Method pattern.
®̊ A, C, and D are incorrect. These are not depicted in the diagram.

 7. ®✓ D is correct. The Factory Method pattern is also known as the Virtual Constructor.
®̊ A, B, and C are incorrect. These are not valid aliases for Virtual Constructor.

 8. ®✓ C is correct. The diagram depicts the Bridge pattern.
®̊ A, B, and D are incorrect. These are not depicted in the diagram.

 9. ®✓ B is correct. The Adapter pattern is also known as the Wrapper.
®̊ A, C, and D are incorrect. These are not valid aliases for Adapter.

 10. ®✓ B is correct. The diagram depicts the Facade pattern.
®̊ A, C, and D are incorrect. These are not depicted in the diagram.

ch05.indd 295 6/6/07 2:27:18 PM

296 Chapter 5: Design Patterns

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 5

 11. ®✓ D is correct. The Bridge pattern is also known as Handle/Body.
®̊ A, B, and C are incorrect. These are not valid aliases for Handle/Body.

 12. ®✓ A is correct. The diagram depicts the Chain of Responsibility pattern.
®̊ B, C, and D are incorrect. These are not depicted in the diagram.

 13. ®✓ A is correct. The Decorator pattern is also known as the Wrapper.
®̊ B, C, and D are incorrect. These are not valid aliases for Decorator.

 14. ®✓ A is correct. The diagram depicts the Template Method pattern.
®̊ B, C, and D are incorrect. These are not depicted in the diagram.

 15. ®✓ C is correct. The proxy pattern is also known as Surrogate.
®̊ A, B, and D are incorrect. These are not valid aliases for Surrogate.

 16. ®✓ A and B are correct. The Command pattern is also known as Action or Transaction.
®̊ C and D are incorrect. These are not valid aliases for Command.

 17. ®✓ B is correct. The Command design pattern encapsulates a request in an object.
®̊ A, C, and D are incorrect. These are not valid descriptions of the Command pattern.

Identify Benefits of a Specified Gamma et al. Design Pattern

 18. ®✓ C and D are correct. Consequences and Intent are valid elements in the (GoF) Design
Pattern format.
®̊ A and B are incorrect. These are not valid elements in the (GoF) Design Pattern format.

Identify the Gamma et al. Design Pattern Associated
with a Specified Java EE Technology Feature

 19. ®✓ A and B are correct. The Decorator pattern appears in the java.io and java.awt packages.
®̊ C and D are incorrect. These do not contain the Decorator pattern.

 20. ®✓ B is correct. The java.util package contains classes that implement the Iterator design
pattern.
®̊ A, C, and D are incorrect. These do not implement the Iterator design pattern.

 21. ®✓ A and C are correct. The Enumeration interface contains hasMoreElements() and
nextElement() methods.
®̊ B and D are incorrect. These are not valid methods in the Enumeration interface.

ch05.indd 296 6/6/07 2:27:19 PM

