Design Patterns

CERTIFICATION OBJECTIVES

5.01 Identify the Benefits of Using Design 5.05 Identify the Gamma et al. Design Pattern
Patterns Associated with a Specified Java EE

Technology Feat
5.02 Identify the Most Appropriate Design echnology Feattire

Pattern for a Given Scenario \/ Two-Minute Drill

5.03 State the Name of a Gamma et al. Design Q&A Self Test
Pattern Given the UML Diagram and/or
a Brief Description of the Pattern’s
Functionality

5.04 Identify Benefits of a Specified Gamma
et al. Design Pattern

204 Chapter 5: Design Patterns

esign patterns, or patterns, are solutions to recurring problems in a given context amid

competing concerns.They try to bring together and document the core solution to

a given problem.They are identified and documented in a form that’s easy to share,
discuss, and understand. They are useful problem-solving documentation for software designers
and are used repeatedly to help solve common problems that arise in the course of software
engineering. Documentation for the design pattern should provide a discussion on the difficulties
and interests surrounding the problem and arguments as to why the given solution balances these
competing interests or constraints that are inherent in the issue being solved.

The value of the pattern is not just the solution to the problem; value can also be
found in the documentation that explains the underlying motivation, the essential
workings of the solution, and why the design pattern is advantageous. The pattern
student will be able to experience all or at least some of the experience and insight
that went into providing the solution. This will undoubtedly help the designer to use
the pattern and possibly adapt it or adjust it further to address needs accordingly.

Patterns can be combined and used in concert to solve larger problems that
cannot be solved with just one pattern. Once the pattern student has become more
familiar with these patterns, their combined applicability to a new set of problems
will become much easier to identify.

CERTIFICATION OBJECTIVE 5.01

Identify the Benefits of Using Design Patterns

Design patterns are beneficial because they describe a problem that occurs
repeatedly, and then they explain the solution to the problem in a way that can be
used many times over. Design patterns are helpful for the following reasons:

B They help designers quickly focus on solutions if the designers can recognize
patterns that have been successful in the past.

The study of patterns can inspire designers to come up with new and unique
ideas.

They provide a common language for design discussions.
They provide solutions to real-world problems.

Their format captures knowledge and documents best practices for a domain.

They document decisions and the rationale that lead to the solution.

Identify the Most Appropriate Design 205§

B They reuse the experience of predecessors.
B They communicate the insight already gained previously.

B They describe the circumstances (when and where), the influences (who and
what), and the resolution (how and why it balances the influences) of a solution.

Nevertheless, patterns are not the be-all and end-all, they are by no means a
“silver bullet” or panacea, and they cannot be universally applied to all situations.
You can’t always find the solution to every problem by consulting the pattern
playbook. Patterns have been excessively hyped and have been used by designers to
make them appear knowledgeable.

Design Patterns by Gamma et al.,
Also Known as the Gang of Four (GoF)

The Gang of Four (or GoF, which consists of Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides, authors of the classic reference Design Patterns:
Elements of Reusable Object-Oriented Software [Addison-Wesley, 2005]) described
patterns as “a solution to a problem in a context.” These three elements—problem,
solution, and context—are the essence of a pattern. As with all pattern creators,
the GoF used a template to document patterns. Before we review the 23 patterns
documented by the GoF, let’s take a look at the format for these patterns.

Format for the GoF Design Patterns

Table 5-1 shows the elements and sections for the GoF Design Patterns format.
If you are new to patterns, Table 5-2 will be useful. It is a suggestion for the sequence
in which you can easily study the GoF Design Patterns.

CERTIFICATION OBJECTIVE 5.02

Identify the Most Appropriate Design
Pattern for a Given Scenario

We will now review each of the Gamma et al. design patterns, starting first with those
that are used to create objects (Creational), and then moving on to those that are
concerned with composition of classes and objects (Structural), and finally covering
those that are concerned with the interaction and responsibility of objects (Behavioral).

206 Chapter 5: Design Patterns

TABLE 5-1 Gang of Four (GoF) Design Patterns Elements, Sections, Descriptions
Element/Section Description

Name Used to help convey the essence of the pattern.
Classification Categories are

Creational Patterns concerned with creation
Structural Patterns concerned with composition
Behavioral Patterns concerned with interaction and responsibility.

Intent What problem does the pattern address? What does it do?

Also Known As Other common names for the pattern.

Motivation Scenario that illustrates the problem.

Applicability Situations in which the pattern can be used.

Structure Diagram representing the structure of classes and objects in the pattern. The GoF uses

Object Modeling Technique (OMT) or Booch notation. Today, Unified Modeling
Language (UML), a unification of OMT, Booch, and others, is commonly used.

Participants Classes and/or objects participating in the design pattern along with their
responsibilities.

Collaborations How the participants work together to carry out their responsibilities.

Consequences What objectives does the pattern achieve? What are the trade-offs and results?

Implementation Implementation details (pitfalls, hints, or techniques) to consider. Are there language-
specific issues?

Sample Code Sample code.

Known Uses Examples from the real world.

Related Patterns Comparison and discussion of related patterns; scenarios where this pattern can be

used in conjunction with another.

GoF Creational Design Patterns

Creational design patterns are concerned with the way objects are created. These patterns
are used when a decision must be made at the time a class is instantiated. Typically, the
details of the concrete class that is to be instantiated are hidden from (and unknown
to) the calling class by an abstract class that knows only about the abstract class or the
interface it implements. The following creational patterns are described by the GoF:

B Abstract Factory
Builder

Factory Method
Prototype

Singleton

Identify the Most Appropriate Design 207

Study Sequence for Gang of Four (GoF) Design Patterns

Sequence Design Pattern Comment

1 Factory Method Frequently used and also well utilized by other patterns.

2 Strategy Frequently used, so early familiarity helps.

3 Decorator Considered the “skin” to the “guts” of Strategy.

4 Composite Often used along with Chain of Responsibility, Interpreter,
[terator, and Visitor.

5 [terator Looping through anything is widespread in computing, so
why not through objects, too?

6 Template Method Helps to reinforce your understanding of Strategy and
Factory Method.

7 Abstract Factory Create more than one type of a group of objects.

8 Builder Another way to create, similar to Factory Method and
Abstract Factory.

9 Singleton You want only one copy of something.

10 Proxy Controlled access to a service is needed.

11 Adapter Gain access to a service with an incompatible interface.

12 Bridge Decouples the function from the implementation.

13 Mediator Yet another middleman.

14 Facade Single interface simplifying multiple interfaces in a
subsystem.

15 Observer A form of the publish/subscribe model.

16 Chain of Responsibility Passes the message along until it’s dealt with.

17 Memento Backs up and restores an object’s state.

18 Command Separates invoker from performer.

19 Prototype Similar to cloning.

20 State Object appears to change class and alter its behavior.

21 Visitor Object that represents an operation that operates on

elements of an object structure.

22 Flyweight Allows you to utilize sharing to support large numbers of
objects efficiently.

23 Interpreter Defines a grammar and an interpreter that uses the
grammar to interpret sentences.

208 Chapter 5: Design Patterns

UML for the
Abstract Factory
pattern

interface
AbstractFactorylF

ConcreteFactory?2

+createProductA:AbstractProductAIF
+createProductB:AbstractProductBIF

7<

Q T +createProductA:AbstractProductAlF
+createProductB:AbstractProductBIF

ConcreteFactoryl

+createProductA:AbstractProductAlF
+createProductB:AbstractProductB | F

Abstract Factory

The Abstract Factory pattern’s intent is to provide an interface to use for creating
families of related (or dependent) objects without actually specifying their concrete
classes. For a given set of related abstract classes, this pattern supplies a technique

interface
AbstractProductBIF

+actionB:void

==
|

T

interface
AbstractProductAIF

+actionA:void

|
|
|

=

ProductA2

ProductAl

+actionA:void

+actionA:void

ProductBI

ProductB2

+actionB:void

+actionB:void

for creating instances of those abstract classes from an equivalent set of concrete
subclasses. On some occasions, you may need to create an object without having to
know which concrete subclass of object to create.

The Abstract Factory pattern is also known as Kit. The UML representation is

shown in Figure 5-1.

B [t isolates client from concrete (implementation) classes.

B [t eases the exchanging of object families.

B [t promotes consistency among objects.

Benefits Following is a list of benefits of using the Abstract Factory pattern:

Identify the Most Appropriate Design 209

Applicable Scenarios The following scenarios are most appropriate for the
Abstract Factory pattern:

B The system needs to be independent of how its objects are created, composed,

and represented.

The system needs to be configured with one of a multiple family of objects.

B The family of related objects is intended to be used together, and this
constraint needs to be enforced.

B You want to provide a library of objects that does not show implementations
and only reveals interfaces.

Java EE Technology Features and Java SE APl Association The Java EE
technology features associated with the Abstract Factory pattern are

B Data Access Object (Sun)
B Transfer Object Assembler (Sun)

The Java Platform, Standard Edition (Java SE) API associated with the Abstract
Factory pattern is java.awt. Toolkit.

Example Code Following is example Java code that demonstrates the Abstract
Factory pattern:

package javaee.architect.AbstractFactory;
public class AbstractFactoryPattern {
public static void main(String[] args) {

System.out.println ("Abstract Factory Pattern Demonstration.");
System.out.println("-------------"-"--"—-—-“-~ -~ -~ “~-~ -~~~ -~~~ ") ;
// Create abstract factories
System.out.println ("Constructing abstract factories.");
AbstractFactorylIF factoryOne = new FordFactory() ;
AbstractFactoryIF factoryTwo = new GMFactory () ;
// Create cars via abstract factories
System.out.println ("Constructing cars.");
AbstractSportsCarIF carl = factoryOne.createSportsCar() ;
AbstractEconomyCarIF car2 = factoryOne.createEconomyCar () ;
AbstractSportsCarIF car3 factoryTwo.createSportsCar () ;
AbstractEconomyCarIF car4 = factoryTwo.createEconomyCar () ;
// Execute drive on the cars

2 10 Chapter5: Design Patterns

System.out.println("Calling drive on the cars.");
carl.driveFast () ;

car2.driveSlow () ;

car3.driveFast () ;

car4 .driveSlow () ;

System.out.println() ;

package javaee.architect.AbstractFactory;

public interface AbstractFactoryIF
public AbstractSportsCarIF createSportsCar() ;
public AbstractEconomyCarIF createEconomyCar () ;

}

package javaee.architect.AbstractFactory;
public interface AbstractSportsCarIF {
public void driveFast () ;

}

package javaee.architect.AbstractFactory;
public interface AbstractEconomyCarIF (
public void driveSlow() ;

}

package javaee.architect.AbstractFactory;
public class FordFactory implements AbstractFactoryIF
public AbstractSportsCarIF createSportsCar() {
return new Mustang() ;
}

public AbstractEconomyCarIF createEconomyCar () {
return new Focus() ;

package javaee.architect.AbstractFactory;
public class GMFactory implements AbstractFactoryIF
public AbstractSportsCarIF createSportsCar () {
return new Corvette() ;
}

public AbstractEconomyCarIF createEconomyCar () {
return new Cavalier () ;
}

}

Identify the Most Appropriate Design 2. | |

package javaee.architect.AbstractFactory;
public class Mustang implements AbstractSportsCarIF {
public void driveFast () {
System.out.println ("Mustang.driveFast () called.");

}
}

package javaee.architect.AbstractFactory;
public class Focus implements AbstractEconomyCarIF
public void driveSlow()
System.out.println ("Focus.driveSlow() called.");

}
}

package javaee.architect.AbstractFactory;
public class Corvette implements AbstractSportsCarIF (
public void driveFast () {
System.out.println ("Corvette.driveFast () called.");

}
}

package javaee.architect.AbstractFactory;
public class Cavalier implements AbstractEconomyCarIF
public void driveSlow()
System.out.println("Cavalier.driveSlow() called.");

}
}

Builder

The Builder pattern’s intent is to separate the construction of a complex object from
its representation so that the same construction process can create different objects.
The Builder pattern is useful when several kinds of complex objects with similar
rules for assembly need to be joined at runtime but result in different object types. It
achieves this by separating the process of building the object from the object itself.

The Builder pattern creates complex objects in multiple steps instead of in a
single step, as in other patterns. The UML is shown in Figure 5-2.

Benefits The following benefits are achieved when using the Builder pattern:

B [t permits you to vary an object's internal representation.
B [t isolates the code for construction and representation.

B [t provides finer control over the construction process.

2 12 Chapter 5: Design Patterns

| FIGURES2_| R

Director BuilderlF

UML for the

Builder pattern builder:BuilderlF

+Director +buildProduct:void
+construct:void

product:ProductlF

interface ConcreteProduct
ProductIF
+buildProductvoid | 7 N +ConcreteProduct
+action:void +action:void

product:ProductlF

Applicable Scenarios The following scenarios are most appropriate for the
Builder pattern:

B The algorithm for creating a complex object needs to be independent of the
components that compose the object and how they are assembled.

B The construction process is to allow different representations of the
constructed object.

Example Code Following is some example Java code that demonstrates the
Builder pattern:

package javaee.architect.Builder;
public class BuilderPattern {
public static void main(Stringl[] args)

System.out.println("Builder Pattern Demonstration.");
System.out.println("----------------"-----"--~-~--~-~-—- ") ;
// Create builder
System.out.println ("Constructing builder.");
BuilderIF builder = new ConcreteBuilder () ;
// Create director
System.out.println("Constructing director.");
Director director = new Director (builder) ;
// Construct customer via director
System.out.println ("Constructing customer.") ;

Identify the Most Appropriate Design

director.construct () ;

// Get customer via builder

CustomerIF customer = builder.getCustomer () ;
// Use customer method

System.out.println("Calling action on the customer.");

customer.action() ;
System.out.println() ;

package javaee.architect.Builder;

public interface BuilderIF ({
public void buildCustomer () ;
public CustomerIF getCustomer () ;

}

package javaee.architect.Builder;
public class ConcreteBuilder implements BuilderIF {
CustomerIF customer;
public void buildCustomer () {
customer = new ConcreteCustomer () ;
// You could add more customer processing here...
}
public CustomerIF getCustomer () {
return customer;

}

package javaee.architect.Builder;
public class ConcreteCustomer implements CustomerIF
public ConcreteCustomer ()
System.out.println ("ConcreteCustomer constructed.");

}

public void action() {

213

System.out.println ("ConcreteCustomer.action() called.");

}
}

package javaee.architect.Builder;

public interface CustomerIF
public void action() ;

}

package javaee.architect.Builder;
public class Director {

2 14 Chapter 5: Design Patterns

BuilderIF builder;

public Director (BuilderIF parm) {
this.builder = parm;

}

public void construct() {
builder.buildCustomer () ;

}
}

Factory Method

The Factory Method pattern’s intent is to define an interface for creating an object
but letting the subclass decide which class to instantiate. In other words, the class
defers instantiation to subclasses. The client of the Factory Method never needs to
know the concrete class that has been instantiated and returned. Its client needs to
know only about the published abstract interface.

The Factory Method pattern is also known as Virtual Constructor. Figure 5-3
shows the UML.

Benefits Following is a list of benefits of using the Factory Method pattern:

B [t removes the need to bind application-specific classes into the code. The
code interacts solely with the resultant interface, so it will work with any
classes that implement that interface.

B Because creating objects inside a class is more flexible than creating an object
directly, it enables the subclass to provide an extended version of an object.

m interface interface
Creator <* <*(cr e;tgr}; ***************** Product
UMt forthe 0 N
Factory Method +factoryMethod:Product <{Creator}> <{Product}>
attern T
i vay T
o , \
[; \
Lo , \
\
[// \
l \l/Concrete creators \//Concrete products \
ConcreteCreator > ConcreteProduct
<{Creator}> <{Product}>
+factoryMethod:Product K— Creators T T T T T +ConcreteProduct

Identify the Most Appropriate Design 2. | §

Applicable Scenarios The following scenarios are most appropriate for the Fac-
tory Method pattern:

B A class is not able to anticipate the class of objects it needs to create.
B A class wants its subclasses to specify the objects it instantiates.

B Classes assign responsibility to one of several helper subclasses, and you want
to localize the knowledge of which helper subclass is the delegate.

Java EE Technology Features and Java SE API Associations The Java EE
technology features associated with the Factory Method pattern are listed here:

B javax.ejb.EJBHome
B javax.ejb.EJBLocalHome
B javax.jms.QueueConnectionFactory

B javax.jms. TopicConnectionFactory

The Java SE APIs have many classes and interfaces that are associated with the
Factory Method pattern. Here are some examples:

B java.text.Collator
B java.net.ContentHandlerFactory
B javax.naming.spi.InitialContextFactory

B javax.net.SocketFactory

Example Code Following is some example Java code that demonstrates the Fac-
tory Method pattern:

package javaee.architect.FactoryMethod;
public class FactoryMethodPattern
public static void main(String[] args) {

System.out.println ("FactoryMethod Pattern Demonstration.");
System.out.println("-------------"-"-"“"-"-"“"-"- - ") ;
// Create creator, which uses the FactoryMethod
CreatorIF creator = new ConcreteCreator();
// Create trade via factory method
TradelF trade = creator.factoryMethod() ;
// Call trade action method
trade.action () ;
System.out.println() ;

2 1 6 Chapter5: Design Patterns

package javaee.architect.FactoryMethod;
public class ConcreteCreator implements Creator {
public TradelIF factoryMethod () {
return new ConcreteTrade () ;

}
}

package javaee.architect.FactoryMethod;
public class ConcreteTrade implements TradeIF
public void action()
System.out.println("ConcreteTrade.action() called.");

}
}

package javaee.architect.FactoryMethod;
public interface CreatorIF

public abstract TradeIF factoryMethod() ;
}

package javaee.architect.FactoryMethod;
public interface TradeIF

public void action() ;
}

Prototype

The Prototype pattern’s intent is to specify the kinds of objects that need to be
created using a prototypical instance, and then be able to create new objects by
copying this prototype. The copying of objects in Java is typically done by the
clone () method of java.lang.Object. The UML is shown in Figure 5-4.

PrototypelF
UML for the
Prototype pattern +action:void

clone:PrototypelF

7 N
7 N
7 N
7 N
7 N
7z N
7 N

7z N
ConcretePrototypel ConcretePrototype2
+ConcretePrototype | +ConcretePrototype2
+action:void +action:void
clone:PrototypelF clone:PrototypelF

Identify the Most Appropriate Design 2 | 7

Benefits Following are the benefits of using the Prototype pattern:

It lets you add or remove objects at runtime.
It lets you specify new objects by varying its values or structure.

[
[
B It reduces the need for subclassing.
[

It lets you dynamically configure an application with classes.

Applicable Scenarios The following scenarios are most appropriate for the
Prototype pattern:

B The classes to instantiate are specified at runtime.

B You need to avoid building a class hierarchy of factories that parallels the
hierarchy of objects.

B Instances of the class have one of only a few different combinations of state.

Java SE APl Association The Java SE API associated with the Prototype pat-
tern is java.lang.Object.

Example Code The following is example Java code for demonstrating the Proto-
type pattern. There are two viewpoints on the Prototype pattern. The first is that it
is there to simplify creating new instances of objects without knowing their concrete
class. The second is it is there to simplify creating exact copies (or clones) of an
original object.

The following example does not contain any state information in the objects
prior to the call to getClone (). It demonstrates the first form of Prototype.

package javaee.architect.Prototype;
public class PrototypePattern (
public static void main(String[] args) {

System.out.println ("Prototype Pattern Demonstration.");
System.out.println("-------------—---—~—~-~-—~—~—~—~—~—~—~—~—~—~—-- " ;
// Create prototypes
System.out.println ("Constructing prototypes.") ;
PrototypelIF prototypel = new ConcretePrototypel () ;
PrototypelIF prototype2 = new ConcretePrototype2() ;
// Get clones from prototypes
System.out.println ("Constructing clones from prototypes.");
PrototypelIF clonel = prototypel.getClone() ;
PrototypelIF clone2 = prototype2.getClone() ;
// Call actions on the clones
System.out.println("Calling actions on the clones.");
clonel.action() ;

2 18 Chapter5: Design Patterns

clone2.action() ;
System.out.println() ;
1

}

package javaee.architect.Prototype;
public class ConcretePrototypel implements PrototypeIF {
public ConcretePrototypel() {
System.out.println ("ConcretePrototypel constructed.");
}

public PrototypeIF getClone() {
// if required, put deep copy code here
return new ConcretePrototypel() ;

}

public void action()
System.out.println ("ConcretePrototypel.action() called");
}

}

package javaee.architect.Prototype;
public class ConcretePrototype2 implements PrototypeIF {
public ConcretePrototype2() {
System.out.println ("ConcretePrototype2 constructed.");
}

public PrototypeIF getClone() {
// if required, put deep copy code here
return new ConcretePrototypel () ;

}
public void action()

System.out.println ("ConcretePrototype2.action() called.");
}

}

package javaee.architect.Prototype;

public interface PrototypelIF
public PrototypeIF getClone(); // as opposed to Object.clone ()
public void action() ;

}

Singleton

The Singleton pattern’s intent is to ensure that a class has only one instance and
provides a global point of access to it. It ensures that all objects that use an instance
of this class are using the same instance. Figure 5-5 shows the UML.

Identify the Most Appropriate Design 2. | 9

-instance:Singleton

UML for the

. #Singleton —-——
Singleton pattern s <

]
+getlnstance:Singleton Singleton factory

Benefits Following are the benefits of using the Singleton pattern:

It controls access to a single instance of the class.
It reduces name space usage.
It permits refinement of operations and representation.

It can also permit a variable number of instances.

[t is more flexible than class methods (operations).

Applicable Scenario The scenario most appropriate for the Singleton pattern is
when a single instance of a class is needed and must be accessible to clients from a
well-known access point.

Java SE APl Association The Java SE API associated with the Singleton pattern
is java.lang. Runtime.

Example Code The following example Java code demonstrates the Singleton
pattern:

package javaee.architect.Singleton;
public class SingletonPattern (
public static void main(String[] args) {

System.out.println("Singleton Pattern Demonstration.") ;
System.out.println("-------------"-"----~-~—--—~—~—~—-~—~-~-~-~-~-- ")
System.out.println("Getting Singleton instance (s1)");
Singleton sl = Singleton.getInstance() ;
System.out.println("sl.getInfo()="+sl.getInfo()) ;
System.out.println("Getting Singleton instance (s2)");
Singleton s2 = Singleton.getInstance() ;
System.out .println("s2.getInfo()="+s2.getInfo());
System.out.println("sl.setValue(42)");
sl.setValue (42);

220 Chapter5: Design Patterns

System.out.println("sl.getValue()="+sl.getValue()) ;
System.out.println("s2.getValue()="+s2.getValue()) ;
System.out.println("sl.equals(s2)="+sl.equals (s2)

+ ", s2.equals(sl)="+s2.equals(sl)) ;

// The following will not compile
// Singleton s3 = (Singleton) sl.clone();
System.out.println() ;

package javaee.architect.Singleton;
/*
* Singletons really are "per classloader" and
* in a Java EE application, many developers make
* the mistake of assuming that a singleton really
* is a singleton in a cluster of application servers.
* This is not true!
*/
public final class Singleton ({
private static Singleton instance;
private int value;
private Singleton() {System.out.println("Singleton constructed.");}
public static synchronized Singleton getInstance() {
// 1if it has not been instantiated yet
if (instance == null)
// instantiate it here
instance = new Singleton() ;
return instance;
}
// remaining methods are for demo purposes
// your singleton would have it's business
// methods here...
public String getInfo() {
return getClass() .getName () +
// Uncomment line below to also see the loader
//+", loaded by " + getClass().getClassLoader () ;
", id#" + System.identityHashCode (this) ;
}
public int getValue() {return value;}
public void setValue (int parm) {value =
public boolean equals(Singleton parm)
return (System.identityHashCode (this)
== System.identityHashCode (parm)) ;

Identify the Most Appropriate Design 22 |

GoF Structural Design Patterns

UML for the
Adapter pattern

Structural patterns are concerned with composition or the organization of classes
and objects, how classes inherit from each other, and how they are composed from
other classes.

Common Structural patterns include Adapter, Proxy, and Decorator patterns.
These patterns are similar in that they introduce a level of indirection between a client
class and a class it wants to use. Their intents are different, however. Adapter uses
indirection to modify the interface of a class to make it easier for a client class to use
it. Decorator uses indirection to add behavior to a class, without unduly affecting the
client class. Proxy uses indirection transparently to provide a stand-in for another class.

The following Structural patterns are described by GoF:

Adapter
Bridge
Composite
Decorator
Facade
Flyweight

Proxy

Adapter

The Adapter pattern converts the interface of a class into an interface that a client
requires. It acts as an intermediary and lets classes work together that couldn’t
otherwise because of an incompatible interface.

The Adapter pattern is also known as Wrapper. The UML is shown in Figure 5-6.

interface
Target

+sampleOperation | :void
+sampleOperation2:void

I
\<{Target}>p\ /T\ <{Target}>
|

\ \

|
\ \

|
\V<{Adapter}> A

Adapter

Adaptee

-adaptee:Adaptee

+Adapter
+sampleOperation | :void
+sampleOperation2:void

+ ionl:voidl- — — — — — D
sampleOperation | :void {Adapreai> <{Adapter}>

2272 Chapter 5: Design Patterns

Benefits Following are the benefits of using the Adapter pattern:

B [t allows two or more previously incompatible objects to interact.

B [t allows reusability of existing functionality.

Applicable Scenarios The following scenarios are most appropriate for the
Adapter pattern:

B An object needs to utilize an existing class with an incompatible interface.

B You want to create a reusable class that cooperates with classes that don't
necessarily have compatible interfaces.

B You need to use several existing subclasses but do not want to adapt their
interfaces by subclassing each one.

Java EE Technology Feature and Java SE APl Association The Java EE
technology feature associated with the Adapter pattern is Java Connector Architec-
ture (JCA), from an architectural viewpoint.

The Java SE API associated with the Adapter pattern is java.awt.event.
ComponentAdapter.

Example Code The following example Java code demonstrates the Adapter
pattern:

package javaee.architect.Adapter;
public class AdapterPattern
public static void main(Stringl[] args)

System.out.println ("Adapter Pattern Demonstration.");
System.out.println("----------—---—-—--“~—-~ -~ —~—-—-—-——- - "
// Create targets.
System.out.println("Creating targets.");
TargetIF targetl = new AdapterByClass() ;
TargetIF target2 = new AdapterByObject () ;
// Call target requests
System.out.println("Calling targets.");
System.out.println ("targetl.newRequest () ->"+targetl.newRequest ()) ;
System.out.println ("target2.newRequest () ->"+target2.newRequest ()) ;
System.out.println() ;

Identify the Most Appropriate Design 22 3

package javaee.architect.Adapter;
public class Adaptee
public Adaptee() {
System.out.println ("Adaptee constructed.") ;
}
public String oldRequest () {
return "Adaptee.oldRequest () called.";

}
}

package javaee.architect.Adapter;
public class AdapterByClass extends Adaptee implements TargetIF
public AdapterByClass()
System.out.println ("AdapterByClass constructed.") ;
}
public String newRequest () {
return oldRequest () ;

}
}

package javaee.architect.Adapter;
public class AdapterByObject implements TargetIF
private Adaptee adaptee;
public AdapterByObject () {
System.out.println ("AdapterByObject constructed.") ;

}

public String newRequest ()
// Create an Adaptee object if it doesn’t exist yet
if (adaptee == null) { adaptee = new Adaptee(); }

return adaptee.oldRequest () ;

}
}

package javaee.architect.Adapter;

public interface TargetIF
public String newRequest () ;

}

Bridge
The Bridge pattern’s intent is to decouple the functional abstraction from the
implementation so that the two can be changed and can vary independently.

The Bridge pattern is also known as Handle/Body. The UML is shown in Figure 5-7.

224 Chapter 5: Design Patterns

FIGURE 5-7 interface
AbstractionlF
UML for the
Brldge patter’n +action:void
N K
s N
s S
RefinedAbstractionA RefinedAbstractionB
implementor:lmplementorlF implementor:ImplementorlF
+RefinedAbstractionA +RefinedAbstractionB
+action:void +action:void
interface
ImplementorlF

+actionlmplemented:void

I
|
1

|

|

1
ConcretelmplementorA ConcretelmplementorB

+ConcretelmplementorA +ConcretelmplementorB
+actionlmplemented:void +actionlmplemented:void

Benefits Following is a list of benefits of using the Bridge pattern:

B [t enables the separation of implementation from the interface.
B [t improves extensibility.

B [t allows the hiding of implementation details from the client.

Applicable Scenarios The following scenarios are most appropriate for the
Bridge pattern:

B You want to avoid a permanent binding between the functional abstraction
and its implementation.

B Both the functional abstraction and its implementation need to be extended
using subclasses.

B Changes to the implementation should not impact the client (not even a
recompile).

Identify the Most Appropriate Design 22§

Example Code The following example Java code demonstrates the Bridge
pattern:

package javaee.architect.Bridge;
public class BridgePattern ({
public static void main(String[] args) {
System.out .println ("Bridge Pattern Demonstration.");
System.out.println("-------------—----—~-~—~ -~~~ -~—-——- - "
System.out.println ("Constructing SportsCar and EconomyCar.") ;
AbstractionIF carl = new SportsCar ();
AbstractionIF car2 = new EconomyCar () ;
System.out.println(
"Calling action() on SportsCar and EconomyCar.") ;

carl.action() ;
car2.action() ;
System.out.println() ;

}
}

package javaee.architect.Bridge;

public interface AbstractionIF {
public void action() ;

}

package javaee.architect.Bridge;
public class SportsCarImplementor implements ImplementorIF {
public SportsCarImplementor ()
System.out.println ("SportsCarImplementor constructed.");
}
public void actionImplemented() {
System.out.println("SportsCarImplementor.actionImplemented() called.");

}
}

package javaee.architect.Bridge;
public class EconomyCarImplementor implements ImplementorIF {
public EconomyCarImplementor ()
System.out.println ("EconomyCarImplementor constructed.");
}
public void actionImplemented() {
System.out.println ("EconomyCarImplementor.actionImplemented() called.");

}
}

226 Chapter5: Design Patterns

package javaee.architect.Bridge;
public interface ImplementorIF
public void actionImplemented() ;

}

package javaee.architect.Bridge;
public class SportsCar implements AbstractionIF {
ImplementorIF implementor = new SportsCarImplementor () ;
public SportsCar()
System.out.println ("SportsCar constructed.");
}

public void action()
implementor.actionImplemented() ;
}

package javaee.architect.Bridge;
public class EconomyCar implements AbstractionIF {
ImplementorIF implementor = new EconomyCarImplementor () ;
public EconomyCar () {
System.out.println ("EconomyCar constructed.");
}

public void action()
implementor.actionImplemented () ;
}

}

Composite

The Composite pattern’s intent is to allow clients to operate in a generic manner on
objects that may or may not represent a hierarchy of objects.

The UML is shown in Figure 5-8.

Benefits Following are benefits of using the Composite pattern:

B [t defines class hierarchies consisting of primitive and complex objects.
B It makes it easier for you to add new kinds of components.

B [t provides flexibility of structure with a manageable interface.

Applicable Scenarios The following scenarios are most appropriate for the
Composite pattern:

Identify the Most Appropriate Design 227

Component
UML for the

Composite +sampleOperation:void
pattern

composite:Composite

TR

|
|
|
, \ \ >
\/ <{Leaf}>| \/ <{Composite}>

Leaf Composite

componentVector:Vector

+ ion:voi - !
sampleOperation:void +sampleOperation:void

+add:void
+remove:void
+components:Enumeration

composite:Composite

composite:Composite

You want to represent a full or partial hierarchy of objects.

B You want clients to be able to ignore the differences between the varying
objects in the hierarchy.

B The structure is dynamic and can have any level of complexity: for example,
using the Composite View from the J2EE Patterns Catalog, which is useful for
portal applications.

Example Code The following example Java code demonstrates the Composite
pattern:

package javaee.architect.Composite;
public class CompositePattern
public static void main(String[] args) {
System.out.println ("Composite Pattern Demonstration.");
System.out.println("-------------"-"---—~—~-~-—~—~—~—~—~-~-~—-~—-~-- ")
System.out.println("Creating leaves, branches and trunk");
// Create leaves

Component leafl = new Leaf (" leaf#1l") ;
Component leaf2 = new Leaf (" leaf#2") ;
Component leaf3 = new Leaf (" leaf#3") ;

// Create branches
Component branchl = new Composite(" Dbranchl");

228 Chapter 5: Design Patterns

Component branch2 = new Composite (" branch2");
// Create trunk

Component trunk = new Composite ("trunk");

// Add leafl and leaf2 to branchl
branchl.add(leafl) ;

branchl.add(leaf2) ;

// Add branchl to trunk

trunk.add (branchl) ;

// Add leaf3 to branch2

branch2.add (leaf3) ;

// Add branch2 to trunk

trunk.add (branch2) ;

// Show trunk composition
System.out.println("Displaying trunk composition:");
trunk.display () ;

// Remove branchl and branch2 from trunk
trunk.remove (branchl) ;

trunk.remove (branch?2) ;

// Show trunk composition now
System.out.println("Displaying trunk composition now:");
trunk.display () ;

System.out.println() ;

}
}

package javaee.architect.Composite;

public abstract class Component ({
public abstract void display () ;
public void add(Component c) { // override in concrete class; }
public void remove (Component c) { // override in concrete class; }
public Component getChild(int index) { return null; }
public String getName () { return null; }

}

package javaee.architect.Composite;
import java.util.*;
public class Composite extends Component {
String name = null;
List children = new ArrayList();
public Composite (String parm)
this.name = parm;
System.out.println(parm.trim()+" constructed.");

}

Identify the Most Appropriate Design

public String getName() { return name; }
public Component getChild(int parm) {
Component child;
try {child = (Component) children.get (parm);}
catch (IndexOutOfBoundsException ioobe) {child = null;}
return child;

}

public void add(Component parm) {
try {
System.out.println ("Adding "+parm.getName () .trim()
+" to "+this.getName () .trim()) ;
children.add (parm) ;

}

catch (Exception e) {System.out.println(e.getMessage());}

}

public void remove (Component parm)
try {
System.out.println("Removing "+parm.getName () .trim()
+" from "+this.getName () .trim()) ;
children.remove(parm);}
catch (Exception e) {System.out.println(e.getMessage());}
}
public void display() {
Iterator iterator = children.iterator();
System.out.println(this.getName ()

+(iterator.hasNext ()?" with the following: ":" that is bare."));
while (iterator.hasNext ()) {((Component) iterator.next()).display();}

}
}

package javaee.architect.Composite;
public class Leaf extends Component {
private String name;
public Leaf (String parm) {
this.name = parm;
System.out.println(parm.trim()+" constructed.");
}
public void display () {
System.out.println(this.getName()) ;
}

public String getName ()
return name;
}

}

229

230 Chapter5: Design Patterns

m I nterface
Component

UML for the

Decorator “+sampleOperation:void

pattern
T~
}q s - A |
P b
e

s [

v I

1.7 7 [N

e LL Concrete components N\ <{Decorator}>
ConcreteComponent Decorator

-component:Component

+Decorator

+sampleOperation:void . .
pletp +sampleOperation:void

T
|
|
|
|
|

\/Concrete decorators

ConcreteDecorator

+sampleOperation:void

Decorator

An alternative to subclassing to extend functionality, the Decorator pattern’s
intent is to attach flexible additional responsibilities to an object dynamically.
The Decorator pattern uses composition instead of inheritance to extend the
functionality of an object at runtime.

The Decorator pattern is also known as Wrapper. The UML is shown in Figure 5-9.

Benefits Following is a list of benefits of using the Decorator pattern:

B [t provides greater flexibility than static inheritance.
B [t avoids the need to place feature-laden classes higher up the hierarchy.

B [t simplifies coding by allowing you to develop a series of functionality-
targeted classes, instead of coding all of the behavior into the object.

B It enhances the extensibility of the object, because changes are made by
coding new classes.

Identify the Most Appropriate Design 2.3 ||

Applicable Scenarios The following scenarios are most appropriate for the
Decorator pattern:

B You want to transparently and dynamically add responsibilities to objects
without affecting other objects.

B You want to add responsibilities to an object that you may want to change in
the future.

B Extending functionality by subclassing is no longer practical.

Java EE Technology Feature and Java SE APl Association The Java EE
technology feature associated with the Decorator pattern is javax.ejb. EJBObject.
The Java SE API associated with the Decorator pattern is java.io.BufferedReader.

Example Code The following example Java code demonstrates the Decorator
pattern:

package javaee.architect.Decorator;
public class DecoratorPattern
public static void main(String[] args) {

System.out.println ("Decorator Pattern Demonstration.") ;
System.out.println("---------------"------—---~—~—~-~-~—-~—-~—- ") ;
// Create object decorated with A
System.out.println ("Creating component decorated with A.");
ComponentIF decoratedl = new ConcreteDecoratorA() ;
// Call action on object decorated with A
System.out.println("Calling action() on component decorated with A.");
decoratedl.action() ;
// Create object decorated with B
System.out.println ("Creating component decorated with B.");
ComponentIF decorated2 = new ConcreteDecoratorB() ;
// Call action on object decorated with B
System.out.println("Calling action() on component decorated with B.");
decorated2.action() ;
System.out.println() ;

package javaee.architect.Decorator;
public interface ComponentIF {
public void action() ;

}

232 Chapter5: Design Patterns

package javaee.architect.Decorator;
public class ConcreteComponent implements ComponentIF {
public void action()
System.out.println ("ConcreteComponent.action() called.");

}
}

package javaee.architect.Decorator;
public class ConcreteDecoratorA extends Decorator (
String addedVariable;
public void action()
super.action() ;
System.out.println("ConcreteDecoratorA.action() called.");

addedVariable = "extra";
System.out.println ("ConcreteDecoratorA.addedVariable="+addedVariable) ;

package javaee.architect.Decorator;
public class ConcreteDecoratorB extends Decorator {
public void action()
super.action() ;
System.out.println ("ConcreteDecoratorB.action() called.");

addedMethod () ;

}

private void addedMethod () {
System.out.println ("ConcreteDecoratorB.addedMethod () called.");

}

package javaee.architect.Decorator;
public class Decorator implements ComponentIF {
ComponentIF component = new ConcreteComponent () ;
public void action()
component .action() ;
}

}

Facade

The Facade pattern’s intent is to provide a unified and simplified interface to a set of
interfaces in a subsystem. The Facade pattern describes a higher-level interface that
makes the subsystem(s) easier to use. Practically, every Abstract Factory is a type of
Facade. Figure 5-10 shows the UML.

Identify the Most Appropriate Design 2.3 3

UML for the
Facade pattern

+action:void

SubSystem| SubSystemN

+function | A:void
+function | B:void
+function | C:void

+functionN |:void
+functionN2:void

Benefits Following is a list of benefits of using the Facade pattern:

B It provides a simpler interface to a complex subsystem without reducing the
options provided by the subsystem.

B It shields clients from the complexity of the subsystem components.

It promotes looser coupling between the subsystem and its clients.

B [t reduces the coupling between subsystems provided that every subsystem
uses its own Facade pattern and other parts of the system use the Facade
pattern to communicate with the subsystem.

Applicable Scenarios The following scenarios are most appropriate for the
Facade pattern:

B You need to provide a simple interface to a complex subsystem.

B Several dependencies exist between clients and the implementation classes of
an abstraction.

B Layering the subsystems is necessary or desired.

Java SE APl Association The Java SE API associated with the Facade pattern is
java.net.URL.

Example Code The following example Java code demonstrates the Facade
pattern:

package javaee.architect.Facade;
public class FacadePattern {
public static void main(String[] args) {
System.out.println("Facade Pattern Demonstration.") ;
System.out.println("--------------~--"-~-~-~-~-~-~-~—~—~—~~—~ ")

234 Chapter5: Design Patterns

// Construct and call Facade
System.out.println("Constructing facade.");

Facade facade = new Facade() ;
System.out.println("Calling facade.processOrder().");
facade.processOrder () ;

System.out.println() ;

}
}

package javaee.architect.Facade;
public class Facade {
public void processOrder ()

// Call methods on sub-systems to complete the process
SubSysteml subsysl = new SubSysteml () ;
subsysl.getCustomer () ;
subsysl.getSecurity () ;
subsysl.priceTransaction() ;
SubSystemN subsysN = new SubSystemN() ;
subsysN.checkBalances () ;
subsysN.completeOrder () ;

}
}

package javaee.architect.Facade;
public class SubSysteml
public void getCustomer () {
// Place functionality here...
System.out.println("SubSysteml.getCustomer () called.");}
public void getSecurity() {
// Place functionality here...

System.out.println("SubSysteml.getSecurity() called.");}
public void priceTransaction () {

// Place functionality here...

System.out.println("SubSysteml.priceTransaction() called.");}

}

package javaee.architect.Facade;
public class SubSystemN {
public void checkBalances () {
// Place functionality here...
System.out.println ("SubSystemN.checkBalances () called.");}
public void completeOrder() {
// Place functionality here...
System.out.println ("SubSystemN.completeOrder () called.”);}

Identify the Most Appropriate Design 2.3 §

UML for the +getFlyweight:FlyweightIF
i +action:void
Flyweight pattern
7
7
e
7
7
e
7
Z
ConcreteFlyweight
+ConcreteFlyweight
+action:void
Flyweight

The Flyweight pattern’s intent is to utilize sharing to support large numbers of fine-
grained objects in an efficient manner. Figure 5-11 shows the UML.

Benefits Following are benefits of using the Flyweight pattern:

B It reduces the number of objects to deal with.

B It reduces the amount of memory and storage devices required if the objects
are persisted.

Applicable Scenarios The following scenarios are most appropriate for the
Flyweight pattern:

B An application uses a considerable number of objects.
B The storage costs are high because of the quantity of objects.

B The application does not depend on object identity.

Java SE API Association The Java SE API associated with the Flyweight pat-
tern is java.lang.String.

Example Code The following example Java code demonstrates the Flyweight
pattern:

package javaee.architect.Flyweight;
public class FlyweightPattern
public static void main(String[] args) {
System.out.println ("Flyweight Pattern Demonstration.") ;

236 Chapter5: Design Patterns

System.out.println("----------------"----"----~-~——-~-~-~—-—- ") ;

// Create states

State stateF = new State(false);

State stateT = new State(true) ;

// Get reference to (and in doing so create) flyweight
FlyweightIF myfwkeyl = FlyweightFactory.getFlyweight ("myfwkey") ;
// Get new reference to the same flyweight

FlyweightIF myfwkey2 = FlyweightFactory.getFlyweight ("myfwkey") ;
// Call action on both references

System.out.println("Call flyweight action with state=false");
myfwkeyl.action (stateF) ;

System.out.println("Call flyweight action with state=true");
myfwkey2.action(stateT) ;

System.out.println() ;

package javaee.architect.Flyweight;
public class ConcreteFlyweight implements FlyweightIF
// Add state to the concrete flyweight.
private boolean state;
public ConcreteFlyweight (State parm) {
this.state = parm.getState();
}
public void action(State parm)
// Display internal state and state passed by client.
System.out.println ("ConcreteFlyweight.action ("
+parm.getState()+") called.");
this.state = parm.getState();
System.out.println("ConcreteFlyweight.state = "
+ this.state);

package javaee.architect.Flyweight;
import java.util.*;
public class FlyweightFactory {
private static Map map = new HashMap () ;
public static FlyweightIF getFlyweight (String parm)
// Return the Flyweight if it exists,
// or create it if it doesn’t.
FlyweightIF flyweight = null;
try {
if (map.containsKey (parm)) {
// Return existing flyweight

Identify the Most Appropriate Design 237

flyweight = (FlyweightIF) map.get (parm) ;
} else {
// Create flyweight with a 'true' state
flyweight = new ConcreteFlyweight (new State (true)) ;
map .put (parm, flyweight) ;
System.out.println("Created flyweight "+parm+" with state=true");
System.out.println("") ;

}

} catch (ClassCastException cce) ({
System.out.println(cce.getMessage()) ;

}

return flyweight;

}
}

package javaee.architect.Flyweight;
public interface FlyweightIF {
// method to receive and act on extrinsic state.

public void action(State parm) ;

}

package javaee.architect.Flyweight;

public class State {
private boolean state;
public State(boolean parm) {this.state = parm;}
public boolean getState() {return state;}

}

Proxy
The Proxy pattern’s intent is to provide a surrogate or placeholder for another object
to control access to it. The most common implementations are remote and virtual

proxy.
The Proxy pattern is also known as Surrogate. Figure 5-12 shows the UML.

Benefits Following is a list of benefits of using the Proxy pattern:

B The remote proxy can shield the fact that the implementation resides in
another address space.

B The virtual proxy can perform optimizations—for example, by creating
objects on demand.

238 Chapter5: Design Patterns

Subject

UML for the
Proxy pattern +sampleOperation:void
/ A N R N
’ | N N
4 | > ~ N
7/ N N
4 | A N h N
Li <{Proxy}> l ;\ Real subject
Proxy RealSubject

-realSubject:RealSubject

+sampleOperation:void +sampleOperation:void

Applicable Scenario The Proxy pattern is appropriate when a more versatile or
sophisticated reference to an object, rather than a simple pointer, is needed.

Java EE Technology Feature The Java EE technology feature associated with
the Proxy pattern is javax.ejb.EJBObject (EJB remote reference) in a structural sense.
Actually the “stub” object in the client’s address space provides the proxy.

Example Code The following Java code demonstrates the Proxy pattern:

package javaee.architect.Proxy;
public class ProxyPattern {
public static void main(Stringl[] args)

System.out.println ("Proxy Pattern Demonstration.");
System.out.println("-------------—----——~-~—~——-~-~—-~—-~—- "
// Create service proxy (instantiates service too)
System.out.println("Creating proxy to service.");
ServiceIF proxy = new Proxy();
// Call action method on service via proxy
System.out.println("Calling action method on proxy.");
proxy.action () ;
System.out.println() ;

package javaee.architect.Proxy;

public class Proxy implements ServiceIF
// Proxy to be the service
private Service service = new Service() ;
public void action()

Identify the Most Appropriate Design 2.3 9

service.action() ;

}
}

package javaee.architect.Proxy;
public class Service implements ServiceIF {
// Service to be proxied
public Service() {
System.out.println ("Service constructed.") ;
}

public void action() {
System.out.println("Service.action() called.");
}

}

package javaee.architect.Proxy;
public interface ServiceIF {
// Interface for Service and Proxy
public void action() ;

}

GoF Behavioral Design Patterns

Behavioral patterns are concerned with the interaction and responsibility of objects.
They help make complex behavior manageable by specifying the responsibilities of
objects and the ways they communicate with each other.

The following Behavioral patterns are described by GoF:

Chain of Responsibility
Command

Interpreter

[terator

Mediator

Memento

Observer

State

Strategy

Template Method

Visitor

240

UML for

the Chain of
Responsibility
pattern

Chapter 5: Design Patterns

interface
HandlerlF

+processRequest:void

N

7
7
7
7

V\\

N
AN
N
N

ConcreteHandler|

ConcreteHandler2

+processRequest:void
-handlelt:void

+processRequest:void
-handlelt:void

Request

Chain of Responsibility

The Chain of Responsibility pattern’s intent is to avoid coupling the sender of a
request to its receiver by giving multiple objects a chance to handle the request.

The request is passed along the chain of receiving objects until an object
processes it. Figure 5-13 shows the UML.

Benefits Following are the benefits of using the Chain of Responsibility pattern:

[t reduces coupling.
[t adds flexibility when assigning responsibilities to objects.

[t allows a set of classes to act as one; events produced in one class can be
sent to other handler classes within the composition.

Applicable Scenarios The following scenarios are most appropriate for the
Chain of Responsibility pattern:

B More than one object can handle a request, and the handler is unknown.

B A request is to be issued to one of several objects, and the receiver is not
specified explicitly.

B The set of objects able to handle the request is to be specified dynamically.

Java EE Technology Feature The Java EE technology feature associated with
the Chain of Responsibility pattern is RequestDispatcher in the servlet/JSP API.

Example Code The following example Java code demonstrates the Chain of
Responsibility pattern:

Identify the Most Appropriate Design

package javaee.architect.ChainOfResponsibility;
public class ChainOfResponsibilityPattern {
public static void main(String[] args) {
System.out.println("Chain Of Responsibility Pattern Demonstration.") ;
System.out.println("--------------“““ -~ - ") ;
try {
// Create Equity Order request.
System.out.println("Creating Equity Order request.");
Request equityOrderRequest = new Request (Request.EQUITY ORDER) ;
// Create Bond Order request.
System.out.println ("Creating Bond Order request.");
Request bondOrderRequest = new Request (Request.BOND ORDER) ;
// Create a request handler.
System.out.println("Creating 1lst handler.");
HandlerIF handler = new ConcreteHandlerl () ;
// Process the Equity Order.
System.out.println("Calling 1st handler with Equity Order.");
handler.processRequest (equityOrderRequest) ;
// Process the Bond Order.
System.out.println("Calling 1st handler with Bond Order") ;
handler.processRequest (bondOrderRequest) ;
} catch (Exception e) {System.out.println(e.getMessage());}
System.out.println() ;

}
}

package javaee.architect.ChainOfResponsibility;
public class ConcreteHandlerl implements HandlerIF (
public void processReqguest (Request parm)
// Start the processing chain here...

241

switch (parm.getType())
case Request.EQUITY ORDER: // This object processes equity orders
handlelt (parm) ; // so call the function to handle it.
break;
case Request.BOND ORDER: // Bnother object processes bond orders so
System.out.println("Creating 2nd handler."); // pass request along.

new ConcreteHandler2 () .processRequest (parm) ;
break;
}
}

private void handlelt (Request parm) {
System.out.println("ConcreteHandlerl has handled the processing.");

}
}

2472 Chapter 5: Design Patterns

package javaee.architect.ChainOfResponsibility;
public class ConcreteHandler2 implements HandlerIF {

public void processRequest (Request parm) {
// You could add on to the processing chain here...
handleIt (parm) ;

}

private void handleIt (Request parm) {

}

System.out.println("ConcreteHandler2 has handled the processing.");

package javaee.architect.ChainOfResponsibility;
public interface HandlerIF {

}

public void processRequest (Request request) ;

package javaee.architect.ChainOfResponsibility;
public class Request

}

// The universe of known requests that can be handled.
public final static int EQUITY ORDER 100;
public final static int BOND_ORDER = 200;
// This objects type of request.
private int type;
public Reqguest (int parm) throws Exception (
// Validate the request type with the known universe.
if ((parm == EQUITY ORDER) || (parm == BOND ORDER))
// Store this request type.
this.type = parm;
else
throw new Exception ("Unknown Request type "+parm+".");
}

public int getType() ({
return type;

}

Command

The Command pattern’s intent is to encapsulate a request as an object, thereby
letting you parameterize clients with different requests, queue or log requests, and
support rollback types of operations.

The Command pattern is also known as Action or Transaction. The UML is shown
in Figure 5-14.

Identify the Most Appropriate Design 24 3

Command
-command:CommandAbstract|
UML for the
. .
Command +is:‘c(>ori§$;?;nand.vcld +action:void
pattern T
|
|
|
|
;‘
ConcreteCommand .
CommandAbstract |nte|:face
ReceiverlF
-receiver:ReceiverlF
+execute:void +ConcreteCommand +action:void
+execute:void

Benefits Following is a list of benefits of using the Command pattern:

B [t separates the object that invokes the operation from the object that
actually performs the operation.

B [t simplifies adding new commands, because existing classes remain
unchanged.

Applicable Scenarios The following scenarios are most appropriate for the
Command pattern:

B You need to parameterize objects according to an action to perform.
B You create, queue, and execute requests at different times.

B You need to support rollback, logging, or transaction functionality.

Java EE Technology Feature These are the Java EE technology features associ-
ated with the Command pattern:

B MessageBeans invoke business logic based on content of messages dispatched
to them.

B Servlets/JSPs are invoked corresponding to the type of HTTP request that is
received by the web container.

Example Code The following example Java code demonstrates the Command
pattern:

244 Chapter 5: Design Patterns

package javaee.architect.Command;
public class CommandPattern (
public static void main(String[] args) {

System.out.println ("Command Pattern Demonstration.") ;
System.out.println("----------------"----"--~-~-~-~-~—-~--- ") ;
// Create receiver objects.
System.out.println("Creating receivers.");

ReceiverIF order = new Order () ;

ReceiverIF trade = new Trade() ;

// Create commands passing in receiver objects.
System.out.println("Creating commands.") ;
CommandAbstract cmdOrder = new ConcreteCommand (order) ;
CommandAbstract cmdTrade = new ConcreteCommand (trade) ;
// Create invokers.

System.out.println("Creating invokers.");

Invoker invOrder = new Invoker () ;

Invoker invTrade = new Invoker () ;

// Storing commands in invokers respectively.
System.out.println("Storing commands in invokers.");
invOrder.storeCommand (cmdOrder) ;
invTrade.storeCommand (cmdTrade) ;

// Call invoke on the invoker to execute the command.
System.out.println("Invoking the invokers.");
invOrder.invoke () ;

invTrade.invoke () ;

System.out.println() ;

package javaee.architect.Command;
abstract class CommandAbstract {
public abstract void execute() ;

}

package javaee.architect.Command;

public class ConcreteCommand extends CommandAbstract {
// The binding between action and receiver

private ReceiverIF receiver;

public ConcreteCommand (ReceiverIF receive) {

}

}

this.receiver = receive;

public void execute() {

}

receiver.action() ;

Identify the Most Appropriate Design 24§

package javaee.architect.Command;
public class Invoker {
private CommandAbstract command;
public void storeCommand (CommandAbstract cmd) {
this.command = cmd;
}

public void invoke() {
command.execute () ;
}

}

package javaee.architect.Command;
public class Order implements ReceiverIF (
public void action() {
System.out.println ("Order.action() called.");
}

}

package javaee.architect.Command;
public interface ReceiverIF ({
public void action() ;

}

package javaee.architect.Command;
public class Trade implements ReceiverIF {
public void action() {
System.out.println ("Trade.action() called.");
}

}

Interpreter

The Interpreter pattern’s intent is to define a representation of the grammar of a
given language, along with an interpreter that uses this representation to interpret
sentences in the language. The UML is shown in Figure 5-15.

Benefits Following is a list of benefits of using the Interpreter pattern:

B [t is easier to change and extend the grammar.

B I[mplementing the grammar is straightforward.

246 Chapter5: Design Patterns

AbstractExpressionlF

-nonterminalExpressions:Map|

UML for the

+lookup:boolean +interpret:boolean
Interpreter +assign:void §
pattern =

- - EjNonterminalExpression
TerminalExpression

operand|:AbstractExpressionlF
operand2:AbstractExpressionlF

+NonterminalExpression
+interpret:boolean

+TerminalExpression
+interpret:boolean name:String

Applicable Scenarios The following scenarios are most appropriate for the
Interpreter pattern:

B The grammar of the language is not complicated.

B Efficiency is not a priority.

Example Code The following example Java code demonstrates the Interpreter
pattern:

package javaee.architect.Interpreter;

import java.util.ArraylList;

import java.util.ListIterator;

import java.util.StringTokenizer;

public class InterpreterPattern {

public static void main(String[] args) {

System.out .println("Interpreter Pattern Demonstration.");
System.out.println("--------------"---“"--"—~-~—-—~——~—— - ") ;
BookInterpreterContext bookInterpreterContext = new BookInterpreterContext () ;
bookInterpreterContext.addTitle ("Pickwick Papers");
bookInterpreterContext.addTitle ("Great Expectations") ;
bookInterpreterContext.addTitle ("Wuthering Heights") ;
bookInterpreterContext.addTitle ("Crossfile") ;
bookInterpreterContext.addAuthor ("William Shakespeare") ;
bookInterpreterContext.addAuthor ("Emily Bronte") ;
bookInterpreterContext.addAuthor ("James Marathon") ;
bookInterpreterContext.addTitleAndAuthor (

new TitleAndAuthor ("Pickwick Papers", "William Shakespeare")) ;
bookInterpreterContext.addTitleAndAuthor (
new TitleAndAuthor ("Great Expectations", "William Shakespeare")) ;

bookInterpreterContext.addTitleAndAuthor (

Identify the Most Appropriate Design 247

new TitleAndAuthor ("Wuthering Heights", "Emily Bronte")) ;
bookInterpreterContext.addTitleAndAuthor (
new TitleAndAuthor ("Crossfire", "James Marathon")) ;

BookInterpreterClient bookInterpreterClient

= new BookInterpreterClient (bookInterpreterContext) ;
System.out.println("show author ->"

+ bookInterpreterClient.interpret ("show author")) ;
System.out.println("show title ->"

+ bookInterpreterClient.interpret ("show title"));
System.out.println ("show author for title <Crossfire> ->"

+ bookInterpreterClient.interpret ("show author for title <Crossfire>"));
System.out.println("show title for author <William Shakespeare> ->"

+ bookInterpreterClient.interpret (

"show title for author <William Shakespeares>")) ;

System.out .println() ;

}
}

class BookInterpreterClient ({

BookInterpreterContext bookInterpreterContext;

public BookInterpreterClient (BookInterpreterContext parm) {
bookInterpreterContext = parm;

}

// language syntax:

// show title

// show author

// show title for author <author-names

// show author for title <title-name>

public String interpret (String expression) {
StringTokenizer expressionTokens = new StringTokenizer (expression) ;
String currentToken;
char mainQuery = ' ';
char subQuery = ' ';
String searchString = null;
boolean forUsed = false;
boolean searchStarted = false;
boolean searchEnded = false;
StringBuffer result = new StringBuffer();

while (expressionTokens.hasMoreTokens ()) {
currentToken = expressionTokens.nextToken() ;
if (currentToken.equals ("show"))
continue;//show in all queries, not really used
} else if (currentToken.equals("title")) {
if (mainQuery == ' ') {
mainQuery = 'T';
} else
if ((subQuery == ' ') && (forUsed)) {
subQuery = 'T';

}
}

} else if (currentToken.equals("author")) {

248 Chapter 5: Design Patterns

if (mainQuery == ' ') {
mainQuery = 'A';
} else {
if ((subQuery == ' ') && (forUsed)) {
subQuery = 'A';
1
!
} else if (currentToken.equals("for")) {
forUsed = true;
} else if ((searchString == null) && (subQuery != ' ')
&& (currentToken.startsWith("<")))
searchString = currentToken;
searchStarted = true;
if (currentToken.endsWith(">")) {
searchEnded = true;
!

} else if ((searchStarted) && (!searchEnded)) ({
searchString = searchString + " " + currentToken;
if (currentToken.endsWith(">")) {

searchEnded = true;
}

}
}

if (searchString != null) {
searchString
= searchString.substring(l, (searchString.length() - 1));//remove <>

}

BookAbstractExpression abstractExpression;
switch (mainQuery)

case 'A' : {
switch (subQuery)
case 'T' : {
abstractExpression = new BookAuthorTitleExpression (searchString) ;
break;

} default : {
abstractExpression = new BookAuthorExpression() ;
break;

}
}

break;
} case 'T' : {
switch (subQuery) {
case 'A' : {
abstractExpression = new BookTitleAuthorExpression (searchString) ;
break;
} default : {
abstractExpression = new BookTitleExpression() ;
break;

Identify the Most Appropriate Design

break;
} default : return result.toString();

}

result.append (abstractExpression.interpret (bookInterpreterContext)) ;

return result.toString() ;
}
}
class BookInterpreterContext {
private ArrayList titles = new ArrayList();
private ArrayList authors = new ArrayList();
private ArrayList titlesAndAuthors = new ArrayList();
public void addTitle(String title) {titles.add(title);}
public void addAuthor (String author) {authors.add (author) ;}
public void addTitleAndAuthor (TitleAndAuthor titleAndAuthor)
{titlesAndAuthors.add (titleAndAuthor) ; }
public ArrayList getAllTitles() {return titles;}
public ArrayList getAllAuthors() {return authors;}
public ArrayList getAuthorsForTitle (String titlelIn) ({
Arraylist authorsForTitle = new ArrayList();
TitleAndAuthor tempTitleAndAuthor;

ListIterator titlesAndAuthorsIterator = titlesAndAuthors.listIterator () ;

while (titlesAndAuthorsIterator.hasNext())
tempTitleAndAuthor = (TitleAndAuthor)titlesAndAuthorsIterator.next () ;
if (titleIn.equals (tempTitleAndAuthor.getTitle())) {

authorsForTitle.add (tempTitleAndAuthor.getAuthor()) ;
}
return authorsForTitle;

}

public ArrayList getTitlesForAuthor (String authorIn) {
Arraylist titlesForAuthor = new ArrayList();
TitleAndAuthor tempTitleAndAuthor;

ListIterator authorsAndTitlesIterator = titlesAndAuthors.listIterator () ;

while (authorsAndTitlesIterator.hasNext()) {
tempTitleAndAuthor = (TitleAndAuthor)authorsAndTitlesIterator.next () ;
if (authorIn.equals (tempTitleAndAuthor.getAuthor())) {

titlesForAuthor.add (tempTitleAndAuthor.getTitle()) ;

}
1
return titlesForAuthor;
}
1

abstract class BookAbstractExpression {
public abstract String interpret (BookInterpreterContext parm) ;
}
class BookAuthorExpression extends BookAbstractExpression {
public String interpret (BookInterpreterContext parm) {
ArrayList authors = parm.getAllAuthors() ;
ListIterator authorsIterator = authors.listIterator() ;

249

250 Chapter5: Design Patterns

StringBuffer titleBuffer = new StringBuffer("");
boolean first = true;
while (authorsIterator.hasNext())
if (!first) {titleBuffer.append(", ");}
else {first = false;}
titleBuffer.append((String)authorsIterator.next()) ;
}
return titleBuffer.toString() ;
} }
class BookAuthorTitleExpression extends BookAbstractExpression
String title;
public BookAuthorTitleExpression(String parm) {title = parm;}
public String interpret (BookInterpreterContext parm) {
ArrayList authorsAndTitles = parm.getAuthorsForTitle(title) ;
ListIterator authorsAndTitlesIterator = authorsAndTitles.listIterator () ;
StringBuffer authorBuffer = new StringBuffer("");
boolean first = true;
while (authorsAndTitlesIterator.hasNext ())
if (!first) {authorBuffer.append(", ");}
else {first = false;}
authorBuffer.append ((String)authorsAndTitlesIterator.next ()) ;

{

}
return authorBuffer.toString() ;
1
}

class BookTitleExpression extends BookAbstractExpression {
public String interpret (BookInterpreterContext parm) {
ArraylList titles = parm.getAllTitles();
ListIterator titlesIterator = titles.listIterator();
StringBuffer titleBuffer = new StringBuffer("");

boolean first = true;
while (titlesIterator.hasNext()) {
if (1first) {titleBuffer.append(", ");}

else {first = false;}
titleBuffer.append((String)titlesIterator.next()) ;
}
return titleBuffer.toString() ;
}
}

class BookTitleAuthorExpression extends BookAbstractExpression {
String title;
public BookTitleAuthorExpression(String parm) {title = parm;}
public String interpret (BookInterpreterContext parm) {
ArrayList titlesAndAuthors = parm.getTitlesForAuthor (title) ;
ListIterator titlesAndAuthorsIterator = titlesAndAuthors.listIterator();

Identify the Most Appropriate Design 2. § ||

StringBuffer titleBuffer = new StringBuffer("");
boolean first = true;

while (titlesAndAuthorsIterator.hasNext())
if (!first) {titleBuffer.append(", ");}
else {first = false;}
titleBuffer.append((String)titlesAndAuthorsIterator.next()) ;
}
return titleBuffer.toString() ;

}
}
class TitleAndAuthor (
private String title;
private String author;
public TitleAndAuthor (String parml, String parm2) {
title = parml;
author = parm2;

}

public String getTitle() {return title;}
public String getAuthor() {return author;}

Iterator

The Iterator pattern’s intent is to provide a way to access the elements of an
aggregate object sequentially without exposing its underlying implementation.
java.util. Enumeration and java.util.Iterator are examples of the Iterator pattern.

The Iterator pattern is also known as Cursor. The UML is shown in Figure 5-16.

m interface interface
CollectionlF IteratorlF
UML for the

i : +hasNext:boolean
Iterator pattern +iterator:lteratorlF :
P +elements:Collection +next:Object

7S 7S

| |
| |
| |
| |
1

ConcreteCollection

-list:List

+ConcreteCollection
+iterator:IteratorlF
+elements:Collection

Concretelterator
-list:List
-index:int
+Concretelterator

+next:Object
+hasNext:boolean

2572 Chapter 5: Design Patterns

Benefits Following is a list of benefits of using the Iterator pattern:

B [t supports variations in the traversal of a collection.

B [t simplifies the interface to the collection.

Applicable Scenarios The following scenarios are most appropriate for the
[terator pattern:

B Access to a collection object is required without having to expose its internal
representation.

Multiple traversals of objects need to be supported in the collection.

B A universal interface for traversing different structures needs to be provided
in the collection.

Java EE Technology Feature and Java SE APl Association The Java EE
technology feature associated with the Command pattern is ValueListHandler in the
J2EE Patterns Catalog.

The Java SE APIs associated with the Iterator pattern are

B java.utl.Iterator

B java.util. Enumeration

Example Code The following example Java code demonstrates the Iterator
pattern:

package javaee.architect.Iterator;
public class IteratorPattern {
public static void main(Stringl[] args)
System.out.println("Iterator Pattern Demonstration.");
System.out.println("--------------------"-—-~-~-~—~-~-~-~—- ") ;
System.out.println("Building string array of books.");
String[] books = new Stringl[8];

books [0] = "PowerBuilder Developers Guide, 1994";
books [1] = "Informix Developers Guide, 1995";
books [2] = "Informix Universal Data Option, 1996";
books [3] = "SQL Server Developers Guide, 1999";
books[4] = "SilverStream Success I, 1999";

books [5] = "SilverStream Success II, 2000";

books [6] = "J2EE Unleashed, 2001";

books [7] = "Enterprise Architect Study Guide, 2002";

Identify the Most Appropriate Design 2§ 3

// Turn the string array into a collection.
System.out.println("Turning string array into a collection.");
CollectionIF collection = new ConcreteCollection (books) ;

// Get an iterator for the collection.
System.out.println("Getting an iterator for the collection..");
IteratorIF iterator = collection.iterator() ;

// Iterate through and print each object in the list.
System.out.println("Iterate through the list.");

int i = 0;
while (iterator.hasNext ()) {
System.out.println((++1i)+" "+iterator.next()) ;

}

System.out.println() ;

package javaee.architect.Iterator;
import java.util.=*;
public interface CollectionIF
// Interface for creating a
// collection that needs iterating.
public IteratorIF iterator();
public Collection elements() ;

package javaee.architect.Iterator;
import java.util.=*;
public class ConcreteCollection implements CollectionIF
// Builds an iterable list of elements
private List list = new ArrayList () ;
public ConcreteCollection (Object[] objectList) {
for (int i=0; i < objectList.length; i++)
list.add (objectList [i]) ;
}

}

public IteratorIF iterator() {
return new Concretelterator (this) ;
}
public Collection elements() {
return Collections.unmodifiableList (list) ;

}
}

package javaee.architect.Iterator;

2584 Chapter5: Design Patterns

import java.util.*;
public class Concretelterator implements IteratorIF ({
private List list;
private int index;
public Concretelterator (CollectionIF parm) {
list = (List) parm.elements() ;
index = 0;

}

public Object next () throws RuntimeException {

try {
return list.get (index++) ;

} catch (IndexOutOfBoundsException ioobe) {
throw new RuntimeException ("No Such Element") ;

}
}
public boolean hasNext () {

return (index < list.size()) ? true : false;
}

}

package javaee.architect.Iterator;
public interface IteratorIF {
// Interface for Iterators.
public boolean hasNext () ;
public Object next () ;

}

Mediator

The Mediator pattern’s intent is to define an object that encapsulates how a

set of objects interacts. It helps to promote a looser coupling by keeping objects
from referring to each other explicitly, therefore allowing any interaction to vary

independently. The UML is shown in Figure 5-17.

Benefits Following is a list of benefits of using the Mediator pattern:

[t decouples colleagues.
[t simplifies object protocols.

[t centralizes control.

The individual components become simpler and much easier to deal with
because they do not need to pass messages to one another.

The components do not need to contain logic to deal with their

intercommunication and are therefore more generic.

Identify the Most Appropriate Design 2 5§

FIGURE 5-17 interface interface
MediatorlF ColleaguelF
UML for the
Mediator pattern

+registerColleague | :void
+registerColleague2:void
+state | Changed:void
+state2Changed:void

N

\
\

N

ConcreteMediator

colleague | :ColleaguelF
colleague2:ColleaguelF

ConcreteColleaguel

ConcreteColleague2

+registerColleague | :void
+registerColleague2:void
+state | Changed:void

-mediator:MediatorlF

-mediator:MediatorlF

+ConcreteColleaguel
+changeState:void

+ConcreteColleague2
+changeState:void

+state2Changed:void

Applicable Scenarios The following scenarios are most appropriate for the
Mediator pattern:

B A set of objects communicates in complex but well-defined ways.

B Custom behavior distributed between several objects is required without
subclassing. It is commonly used structurally in message-based systems. The
messages themselves are the means by which related objects are decoupled.

Example Code The following example Java code demonstrates the Mediator
pattern:

package javaee.architect.Mediator;
public class MediatorPattern (
public static void main(String[] args) {
System.out.println("Mediator Pattern Demonstration.");
System.out.println("---------------"-----——~—~-~——~-~—-~—~—- ") ;
// Construct mediator and colleagues
System.out.println("Constructing mediator and colleagues.");

MediatorIF mediator = new ConcreteMediator () ;
ColleaguelF colleaguel = new ConcreteColleaguel (mediator) ;
ColleaguelF colleague2 = new ConcreteColleague2 (mediator) ;

// Display colleague values.
System.out.println("Displaying colleague states.");
System.out.println("colleaguel.toString()="+colleaguel) ;
System.out.println("colleague2.toString()="+colleague2) ;
// Change state on colleaguel and the mediator

2586 Chapter5: Design Patterns

// will coordinate the change with colleague2.
System.out.println("Calling colleaguel.changeState()") ;
((ConcreteColleaguel) colleaguel) .changeState() ;

// Display colleague values now.
System.out.println("Displaying colleague states now.");
System.out.println("colleaguel.toString()="+colleaguel) ;
System.out.println("colleague2.toString()="+colleague2) ;
// Change state on colleague2 and see what happens.
System.out.println("Calling colleague2.changeState()") ;
((ConcreteColleague2) colleague2) .changeState() ;

// Display colleague values now.
System.out.println("Displaying colleague states again.");
System.out.println("colleaguel.toString()="+colleaguel) ;
System.out.println("colleague2.toString()="+colleague2) ;
System.out.println() ;

package javaee.architect.Mediator;
public interface ColleagueIF { }

package javaee.architect.Mediator;
public class ConcreteColleaguel implements ColleaguelF {
private MediatorIF mediator;
// This colleague uses a boolean for it's state.
private boolean state;
public ConcreteColleaguel (MediatorIF parm) {
this.mediator = parm;
this.mediator.registerColleaguel (this) ;
}
public void setState (boolean parm) {
this.state = parm;
}

public void changeState() {
state = state ? false : true;
mediator.statelChanged() ;
}
public String toString()
return new Boolean (state) .toString() ;
}

}

package javaee.architect.Mediator;

public class ConcreteColleague2 implements ColleaguelF
private MediatorIF mediator;
// This colleague uses a string for its state.

Identify the Most Appropriate Design 2 §7

private String state = "false";

public ConcreteColleague2 (MediatorIF parm) {
this.mediator = parm;
this.mediator.registerColleague2 (this) ;

}

public void setState(String parm)
this.state = parm;

}

public void changeState() {
state = state.equals("false") ? "true" : "false";
mediator.state2Changed() ;

}

public String toString() {
return state;

}
}

package javaee.architect.Mediator;
public class ConcreteMediator implements MediatorIF
ColleaguelF colleaguel;
ColleaguelIF colleague2;
public void registerColleaguel (ColleaguelF parm)
this.colleaguel = (ConcreteColleaguel) parm;
}
public void registerColleague2 (ColleagueIF parm) {
this.colleague2 = (ConcreteColleague2) parm;
}
public void statelChanged()
String s = (colleague2.toString() .equals("true")) ? "false" : "true";
((ConcreteColleague2) colleague2) .setState(s);
}
public void state2Changed() {
boolean b = (colleaguel.toString() .equals("true")) ? false : true;
((ConcreteColleaguel) colleaguel) .setState(b) ;

}
}

package javaee.architect.Mediator;

public interface MediatorIF
//Interface for communicating with colleagues
public void registerColleaguel (ColleaguelIF parm) ;
public void registerColleague2 (ColleaguelIF parm) ;
public void statelChanged() ;
public void state2Changed() ;

2588 Chapter 5: Design Patterns

| FIGURES-10_| Orgintor

UML for the

Memento pattern +createMemento:Memento
+recoverMemento:void

Memento

Caretaker

+Memento .
+main:void

state:boolean
state:boolean

Memento
The Memento pattern’s intent is to capture and internalize an object’s internal state
so that objects can be restored to this state later. It must do this without violating
encapsulation.

The Memento pattern is also known as Token. The UML is shown in Figure 5-18.

Benefits Following is a list of benefits of using the Memento pattern:

B It preserves encapsulation boundaries.

B [t simplifies the originator.

Applicable Scenarios The following scenarios are most appropriate for the
Memento pattern:

B A snapshot containing enough information regarding the state of an object
can be saved so that it can be restored to the complete state using the
snapshot information later.

B Using a direct interface to obtain the state would impose implementation
details that would break the rules of encapsulation for the object.

Java EE Technology Feature The Java EE technology feature associated with
the Memento pattern is EntityBeans using Bean-Managed Persistence (BMP).

Example Code The following example Java code demonstrates the Memento
pattern:

package javaee.architect.Memento;
public class MementoPattern (
public static void main(String[] args) {
System.out.println ("Memento Pattern Demonstration.");
System.out.println("---------------"----"--~—-~-~-~—~—~-~-~-~—- ") ;
// Run the caretaker

Caretaker.run() ;
System.out.println() ;

}
}

package javaee.architect.Memento;
public class Caretaker ({
public static void run() {

Identify the Most Appropriate Design

// Create originator and set initial values.

System.out.println("Creating originator and setting initial values.");

Originator originator = new Originator();

originator.setState(true) ;

originator.setName ("The Originator") ;

// Create memento.

System.out.println ("Creating memento.") ;

Memento memento = originator.createMemento () ;

System.out.println (originator) ;
// Change originator values.

System.out.println("Changing originator values.");

originator.setState (false) ;

originator.setName ("To be undone.") ;

System.out.println(originator) ;
// Recover state from memento.

System.out.println("Recovering originator values from memento.");

originator.recoverFromMemento (memento) ;

System.out.println(originator) ;

package javaee.architect.Memento;
public class Memento
private boolean state;
private String name;
Memento (boolean parml,
this.state = parml;
this.name = parm2;
}
boolean getState()
String getName ()

package javaee.architect.Memento;
public class Originator

private boolean state;

private String name;

private String other;

// Create memento,

String parm2)

{

{return this.state;}
{return this.name;}

save critical data in

it.

259

260 Chapter5: Design Patterns

}

public Memento createMemento () {
return new Memento (state, name) ;

}

// Recover critical data from memento.
public

}

this.
this.

public

}

this.

public

}

this.

public

}

void

recoverFromMemento (Memento memento) {

state = memento.getState() ;

name

= memento.getName () ;

void setState (boolean parm) {
state = parm;

void setName (String parm) {

name

= parm;

String toString() {
return "Originator.toString() state="+state+", name="+name;

Observer

The Observer pattern’s intent is to define a one-to-many dependency so that when
one object changes state, all its dependents are notified and updated automatically.
Java provides support for implementing the Observer pattern via the java.util.
Observer interface and the java.util. Observable class.

The Observer pattern is also known as Dependents or Publish-Subscribe. The UML

is shown in Figure 5-19.

Benefits Following is a list of benefits of using the Observer pattern:

B [t abstracts the coupling between the subject and the observer.

B [t provides support for broadcast-type communication.

Applicable Scenarios The following scenarios are most appropriate for the
Observer pattern:

B A change to an object requires changing other objects, and the number of
objects that need to be changed is unknown.

B An object needs to notify other objects without making any assumptions
about the identity of those objects.

Identify the Most Appropriate Design 2.6 |l

m interface interface
Observer | ———————— — — — | Subject
<{Observer}>
UML for the *777*******i>
Observer pattern +updatevoid <{Observer}> <{Subject} +attach:void
+detach:void

ﬂ +inform:void
/

7 7 /7
/7 /7
/ // /7
/ \//Concrete observers 4 \;Concrete subjects
ConcreteObserver ConcreteSubject

-observersVector:Vector

+update:void +attach:void
+detach:void
+inform:void
+observers:Enumeration

Java EE Technology Feature and Java SE APl Association The Java EE

technology feature associated with the Observer pattern is the JMS (Java Message
Server) Publish/Subscribe Model.

The Java SE APIs associated with the Observer pattern are

B java.lang.Observable

B java.lang.Observer

Example Code The following example Java code demonstrates the Observer
pattern:

package javaee.architect.Observer;
public class ObserverPattern {
public static void main(String[] args) {

System.out.println ("Observer Pattern Demonstration.");
System.out.println("-------------------~-~—~—-~—~-~—~—~—~—-~—~—- ") ;
// Constructing observers.
System.out.println("Constructing observerl and observer2.");
ObserverIF observerl = new ConcreteObserver() ;
ObserverIF observer2 = new ConcreteObserver () ;
// Constructing observable (subject).
System.out.println ("Constructing observerable (subject).");
ConcreteSubject subject = new ConcreteSubject () ;
// Add observer object references to the subject.
System.out.println ("Registering observers with subject.");
subject.addObserver (observerl) ;

2672 Chapter 5: Design Patterns

subject.addObserver (observer2) ;
System.out.println("Doing something in the subject over time...");
System.out.println() ;

System.out.println (" Observable Observerl Observer2") ;
System.out.println("Iteration changed? notified? notified?") ;

// Use loop to simulate time.

for(int i=0;1i < 10;i++)
System.out.print (i+": " ;
subject.doSomething() ;
System.out.println() ;

}

System.out.println() ;

System.out.println("Removing observerl from the subject...repeating..

System.out.println() ;

subject.removeObserver (observerl) ;

// Another loop to simulate time.

for(int i=0;i < 10;i++)
System.out.print (i+": ") ;
subject.doSomething() ;
System.out.println() ;

1

1
1

package javaee.architect.Observer;
public class ConcreteObserver implements ObserverIF {
private ConcreteSubject subject; // Reference to subject
public void update () {
if (subject == null) { subject = new ConcreteSubject(); }
System.out.print (" Yes!");

}
}

package javaee.architect.Observer;
import java.util.*;
public class ConcreteSubject implements SubjectIF (
List observers = new ArrayList () ;
public void addObserver (ObserverIF parm) {observers.add(parm);}
public void removeObserver (ObserverIF parm)
{observers.remove (ocbservers.indexOf (parm)) ; }
public void notifyObservers() {
for (Iterator i = observers.iterator(); 1i.hasNext () ;) {
((ObserverIF) i.next()) .update();
}

}

public void doSomething() {
double d = Math.random() ;

N

Identify the Most Appropriate Design 26 3

if (d<0.25 || d>0.75) {
System.out.print ("Yes") ;
notifyObservers () ;

} else {

System.out.print ("No") ;

}
}
}

package javaee.architect.Observer;
public interface ObserverIF
public void update() ;

}

package javaee.architect.Observer;

public interface SubjectIF {
public void addObserver (ObserverIF parm) ;
public void removeObserver (ObserverIF parm) ;
public void notifyObservers() ;

}

UML for the State
pattern

State
The State pattern’s intent is to allow an object to alter its behavior when its internal
state changes, appearing as though the object itself has changed its class. Another view
of the intent of the State pattern is to encapsulate the states of an object as discrete
objects, with each object belonging to a separate subclass of an abstract state class.

The State pattern is also known as Objects for States and acts in a similar way to
the Receiver in the Command pattern. The UML is shown in Figure 5-20.

Context

interface
State

+sampleOperation:void

<{Context}>

state:State

+sampleOperation:void

\l/ Concrete states

ConcreteState

+sampleOperation:void

264 Chapter 5: Design Patterns

Benefits Following is a list of benefits of using the State pattern:

B [t keeps state-specific behavior local and partitions behavior for different

states.

B It makes any state transitions explicit.

Applicable Scenarios The following scenarios are most appropriate for the State
pattern:

The behavior of an object depends on its state and it must be able to change
its behavior at runtime according on the new state.

Operations have large, multipart conditional statements that depend on the
state of the object.

Example Code The following example Java code demonstrates the State
pattern:

package javaee.architect.State;
public class StatePattern {

}

}

public static void main(String[] args) {

System.out.println("State Pattern Demonstration.");
System.out.println("---------------------——--~-~-~—- ") ;
// Construct context.
System.out.println("Constructing context.");
Context context = new Context () ;

// Call request, make state handle the request.
System.out.println("Calling context.request().");
context.request () ;

// Flip state.

System.out.println("Calling context.changeState().");
context.changeState () ;

// call request.

System.out.println("Calling context.request().");
context.request () ;

System.out.println() ;

package javaee.architect.State;
public class ConcreteStatel implements StateIF
public void handle()

}

}

System.out.println("ConcreteStatel.handle() called.");

Identify the Most Appropriate Design 2.6 §

package javaee.architect.State;
public class ConcreteState2 implements StateIF {
public void handle() {
System.out.println ("ConcreteState2.handle() called.");
}

}

package javaee.architect.State;
public class Context {
// Initial state.
private StateIF state = new ConcreteStatel() ;
// Request operation.
public void request ()
state.handle () ;
}

// Switch states
public void changeState()
if (state instanceof ConcreteStatel)
state = new ConcreteState2() ;
else
state = new ConcreteStatel () ;

package javaee.architect.State;
public interface StateIF {
public void handle() ;

}

Strategy
The Strategy pattern’s intent is to define a family of functionality, encapsulate each
one, and make them interchangeable. The Strategy pattern lets the functionality
vary independently from the clients that use it.

The Strategy pattern is also known as Policy. The UML is shown in Figure 5-21.

Benefits Following is a list of benefits of using the Strategy pattern:

B [t provides a substitute to subclassing.

B It defines each behavior within its own class, eliminating the need for
conditional statements.

B [t makes it easier to extend and incorporate new behavior without changing

the application.

266 Chapter 5: Design Patterns

UML for the
Strategy pattern

Context

interface
StrategylF

strategy:StrategylF

+Context
+contextInterface:void

+algorithminterface:void

Applicable Scenarios The following scenarios are most appropriate for the

Strategy pattern:

B Multiple classes differ only in their behaviors. The servlet API is a classic

example of this.

ConcreteStrategy |

ConcreteStrategy2

+algorithminterface:void

+algorithminterface:void

B You need different variations of an algorithm.

B An algorithm uses data that is unknown to the client.

Example Code The following example Java code demonstrates the Strategy

pattern:

package javaee.architect.Strategy;
public class StrategyPattern {
public static void main (String[]

System.out.println("Strategy Pattern Demonstration.") ;

System.out.println("-----------
// Construct strategies.
System.out.println("Constructing strategies.");
StrategyIF strategyl = new Conc
StrategyIF strategy2 = new Conc
// Construct contexts.
System.out.println ("Constructing contexts.");
Context contextl = new Context (
Context context2 = new Context (
// Execute contextInterface.
System.out.println ("Constructing context interfaces.");
contextl.contextInterface ("J2EE Unleashed") ;
context2.contextInterface ("J2EE Unleashed") ;

args) {

reteStrategyl () ;

reteStrategy2 () ;

strategyl) ;
strategy2) ;

Identify the Most Appropriate Design 267

contextl.contextInterface ("The Secret Commigssions") ;
context2.contextInterface ("The Secret Commissions") ;
System.out.println() ;

}
}

package javaee.architect.Strategy;
public class ConcreteStrategyl implements StrategyIF {
// Switch text to all upper case.
public void algorithmInterface (String parm)
System.out.println (parm.toUpperCase()) ;

}
}

package javaee.architect.Strategy;
public class ConcreteStrategy2 implements StrategyIF
// Switch text beginning with "the".
public void algorithmInterface (String parm)
System.out.println((parm.toLowerCase () .startsWith("the "))
? parm.substring (4)+ ", " + parm.substring(0,4)
parm) ;

package javaee.architect.Strategy;
public class Context {
// Reference to the strategy.
StrategyIF strategy;
// Register reference to strategy on construction.
public Context (StrategyIF parm) {this.strategy = parm;}

// Call strategy's method.
public void contextInterface (String parm) {strategy.algorithmInterface (parm);}

package javaee.architect.Strategy;
public interface StrategyIF

public void algorithmInterface (String parm) ;
}

Template Method

The Template Method pattern’s intent is to define the skeleton of a function in an
operation, deferring some steps to its subclasses. The Template Method lets subclasses
redefine certain steps of a function without changing the structure of the function.

The HttpServlet does this in the servlet API. The UML is shown in Figure 5-22.

268 Chapter 5: Design Patterns

UML for the +templateMethod:void
Tem plate Method +primitiveOperation | :void

+primitiveOperationN:void
pattern

ConcreteClass

+primitiveOperation | :void
+primitiveOperationN:void

Benefit The Template Method pattern is a very common technique for reusing code.

Applicable Scenarios The following scenarios are most appropriate for the
Template Method pattern:

B You want to implement the nonvarying parts of an algorithm in a single class
and the varying parts of the algorithm in subclasses.

B Common behavior among subclasses should be moved to a single common
class, avoiding duplication.

Example Code The following example Java code demonstrates the Template
Method pattern:

package javaee.architect.TemplateMethod;
public class TemplateMethodPattern {
public static void main(Stringl[] args)

System.out.println("TemplateMethod Pattern Demonstration.") ;
System.out.println("-------------"--"-““““““—“ - ")
// Construct concrete classes.
System.out.println ("Constructing concrete classes.");
AbstractClass classl = new ConcreteClassl () ;
AbstractClass class2 = new ConcreteClass2() ;
// Call template method.
System.out.println("Calling template methods.") ;
classl.templateMethod () ;

Identify the Most Appropriate Design 269

class2.templateMethod () ;
System.out.println() ;

}
}

package javaee.architect.TemplateMethod;
public abstract class AbstractClass
public void templateMethod ()
System.out.println ("AbstractClass.templateMethod() called.");
primitiveOperationl () ;
primitiveOperationN() ;
}
public abstract void primitiveOperationl () ;
public abstract void primitiveOperationN() ;

package javaee.architect.TemplateMethod;
public class ConcreteClassl extends AbstractClass (

public void primitiveOperationl ()

System.out.println ("ConcreteClassl.primitiveOperationl () called.");
}
public void primitiveOperationN()

System.out.println("ConcreteClassl.primitiveOperationN() called.");
}
}

package javaee.architect.TemplateMethod;
public class ConcreteClass2 extends AbstractClass (

public void primitiveOperationl ()
System.out.println("ConcreteClass2.primitiveOperationl () called.");

}

public void primitiveOperationN() {

System.out.println ("ConcreteClass2.primitiveOperationN() called.");
1
!

Visitor
The Visitor pattern’s intent is to represent an operation to be performed on elements
of an object structure. The Visitor pattern allows for the addition of a new operation

without changing the classes of the elements on which it is to operate. Figure 5-23
shows the UML.

270 Chapter5: Design Patterns

Element <*
UML for the
Visitor pattern +accept:void

e
/ \
\

\

/
/

4 \

/
Vi \
\//Concrete elements

<{Element}> <{Visitor}>

<{Visitor}>

ConcreteElement

+accept:void

interface
Visitor

+visitConcreteElement:void

Benefits Following are the benefits of using the Visitor pattern:

B [t simplifies the addition of new operations.

B [t gathers related operations while separating unrelated ones.

Applicable Scenarios The following scenarios are most appropriate for the

Visitor pattern:

B An object structure contains many objects with differing interfaces and there
is a need to perform operations on these objects in a way that depends on

their concrete cl

B Many distinct and unrelated operations need to be performed on objects
in a structure and there is a need to avoid cluttering the classes with these

operations.

B The classes defining the object structure rarely change but you frequently

asses.

need to define new operations that perform over the structure.

Example Code The following example Java code demonstrates the Visitor pattern:

package javaee.architect.Visitor;

public class VisitorPattern ({

public static void main(Stringl[] args)

System.out.println("Visitor Pattern Demonstration.");
System.out.println("--------

// Construct list of elements.
System.out.println("Constructing two elements.");
ElementIF[] elements = new ElementIF[2];

elements [0] = new ConcreteElementA() ;
elements[1] = new ConcreteElementB() ;

// Construct object structure.

Identify the Most Appropriate Design

System.out.println ("Constructing object structure.");
ObjectStructure objectStructure = new ObjectStructure (elements) ;
// Visit elements in object structure.
System.out.println("Visiting elements in object structure.");

objectStructure.visitElements () ;
System.out.println() ;

package javaee.architect.Visitor;
public class ConcreteElementA implements
public void accept (VisitorIF parm)
parm.visitConcreteElementA (this) ;
}

public void operationaA() {

}
}

System.out.println("ConcreteElementA.

package javaee.architect.Visitor;
public class ConcreteElementB implements
public void accept (VisitorIF parm)
parm.visitConcreteElementB (this) ;
}

public void operationB() {

}
}

System.out.println ("ConcreteElementB.

package javaee.architect.Visitor;

ElementIF {

operationA() called.");

ElementIF {

operationB() called.");

public class ConcreteVisitor implements VisitorIF {
public void visitConcreteElementA (ConcreteElementA parm) {

parm.operationA () ;

}

public void visitConcreteElementB (ConcreteElementB parm) {

parm.operationB () ;

}
}

package javaee.architect.Visitor;
public interface ElementIF ({
public void accept (VisitorIF parm) ;

}

271

272 Chapter 5: Design Patterns

package javaee.architect.Visitor;
import java.util.*;
public class ObjectStructure {
private List objectStruct;
private VisitorIF visitor;
public ObjectStructure (ElementIF[] parm) {
objectStruct = Arrays.asList (parm) ;

}

public void visitElements() {
if (visitor == null) { visitor = new ConcreteVisitor(); }
for (Iterator i = objectStruct.iterator(); i.hasNext();)
((ElementIF) i.next()).accept(visitor);

}
}
}

package javaee.architect.Visitor;

public interface VisitorIF {
public void visitConcreteElementA (ConcreteElementA parm) ;
public void visitConcreteElementB (ConcreteElementB parm) ;

}

Now that we’ve covered each of the Gang of Four’s (GoF) Design Patterns, let’s
review scenarios and also identify the Design Pattern that is most appropriate as a
solution.

Sun’s J2EE Patterns

Part I of the certification exam requires that you know the GoF Design Patterns
only, but for Parts II and III, you may find it helpful to study and then include in
your solution some of the J2EE Patterns from Sun. Although we do not go into great
detail on these patterns, the next few sections will at least serve as an introduction
by covering the scenarios for which they are potential solutions.

Match
You may find it helpful to to the following web sites: http://java.sun.
study and then include in your solutions com/referencel/blueprints and http:/ljava.
some of the J2EE Patterns from Sun. For sun.com/blueprints/patternslindex.html.

complete details on the J2EE Patterns, refer

Identify the Most Appropriate Design 27 3

SCENARIO & SOLUTION

Given Scenario Appropriate Design Pattern

The system needs to be independent of how its objects are created, Abstract Factory
composed, and represented.

The system needs to be configured with one of a multiple family of

objects.

The family of related objects is intended to be used together and this

constraint needs to be enforced.

You want to provide a library of objects that does not show

implementations but only reveals interfaces.

The algorithm for creating a complex object needs to be independent of = Builder
the components that compose the object and how they are assembled.

The construction process is to allow different representations of the

constructed object.

A class is not able to anticipate the class of objects it needs to create. Factory Method
A class wants its subclasses to specify the objects it instantiates.

Classes delegate responsibility to one of several helper subclasses, and

you want to localize the knowledge of which helper subclass is the

delegate.

The classes to instantiate are specified at runtime. Prototype
You want to avoid building a class hierarchy of factories that parallels

the hierarchy of objects.

Instances of the class have one of only a few different combinations of

state.

A single instance of a class is needed, and it must be accessible to clients | Singleton
from a well-known access point.

You want to utilize an existing class with an incompatible interface. Adapter
You want to create a reusable class that cooperates with classes that

don’t necessarily have compatible interfaces.

You need to use several existing subclasses but do not want to adapt

their interfaces by subclassing each one.

You want to avoid a permanent binding between the functional Bridge
abstraction and its implementation.

Both the functional abstraction and its implementation need to be

extended using subclasses.

Changes to the implementation should not impact the client (not even

a recompile).

274 Chapter 5: Design Patterns

SCENARIO & SOLUTION

Given Scenario

Appropriate Design Pattern

You want to represent a full or partial hierarchy of objects.

You want clients to be able to ignore the differences between the
varying objects in the hierarchy.

The structure is dynamic and can have any level of complexity.

You want to transparently and dynamically add responsibilities to
objects without affecting other objects.

You want to add responsibilities to an object that you may want to
change in the future.

Extending functionality by subclassing is no longer practical.

You want to provide a simpler interface to a more complex subsystem.
Several dependencies exist between clients and the implementation
classes of an abstraction.

You want to layer the subsystem:s.

The application uses a considerable number of objects.
The storage costs are high because of the quantity of objects.
The application does not depend on object identity.

You need a more versatile or sophisticated reference to an object, rather
than a simple pointer.

More than one object can handle a request and the handler is unknown.

A request is to be issued to one of several objects and the receiver is not
specified explicitly.

The set of objects able to handle the request is to be specified
dynamically.

You need to parameterize objects by an action to perform.
You specify, queue, and execute requests at different times.
You need to support rollback, logging, or transaction functionality.

The grammar of the language is not complicated and efficiency is not a
priority.

Access to a collection object is required without having to expose its
internal representation.

You need to support multiple traversals of objects in the collection.
You need to provide a universal interface for traversing different
structures in the collection.

Composite

Decorator

Facade

Flyweight

Proxy

Chain of Responsibility

Command

Interpreter

Iterator

Identify the Most Appropriate Design 27§

SCENARIO & SOLUTION

Given Scenario

Appropriate Design Pattern

A set of objects communicates in complex but well-defined ways.
Custom behavior distributed between several objects is required without
subclassing.

A snapshot containing enough information regarding the state of an
object can be saved so that it can be restored to the complete state using
the snapshot information later.

Using a direct interface to obtain the state would impose
implementation details that would break the rules of encapsulation for
the object.

A change to an object requires changing other objects, and the number
of objects that need to be changed is unknown.

An object needs to notify other objects without making any assumptions
about the identity of those objects.

The behavior of an object depends on its state and it must be able to
change its behavior at runtime according on the new state.

Operations have large multipart conditional statements that depend on
the state of the object.

Multiple classes differ only in their behavior.
You need different variations of an algorithm.
An algorithm uses data that is unknown to the client.

You want to implement the nonvarying parts of an algorithm in a single
class and the varying parts of the algorithm in subclasses.

Common behavior among subclasses should be moved to a single
common class, avoiding duplication.

An object structure contains many objects with differing interfaces and
you need to perform operations on these objects in a way that depends
on their concrete classes.

Many distinct and unrelated operations need to be performed on objects
in a structure and you need to avoid cluttering the classes with these
operations.

The classes defining the object structure rarely change but you
frequently need to define new operations that perform over the
structure.

Mediator

Memento

Observer

State

Strategy

Template Method

Visitor

276 Chapter5: Design Patterns

Similar to the GoF Design Patterns, the J2EE Patterns are broken down into the
various sections that address the tiers (or layers) that make up an application:

B Presentation Tier
B Business Tier

B Integration Tier

Presentation Tier J2EE Patterns

The presentation tier encapsulates the logic required to service the clients accessing
a system. Presentation tier patterns intercept a client request and then provide
facilities such as single sign-on, management of the client session, and access to
services in the business tier before constructing and delivering the response back to
the client.

The J2EE patterns available for the presentation layer follow:

Composite View
Dispatcher View
Front Controller
Intercepting Filter
Service To Worker
View Helper

The next table lists scenarios along with suggestions of one or more of the
presentation tier J2EE patterns to aid in the solution.

Business Tier Patterns

The business tier provides the services required by application clients and contains
the business data and logic. All business processing for the application is gathered
and placed into this tier. Enterprise JavaBean (E]JB) components are one of the ways
to implement business processing in this tier.

Here are the J2EE patterns available for the business tier:

B Business Delegate

Composite Entity (formally Aggregate Entity)
Service Locator

Session Facade

Transfer Object (formally Value Object)

Identify the Most Appropriate Design 277

SCENARIO & SOLUTION

Given Scenario

Appropriate Presentation Tier Pattern

You have an application that needs to preprocess and/or
post-process a client request...

You have an application that requires centralized control
for client request handling. ..

You need to add logging, debugging, or some other behavior
to be carried out for each client request...

You want to create a generic command interface for
delegating processing from the controller to the helper
components...

You want to delegate processing to a JSP or servlet and you
want to implement your Model View Controller (MVC)
Controller as a JSP or servlet...

You want to create an MVC View from multiple subviews. ..
You need to implement an MVC View as a JSP or servlet...

You would like to partition your MVC Model and MVC
View...

Your application needs to encapsulate presentation-related
data formatting logic...

You want to implement your Helper components as Custom
tags or JavaBeans...

Your application needs to combine multiple presentation
patterns...

You want to encapsulate MVC View management and
navigation logic...

Intercepting Filter
Front Controller and Intercepting Filter
Front Controller and Intercepting Filter

Front Controller

Front Controller

Composite View
View Helper
View Helper

View Helper
View Helper
Service To Worker and Dispatcher View

Service To Worker and Dispatcher View

B Transfer Object Assembler (formally Value Object Assembler)

B Value List Handler

The following table is a list of scenarios along with suggestions of one or more of
the business tier J2EE patterns to aid in the solution.

Integration Tier J2EE Patterns

This tier is responsible for accessing external resources and systems, such as relational
and nonrelational data stores and any legacy applications. A business tier object uses

278 Chapter 5: Design Patterns

SCENARIO & SOLUTION

Given Scenario Appropriate Business Tier Pattern

You need to minimize coupling between presentation and Business Delegate
business layers...

You need to cache business services for clients... Business Delegate

Your application needs a simpler interface to clients... Business Delegate

Within the business tier you want to shield the client from Business Delegate and Service Locator
implementation (lookup/creation/access) details of business

services...

Your application needs to separate the lookup for vendor or Service Locator

other technology dependencies for services...

You need to provide a uniform method for service lookup and Service Locator

creation...

You want to shield the complexity and dependencies for EJB Service Locator

and JMS component lookup...

You need to transfer data between application tiers... Transfer Object
You have to reduce network traffic between clients and EJBs... = Session Facade
You want to minimize the number of remote method Session Facade

invocations by providing coarser-grained method access to
business tier components. ..

You want to manage relationships between EJB components Session Facade
and hide the complexity of their interactions. ..

You need to shield components in the business tier from Session Facade and Business Delegate
clients...
You want to provide uniform access to components in the Session Facade

business tier...

You need to design complex, coarser-grained EJB entity Composite Entity
beans. ..
You have to identify coarse-grained objects and dependent Composite Entity

objects for EJB entity bean design...

You want to minimize or eliminate the EJB entity bean clients’ = Composite Entity
dependency on the actual database schema...

You have to improve manageability and minimize number of Composite Entity
EJB entity beans...

Identify the Most Appropriate Design 279

SCENARIO & SOLUTION

Given Scenario Appropriate Business Tier Pattern

You want to minimize (or eliminate) EJB entity bean to entity = Composite Entity and Session Facade
bean relationships...

You need to get the data model for the application from various = Transfer Object Assembler (This could

business tier components. .. also be a DataAccessObject as well)
You want on-the-fly data model construction... Transfer Object Assembler
You want to shield the data model construction complexity Transfer Object Assembler

from clients...

Your application needs to provide query and list processing Value List Handler
facilities. ..
You want to reduce the overhead of using EJB finder Value List Handler
methods. ..

You need to facilitate server-side caching of query results, with | Value List Handler
forward and backward navigation, for clients ...

the integration tier when it requires data or services that reside at the resource level.
The components in this tier can use JDBC, Java EE connector technology, or some
other proprietary software to access data at the resource level.

Here are the J2EE patterns available for the integration tier:

B Data Access Object

B Service Activator

The following table is a list of scenarios along with suggestions of one or more of
the integration tier J2EE patterns to aid in the solution.

SCENARIO & SOLUTION

You want to reduce the amount of coupling between business and resource tiers Data Access Object
(layers)...

You need to centralize the access to resource tiers (layers) ... Data Access Object
You must reduce complexity for accessing resource from the business tier (layer) ... Data Access Object
You want to provide asynchronous processing for EJB components. .. Service Activator

You need to send a message to an EJB... Service Activator

280 Chapter5: Design Patterns

Match

The level of detail that need to have knowledge of them for Part I,
we’ve provided on Sun’s core J2EE patterns you will find it useful to learn more about
is somewhat cursory. Although you will not them and then use them in Parts Il and IlI.

CERTIFICATION OBJECTIVE 5.03

State the Name of a Gamma et al. Design Pattern
Given the UML Diagram and/or a Brief Description

of the Pattern’s Functionality

Study each design pattern diagram shown earlier. The following table has a brief

description of each pattern’s functionality:

Pattern’s Functionality

Provides an interface for creating families of related or dependent objects
without specifying the concrete classes.

Pattern Name

Abstract Factory

independently.

Separates construction of a complex object from its representation so that the ~ Builder
construction process can create different representations.

Defines an interface for creating an object, letting subclasses decide which class Factory Method
to instantiate. Allows a class to defer the actual instantiation to subclasses.

Specifies the kinds of objects to create using a prototypical instance, and Prototype
creates new objects by copying this prototype.

Ensures a class has only one instance, and provides a global point of access to it. ~ Singleton
Converts the class’s interface into another interface that the client Adapter
expects. Lets classes work together that couldn’t otherwise do so because of

incompatible interfaces.

Decouples abstraction from its implementation so that the two can vary Bridge

State the Name ofa Gamma 28 |

Pattern’s Functionality Pattern Name

Composes objects into tree structures to represent part-whole hierarchies. Composite
Lets clients treat individual objects and compositions of objects in a uniform

manner.

Attaches added responsibilities to an object dynamically. Provides flexible Decorator
alternative to subclassing to extend functionality.

Provides a unified interface to a set of interfaces in one or more subsystems. Facade
Defines a higher-level interface that makes the subsystems easier to use.

Uses sharing to support large numbers of fine-grained objects in an efficient Flyweight
manner.

Provides a placeholder or surrogate for another object to control access to it. Proxy
Avoids coupling the sender of a request to its receiver by giving more than Chain Of Responsibility

one object a chance to handle the request. The receiving objects are chained
together and pass the request along the chain until it is handled.

Encapsulates a request as an object, allowing the client to be parameterized Command
with different requests, to queue or log requests, and to be able to support undo

operations.

Given a language, defines a representation for its grammar along with an Interpreter

interpreter of the grammar that uses the representation to interpret sentences
in the language.

Provides a way to access the elements of a collection (aggregate) object [terator
sequentially without having to expose the underlying representation.

Defines an object that encapsulates how a set of objects interacts. Promotes Mediator
loose coupling by keeping objects from referring to each other directly and
varying their interaction independently.

Without violating encapsulation, captures and externalizes an object’s internal ~ Memento
state so that the object’s essential state can be restored later.

Defines a one-to-many dependency among objects so that when one object Observer
changes state, all its dependents (subscribers) are notified and updated

automatically.

Allows an object to alter its behavior when its internal state changes; the State

object will appear to change its class.

Defines a family of algorithms, encapsulating each one, and makes them Strategy
interchangeable. Lets the algorithm vary independently from clients that use it.

Defines the skeleton of an algorithm (function) in an operation, deferring Template Method
some steps to subclasses. Lets subclasses redefine certain steps of an algorithm
without changing the algorithm’s structure.

Represents an operation to be performed on the elements of an object Visitor
structure. Lets you define a new operation without changing the classes of the
elements on which it operates.

2872 Chapter 5: Design Patterns

The following table shows the alternate names for the Gamma et al. Design

Patterns:
Abstract Factory Kit
Factory Method Virtual Constructor
Adapter Wrapper
Bridge Handle/Body
Decorator Wrapper
Proxy Surrogate
Command Action or Transaction
[terator Cursor
Memento Token
Observer Dependents or Publish-Subscribe
State Objects for States
Strategy Policy

CERTIFICATION OBJECTIVE 5.04

Identify Benefits of a Specified Gamma et al.
Design Pattern

Here is a list of the benefits for each of the Gamma et al. (GoF) Design Patterns:

GoF Design Pattern Benefits

Abstract Factory Isolates client from concrete (implementation) classes.
Makes the exchanging of object families easier.
Promotes consistency among objects.

Builder Permits you to vary an object’s internal representation.
[solates the code for construction and representation.
Provides finer control over the construction process.

Identify Benefits of a Specified Gamma 283

GoF Design Pattern Benefits

Factory Method Removes the need to bind application-specific classes into the code. The code
interacts solely with the resultant interface and so will work with any classes
that implement that interface.

Because creating objects inside a class is more flexible than creating an object
directly, it enables the subclass to provide an extended version of an object.

Prototype Allows adding or removing objects at runtime.
Specifies new objects by varying its values or structure.
Reduces the need for subclassing.
Allows dynamic configuring of an application with classes.

Singleton Controls access to a single instance of the class.
Reduces name space usage.
Permits refinement of operations and representation.
Permits a variable number of instances.
Is more flexible than class methods (operations).

Adapter Allows two or more previously incompatible objects to interact.
Allows reusability of existing functionality.

Bridge Enables the separation of implementation from the interface.
Improves extensibility.
Allows the hiding of implementation details from the client.

Composite Defines class hierarchies consisting of primitive and complex objects.
Makes it easier to add new kinds of components.
Provides the flexibility of structure with a manageable interface.

Decorator Provides greater flexibility than static inheritance.
Avoids the need to place feature-laden classes higher-up the hierarchy.
Simplifies coding by allowing you to develop a series of functionality-
targeted classes, instead of coding all of the behavior into the object.
Enhances the extensibility of the object, because changes are made by coding
new classes.

Facade Provides a simpler interface to a complex subsystem without reducing the
options provided by the subsystem.
Shields clients from the complexity of the subsystem components.
Promotes looser coupling between the subsystem and its clients.
Reduces the coupling between subsystems provided that every subsystem uses
its own Facade pattern and other parts of the system use the Facade pattern to
communicate with the subsystem.

Flyweight Reduces the number of objects to deal with.
Reduces memory and storage devices if the objects are persisted.

Proxy Remote proxy shields the fact that the implementation resides in another
address space.
Virtual proxy performs optimizations—e.g., by creating objects on demand.

284 Chapter 5: Design Patterns

GoF Design Pattern Benefits

Chain of Responsibility Reduces coupling.
Adds flexibility when assigning responsibilities to objects.
Allows a set of classes to act as one; events produced in one class can be sent to
other handler classes within the composition.

Command Separates the object that invokes the operation from the object that performs
the operation.
Simplifies adding new commands, because existing classes remain unchanged.

Interpreter Makes it easier to change and extend the grammar.
Makes implementing the grammar straightforward.

[terator Supports variations in the traversal of a collection.
Simplifies the interface to the collection.

Mediator Decouples colleagues.
Simplifies object protocols.
Centralizes control.
Individual components become simpler and much easier to deal with because
they do not need to pass messages to one another.
Components do not need to contain logic to deal with their
intercommunication and are therefore more generic.

Memento Preserves encapsulation boundaries.
Simplifies the originator.

Observer Abstracts the coupling between the subject and the observer.
Provides support for broadcast-type communication.

State Keeps state-specific behavior local and partitions behavior for different states.
Makes any state transitions explicit.

Strategy Provides a substitute to subclassing.
Defines each behavior within its own class, eliminating the need for conditional
statements.
Makes it easier to extend and incorporate new behavior without changing the
application.

Template Method Lets code be reused.

CERTIFICATION OBJECTIVE 5.05

Identify the Gamma et al. Design Pattern Associated
with a Specified Java EE Technology Feature

Here is a list of Java EE technology features and the associated Gamma et al. design
patterns that are used to implement them:

Identify the Gamma et al. Design Pattern Associated 285§

Java EE Technology Feature Associated GoF Design Pattern

EJB Factory (javax.ejb.EJBHome, Factory Method
javax.ejb. EJBLocalHome)

JMS Connection Factory

(javax.jms.QueueConnectionFactory,

javax.jms. TopicConnectionFactory)

EJB remote reference (javax.ejb. EJBObject) Proxy
JMS Publish/Subscribe Model Observer

CERTIFICATION SUMMARY |

By studying this chapter, you now have an understanding of the GoF design patterns
and some introductory material on J2EE patterns. You should also understand which
are the most appropriate patterns to use for given scenarios.

286 Chapter 5: Design Patterns

TWO-MINUTE DRILL

Here are some of the key points from each certification objective in Chapter 5.

Identify the Benefits of Using Design Patterns
Q Help designers to focus on solutions quicker if they recognize patterns that
have been successful in the past.
Give new ideas to designers who have studied patterns.
Provide a common language for design discussions.
Provide a solution to a real-world problem.
Capture knowledge and document the best practices for a domain.
Document decisions and the rationale that lead to the solution.
Reuse the experience of predecessors.

Communicate the insight already gained previously.

I I Iy) Iy

Describe the circumstances (when and where), the influences (who and
what), and the resolution (how and why it balances the influences).

Identify the Most Appropriate Design Pattern
for a Given Scenario

O The Abstract Factory is most appropriate when the system needs to be
independent of how its objects are created, composed, and represented.

QO The Adapter is most appropriate when you want to utilize an existing class
with an incompatible interface.

Q The Bridge is most appropriate when you want to avoid a permanent binding
between the functional abstraction and its implementation.

Q The Builder is most appropriate when the algorithm for creating a complex
object needs to independent of the components that compose the object and
how they are assembled.

O The Chain of Responsibility is most appropriate when more than one object
can handle a request and the handler is unknown.

QO The Command is most appropriate when you need to parameterize objects by
an action to perform.

Two-Minute Drill 287

The Composite is most appropriate when you want to represent a full or
partial hierarchy of objects.

The Decorator is most appropriate when you want to transparently and
dynamically add responsibilities to objects without affecting other objects.

The Facade is most appropriate when you want to provide a simpler interface
to a more complex subsystem.

The Factory Method is most appropriate when a class is not able to anticipate
the class of objects it needs to create.

The Flyweight is most appropriate when the application uses a considerable
number of objects.

The Interpreter is most appropriate when the grammar of the language is not
complicated and efficiency is not a priority.

The Iterator is most appropriate when access to a collection object is required
without having to expose its internal representation.

The Mediator is most appropriate when a set of objects communicates in
complex but well-defined ways.

The Memento is most appropriate when a snapshot containing enough
information regarding the state of an object can be saved so that it can be
restored to the complete state using the snapshot information later.

The Observer is most appropriate when a change to an object requires
changing other objects, and the number of objects that need to be changed is
unknown.

The Prototype is most appropriate when the classes to instantiate are to be
specified at runtime.

The Proxy is most appropriate when you need a more versatile or
sophisticated reference to an object, rather than a simple pointer.

The Singleton is most appropriate when a single instance of a class is needed,
and it must be accessible to clients from a well-known access point.

The State is most appropriate when the behavior of an object depends on its
state and it must be able to change its behavior at runtime according to the
new state.

The Strategy is most appropriate when multiple classes differ only in their
behavior.

288 Chapter 5: Design Patterns

Q The Template Method is most appropriate when you want to implement the
nonvarying parts of an algorithm in a single class and the varying parts of the
algorithm in subclasses.

Q The Visitor is most appropriate when an object structure contains many
objects with differing interfaces and you need to perform operations on these
objects in a way that depends on their concrete classes.

State the Name of a Gamma et al. Design Pattern
Given the UML Diagram and/or a Brief Description
of the Pattern’s Functionality

Review the GoF (Gamma et al.) diagrams and associated descriptions that appear
earlier in the chapter:

Identify Benefits of a Specified Gamma et al. Design Pattern

Here are the benefits for each of the Gamma et al. design patterns:

Identify the Gamma et al. Design Pattern Associated with a
Specified Java EE Technology Feature

Here is a list of Java EE technology features and the associated design patterns that
are used to implement them:

Q The EJB Factory (javax.ejb.EJBHome, javax.ejb.EJBLocalHome) and
JMS Connection Factory (javax.jms.QueueConnectionFactory, javax.jms.
TopicConnectionFactory) use the Factory Method pattern.

Q The EJB remote reference (javax.ejb.EJBObject) uses the Proxy pattern.
Q The JMS Publish/Subscribe Model uses the Observer pattern.

Self Test 289

SELF TEST

The following questions will help you measure your understanding of the material presented in this
chapter. Read all the choices carefully because there may be more than one correct answer. Choose
all correct answers for each question.

Identify the Benefits of Using Design Patterns

I. Which of the following is not a benefit of using Design Patterns?
A. They provide a common language for design discussions.
B. They provide solutions to “real-world” problem:s.
C. They communicate the insight already gained previously.
D

They provide solutions to totally novel problems.

Identify the Most Appropriate Design Pattern for a Given Scenario

2. The Factory Method design pattern is useful when a client must create objects having
different

A. Subclasses
B. Ancestors
C. Sizes

D. Similarities

3. What design pattern limits the number of instances a class can create?

A. Command
B. Limiter
C. Strategy

D. Singleton

4. Iterators are useful when dealing with which of the following types of classes?
A. Dynamic
B. Collection
C. Singleton
D. Small

290 Chapter5: Design Patterns

State the Name of a Gamma et al. Design Pattern Given the UML Diagram
and/or a Brief Description of the Pattern’s Functionality

5. What is the Abstract Factory pattern also known as?

A. Kit
B. Wrapper
C. Cursor

D. Virtual Constructor

6. Which pattern is shown in the diagram?

interface interface
Creator <* LG T T T T Product
+factoryMethod:Product B <(Creacory> <{Produce}> .
T
| TS
Il , \
I , \
. / N
Lo J/ N
l \J/ Concrete creators \//Concrete products®
ConcreteCreator ConcreteProduct
<{Creator}> <{Product}>>
+factoryMethod:Product K- Cremorls T T T T T T +ConcreteProduct
A. Abstract Factory
B. Factory Method
C. Command
D. Chain of Responsibility

7. What pattern is also known as Virtual Constructor?
A. Abstract Factory
B. Memento
C. Wrapper
D. Factory Method

8. Which pattern is shown in the diagram?

interface
AbstractionlF

+action:void

N %

7
Ve

RefinedAbstractionA

N
N
N

implementor:ImplementorlF

RefinedAbstractionB

implementor:implementorIF

+RefinedAbstractionB
+action:void

+RefinedAbstractionA
+action:void
interface
ImplementorlF
+actionlmplemented:void

|
|
|

ConcretelmplementorA

|
|
|

ConcretelmplementorB

+ConcretelmplementorA
+actionlmplemented:void

A. Proxy

B. Decorator
C. Bridge

D. Observer

+ConcretelmplementorB
+actionlmplemented:void

What is the Adapter pattern also known as?

A. Surrogate
B. Wrapper
C. Token

D. Proxy

Self Test

291

2972 Chapter 5: Design Patterns

10. Which pattern is shown in the diagram?

Facade
+action:void
SubSystem| SubSystemN
+function IA:VO.id +functionN | :void
+function | B:void +HunctionN2+void
+function | C:void unctioniNEvol
A. Proxy
B. Facade
C. Adapter
D. Bridge
Il. What pattern is also known as Handle/Body?
A. Proxy
B. Adapter
C. Abstract Factory
D. Bridge
12. Which pattern is shown in the diagram?
interface
HandlerlF Request
+processRequest:void
N %4
/ A
7 N
// \\
4 N
Ve N

ConcreteHandler|

+processRequest:void
-handlelt:void

ConcreteHandler2

+processRequest:void
-handlelt:void

Self Test 293

A. Chain of Responsibility
B. Command
C. Memento
D. Factory Method
13. What is the Decorator pattern also known as?
A. Wrapper
B. Adapter

C. Composite
D. Strategy

14. Which pattern is shown in the diagram?

AbstractClass

+templateMethod:void
+primitiveOperation | :void
+primitiveOperationN:void

ConcreteClass

+primitiveOperation | :void
+primitiveOperationN:void

A. Template Method
B. Command
C. Singleton
D. State
I15. What pattern is also known as Surrogate?
A. Observer
B. Bridge
C. Proxy

D. Decorator

16. What is the Command pattern also known as?
A. Action

B. Transaction

294 Chapter 5: Design Patterns

C. Wrapper
D. Surrogate

17. The Command design pattern a request in an object.
A. Separates
B. Encapsulates
C. Processes

D. Decouples

Identify Benefits of a Specified Gamma et al. Design Pattern

18. Which of the following elements are parts of the Gang of Four (GoF) Design Pattern format?
A. Problem
B. Solution
C. Consequences
D. Intent

Identify the Gamma et al. Design Pattern Associated with
a Specified Java EE Technology Feature

19. The Decorator pattern appears in which of the following Java packages?
A. java.io
B. java.awt
C. java.lang
D. java.util

20. Which Java package contains classes that implement the Iterator design pattern?
A. java.enumeration
B. java.util
C. java.math
D. java.text

21. What two methods are defined by the Enumeration interface?
A. hasMoreElements ()
B. getElement ()
C. nextElement ()
D.

nextelement ()

Self Test Answers 298

SELF TEST ANSWERS

Identify the Benefits of Using Design Patterns

l. D is correct. Design patterns do not address totally novel problems, so this cannot be a
benefit gained.
A, B, and C are incorrect. These are benefits gained by using Design Patterns.

Identify the Most Appropriate Design Pattern for a Given Scenario

2. 4 A is correct. The Factory Method design pattern is useful when a client must create objects
having different subclasses.
B, C, and D are incorrect. The Factory Method design pattern is not useful with these
situations.

3. @ Diis correct. The Singleton pattern limits the number of instances a class can create.
&l A, B, and C are incorrect. These do not limit the number of instances a class can create.

4. 4 Bis correct. Iterators are useful when dealing with Collection classes.
& A, C,and D are incorrect. These are not appropriate for the Iterator pattern.

State the Name of a Gamma et al. Design Pattern Given the
UML Diagram and/or a Brief Description of the Pattern’s Functionality

5. M A s correct. The Abstract Factory pattern is also known as Kit.
B, C, and D are incorrect. These are not valid aliases for Abstract Factory.
6. 4 Bis correct. The diagram depicts the Factory Method pattern.
&l A, C, and D are incorrect. These are not depicted in the diagram.
7. D is correct. The Factory Method pattern is also known as the Virtual Constructor.
A, B, and C are incorrect. These are not valid aliases for Virtual Constructor.
8. 4 Cis correct. The diagram depicts the Bridge pattern.
Xl A, B, and D are incorrect. These are not depicted in the diagram.
9. M Bis correct. The Adapter pattern is also known as the Wrapper.
A, C, and D are incorrect. These are not valid aliases for Adapter.
10. B is correct. The diagram depicts the Facade pattern.
A, C, and D are incorrect. These are not depicted in the diagram.

296 Chapter5: Design Patterns

D is correct. The Bridge pattern is also known as Handle/Body.
A, B, and C are incorrect. These are not valid aliases for Handle/Body.

A is correct. The diagram depicts the Chain of Responsibility pattern.
B, C, and D are incorrect. These are not depicted in the diagram.

)
KN XA

A is correct. The Decorator pattern is also known as the Wrapper.
B, C, and D are incorrect. These are not valid aliases for Decorator.

RN

A is correct. The diagram depicts the Template Method pattern.
B, C, and D are incorrect. These are not depicted in the diagram.

RN

C is correct. The proxy pattern is also known as Surrogate.
A, B, and D are incorrect. These are not valid aliases for Surrogate.

RN

A and B are correct. The Command pattern is also known as Action or Transaction.
C and D are incorrect. These are not valid aliases for Command.

B is correct. The Command design pattern encapsulates a request in an object.
A, C, and D are incorrect. These are not valid descriptions of the Command pattern.

KN ®HA

Identify Benefits of a Specified Gamma et al. Design Pattern

18. C and D are correct. Consequences and Intent are valid elements in the (GoF) Design
Pattern format.
X A and B are incorrect. These are not valid elements in the (GoF) Design Pattern format.

Identify the Gamma et al. Design Pattern Associated
with a Specified Java EE Technology Feature

19. 4 A and B are correct. The Decorator pattern appears in the java.io and java.awt packages.
& C and D are incorrect. These do not contain the Decorator pattern.

20. M B is correct. The java.util package contains classes that implement the Iterator design
pattern.
A, C, and D are incorrect. These do not implement the Iterator design pattern.

21. ¥ A and C are correct. The Enumeration interface contains hasMoreElements () and
nextElement () methods.
Kl B and D are incorrect. These are not valid methods in the Enumeration interface.

