CERTIFICATION OBJECTIVES

6.01

Legacy
Connectivity

Distinguish Appropriate from v Two-Minute Drill
Inappropriate Techniques for Providing

Access to a Legacy System from Java Q&A Self Test
Technology Code Given an Outline
Description of That Legacy System

298 Chapter 6: Legacy Connectivity

he capacity and capability to migrate legacy systems to Java 2 Enterprise Edition (JEE) is

on the increase as the need to web-enable legacy systems increases.A growing number of

legacy systems, including IBM mainframe, UNIX, and client/server, can now be migrated to
or integrated with JEE to take advantage of its security, speed, reliability, and cross-platform capabilities.
Some of the benefits of this are freedom from obsolete software, return on the original investment
in legacy systems (especially after Y2K) via extended life of these systems, and opportunities for
e-commerce using legacy systems and databases.To that end, this chapter will cover the following topics:

Engineering the Enterprise Information Systems (EIS) Integration Tier
Best practices for EIS integration

Guidelines for data access

EIS access objects and connections

Java Enterprise Engineering: Services

Role of transactions

Best practices relating to transactions in each tier

Appropriate and inappropriate use for given situations

Introduction to Legacy Connectivity

As businesses move toward an e-business strategy, the challenge of legacy connectivity
is to enable each enterprise to integrate new e-business applications with existing
enterprise information systems (EISs). Enterprise applications require access to
applications running on an EIS. These systems provide the information infrastructure
for an enterprise—the so-called “books and records,” as they say on Wall Street.

EISs include enterprise mainframe transaction processing systems, relational database
management systems (RDBMS), and other legacy information systems. Enterprises
run their businesses using the information stored in these systems, and the success
of an enterprise critically depends on this information. Enterprises with successful
e-businesses need to integrate their EISs with web-based applications. They need to
extend the reach of their EISs to support business-to-business (B2B) transactions.

Before the JEE Connector Architecture (JCA) was defined, no specification for the
Java platform addressed the problem of providing a standard architecture for integrating

an EIS. We used JNI (Java Native Interface) and RMI (Remote Method Invocation)

EIS environment:
legacy
applications with
an e-business
front end

Introduction to Legacy Connectivity 299

to create a Java interface to a process running in its native domain. For example, a

Java program using JNI, RMI, or CORBA (Common Object Request Broker) can

call

a C++ program running on a Windows NT machine. Most EIS vendors as well

as application server vendors use nonstandard proprietary architectures to provide
connectivity between application servers and enterprise information systems that
provide services such as messaging, legacy database access, and mainframe transaction
or batch processing. Figure 6-1 illustrates the complexity of an EIS environment.

WEB/PROXY SERVERS

(iPlanet 6.0) (IPlanet directory server)
g 8 R i Data layer -
e |3 | :
Q a ! !
5,8 P}
. J2EE application server _______ ¥ ___ 1~ af ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, i Uses i
VIEW (JSP) ; database | |
CoyeI\ﬁgLLER (UI: User self service; i i
— admin; management) i © !
3113 | 1
& ¢ . Rules & !
2y|” Soredp | o 4o |
MODEL toredProc req. — : i 1
JavaBean/E|B Result set ata service | © i
(Workflow: Make request; approval; [4—— > components | Meta l
authorization; queue mgmt) i directory 3

Privileged users

External machine
interface

Administrators
DIRECTORY SERVERS

EIS application server(s)
(Legecy System Management:Transaction, security, connectivity)

A
}»—Adapter layer ------ ;,,,,,,,,,,,,,,,,,,,,,,,,,,,,E fffffffffffffffffff !
| AVA RMI JNI,JCA » L dapt :
i) INL) cgacy adapters ! Event handler
LEGACY
resource &
~ applications .M N .

Operating Nonrelational Relational DBMS IBM CICS C++ applications UNIX
systems database SYBASE, ORACLE, DB MS Products applications

300 Chapter 6: Legacy Connectivity

Legacy Connectivity Using Java: the Classic Approach

Thus far, the classic approach to legacy connectivity is based on the two-tier client/
server model, which is typical of applications that are not based on the web. With
this approach, an EIS provides an adapter that defines an application programming
interface (API) for accessing the data and functions of the EIS—basically, you
“black-box” the target system and create a Java API. A typical client application
accesses data and functions exposed by an EIS through this adapter interface. The
client uses the programmatic APl exposed by the adapter to connect to and access
the EIS. The adapter implements the support for communication with the EIS and
provides access to EIS data and functions.

Communication between an adapter and the EIS typically uses a protocol specific
to the EIS. This protocol provides support for security and transactions, along with
support for content propagation from an application to the EIS. Most adapters
expose an API to the client that abstracts out the details of the underlying protocol
and the distribution mechanism between the EIS and the adapter. In most cases, a
resource adapter is specific to a particular EIS. However, an EIS may provide more
than one adapter that a client can use to access the EIS. Because the key to EIS
adapters is their reusability, independent software vendors try to develop adapters
that employ a widely used programming language to expose a client programming
model that has the greatest degree of reusability.

Using a Simple EIS Java Adapter

An EIS may provide a simple form of an adapter, where the adapter maps an API
that is specific to the EIS to a reusable, standard API. Often, such an adapter
is developed as a library, whereby the application developer can use the same
programming language to access the adapter as she uses to write the application, and
no modifications are required to the EIS. For example, a Java application developer
can use a Java-based adapter—an adapter written in the Java programming
language—to access an EIS that is based on some non-Java language or platform.
An EIS adapter may be developed as a C library. For example, the code in Figure 6-2
illustrates a Java application that uses a NI to access this C library or C-based resource
adapter. The JNI is the native programming interface for Java, and it is part of the
Java Developers Kit (JDK). The JNI allows Java code that runs within a Java Virtual
Machine (JVM) to operate with applications and libraries written in other languages,
such as C and C++. Programmers typically use the NI to write native methods
when they cannot write the entire application in Java. This is the case when a Java
application needs to access an existing library or application written in another

FIGURE 6-2

Java NI

Introduction to Legacy Connectivity 30 |l

JAVA to legacy C++ C/C++ API
account maintenance

EIS
P Java .
aPPI cation application Adapter dovrrYellri]nzs%?“?/er

Java Native Interface Adapter-EIS Interface

IbUtilAdO 1 java IbUtilAdO1.h

IbUtIAdO1 .cpp

programming language. While the NI was especially useful before the advent of the
JEE platform, some of its uses may now be replaced by the JEE Connector Architecture.
As you can see in Figure 6-2, the JNI to the resource adapter enables the Java application
to communicate with the adapter’s C library. While this approach does work, it is
complex to use. The Java application has to understand how to invoke methods through
the JNI. This approach also provides none of the JEE support for transactions, security,
and scalability. The developer is exposed to the complexity of managing these system-

level services, and must do so through the complex JNI.

public class 1bUtilAdol {

public native String createUser (String pszUIDName, String pszUIDPassword,

String pszFirstName, String pszLastName,
String pszOrg, String pszRoot,
String pszAdminName, String pszAdminPassword) ;
static
{
// Load the C++ DLL
System.loadLibrary ("1bUtilADO1") ;

}

public static void main(String argsl|[])

{

1bUtilAd01 ADO1 = new 1lbUtilAdO1() ;
ADOl.createUser ("Jbambara", "testl234", "Joe", "Bambara",

"dc=TRADING, dc=bank, dc=com", "administrator", "pwl234$!");

Output of JAVAH compiler: javah 1bUtiladOl

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>

/* Header for class tacadapter 1lbUtilAd0ol */

#ifndef Included tacadapter 1bUtilAdO1l

#define Included tacadapter 1bUtilAdO1l

#ifdef cplusplus

"ou=Test OU",

3072 Chapter 6: Legacy Connectivity

extern "C" {
#endif
JNIEXPORT jstring JNICALL Java tacadapter 1bUtilAdOl createUser
(JNIEnv *, jobject, jstring, jstring, jstring, jstring, jstring, jstring,

jstring,
string) ;

Here’s the C++ program [bUtIADO]I .cpp, which is called by IbUtIADOI .java:

// 1bUtilADOl.cpp: implementation of the 1bUtilADO1l class.
// This will CREATE user WINNT account for MS ADSI

#include "tacadapter 1bUtilAdOl.h"
#define WIN32 WINNT 0x0500
extern "C" declspec(dllexport) LPWSTR CharStringToUnicodeString
(const char *string);
char *GetSID(const char *szDomainName, LPWSTR,LPWSTR, const
char *szUserName, VARIANT *) ;
// JAVA JNI interface call signature
JNIEXPORT jstring JNICALL Java tacadapter 1bUtilAdOl createUser
(ONIEnv *env, jobject obj, jstring pszUIDName, jstring pszUIDPassword, jstring
szFirstName, jstring pszLastName, jstring pszOrg, jstring pszRoot, jstring

pszAdminName, jstring pszAdminPassword)

char strORG[1024],strRDN[1024], strFullName[1024];
HRESULT result;

jstring rMessage;

// convert call signature args to use in program

const char *szUIDName = env -> GetStringUTFChars (pszUIDName, O0) ;

const char *szUIDPassword = env -> GetStringUTFChars (pszUIDPassword, O0) ;
const char *szOrg = env -> GetStringUTFChars (pszOrg, 0);

const char *szRoot = env -> GetStringUTFChars (pszRoot, 0);

const char *szAdminName = env -> GetStringUTFChars (pszAdminName, O0) ;
const char *szAdminPassword = env -> GetStringUTFChars (pszAdminPassword, O0);
const char *szFirstName = env -> GetStringUTFChars (pszFirstName, O0);
const char *szLastName = env -> GetStringUTFChars (pszLastName, 0) ;

IADsContainer *pContainer;
IADs *pServer=NULL;
IADsUser *pADuserpw=NULL;
IDispatch *pDisp=NULL;
LPWSTR 1pADSIPath, 1pUIDName, l1pUIDPasswd, lpFirstName, lpLastName;
LPWSTR 1pOrg, lpFullName, l1pRDNName;
// GET ADSIPATH
1pADSIPath = CharStringToUnicodeString (strORG) ;
result = ADsOpenObject (1pADSIPath, 1pAdminID, lpAdminPasswd,

Introduction to Legacy Connectivity 303

ADS SECURE_AUTHENTICATION, IID_IADsContainer, (void**) &pContainer) ;
// CREATE USER

1pRDNName = CharStringToUnicodeString (strRDN) ;

result= pContainer->Create (L"user", 1pRDNName, &pDisp) ;

result = pADuserpw->SetPassword (lpUIDPasswd) ;

// COMMIT the changes

result=pADuserpw->SetInfo () ;

if (!SUCCEEDED (result))

{

rMessage = env -> NewStringUTF (GetErrorCode (result)) ;
cout << "Fail to pw set info" << endl;
return (rMessage) ;

}

Distributed EIS Adapters

Another, more complex, form of an EIS adapter might do its “adaptation”
work across diverse component models, distributed computing platforms, and
architectures. For example, an EIS may develop a distributed adapter that includes
the ability to perform remote communication with the EIS using Java RMI. This
type of adapter exposes a client programming model based on component-model
architecture. Adapters use different levels of abstraction and expose different APIs
based on those abstractions, depending on the type of the EIS. For example, with
certain types of EISs, an adapter may expose a remote function call API to the client
application. If so, a client application uses this remote function call API to execute
its interactions with the EIS. An adapter can expose either a synchronous or an
asynchronous mode of communication between the client applications and the EIS.
In the following code, the IbUtilAdOI C++ program illustrates the use of
adapters designed for synchronous communication using Java RMI. The rmic
compiler generates stub and skeleton class files (JRMP protocol) and stub and
tie class files (IIOP protocol) for remote objects. These classes files are generated
from the compiled Java programming language classes that contain remote object
implementations. A remote object is one that implements the interface java.
rmi.Remote. The classes named in the rmic command must be classes that have
been compiled successfully with the javac command and must be fully package
qualified. Adapters designed for this approach provide a synchronous request-reply
communication model for use between an application and an EIS. In the following
example and Figure 6-3, when an application wants to interact with the EIS to
create an Windows 2000 account, it invokes this remote function on the EIS. The
application that initiated the call and then waits until the function completes

304 Chapter 6: Legacy Connectivity

JAVA to legacy C++

account maintenance

JaVa RMI EIS
s Java Win 2000
aPPIlcatlon application Adapter domzlgri]n server

Java Native Interface Adapter-EIS Interface
IbUtilAdO 1 .cpp
5 IbUtIIAdO java IbUGIAdO L h ‘
Java Remote Method Invocation: RMI registry for 4 ‘
| IbUtIAd IbUtilAdO 1 _Impl
IbUtIIAdO | _Intf

Application server

Application server
-] running Java on
-distributed components- Windows 2000
Solaris Unix

and returns its reply to the caller. The reply contains the results of the function’s
execution on the EIS. An interaction such as this is considered synchronous because
the execution of the calling application waits synchronously during the time the
function executes on the EIS. One form of synchronous adapter allows bidirectional
synchronous communication between an application and an EIS. This type of
adapter enables an EIS to call an application synchronously.
import java.rmi.*;
import java.rmi.Naming;
import java.rmi.RemoteException;
public class 1bUtilad {
String Win2KServer;
1bUtil1Ad01Intf obj;
public 1bUtilAd(String server) throws Exception ({
Win2KServer = server;
obj = (1bUtilAd01Intf)Naming.lookup ("//"+Win2KServer+"/1lbUtilAdOl") ;

public String createUser
(String pszUIDName, String pszUIDPassword,
String pszFirstName, String pszLastName,

String pszOrg, String pszRoot,

String pszAdminName, String pszAdminPassword)

Introduction to Legacy Connectivity 305§

throws RemoteException

{

return (obj.createUser (pszUIDName, pszUIDPassword,

pszFirstName, pszLastName, pszOrg, pszRoot, pszAdminName, pszAdminPassword)) ;

}

public static void main(String args[]) throws Exception

{

1bUtilAd obj = new 1bUtilAd("ADSISERVER") ;

obj.createUser ("jbambara", "pw", "Joe", "Bambara", "orgl","rootl","administrator",
"admpwl2s$!")) ;

!

!

Legacy Connectivity Using JEE Connector Architecture

The evolving Java Connector Architecture (JCA) standard will obviate most

of the need to build NI and RMI code by providing a mechanism to store and
retrieve enterprise data in JEE. The latest versions of many application servers,
including BEA WebLogic and IBM WebSphere, support JCA adapters for enterprise
connectivity. Using JCA to access an EIS is analogous to using JDBC to access a
database. By using the JCA, EIS vendors no longer need to customize their products
for each application server. Application server vendors who conform to the JCA
need not add custom code whenever they want to obtain connectivity to a new EIS.

Before JCA, each enterprise application integration (EAI) vendor created a
proprietary resource adapter interface for its own EAI product, requiring a resource
adapter to be developed for each EAI vendor and EIS combination (for instance,
you need a SAP resource adapter to use the messaging tools of Tibco). To solve that
problem, as one of its main thrusts, JCA attempts to standardize the resource adapter
interfaces. The JCA provides a Java solution to the problem of connectivity between
the many application servers and EISs already in existence. The JCA is based on the
technologies that are defined and standardized as part of JEE.

The JCA defines a standard architecture for connecting the JEE platform to
heterogeneous EISs. Examples of EISs include mainframe transaction processing,
such as IBM CICS; database systems, such as [IBM DB2; and legacy applications not
written in the Java programming language, such as IBM COBOL. By defining a set
of scalable, secure, and transactional mechanisms, the JCA enables the integration
of EISs with application servers and enterprise applications.

306 Chapter 6: Legacy Connectivity

The JCA enables a vendor to provide a standard resource adapter for its EIS.
The resource adapter is integrated with the application server, thereby providing
connectivity between the EIS and the enterprise application. An EIS vendor provides
a standard resource adapter that has the ability to plug into any application server that
supports the JCA. Multiple resource adapters, i.e., one per type of EIS, can be added
into an application server. This ability enables application components deployed on
the application server to access the underlying EISs. Figure 6-4 illustrates the JCA.

JEE Connector Privileged users Authorizers

Architecture Py s
< 'f Processes
QL ><
Administrators [v
WEB/PROXY SERVERS DIRECTORY SERVERS
(iPlanet 6.0) (iPlanet directory server)
L
2 8 9 9 - i Data layer -
3 =1 c c 1 |
o o o ! !
3 & & & .
A < < P~
(JZEEapphCatlon server ________ ‘' __ Y ______ ____________ I i Users i
! VIEW (JSP) vl database !
MODEL . R et
i JavaBean/EJB H COT:;%S(LLER }—} (UI: User self service; i ' !
! admin; management) ! i e 3
! i U S
i i
i ‘OQ;T Rules & |
/ licy datab !
i JAVA Connection Architecture ; ! w i
i JCA Data service || ! !
! A
! Transaction, Security, Connectivity components 3 A
! Management T |
! | i
System Application
contract

contract

_. Resource
adapter layer

Event handler

i
i
i
i
3 ’ Legacy adapters I
i
i
|
i
i

LEGACY
resource &
- applications ______M N,
! R \
i ! '
i
iOperating Nonrelational ~ Relational DBMS BMclcs Gt applications UNIX 3 Other i
| systems database SYBASE, ORACLE, DB2 MS products applications i systems |
| ! i
i
]

Introduction to Legacy Connectivity 3 Q7

Resource Adapter

Deployable JCA components are called resource adapters. Basically, resource
adapters manage connections or other resources for interaction with some facility.
The definition is open ended, as resource adapters can be used for almost anything.
A resource adapter manifests itself as an implementation of interfaces in the
javax.resource.cci and javax.resource.spi packages. It will require a system-level
software library when you are accessing a resource that uses native libraries to
connect to an EIS. EIS vendors, middleware or application server vendors, or
even end users of legacy systems provide a resource adapter. A resource adapter
implements the EIS adapter-side of the connector system contracts. In JCA version
1.0, these contracts include connection management, transaction management, and
security. In JCA version 1.5, there are additional contracts that we will discuss later
in the chapter. A resource adapter also provides a client-level API that applications
use to access an EIS. The client-level API can be the common client interface
(CCI) or an API specific to the resource adapter or the EIS. A resource adapter
can also be used within an application server environment, which is referred to as

a managed environment. The application server interacts with the resource adapter
using the system contracts, while JEE components use the client API to access the
EIS. A resource adapter can also be used in a two-tier or nonmanaged scenario. In
a nonmanaged scenario, an application directly interacts with the resource adapter,
using both the system contracts and the client API to connect to the EIS.

System Contract

A contract is an agreement between parties to provide collaborative, mutually
beneficial interactions. An application server and an EIS collaborate to keep

all system-level mechanisms, such as transactions, security, and connection
management, transparent to the application components. As a result, an application
component provider can focus on the development of business and presentation
logic for its application components and need not resolve at the system level issues
related to EIS integration. This facilitates development of scalable, secure, and
transactional enterprise applications that require connectivity with multiple EISs.

B The benefits of the system contract are the quid pro quo provided by the
resource adapter. It is the set of functionality you get to help perform the
business task.

B Connection management contracts provide for pool connections to an
underlying EIS and let application components connect to an EIS. This
leads to a scalable application environment that can support a large number

308 Chapter 6: Legacy Connectivity

of clients requiring access to EISs. Connection management enables the
application server to maintain back-end system connections. Support for
connection pooling is provided, since creating connections to back-end
systems is expensive. Connection pooling enables an EJB server to pool
connections to back-end systems, so rather than opening connections on

an as-needed basis, connections with data and services are established,
configured, cached, and reused automatically by the application server. The
contract enables an application server to offer its own services for transaction
and security management.

B A transaction management contract between the transaction manager and
an EIS that supports transactional access to EIS resource managers lets an
application server use a transaction manager to manage transactions across
multiple resource managers. The contract also supports transactions that
are managed internal to an EIS resource manager without the necessity of
involving an external transaction manager. The transaction management
contract supports transactional access to underlying resource managers. The
service enables the transaction manager provided within the Enterprise
JavaBeans (EJB) server to manage transactions across multiple back-end
systems. Connector developers define what level of transaction support they
need—none, local (with a single back-end system and its resource manager),
or the other end of the spectrum, XA—with either single or two-phase
commit for working across multiple back-end systems and their associated
resource managers.

B A security contract enables a secure access to an EIS and provides support for
a secure application environment, which reduces security threats to the EIS
and protects valuable information resources managed by the EIS. The service
enables the developer to define security between the EJB server and the back-
end system. The specific security mechanism that is used is dependent on
the security mechanism provided by the back-end system. For example, if a
system requires Kerberos, the connection developer will include it. Under the
contract, the connector provider must also support user authentication and
any specific security contracts required by the back-end system.

In JEE 1.4, a new version (1.5) of the JCA was introduced and there are additional
contracts that a resource adapter must support to handle new functionality and
features in the JCA 1.5 specification. A resource adapter can support these four new
contracts by implementing the required interfaces defined in the specification for

Java Connector Architecture 3 Q9

each contract. These new contracts cover missing capabilities in the JCA 1.0 release.
They are as follows:

B Life Cycle Management Contract The application server manages the
startup and shutdown of the resource adapter.

B Work Management Contract Allows the resource adapter to do work by
submitting it to an application server for execution. Since the application
server does the work for the resource adapter, the resource adapter needn’t
worry about thread management. Instead, the application server manages this
aspect efficiently and can use thread pooling if necessary.

B Transaction Inflow Contract This allows a resource adapter to propagate
an imported transaction to an application server, as well as flow-in transaction
completion and failure recovery initiated by an EIS.

B Message Inflow Contract This allows the resource adapter to synchronously
or asynchronously deliver messages to end points in the application server,
irrespective of message style, semantics, and infrastructure. In this way, different
message providers, such as the Java Message Service (JMS) and Java API for
XML Messaging (JAXM), can be plugged into J2EE application servers. This
contract allows the EIS to be an active process, generating its own events and
messages rather than a passive data source.

Common Client Interface

The JCA also defines a CCI for EIS access. The CCI defines a client API that is

a standard for application components. It is analogous to the JDBC API standard.
The CCI enables application components and EAI frameworks to drive interactions
across heterogeneous EISs using a common client API. The CClI is intended as a
standard for use by EAI and tools vendors.

Java Connector Architecture

With that background in mind, let’s consider how the JCA specification as well

as JEE in general compare to some of the features found in EAI vendors’ products.
Many EAI vendors, Tibco for example, have JCA support or are in the process of
releasing products that incorporate JCA-based adapters. In light of this, and before

3 10 Chapter 6: Legacy Connectivity

we can discuss how JCA fits into the EAI picture, it's important that you first
understand some basic EAI features:

B Resource adapters
B Data mapping
B Messaging brokers

Typical EAI vendors include proprietary adapters built to work with their
products. These adapters allow for synchronous and asynchronous communication
to an EIS. JCA adapters resemble those adapters, except JCA 1.0 adapters include
only a synchronous communication channel. Resource adapters represent the EAI
feature JCA most directly matches, although most EAI vendors’ adapters offer more
features than JCA adapters— for example, asynchronous capability. Note, JCA 1.5
introduces asynchronous communication via the Message Inflow Contract. JCA
is young, but just like JDBC, it is a standard and when it matures it will be more
desirable than having to maintain in-house domain knowledge on the plethora of
vendor EAI software.

Data mapping means that data acquired in one format (for instance in the EIS’s
native format—such as an EBCDIC [extended binary code format] byte stream)
by the resource adapter may have to be transformed into the format required for
the business object. Mapping data from one system to another is time consuming
because you must map each business object in both systems. In response, EAI
vendors provide visual tools to enable a developer to set up such mapping. While
JCA does not offer a data-mapping facility, E]B container-managed persistence
(CMP) facility provides similar functionality. However, currently not all EJB
containers can use EJB CMP with JCA. This will change as JCA use increases.

Messaging brokers, another feature common in many EAI products, usually
enable both point-to-point (PTP) and publish/subscribe messaging. EAI products
employ messaging as the connectivity layer to tie together disparate systems. JCA
1.0 does not address connectivity to an EIS in a message-oriented manner. It is
possible, however, to implement some of a message broker’s feature set by using JEE’s
Java Message Service (JMS). Here again, the new JCA 1.5 specification solves this
deficiency, as it includes an asynchronous communication via the Message Inflow
Contract.

JEE Connector Architecture: A General Integration Strategy

The majority of the work developers do today lies in creating new systems that must
integrate with other systems. Integration can be simple to conceive but hard to
accomplish; you can look at it in two ways:

Java Connector Architecture 3 | ||

B Inbound integration Outside systems initiate data requests to your system.

B Outbound integration Your system initiates data requests to other systems.

All of the following integration types are applicable in an inbound and an
outbound manner. User interface (Ul) integration, or “screen scraping” as it is
known, represents a coarse type of integration. With Ul-level integration, the data
passed between systems will exist in the form of a Ul representation. An outbound
integration at the Ul level entails requesting the Ul as perhaps a web page from a
remote system, and then possibly manipulating it before displaying it as if it were
part of your system’s Ul. An inbound integration at the Ul level entails allowing
an outside system to request UI pages from your system for inclusion on a remote
system. Note: You should choose Ul integration over other options when it is
unimportant to distinguish the data type being retrieved. Ul integration often
requires the least amount of effort to implement. Ul integration is also least likely to
scale well, because the original system may not be able to handle the load inflicted
on it by a heavily used JEE application.

Message-level integration is growing in popularity, especially with the more
widespread use of web services. It implies that the data passed between systems will
be in the form of a message (a defined, data-driven text format). Outbound message
integration involves requesting data from a remote system in a message form—for
example, a SOAP (Simple Object Access Protocol) message. With an inbound
integration, your system receives a request for data via a message and responds with
a message. Message-oriented integration lends itself to loose coupling between
systems because the systems remain unaware of the object types that exist on the
remote system. That type of loose coupling works well with applications that wish to
communicate over the Internet.

Object or RPC (remote procedure call) integration implies integrating systems
using distributed objects (that is, using EJB calls to integrate). With object-level
integration, data passes between systems as parameters to method calls. In an
outbound object-level integration, your system invokes objects on remote systems,
while in an inbound object-level integration, a remote system calls objects on your
system to retrieve data. One of the main advantages of object-level integration is
that you can call detailed APIs with full type safety and easily propagate the error
codes and exceptions between systems.

Data-level integration implies that the data passed between systems will be in a
data/record-oriented manner. In an outbound data-level integration, your system
requests data in a record-oriented fashion from other systems. With an inbound
data-level integration, a remote system requests data from your system in a record-
oriented manner. The advantage of a data-level integration is that it lends itself to
data mapping from one system onto the business objects in another system.

3 1 2 Chapter 6: Legacy Connectivity

The Structure of the JCA

As mentioned, JCA’s main components include the resource adapter, system contracts,
and the CCI, which together give JCA the ability to access data in enterprise systems.

Resource Adapters and System Contracts

To use JCA in a JEE container, you must have a JCA resource adapter, which
resembles a JDBC driver. A JCA adapter is specific to an EIS (for example, Tibco)
and is contained in a Resource Adapter Archive (RAR) file composed of the JAR
files and native libraries necessary to deploy the resource adapter on a JEE container.
A JCA adapter interacts with a JEE server via system contracts. They enable the JEE
server to propagate the context in which a JCA adapter is being called.

There are seven types of system contracts (three existed in JCA 1.0):

Connection management

Transaction management

Security

Life Cycle Management (JCA 1.5)
Work Management Contracts (JCA 1.5)
Message Inflow (JCA 1.5)

Transaction Inflow Contracts (JCA 1.5)

Connection Management The connection management contract describes the
agreement a JEE container has with the adapter regarding establishing, pooling, and
tearing down connections. This contract allows listeners created on a connection to
respond to events. (Also note that the underlying protocol an adapter uses to connect
to an EIS is outside the scope of the JCA specification.)

JCA resource adapters must supply two implementations with the adapter.
First, a ConnectionFactory provides a vehicle for creating connections. Second, the
Connection class represents this particular resource adapter's underlying connection.

Transaction Management The transaction management contract controls
transactions in two different ways. First, it allows distributed transactions that provide
a mechanism to propagate transactions that originate from inside an application
server to an EIS. For example, in an EJB, a transaction may be created. If this E]B
then employs a JCA resource adapter, the transaction management contract enables

Java Connector Architecture 3 | 3

the transaction to propagate to the EIS. In that circumstance, the transaction
manager on the application server would control multiple resources to conduct
distributed transaction coordination—for example, a two-phase commit.

In the second way, the transaction management contract can control transactions
by creating local transactions. Local transactions are local in the sense that they
exist only on a particular EIS resource. The contract provides transactions control,
but they are related to any transaction that exists on the application server where
the JCA resource adapter is running. Note that the resource adapter need not
implement the transaction management contract. Making this optional allows for
resource adapters in nontransaction resources.

Security The security contract enables the application server to connect to an
EIS using security properties. The application server authenticates with the EIS
by using security properties composed of a principal (a user ID) and credentials

(a password). An application server can employ two methods to authenticate to an
EIS (via a resource adapter).

With the first method, container-managed sign-on, the security credentials
configure when the resource adapter is deployed on the application server. You can
choose from several ways to configure security properties when using container-
managed sign-on:

B Configured identity All resource adapter connections use the same identity
when connecting to the EIS.

B Principal mapping The principal used when connecting to the EIS is based
on a combination of the current principal in the application server and the
mapping.

B Caller impersonation The principal used in the EIS exactly matches the
principal in the application server.

B Credentials mapping Similar to caller impersonation, except the type
of credentials must be mapped from application server credentials to EIS
credentials.

While it’s simple to configure the security properties at deployment time, this
strategy proves less flexible because the security properties cannot change at runtime.
Alternatively, you can configure security properties by component-managed sign-on,
which allows you to pass security properties each time a connection is acquired from
the resource adapter.

3 14 Chapter 6: Legacy Connectivity

Life Cycle Management Contracts The ResourceAdapter interface in the
javax.resource.spi package represents a resource adapter. There are two methods in
the ResourceAdapter interface that allow for life cycle management: start () and
stop (). The start () method is called when an application server wants to start a
resource adapter (for example, to deploy it). The stop () method is called when the
application server wants to release a resource adapter (for example, to undeploy it).

Work Management Contracts The Work Management contract allows the
resource adapter to submit work to the application server. It does this by creating an
object that extends the Work interface in the javax.resource.spi.work package. The
Work interface is an extension of the Runnable interface. In addition to the run ()
method that it inherits from Runnable and which executes in its own thread, the
Work interface contains a release () method.

Message Inflow and Transaction Inflow Contracts The Message Inflow
contract allows the resource adapter to react to calls made by the application server

to activate and deactivate message endpoints. The endpointActivation () method
in the ResourceAdapter interface is called during endpoint activation. This causes

the resource adapter to do the necessary setup for message delivery to the message
endpoint. The endpointDeactivation () method of ResourceAdapter is called when
a message endpoint is deactivated. This stops the resource adapter from delivering
messages to the message endpoint. A MessageEndpointFactory object in the javax...
resource.spi.endpoint package is passed in to the endpointactivation () method.
The object is used by the resource adapter to create a number of message endpoints.
Any information about these endpoints should be removed from the resource adapter
when the endpointDeactivation () method is called. Finally, the getxAResources ()
method of ResourceAdapter can be used to retrieve transaction resources in the event
of a system crash. The endpointActivation (), endpointDeactivation (), and
getXAResources () methods are mandated by the ResourceAdapter interface.

Common Client Interface

To retrieve and update data, you employ JCAs CCI layer, a method set resembling
the type of commands used in JDBC to call a stored procedure. A JCA resource
adapter is not required to support the CCI layer (the resource adapter creators can
choose their own API set), and even if the resource adapter does support CCI, it
may also support an API specific for that particular adapter. This owes to the diverse
functionality contained in EIS software. Database operations boil down to add,
update, delete, and inquire. EIS software may be more process oriented and hence
would include a larger set of functionality.

Java Connector Architecture 3 | §

Just like the JDBC API, the CCI APIs can be divided into four sections:

B APIs related to establishing a connection to an EIS, also referred to as the
connection interfaces

B CCI APIs, which cover command execution on an EIS, referred to as the
interaction interfaces

Record/ResultSet interfaces, which encapsulate the query results to an EIS

B Metadata interfaces, which make it possible to examine an EISs metadata—for
example, the attributes or type of EIS data to be queried

Code example illustrates JCA code to retrieve and update data

Public class JCAclassl...
int count;

try {
// obtain the connection

ConnectionSpec spec = new CciConnectionSpec (user, password) ;
Connection con = cf.getConnection (spec) ;

Interaction ix = con.createInteraction() ;
CciInteractionSpec iSpec = new CcilnteractionSpec() ;

// command execution
iSpec.setSchema (user) ;
iSpec.setFunctionName ("CLIENTCOUNT") ;

// handle the result set
RecordFactory rf = cf.getRecordFactory() ;

IndexedRecord iRec = rf.createIndexedRecord ("InputRecord") ;
Record rec = ix.execute (iSpec, iRec);
Iterator iter = ((IndexedRecord)rec).iterator() ;

while (iter.hasNext ())

Object obj = iter.next();
if (obj instanceof Integer) count = ((Integer)obj).intValue() ;
}
// close the connection
con.close() ;

}

catch (Exception e)

{

e.printStackTrace () ;

}

System.out.println("the count is " + count) ;

3 1 6 Chapter 6: Legacy Connectivity

Basic JCA 1.0 Adapter Implementation

Let’s quickly explore the steps required to implement a JCA adapter—that is, a set
of classes with which a JEE application server targets a particular enterprise system.
As mentioned, a JCA adapter functions in much the same way as a JDBC driver
connects to databases. We will describe the adapter’s capabilities, as well as how

to deploy and run it. We will see what occurs when the adapter executes in the
container. It’'s important to frame the sample-adapter discussion by describing its
functionality. Typically, when using an adapter we need to

B Determine the status of resources within the life cycle
Establish a connection to the resource(s)

Manage a transaction involving the resource

Submit work to the resource

Provide messaging capability to alert interested processes

Provide security to protect resources

To use a JCA adapter, you need a JEE application server with JCA specification
support. For example, BEA WebLogic version 8.1 supports JCA 1.0, and Weblogic
version 9.1 supports JCA 1.5. You upload the resource adapter archive—for example,
the Ucnyadapter.rar file. The adapter includes two class categories:

B Managed classes The application server calls managed classes to perform
the connection management. They're needed only if the application server is
managing the connection via a connection pool, which is probably the case.

B Physical connection classes These required classes, which the aforementioned
managed classes may call, establish the connection to the EIS.

ManagedConnectionFactory

With the UCManagedConnectionFactory class, which implements the
ManagedConnectionFactory interface, you create the UCConnectionFactory and
UCManagedConnection classes. In JCA 1.5, the ManagedConnectionFactory interface
remains unchanged to preserve backward compatibility, but if you want outbound
resources to have access to the capabilities provided to the resource adapter, also
implement the new ResourceAdapterAssociation interface. The UCManagedConnectio
nFactory class acts as the main entry point for the application server to call into the
adapter:

Java Connector Architecture

package ucnyjca;

import java.io.PrintWriter;

import java.io.Serializable;

import java.sqgl.DriverManager;

import java.util.Iterator;

import java.util.Set;

import javax.resource.ResourceException;
import javax.resource.spi.*;

import javax.security.auth.Subject;

public class UCManagedConnectionFactory
implements ManagedConnectionFactory, Serializable

{

public UCManagedConnectionFactory () {
System.out.println ("We are executing

UCManagedConnectionFactory.constructor") ;

}

public Object createConnectionFactory (ConnectionManager cxManager)

throws ResourceException {
System.out.println("We are executing
UCManagedConnectionFactory.createConnectionFactory,1") ;
return new UCDataSource (this, cxManager) ;

public Object createConnectionFactory() throws ResourceException

System.out.println("We are executing
UCManagedConnectionFactory.createManagedFactory,2") ;
return new UCDataSource (this, null) ;

public ManagedConnection createManagedConnection
(Subject subject, ConnectionRequestInfo info) {
System.out.println ("We are executing
UCManagedConnectionFactory.createManagedConnection") ;
return new UCManagedConnection (this, "test");

317

3 1 8 Chapter 6: Legacy Connectivity

public ManagedConnection matchManagedConnections
(Set connectionSet, Subject subject, ConnectionRequestInfo info)
throws ResourceException

System.out.println("We are executing
UCManagedConnectionFactory.matchManagedConnections") ;
return null;

public void setLogWriter (PrintWriter out) throws ResourceException {
System.out.println("We are executing
UCManagedConnectionFactory.setLogWriter™") ;

}

public PrintWriter getLogWriter () throws ResourceException {
System.out.println ("We are executing

UCManagedConnectionFactory.getLogWriter™") ;
return DriverManager.getLogWriter () ;

public boolean eguals (Object obj) {
if (obj == null)
return false;
if (obj instanceof UCManagedConnectionFactory)

{

int hashl = ((UCManagedConnectionFactory)obj) .hashCode () ;
int hash2 = hashCode () ;
return hashl == hash2;

1

else

{
}

return false;

public int hashCode ()

{
}

return 1;

Java Connector Architecture 3 | 9

ManagedConnection

The UCManagedConnection class implements the ManagedConnection interface.
UCManagedConnection encapsulates the adapter’s physical connection, in this case

the UCConnection class:

package ucnyjca;

import java.io.PrintWriter;

import java.sqgl.Connection;

import java.sqgl.SQLException;

import java.util.=*;

import javax.resource.NotSupportedException;
import javax.resource.ResourceException;
import javax.resource.spi.*;

import javax.security.auth.Subject;

import javax.transaction.xa.XAResource;

public class UCManagedConnection
implements ManagedConnection

{

UCManagedConnection (ManagedConnectionFactory mcf,

{

private UCConnectionEventListener UCListener;
private String user;

private ManagedConnectionFactory mcf;

private PrintWriter logWriter;

private boolean destroyed;

private Set connectionSet;

System.out.println("We are executing UCManagedConnection") ;

this.mcf = mcf;

this.user = user;

connectionSet = new HashSet () ;

UCListener = new UCConnectionEventListener (this) ;

private void throwResourceException (SQLException ex)

{

throws ResourceException

ResourceException re = new ResourceException ("SQLException:

ex.getMessage ()) ;

}

re.setLinkedException (ex) ;
throw re;

String user)

L.

320 Chapter 6: Legacy Connectivity

public Object getConnection (Subject subject, ConnectionRequestInfo
connectionRequestInfo)
throws ResourceException

System.out.println("We are executing UCManagedConnection.getConnection") ;
UCConnection UCCon = new UCConnection (this) ;

addUCConnection (UCCon) ;

return UCCon;

public void destroy ()

{

System.out.println("We are executing UCManagedConnection.destroy") ;
destroyed = true;

public void cleanup ()

{

System.out.println("We are executing UCManagedConnection.cleanup") ;

public void associateConnection (Object connection)

System.out.println("We are executing
UCManagedConnection.associateConnection") ;

}

public void addConnectionEventListener (ConnectionEventListener listener)

System.out.println("We are executing
UCManagedConnection.addConnectionEventListener") ;
UCListener.addConnectorListener (listener) ;

}

public void removeConnectionEventListener (ConnectionEventListener listener)

System.out.println("We are executing
UCManagedConnection.removeConnectionEventListener") ;
UCListener.removeConnectorListener (listener) ;

}

public XAResource getXAResource ()
throws ResourceException

Java Connector Architecture 32 ||

System.out.println("We are executing

UCManagedConnection.getXAResource") ;

return null;

}

public LocalTransaction getLocalTransaction ()

{

System.out.println ("We are executing

UCManagedConnection.getLocalTransaction") ;

return null;

}

public ManagedConnectionMetaData getMetaData ()
throws ResourceException

System.out.println("We are executing UCManagedConnection.getMetaData") ;
return new UCConnectionMetaData (this) ;

public void setLogWriter (PrintWriter out)
throws ResourceException

{

System.out.println("We are executing UCManagedConnection.setLogWriter") ;
logWriter = out;

}

public PrintWriter getLogWriter ()
throws ResourceException

{

System.out.println("We are executing UCManagedConnection.getLogWriter") ;
return logWriter;

}

Connection getUCConnection ()
throws ResourceException

{

System.out.println ("We are executing

UCManagedConnection.getUCConnection") ;

return null;

}

boolean isDestroyed ()

3272 Chapter 6: Legacy Connectivity

System.out.println("We are executing UCManagedConnection.isDestroyed") ;
return destroyed;

}

String getUserName ()

{

System.out.println("We are executing UCManagedConnection.getUserName") ;
return user;

}

void sendEvent (int eventType, Exception ex)

{

System.out.println("We are executing UCManagedConnection.sendEvent,1");
UCListener.sendEvent (eventType, ex, null);

}

void sendEvent (int eventType, Exception ex, Object connectionHandle)

{

System.out.println("We are executing UCManagedConnection.sendEvent,2 ");
UCListener.sendEvent (eventType, ex, connectionHandle) ;

}

void removeUCConnection (UCConnection UCCon)

System.out.println("We are executing
UCManagedConnection.removeUCConnection") ;
connectionSet.remove (UCCon) ;

}

void addUCConnection (UCConnection UCCon)

System.out.println ("We are executing
UCManagedConnection.addUCConnection") ;
connectionSet.add (UCCon) ;

}

ManagedConnectionFactory getManagedConnectionFactory ()

System.out.println ("We are executing
UCManagedConnection.getManagedConnectionFactory") ;
return mcf;

}

Java Connector Architecture 32 3

UCConnectionEventListener

The UCConnectionEventListener class allows the application server to register
callbacks for the adapter. The application server can then perform operations—
connection-pool maintenance, for example—based on the connection state:

package ucnyjca;

import java.util.Vector;

import javax.resource.spi.ConnectionEvent;

import javax.resource.spi.ConnectionEventListener;
import javax.resource.spi.ManagedConnection;

public class UCConnectionEventListener
implements javax.sql.ConnectionEventListener

private Vector listeners;
private ManagedConnection mcon;

public UCConnectionEventListener (ManagedConnection mcon)

{

System.out.println("We are executing UCConnectionEventListener") ;
this.mcon = mcon;

public void sendEvent (int eventType, Exception ex, Object connectionHandle)
System.out.println("We are executing
UCConnectionEventListener.sendEvent") ;

}

public void addConnectorListener (ConnectionEventListener 1)
System.out.println("We are executing
UCConnectionEventListener.addConnectorListener") ;

}

public void removeConnectorListener (ConnectionEventListener 1)
System.out.println("We are executing
UCConnectionEventListener.removeConnectorListener") ;

}

public void connectionClosed(javax.sqgl.ConnectionEvent connectionevent)
System.out.println("We are executing
UCConnectionEventListener.connectorClosed") ;

}

324 Chapter 6: Legacy Connectivity

public void connectionErrorOccurred(javax.sqgl.ConnectionEvent event)

{

System.out.println ("We are executing
UCConnectionEventListener.connectorErrorOccurred") ;

}

UCConnectionMetaData

The UCConnectionMetaData class provides meta-information—for example, the
maximum number of connections allowed, and so on—regarding the managed
connection and the underlying physical connection class:

package ucnyjca;
import javax.resource.ResourceException;

import javax.resource.spi.*;

public class UCConnectionMetaData
implements ManagedConnectionMetaData

private UCManagedConnection mc;
public UCConnectionMetaData (UCManagedConnection mc)

System.out.println("We are executing UCConnectionMetaData.constructor") ;
this.mc = mc;

public String getEISProductName ()

throws ResourceException
System.out.println("We are executing

UCConnectionMetaData.getEISProductName") ;
return "ucnyjca";

public String getEISProductVersion ()
throws ResourceException

System.out.println("We are executing

Java Connector Architecture

UCConnectionMetaData.getEISProductVersion") ;

return "1.0";

public int getMaxConnections ()

throws ResourceException
System.out.println("We are executing
UCConnectionMetaData.getMaxConnections") ;
return 5;
public String getUserName ()

throws ResourceException

return mc.getUserName () ;

UCConnection

The UCConnection class represents the “handle” to the underlying physical
connection to the EIS. UCConnection is one of the few classes that does not
implement an interface in the JCA specification. The implementation that follows

325

is simple, but a working implementation might contain connectivity code using

sockets, as well as other functionality:

package ucnyjca;

public class UCConnection

{

private UCManagedConnection mc;

public UCConnection (UCManagedConnection mc)

{

System.out.println("We are executing UCConnection") ;

this.mc = mc;

326 Chapter 6: Legacy Connectivity

UCConnectionRequestinfo

The UCConnectionRequestInfo class contains the data (such as the username, password,
and other information) necessary to establish a connection:

package ucnyjca;

import javax.resource.spi.ConnectionRequestInfo;

public class UCConnectionRequestInfo
implements ConnectionRequestInfo

private String user;
private String password;

public UCConnectionRequestInfo (String user, String password)
{

System.out.println("We are executing UCConnectionRequestInfo") ;
this.user = user;

this.password = password;

public String getUser ()
{

System.out.println("We are executing UCConnectionRequestInfo.getUser") ;
return user;

public String getPassword ()
System.out.println("We are executing
UCConnectionRequestInfo.getPassword") ;
return password;

public boolean equals (Object obj)
{

System.out.println("We are executing UCConnectionRequestInfo.equals") ;
if (obj == null)

return false;
if (obj instanceof UCConnectionRequestInfo)

{

UCConnectionRequestInfo other = (UCConnectionRequestInfo)obj;
return isEqual (user, other.user) &&

Java Connector Architecture 327

isEqual (password, other.password) ;

} else

{
}

return false;

public int hashCode ()

{

System.out.println("We are executing UCConnectionRequestInfo.hashCode") ;
String result = "" + user + password;
return result.hashCode () ;

private boolean isEqual (Object ol, Object o2)

{

System.out.println("We are executing UCConnectionRequestInfo.isEqual") ;
if (0l == null)

return o2 == null;
else

return ol.equals (02) ;

UCDataSource

The UCDataSource class serves as a connection factory for the underlying
connections. Because the example adapter does not implement the CCI interfaces,
it implements the DataSource interface in the javax.sql package:

package ucnyjca;

import
import
import
import
import
import
import
import
import
public

java.io.PrintWriter;

java.io.Serializable;

java.sqgl.*;

javax.naming.Reference;
javax.resource.Referenceable;
javax.resource.ResourceException;
javax.resource.spi.ConnectionManager;
javax.resource.spi.ManagedConnectionFactory;
javax.sqgl.DataSource;

class UCDataSource

implements DataSource, Serializable, Referenceable

328 Chapter 6: Legacy Connectivity

private String desc;
private ManagedConnectionFactory mcf;
private ConnectionManager cm;
private Reference reference;
public UCDataSource (ManagedConnectionFactory mcf, ConnectionManager cm)
{
System.out.println("We are executing UCDataSource") ;
this.mecf = mcf;
if (cm == null)
this.cm = new UCConnectionManager () ;
else
this.cm = cm;

public Connection getConnection (String username, String password)
throws SQLException

System.out.println("We are executing UCDataSource.getConnection,2");
try

javax.resource.spi.ConnectionRequestInfo
info = new UCConnectionRequestInfo (username, password) ;

return (Connection)cm.allocateConnection(mcf, info) ;

catch (ResourceException ex)

{
}

throw new SQLException (ex.getMessage()) ;

public int getLoginTimeout ()
throws SQLException
{

}

return DriverManager.getLoginTimeout () ;

public void setLoginTimeout (int seconds)
throws SQLException

}

DriverManager.setLoginTimeout (seconds) ;

public PrintWriter getLogWriter ()
throws SQLException

Java Connector Architecture 329

{
}

return DriverManager.getLogWriter () ;

public void setLogWriter (PrintWriter out)
throws SQLException
{

}

DriverManager.setLogWriter (out) ;

public String getDescription ()

{
}

public void setDescription(String desc)

{
}

return desc;

this.desc = desc;

public void setReference (Reference reference)

{
}

this.reference = reference;

public Reference getReference ()

{
}

return reference;

JCA 1.5 Adapter Implementation

Here, we will cover JCA 1.5 enhancements to provide you with a background for
how they fit into the overall architecture of JEE / EIS connectivity. Here again, the
four new contracts are as follows:

B Life Cycle Management

B Work Management Contracts
B Message Inflow
[

Transaction Inflow Contracts

330 Chapter 6: Legacy Connectivity

The JCA 1.5 specification defines resource adapters as: “a system-level software
driver that is used by a Java application to connect to an EIS. The resource adapter
plugs into an application server and provides connectivity between the EIS, the
application server, and the enterprise application.”

With respect to Life Cycle Management, the JCA 1.0 release provided a life cycle
model for managed connections and their associated connection handles. It included
no such life cycle for the resource adapter. The first moment of life for the deployed
resource adapter was when a managed-connection factory was created. This has
been corrected in JCA 1.5 . The ResourceAdapter interface in the javax.resource.spi
package represents a resource adapter. There are two methods in the ResourceAdapter
interface that control life cycle management: start () and stop (). The start ()
method is used when an application server starts a resource adapter . The stop ()
method is used by the application server to release a resource adapter. At startup,
the application server creates an instance of the <resourceadpter-class> and sets
the properties as specified in the deployment descriptor. The start method is then
called, passing in an object implementing the BootstrapContext interface. You can
use this object to: create timers to be used to schedule work at a specified interval
or datetime, schedule work on other threads, and control imported transactions.
The application server typically calls the stop () method on the resource adapter
as part of the shutdown process. The JCA 1.5 specification describes two phases to
this process. First, the application server ensures that all applications that depend
on the resource adapter have stopped. The application server then calls the stop ()
method. The resource adapter then performs an housekeeping (for example, release
resources) and ultimate shutdown.

The Work Management contract provides a way for the resource adapter to
submit work to the application server. The WorkManager lets a resource adapter
schedule work for synchronous or asynchronous execution on an application-server
thread. This work can be performed in a transaction the resource adapter imports,
in which case the XATerminator lets the work be completed. A Timer provides
for delayed or periodic execution of work. It creates an object that extends the
Work interface in the javax.resource.spi.work package. The Work interface extends
Runnable, and you should implement the work to be performed in the run ()
method, similar to a program that uses Java threads directly. The WorkManager
interface provides three sets of methods (doWork, startWork, and scheduleWork) for
processing work.

The dowork methods on WorkManager allow work to be executed synchronously,
blocking until that work has completed. If the application server is busy, it might
defer the start of this piece of work. The dowork () method gives the application

Java Connector Architecture 3 3 ||

server more control over the work that a resource adapter performs. If the resource
adapter is in the middle of a long, complicated operation when the application
server is shutting down, then the server doesn’t need to wait for the resource adapter
to finish or pull the rug out from under its feet. Instead, the server can signal to
the resource adapter by calling the release () method on the Work object. The
resource adapter should then complete processing as quickly as possible. Also the
startWork () and scheduleWork () methods on WorkManager let a resource adapter
process work asynchronously while still keeping the application server in control.
The startwork () method waits until the piece of work has started to execute but
not until it completes. This method can therefore be used by a caller that needs to
know that the work will be performed but does not need to wait until it has finished.
The schedulework () method returns as soon as the work has been accepted for
processing. In this case, there are no guarantees that work will actually be performed.

The Message Inflow contract provides the ability for the resource adapter to
respond to calls made by the application server to activate and deactivate message
endpoints. The endpointActivation () method in the ResourceAdapter interface
is called to do the necessary setup for message delivery to the message endpoint.
The endpointDeactivation () method of ResourceAdapter is called when a
message endpoint is no longer needed, i.e., this stops the resource adapter from
delivering messages. A MessageEndpointFactory object in the javax.resource
.spi.endpoint package is passed in to the endpointaActivation () method. The
object is used by the resource adapter to create message endpoints. Any information
about these endpoints should be removed from the resource adapter when the
endpointDeactivation () method is called. The getxXaResources () method of
ResourceAdapter retrieves transaction resources in the event of a system failure. The
endpointActivation (), endpointDeactivation (), and getXAResources ()
methods are mandatory.

Here is an example implementation of the ResourceAdapter interface that
illustrates the life cycle management and work management contracts:

public interface BootstrapContext {

WorkManager getWorkManager () ;
XATerminator getXATerminator () ;

Timer createTimer () throws UnavailableException;

332 Chapter 6: Legacy Connectivity

public class UcnyResourceAdapterImpl implements
ResourceAdapter (

public static final long TIMEOUT FIVE SECONDS = 5000L;

Note if the application server is particularly busy, it might defer the start of this
piece of work. You can use the second startTimeout parameter to specify how long
the resource adapter is prepared to wait for the work to start. If the application server
fails to start the work within this time then, again, a WorkRejectedException is
thrown.

public UcnyResourceAdapterImpl () }

public void start (BootstrapContext ctx)

Notice that there is an object passed in with the start () method that
implements the BootstrapContext interface. This object allows the EIS to pass
transaction information to the application server, as well as the ability to pass work
to the application server.

throws ResourceAdapterInternalException

WorkManager workManager = ctx.getWorkManager () ;
Work UcnyWorkJob = new UcnyWorkImpl () ;
WorkListener workListener =

new UcnyWorkListenerImpl () ;

try {

With the xWork methods, the resource adapter can optionally pass a listener that
will be notified as the item of work passes through the states of accepted, started, and
completed or, in the failure case, rejected.

workManager.startWork
(UcnyWorkJob, TIMEOUT FIVE SECONDS,

new ExecutionContext (), workListener) ;

Java Connector Architecture 33 3

Also, it is possible to have the piece of work executed in the context of a transaction
imported by the resource adapter, rather than the context associated with the current
thread. The third parameter is an optional ExecutionContext.

} catch (WorkException e)

// Handle the exception

public void stop ()

{

// PERFORM HOUSKEEPING AND FINISH

}

public class UcnyWorkJob implements Work

void run() {
// HERE IS WHERE THE WORK ACTUALLY TAKES PLACE }
1
void release()

WHEN WE FINISH THE WORK WE RELEASE THE RESOURCES

334 Chapter 6: Legacy Connectivity

Typically, you want the application server to notify you about the status of
submitted work that is in a partial state of execution. To accomplish the same in
JCA 1.5, you create an object that implements the javax.resource.spi. WorkListener
interface. You can then register this object using the startWork () method of
the WworkManager object on the application server. The WorkManager interface
facilitates the submission of Work instances for execution. Registering the object
allows the server to notify the resource adapter if the work was rejected or accepted,
and if accepted, when the work was started and completed. You can also extend
the WworkAdapter class, which implements the WorkListener interface and provides
empty methods for each of these. Here is skeleton code for a class that implements

WorkListener:

public class UcnyWorkListenerImpl implements WorkListener

This listener is used to provide notification back to the originator of a piece of
work once it has completed, or to reschedule an item of work when it fails.

public void workAccepted (WorkEvent e)
// System.out.println("Work instance " + e +

// " has been accepted.");

public void workRejected (WorkEvent e)
// System.out.println("Work instance " + e +

// " has been rejected.");

public void workStarted (WorkEvent e) {
// System.out.println("Work instance " + e +

// " has been started.");

Java Connector Architecture 33 §

public void workCompleted (WorkEvent e) {
// System.out.println("Work instance " + e +

// " has been completed.");

}

Here is an implementation of the ResourceAdapter interface that illustrates the
JCA 1.5 life cycle management and work management contracts:

public class UcnyResourceAdapterImpl implements

ResourceAdapter

// Lifecycle Contract methods from earlier omitted.

public XAResource[] getXAResources (ActivationSpec[] specs)

throws ResourceException

{

// return XAResource objects that correspond to ActivationSpecs passed

return null;

public void endpointActivation (MessageEndpointFactory mef,

ActivationSpec as)

throws NotSupportedException

{

336 Chapter 6: Legacy Connectivity

public void endpointDeactivation (MessageEndpointFactory mef,

ActivationSpec as)

{
}

The ActivationSpec class that is passed in to the ResourceAdapter methods is
a JavaBean that implements a number of get and set methods for various properties.
In addition to providing these get and set methods, an implementation must also
provide a validate () method to ensure that all of the properties have been legally
set. If a property has not been set properly, the method must throw an Invalidprop
ertyException. Note that an ActivationSpec object cannot override equals ().

public class MyActivationSpec implements ActivationSpec,

Serializable ({

public void setMyProperty (MyProperty s) { }

public MyProperty getMyProperty() { }

public void validate() throws InvalidPropertyException { }

}

In version 1.0 of the J2EE Connector Architecture, a resource adapter could
only pass transaction information to the EIS, either from itself or from an external
transaction manager. However with the Transaction Inflow contract in version 1.5
of the architecture, the resource adapter can pass EIS transaction requests to the
application server as well as use the BootstrapContext object that is passed in with
the start () method of the Life Cycle Contract. The BootStrapContext interface was
mentioned briefly in the discussion of the Life Cycle Management contract. Here
are the methods in the BootstrapContext interface:

public class UcnyBootstrapContextImpl implements

BootstrapContext

public

// Get

public

return

public
return
}
}

Java Connector Architecture 337

WorkManager getWorkManager () {

the work manager from the application server

XATerminator getXATerminator () {

new UcnyXATerminatorImpl () ;

Timer createTimer ()

new Timer () ;

Let’s look at the XATerminator interface. Notice that it’s the return type of the
getXATerminator () method in the BootStrapContext interface. The XATerminator
interface contains five simple methods that handle transactions:

public

public
throws
public
public
public

public

class UcnyXATerminatorImpl implements XATerminator {

void commit (Xid xid, boolean onePhase)
XAException { }

void forget (Xid xid) throws XAException { }
int prepare(Xid xid) throws XAException { }
Xid[] recover (int flag) throws XAException { }

void rollback (Xid xid) throws XAException { }

338 Chapter 6: Legacy Connectivity

Build the RAR File

The next step is to build the ucnyjca.rar file. Typically, you would have a source directory
containing two subdirectories: ucnyjca containing the .java files, and META-INF
containing the configuration files. See the JCA 1.5 connector specification located
at hetp:/[java. sun.com/j2ee/connector/download.html for information on resource adapter
deployment descriptors. The deployment descriptors, the ra.xml file needs to be in the
WEB-INF directory of the WAR file. The resource adapter descriptor file, ra.xml, is
fairly easy to create. You simply need to point in the file to the class that implements the
ResourceAdapter interface. The application server will then access that class.

<?xml version="1.0" encoding="UTF-8"?>

<connector xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/connector 1 5.xsd"

version="1.5">

<display-name>UCNY Resource Adapter</display-names>
<vendor-name>UCNY, Inc.</vendor-name>
<els-type>Unknown</eis-type>

<resourceadapter-version>1l.0</resourceadapter-versions>

<resourceadapters>
<resourceadapter-class>
com.Ucny.ra.UcnyResourceAdapterImpl
</resourceadapter-class>

</resourceadapter>

</connectors>

Distinguish Appropriate from Inappropriate 3 39

To compile and build the RAR file:

I. Compile the class files: javac *.java in the ucnyjca directory.
2. Build ucnyjca.jar:
jar cvf ucnyjca.jar ucnyjca
3. Create the RAR file using ucnyjca.jar and the META-INF directory:

jar cvf ucnyjca.rar ucnyjca.jar META-INF

The JCA specification’s complexity makes implementing even basic adapters a
difficult task. Moreover, the task grows when you add the transaction and security
contracts (not implemented for this example), as well as the CCls. The complexity
shows that the JCA specification is oriented toward commercial software vendors
implementing adapters and their customers using them. In this arena, the JCA makes
sense, although a less flexible, simpler interface version would be nice. Therefore, if
you are considering using JCA to connect to a legacy system in your enterprise, you
would make the implementation more likely by leveraging an off-the-shelf adapter
rather than developing your own. If the system to which you need connectivity does
not have a JCA adapter, consider an alternative approach. Perhaps, the old style for a
“work-around” or using web services may provide the best solution.

For its part, while JCA is still a new standard, it shows promise for making the task of
integrating with an EIS less daunting. It is, however, still some distance off in terms of
general availability for most vendors. The economy, when it eventually makes an upturn,
will create opportunities for JEE architects to apply JCA to reface the enterprise.

CERTIFICATION OBJECTIVE 6.01

Distinguish Appropriate from Inappropriate
Techniques for Providing Access to a Legacy
System from Java Technology Code Given an
Outline Description of That Legacy System

The following ten exercises are in the form of practice essay questions:

I. Read the question.

2. Develop an essay-style answer.

340 Chapter 6: Legacy Connectivity

3. Review the draft and finalize your response.

4. Review the answer in the book.

EXERCISE 6-1

Techniques and Best Practices

Question As an enterprise architect who is commissioned to enable a set of exist-
ing legacy or EIS systems to handle JEE technology, what are some of the techniques
and best practices that you might incorporate?

Answer When integrating existing EIS with any new technology, especially JEE,
it’s given that EIS integrates more easily when using proven guidelines and stan-
dards. Following are some tried-and-true concepts.

JEE systems that access existing or external information resources should avoid
accessing those resources directly from multiple locations, i.e., use one point of
access to facilitate changes and avoid potential data integrity problems. Otherwise,
multiple access entwines your business logic with the implementation details of
an external resource. If the API to that resource changes (when, for example, you
change resource vendors, a new version is released, or for other reasons), changes to
your JEE application source code will be necessary throughout the application, and
the resulting testing burden can be considerable.

Per our desire to adhere to standards for some resources, an EIS resource vendor
or some third party may provide a JEE connector extension, an adapter that
allows JEE systems to interoperate with other EIS resources transparently and with
transaction management capability.

For database access, a standard in the JDBC API makes vendors’ proprietary
technology accessible in an open way. Switching database implementations, even
at runtime, is facilitated with JDBC, which provides a standard API to mask the
vendor-specific implementation details in connection configuration data and access
and transaction functionality.

In addition, it is a good practice to use a design pattern to encapsulate access to
EIS resources and prepare for eventual migration to a JCA-based interface. If no
JEE connector extension is available for your EIS resource, a good alternative is
to use DAO classes to represent the EIS as an abstract resource. Instead of calling

Distinguish Appropriate from Inappropriate 34 ||

the EIS directly from the enterprise bean, create a DAO class that represents the
services your bean needs. This is an application of the Bridge design pattern, which
makes an interface’s implementation transparently replaceable by decoupling the
implementation from the interface. A DAQO class that “wraps” an EIS resource
insulates the enterprise bean from changes in that resource. New versions of the EIS
resource can then be implemented and the change control will be the only necessary
modifications to the DAO layer of the JEE application. Another benefit of this
practice is experienced when a connector becomes available for your EIS resource.
The enterprise can replace the existing DAO implementation with one that simply
dispatches calls to the connector.

Imagine that the enterprise is using a custom legacy system to which your
enterprise bean needs access. A DAQ class can provide a “vendor-agnostic” API
interface to the enterprise bean, while handling the details of service requests from
the enterprise bean to the legacy system. This scheme is advantageous when a single
service request from your JEE server’s perspective requires access to a number of
existing EIS resources—that is, a DAO can be used to facade multiple EIS resources.
This use of the facade pattern facilitates changes to these EIS services. When an
existing EIS service is replaced, the existing DAO class can be replaced with a new
DAOQO class that presents the new service to the enterprise bean in terms of the
existing DAQ interface. Isolating your enterprise bean functionality with a DAO
layer makes it easier for your JEE system design to evolve with time.

The DAQOclass(es) should reflect the functional requirements of the services your
enterprise beans need, not necessarily the structure of the existing system. A DAO
class’ interface should reflect a current view. Analyze what the existing EIS does,
determine what needs to be done today and tomorrow, and create methods in the
DAOQ classes that provide the most frequently required functionality. If multiple
EIS resources are required to perform a single task, the DAO class can combine
access to these systems and present them to the EJB as a single service. So as an EIS
integration “best practice,” we should avoid letting the structure of existing EIS
resources dictate the structure of the integrated system. Instead, architect and design
with your new requirements and goals in mind. Use existing legacy resources as
services to meet those requirements.

A DAOQO class should be neither a collection of unrelated tools nor a tool designed
for one application, but something that cleanly and completely represents a clear
and reusable abstraction. UML diagrams such as collaboration, state chart, activity,
and package diagrams can be a help in the analysis.

3472 Chapter 6: Legacy Connectivity

EXERCISE 6-2

Implementing Data Validation and Referential Integrity Contraints

These essay questions will help develop the ability to articulate and describe the JEE
concepts and components used in parts 2 and 3 of the exam.

Question As an architect integrating a JEE system with an existing EIS
database system, where should data validation and referential integrity constraints
be implemented?

Answer This is a difficult call. The practical aspects of the decision revolve
around the following:

B How much will it ultimately cost?
B How much is already invested in the database application?

B How long is it expected to be functional?

If the DBMS is relational and were implemented after the mid 1980s, it is
typically best to use the DBMS functionality to enforce value and referential
integrity. Sybase, Oracle, SQL Server, DB2, and Informix—to mention the most
popular DBMSs—have had these abilities for many years. These DBMSs include
declarative value and referential integrity constraint features, integrated with the
Data Description Language (DDL), and they provide built-in declarative triggers
to handle cascading actions required for referential integrity, such as deleting all
item rows in a canceled order. Implementing these in the enterprise bean layer
would duplicate logic, making maintenance difficult. Any change to the database
constraints would require making the change to enterprise beans and to the
database.

The architectural benefits and capabilities maintaining data integrity constraints
in the database layer include the following:

B Facilitated use by multiple applications If for some reason multiple
applications are responsible for maintaining database integrity, every
application creates an opportunity for bugs that would violate that integrity.
Furthermore, other applications that may want to access the database are
relieved of the duty of maintaining integrity constraints. They still must, of
course, deal with error conditions that result if they violate those constraints.

Distinguish Appropriate from Inappropriate 34 3

B Centralization If the constraints are maintained only in the database,
the database is the one place where data can be considered consistent by
definition. If data inconsistencies exist, either the integrity constraints are
incorrect or the design has flaws.

B Portability Simple value and integrity constraints, such as primary keys,
simple foreign keys, uniqueness, value range checking, and so on, are
reasonably portable.

B Performance and reliability Database vendors that offer database
constraints features have invested a great deal of time and money in ensuring
that those features operate correctly and efficiently.

The drawbacks of using the DBMS built-in database integrity constraints mechanisms
and the EJB can include the following:

B Possible duplication of logic Enterprise beans generally need reasonable
data to perform properly. Therefore, most well-designed enterprise beans
do a reasonably good job of checking data values and existence constraints.
Database integrity violation errors usually indicate a bug or a problem with
the design. Nevertheless, the logic enforcing value and referential integrity
is necessarily duplicated. Changing the integrity rules in the database will
usually also entail changes to the code, and keeping the two synchronized can
be a problem.

B Potential nonportability of DBMS constraints While simple value and
referential integrity constraints are fairly portable, databases differ in coverage
and syntax for more involved mechanisms such as composite foreign keys,
database triggers, and procedural triggers. Procedural triggers in particular
are portability concerns, because, when offered, they are often written in the
database vendor’s product-specific proprietary language. For example, Sybase
Transact SQL is very different from the Oracle PL/SQL procedure language.

B Database definition and configuration is uncontrolled Because database
constraint and trigger configuration are performed with the database vendor’s
tools, such constraints are maintained outside of the JEE server framework.
Because the data model constraints are specified not in the deployment
descriptor but in the persistence layer, such constraints are not part of a JEE
server deployment. They must therefore be managed separately, complicating
deployment and maintenance and providing another possible avenue for
system flaws.

344 Chapter 6: Legacy Connectivity

Another option is to use the EJB to handle constraints. Referential integrity
constraints can be implemented in the E]B tier. The constraints required for an
application may not be available in the DBMS chosen. The data model may
have constraint requirements that cannot be satisfied using the DBMS constraint
language. Such constraints can be implemented in the E]B tier. E]B-tier constraint
management also provides portability, since the enterprise beans will operate
identically in JEE-branded containers. Constraints in the E]B tier can also be
controlled by way of environment settings in the application deployment descriptor,
centralizing constraint management and making it controllable at deploy time.

Yet another option is to implement constraints in both the EJB and database tiers
and configuring the constraint implementation at deploy time. This strategy is useful
especially when an application must be portable to many different databases, and
you want consistent behavior across vendors while optimizing performance by using
each database’s full power.

You could also create a persistence server for the EIS tier. Constraints should
be expressed in a declarative constraint language provided by the database vendor.
In their absence, the implementation should choose to wrap a layer of integrity
management software around the database API. The EIS tier of your application
can be an API that you create to wrap the database. Your application accesses the
data store only through that server. This application of the decorator design pattern
can provide a solution that is portable across databases, is declaratively configurable,
and provides a consistent behavior across various clients. As a great deal of design,
construction, validation, and maintenance are required, it should be the solution
where ultimate flexibility and portability is required.

Finally, commercial transaction processing (TP) monitors provide the benefits
of the persistence server just described. TP monitors can provide scalability and
availability. Typically, they work with multiple database vendors. You avoid vendor
“lock-in” by wrapping calls to the monitor in DAQO classes.

EXERCISE 6-3

Legacy Mapping

Question What is legacy object mapping?

Answer Legacy object mapping builds wrappers around legacy system interfaces to
access elements of the legacy business logic and database tiers directly. Legacy object

Distinguish Appropriate from Inappropriate 345§

mapping tools are used to create proxy objects that access legacy system functions and
make them available in an object-oriented manner.

EXERCISE 6-4

Transaction Monitors

Question What is the purpose of a transaction monitor?

Answer Transaction monitors are programs, such as IBM CICS, that monitor
transactions, to ensure that they are completed in a successful manner. They ensure
that successful transactions are committed, that unsuccessful transactions are
aborted, and that the in-flight data updates are rolled back to the status quo ante or
the state it was before the attempted change.

EXERCISE 6-5

Off-Board Servers

Question What is an off-board server?

Answer An off-board server is a server that executes as a proxy for a legacy system.
It communicates with the legacy system using the custom protocols supported by the
legacy system. It communicates with external applications using industry-standard
protocols.

EXERCISE 6-6

JDBC vs. ODBC

Question How does Java Database Connectivity (JDBC) differ from the Microsoft
database connectivity interface (Open Database Connectivity, or ODBC)?

346 Chapter 6: Legacy Connectivity

Answer ODBC is the industry-standard interface by which database clients
connect to database servers. JDBC is a pure Java solution that does not follow

the ODBC standard. A bridge between JDBC and ODBC allows JDBC to access
databases that support ODBC.

EXERCISE 6-7

Accessing Legacy System Software

Question How is Java Native Interface (JNI) used to access legacy system
software?

Answer]NI is used to write custom code to interface Java objects with legacy
software that does not support standard communication interfaces.

EXERCISE 6-8

Accessing COM Objects

Question How is Java-to-COM bridging used to access COM objects?

Answer A Java-to-COM bridge enables COM objects to be accessed as Java
classes and Java classes to be accessed as COM objects, thereby providing some
support for using Microsoft software with Java.

EXERCISE 6-9

RMI vs. CORBA

Question What are the primary differences between RMI and CORBA, and for
what is Internet Inter-ORB Protocol (IIOP) used?

Distinguish Appropriate from Inappropriate 347

Answer RMIand CORBA are both distributed-object technologies that support
the creation, maintenance, and accessibility of objects. CORBA supports a language-
independent approach to developing and deploying distributed objects. RMI is a Java-
specific approach. IIOP is used to support communication between object request
brokers such as CORBA via TCP/IP. RMI uses a stub that is a proxy for a remote
object that runs on the client computer. RMI and CORBA use a skeleton as a proxy
for a remote object that runs on the server. Stubs forward a client's RMIs (and their
associated arguments) to skeletons, which forward them on to the appropriate server
objects. Skeletons return the results of server method invocations to clients via stubs.

The difference between RMI and CORBA is that the CORBA stubs access the ORB,
and then the CORBA skeleton.

CERTIFICATION SUMMARY |

The JCA is a specification for the Java platform that addresses the need to provide a
standard architecture for integrating EIS. It complements the use of JNI and RMI to
create a Java interface to a process running in its native domain.

348 Chapter 6: Legacy Connectivity

TWO-MINUTE DRILL

Distinguish Appropriate from Inappropriate Techniques for
Providing Access to a Legacy System from Java Technology Code
Given an Outline Description of That Legacy System

a

The EAI facilitates the integration of EISs, or legacy systems, as they are

also known. The classic means of communicating with an existing EIS has
been a specialized adapter, which implements the support for communication
with the EIS and provides access to EIS data and functions. Communication
between an adapter and the EIS typically uses a protocol specific to the EIS.

Another, more complex, form of an EIS adapter might do its “adaptation”
work across diverse component models, distributed computing platforms, and
architectures. For example, an EIS may develop a distributed adapter that
includes the capability to perform remote communication with the EIS using

Java RMI or CORBA.
The JCA puts EAI into mainstream use by establishing a standard.

The JCA comprises a resource adapter, connection management contracts,
transaction management contract, security contract, and the CCI.

A JCA resource adapter is specific to an EIS (Tibco) and is contained in a
RAR file. The RAR is composed of the JAR files and native libraries required
to deploy the resource adapter on a JEE container.

A JCA adapter interacts with a JEE server via system contracts. Seven types
of system contracts can be used:

Connection management

Transaction management

Security

Life Cycle Management (JCA 1.5)
Work Management Contracts (JCA 1.5)
Message Inflow (JCA 1.5)

Transaction Inflow Contracts (JCA 1.5)

The connection management contract describes the interaction between

I I)y

a JEE container and the adapter with respect to pooling and tearing down

Two-Minute Drill 349

connections. All JCA resource adapters supply two implementations with the
adapter: a ConnectionFactory and a Connection class.

The transaction management contract provides a mechanism to propagate
transactions that originate from inside an application server to an EIS.
The transaction management contract can control transactions by creating
local transactions that exist only on a particular EIS resource.

The security contract enables the application server to connect to an EIS
using security properties composed of a principle (a user ID) and credentials
(a password, a certificate).

Life Cycle Management is handled by the ResourceAdapter interface in the
javax.resource.spi package. There are two methods in the ResourceAdapter
interface that allow for life cycle management: start () and stop ().

The Work Management contract allows the resource adapter to submit work
to the application server. It does this by creating an object that extends the
Work interface in the javax.resource.spi.work package.

The Message Inflow contract allows the resource adapter to react to calls
made by the application server to activate and deactivate message endpoints.

CCI: To retrieve and update data, JCA’s CCI layer is used. The CCI APIs
establishing a connection to an EIS cover command execution on an EIS to
provide Record/ResultSet interfaces, which encapsulate the query results
and allow EIS metadata (the type of data) to be queried.

350 Chapter 6: Legacy Connectivity

SELF TEST

The following questions will help you measure your understanding of the material presented in this
chapter. Read all the choices carefully because there might be more than one correct answer. Choose
all correct answers for each question.

Distinguish Appropriate from Inappropriate Techniques for Providing Access
to a Legacy System from Java Technology Code Given an Outline Description
of That Legacy System

For a system consisting of exclusively Java objects, which distributed technology would be most
appropriate for communication?

A. CORBA
B. RMI
C. JNDI

D. JavaBeans

Which of the following are true about the Interface Definition Language (IDL)?

A. Interfaces between CORBA objects can be specified using IDL.

B. Applications can be implemented using IDL.

C. Interfaces described in IDL can be mapped to other programming languages.

D. Stubs and skeletons are written in IDL.

An object that implements the interfaces java.rmi.Remote and java.io.Serializable is being sent as
a method parameter from one JVM to another. How would it be sent by RMI?

A. RMI will serialize the object and send it.

B. RMI will send the stub of the object.

C. Both A and B throw an exception.

The RMI compiler rmic runs on which of the following files to produce the stub and skeleton
classes?

A. On the remote interface class file

B. On the remote service implementation class file

C. On the remote service implementation Java file
D.

On the remote interface Java file

Self Test 3 5 ||

Which distributed object technology is most appropriate for systems that consist of objects
written in different languages and that execute on different operating system platforms?

A. RMI

B. CORBA

C. DCOM

D. DCE

Which of the following are used by Java RMI?
A. Stubs

B. Skeletons

C. ORBs

D. 1IOP

Which of the following is not a tier of a three-tier architecture?
A. Client interface

B. Business logic

C. Security

D. Data storage

Which of the following is not true about RMI ?

A. RMI uses the Proxy design pattern.

B. RMI uses object serialization to send objects between JVMs.
C. The RMI Registry is used to generate stubs and skeletons.
D

. The RMI client can communicate with the server without knowing the server’s physical
location.

352 Chapter 6: Legacy Connectivity

SELF TEST ANSWERS

Distinguish Appropriate from Inappropriate Techniques for Providing Access
to a Legacy System from Java Technology Code Given an Outline Description
of That Legacy System

1 B is correct. RMI would be appropriate for communication between Java objects because

it is built into the core Java environment. It is a built-in facility for Java, which allows you to
interact with objects that are actually running on JVMs on remote machines on the network.
A, C, and D are incorrect. CORBA is more extensive than RMI. Unlike RMI, objects that
are exported using CORBA can be accessed by clients implemented in any language with an
IDL binding. RMI is much more simple and straightforward than CORBA because it supports
only Java objects. So where the facilities of CORBA are not required, it is preferable to go for
RMI. JNDI and JavaBeans are not distributed object technologies.

1 A and C are correct. Interfaces between CORBA objects can be specified using IDL, but

it is a language that can be used only for interface definitions. It cannot be used to implement
applications.

B and D are incorrect. We use other languages to implement the interfaces written in IDL.
Interfaces written in IDL can be mapped to any programming language. CORBA applications
and components are thus independent of the language used to implement them. Stubs and
skeletons are not written; they are generated by the IDL compiler. Stubs and skeletons would be
in the same language as the corresponding client or server.

1 B is correct. When you declare that an object implements the java.rmi.Remote interface,
RMI will prevent it from being serialized and sent between JVMs as a parameter. Instead of
sending the implementation class for a java.rmi.Remote interface, RMI substitutes the stub class.
Because this substitution occurs in the RMI internal code, one cannot intercept this operation.
A and C are incorrect. If the object had not implemented Remote, it would have been
serialized and sent over the network.

1 B is correct. The RMI compiler, rmic, can be used to generate the stub and skeleton files.
The compiler runs on the remote service implementation class file.
Kl A, C, and D are incorrect.

1 B is correct. CORBA is the most appropriate object technology for systems that use objects
written in different languages, and it supports a variety of operating system platforms.
A, C, and Dj; each works with specific platforms.

Self Test Answers 3 53

6. 1 A and B are correct. RMI uses stubs and skeletons.
&l C and D are incorrect because ORBs and IIOP are used with CORBA.

7. 4 Cis correct. Security is not a tier of a three-tiered architecture.
&l A, B, and D are tiers of a three-tiered architecture.

8. M Cis correct because it is not true about RMI. RMI uses the proxy design pattern in the stub
and skeleton layer. In the proxy pattern, an object in one context is represented by another
(the proxy) in a separate context. The proxy knows how to forward method calls between
the participating objects. In RMI’s use of the proxy pattern, the stub class plays the role of
the proxy. RMI uses a technology called Object Serialization to transform an object into a
linear format that can then be sent over the network wire. The RMI compiler, rmic, is used to
generate the stub and skeleton files.

& A, B, and D are incorrect.

