Enterprise JavaBeans
and the EJB
Container Model

CERTIFICATION OBJECTIVES

7.01

7.02

7.03

7.04

7.05

7.06

7.07

List the Required Classes/Interfaces
That Must Be Provided for an
Enterprise JavaBeans Component

Distinguish Between Session and Entity
Beans

Recognize Appropriate Uses for Entity,
Stateful Session, and Stateless Session
Beans

Distinguish Between Stateful and
Stateless Session Beans

State the Benefits and Costs of
Container-Managed Persistence

State the Transactional Behavior in a
Given Scenario for an Enterprise Bean
Method with a Specified Transactional
Deployment Descriptor

Given a Requirement Specification
Detailing Security and Flexibility

Needs, Identify Architectures That
Would Fulfill Those Requirements

7.08 Identify Costs and Benefits of Using an
Intermediate Data Access Object
Between an Entity Bean and the Data
Resource

7.09 State the Benefits of Bean Pooling in an
EJB Container

7.10 State the Benefits of Passivation in an
EJB container

7.11 Explain How the Enterprise JavaBeans
Container Does Life Cycle
Management and Has the Capability
to Increase Scalability

v/ Two-Minute Drill
Q&A Self Test

356 Chapter 7: Enterprise JavaBeans and the EJB Container Model

he Enterprise JavaBeans (EJB) specification is an industry initiative led and driven by Sun

Microsystems with participation from many supporting vendors in the industry. Sun

owns the process of defining, creating, and publishing the specification while ensuring
the incorporation of input and feedback from the industry and the general public.

FIGURE 7-1

The distributed
processing
framework

The EJB requirements enable communication with Java Platform Enterprise
Edition (JEE) clients including JavaServer Pages (JSP), servlets, and application
clients as well as with E]Bs in other EJB containers. The goal of these features is to
allow EJB invocations to work even when client components and EJBs are deployed
in Java Platform EE products from different vendors. Support for interoperability
among components includes transaction propagation, naming services, and security
services.

The term enterprise implies that an application will be scalable, available,
reliable, secure, transactional, and distributed. To provide these types of features,
an enterprise application requires access to a variety of infrastructure services, such
as distributed communication services, naming and directory services, transaction
services, messaging services, data access and persistence services, and resource-
sharing services.

When a distributed framework is used, a client makes a call to what appears
to be the interface of a business object. What it actually calls, however, is a stub
that mimics the interface of that business object. This layer between clients and
business objects is added because it is more practical to place stubs in the remote
and distributed locations of clients than to place complete copies in the location of
business objects.

In a distributed framework, the client calls a business method on a stub as if it
were the real object. The stub then communicates this request to a tie. The tie calls
the method on the real business object. A result is returned to the stub and the
client (see Figure 7-1).

The Java Platform EE application programming interfaces (API) provide common
interfaces that supply easy access to these underlying infrastructure services,

Client Server

Stub Tie

Enterprise JavaBeans and the EJB Container Model 3 §7

regardless of their actual implementation. The Java Platform EE APIs and their
vendor implementations provide additional services that are not supplied directly
by the Java Virtual Machine (JVM), such as database access, transaction support,
security enforcement, caching, and concurrency.

The following benefits are gained by adhering to the Java Platform EE standard:

B Reusable application components The productivity benefits of writing
components in the Java programming language include component reuse and
outsourcing, declarative customization (not programmatic), and the ability
for the developer to focus on business logic only.

B Portability The portability characteristics of EJB components are made
possible by Java Platform EE. This platform consists of several standard
Java APIs that provide access to a core set of enterprise-class infrastructure
services. These standardized APIs ensure that the Java code can be run on
any vendor’s application server.

B Broad industry adoption A wide selection of vendor tools and components
allows choice and flexibility in server selection.

B Application portability Code is more than just platform independent; it is
also middleware independent.

B No vendor lock-in Architecture decisions are made at deployment, not
at the development phase. Interserver portability allows code to be deployed
on any E]B server; interserver scalability allows servers to be transparently
replaced to accommodate changing needs for service level, performance, or
security.

B Protection of IT investment Wraps and integrates with the existing
infrastructure, application, and data stores; is portable across multiple
servers and databases; serves multilingual clients, such as browsers, Java
technology, ActiveX, or Common Object Request Broker (CORBA) clients;
EJB framework simplifies and enhances CORBA; and existing middleware
solutions are being adapted by the well-established vendors to support the
EJB framework via a thin portability layer.

JSR 220: Enterprise JavaBeans 3.0

Earlier versions of the Enterprise JavaBeans (E]JB) specification have been criticized
by many developers for its complexity. For this reason, the Java Community Process

358 Chapter 7: Enterprise JavaBeans and the EJB Container Model

(JCP) worked on Java Specification Request (JSR) 220 in order to improve the EJB
architecture by reducing its complexity from the enterprise application developer’s
point of view.

JSR 220 (E]JB 3.0) focused on the following goals:

Definition of the Java language metadata annotations that can be used to
annotate EJB applications, reducing the number of program classes and
interfaces required and at eliminating the need for an EJB deployment
descriptor.

Where possible a “configuration by exception” approach is to be taken.
Setup of many more defaults to specify common, expected behaviors

and requirements on the EJB container. Encapsulation of environmental
dependencies and JNDI access through the use of annotations, dependency
injection mechanisms, and simple lookup mechanisms.

Simplification of the enterprise bean types.

Session beans: the elimination of the requirement for component and home
interfaces. The required business interface for a session bean can now be a
plain old Java interface (PO]JI) rather than an EJBObject, EJBLocalObject, or

java.rmi.Remote interface.

Simplification of entity persistence through the Java Persistence API.
Support for lightweight domain modeling, including inheritance and
polymorphism.

Elimination of all required interfaces for persistent entities (entity beans).

Annotations and XML deployment descriptor elements for the object/
relational mapping of persistent entities (entity beans).

A query language for Java Persistence that is an extension to EJB QL, with
addition of projection, explicit inner and outer join operations, bulk update
and delete, subqueries, and group-by. Addition of a dynamic query capability
and support for native SQL queries.

An interceptor facility for session beans and message-driven beans.
Reduction of the requirements for usage of checked exceptions.

Elimination of the requirement for the implementation of callback interfaces
(This reduces the number of stub methods the developer has to add, e.g.,
ejbLoad, ejbStore, ejbPassivate, ejbActivate in a stateless session
bean).

Enterprise JavaBeans and the EJB Container Model 3 §9

More on Java language Annotation feature
In Java enterprise versions prior to EJB 3.0, metadata was placed inside deployment
descriptors (files containing XML). In Java EE 5 that implements the EJB 3.0
specification, metadata can now be placed in application code using a new Java
language feature called annotations. This feature does not make the deployment
descriptors obsolete; they continue to provide a way to add to or override metadata
(annotations) at deployment time.

The Java annotation feature is an enhancement that was introduced in version
5 of the Java Platform Standard Edition (Java SE). Annotations are open ended in
terms of functionality that can be offered, and they can enhance other areas within
Java apart from deployment descriptors. Table 7-1 shows a list of many of the Java
Language metadata (annotations) that can be used in EJB 3.0.

Sample Java Language Annotations Used in EJB 3.0

Annotation Description

@Entity Specifies an entity bean component.

@MessageDriven Specifies a message-driven bean component.

@Stateful Used to annotate a class as a stateful session bean component.
@Stateless Used to annotate a class as a stateless session bean component.
@EJB Used on the client to reference the business interfaces of other

beans and for EJB 2.1 or older beans, the home interfaces.

@PostConstruct, @PreDestroy, Allused to annotate a life cycle event callback method.
@PostActivate, @PrePassivate

@Resource Used for resource injection, examples are:
int, SessionContext, DataSource,
QueueConnectionFactory, Queue

@RolesAllowed, @PermitAll, Declare method permissions.
@DenyAll
@RunAs The principal identity the enterprise bean will use when it

makes calls.

@Timeout Specifies a time-out method on a component that uses
container-managed timer services.

@TransactionAttribute Applies a transaction attribute to all methods of a business
interface or to individual business methods on a bean class. Can
be MANDATORY, REQUIRED, REQUIRES_NEW, SUPPORTS,
NOT SUPPORTED, NEVER.

(Continued)

360 Chapter 7: Enterprise JavaBeans and the EJB Container Model

Sample Java Language Annotations Used in EJB 3.0

Annotation Description

@TransactionManagement Declares whether a bean will have container-managed
(CONTAINER) or bean-managed (BEAN) transactions.

@Column Specifies a mapped column for a persistent property or field.

@Id Specifies primary key for an entity.

@JoinColumn Specifies a mapped column for joining an entity association.

@ManyToMany Defines a many-valued association with many-to-many
multiplicity.

@ManyToOne Defines a single-valued association to another entity class that
has a many-to-one relationship.

@OneToMany Defines a many-valued association with a one-to-many
relationship.

@OoneToOne Defines a single-valued association to another entity that has a
one-to-one relationship.

@PersistenceContext Used to inject a dependency on an EntityManager.

@PersistenceUnit Used to inject a dependency on an
EntityManagerFactory.

@SecondaryTable Used to specify a secondary table, which indicates that the data
for the entity class is stored across multiple tables.

@SecondaryTables Specifies multiple secondary tables for an entity.

@Table Specifies the primary table for the entity.

@UniqueConstraint Used to specify that a unique constraint is to be included in the

generated DDL for a primary or secondary table.

For more information with respect to EJB 3.0 (JSR 220), look at the specification
documents on the Java Community Process web site at

http://jcp.org/en/jsr/detail?id=220
In the download section of the preceding web site link, the following documents
can be located:
|. Enterprise JavaBeans 3.0 Final Release (ejbcore) ejb-3_0-fr-spec-ejbcore.pdf
2. Enterprise JavaBeans 3.0 Final Release (persistence) ejb-3_0-fr-spec-persistence. pdf
3. Enterprise JavaBeans 3.0 Final Release (simplified) ejb-3_0-fr-spec-simplified. pdf

List the Required Classes/Interfaces 3@ ||

These specification documents are fairly large, but it makes sense to give them
a read at some point before taking the exam.

This chapter covers two versions of the EJB specification, namely 3.0 and prior
to 3.0. This book contains material that covers multiple versions of the examination,
so it is important that you know which version you will be taking in order to
concentrate on the correct answers for the exam objectives. Within the text of this
chapter, when necessary we will differentiate between the two specifications by
marking them with a notation of either EJB 3.0 or prior to EJB 3.0.

CERTIFICATION OBJECTIVE 7.01

List the Required Classes/Interfaces That Must Be
Provided for an Enterprise JavaBeans Component

Here, we review the component architecture of EJBs. We also cover the required
classes and interfaces for EJB, which include the home and remote interfaces, the
XML deployment descriptor, the business logic (bean) class, and the context objects.
While these names may or may not be meaningful to you at this point, you will soon
understand how each of these pieces fits into the EJB component model.

Classes and Interfaces Prior to EJB 3.0

The components used to create and access E]Bs facilitate the creation and execution
of business logic on an enterprise system. Each E]B session and entity bean must
have the following classes and interfaces:

B Home (EJBHome) interface
Remote (EJBObject) interface
XML deployment descriptor

Bean class

Context objects

Home (EJBHome) Interface (Prior to EJB 3.0)

The EJBHome object provides the life cycle operations (create (), remove (),
find ()) for an EJB. The container’s deployment tools generate the class for the

3672 Chapter 7: Enterprise JavaBeans and the EJB Container Model

EJBHome object. The EJBHome object implements the EJBsHome interface. The
client references an EJBHome object to perform life cycle operations on an EJBObject
interface. The Java Naming and Directory Interface (JNDI) is used by the client to
locate an EJBHome object.

The EJBHome interface provides access to the bean’s life cycle services and can be
utilized by a client to create or destroy bean instances. For entity beans, it provides
finder methods that allow a client to locate an existing bean instance and retrieve it
from its persistent data store.

Remote (E)JBObject) Interface (Prior to E]B 3.0)

The remote (EJBObject) interface provides access to the business methods within
the EJB. An EJBObject represents a client view of the EJB. The EJBObject exposes
all of the application-related interfaces for the object, but not the interfaces that
allow the EJB container to manage and control the object. The EJBObject wrapper
allows the EJB container to intercept all operations made on the EJB. Each time

a client invokes a method on the EJBObject, the request goes through the EJB
container before being delegated to the EJB. The EJB container implements state
management, transaction control, security, and persistence services transparently to

both the client and the EJB.

XML Deployment Descriptor (Prior to EJB 3.0)

The deployment descriptor is an XML (Extensible Markup Language) file provided
with each module and application that describes how the parts of a Java Platform
EE application should be deployed. The deployment descriptor configures specific
container options in your deployment tool of choice.

The rules associated with the EJB that govern life cycle, transactions, security, and
persistence are defined in an associated XML deployment descriptor object. These
rules are defined declaratively at the time of deployment rather than programmatically
at the time of development. At runtime, the EJB container automatically performs
the services according to the values specified in the deployment descriptor object
associated with the E]B.

Business Logic (Bean) Class

The bean class is developed by the bean developer and contains the implementation
and the methods defined in the remote interface. In other words, the bean class

List the Required Classes/Interfaces 3 &3

has the basic business logic. For entity and session beans, the bean class extends
either javax.ejb.SessionBean or javax.ejb. EntityBean, depending upon the type of EJB
required.

Context Objects for Session and Entity (Prior to E]B 3.0)

For each active EJB instance, the E]B container generates an instance context object
to maintain information about the management rules and the current state of the
instance. A session bean uses a SessionContext object, while an entity bean uses
an EntityContext object. Both the E]JB and the EJB container use the context
object to coordinate transactions, security, persistence, and other system services.

Classes and Interfaces for E]JB 3.0

All E]JB 3.0 classes are Plain Old Java Objects (POJOs) and all EJB 3.0 interfaces are
Plain Old Java Interfaces (PO]JIs). Each EJB 3.0 bean has the following classes and

interfaces:

B Bean class
B Business interface (can be generated by default)

B The XML deployment descriptor, which is now optional and largely
unnecessary for simple EJBs

Bean Class (E)B 3.0)

The bean class is developed by the bean developer and continues to house the
business logic.

Business Interface (E)B 3.0)

The business interface continues to define the access to the business methods within
the EJB. This interface can be defined by default simply by specifying the @remote
annotation within the bean class itself.

XML Deployment Descriptor (EJB 3.0)

The EJB 3.0 deployment descriptor is an optional XML file that provides the EJB
deployer with the ability to add to or override metadata (annotations) contained in
the application code (bean class).

364 Chapter 7: Enterprise JavaBeans and the EJB Container Model

CERTIFICATION OBJECTIVE 7.02

Distinguish Between Session and Entity Beans

Here, we review two of the three types of E]Bs: session and entity beans. See
Chapter 8 for information regarding the third type of E]B, the message-driven beans.

Session and Entity Beans

The EJB specification supports both transient and persistent objects. A transient
object is referred to as a session bean, and a persistent object is known as an
entity bean.

Session Beans

A session bean is an EJB that is created by a client and usually exists only for the
duration of a single client/server session. A session bean usually performs operations
such as calculations or database access on behalf of the client. While a session bean
may be transactional, it is not recoverable if a system crash occurs. Session bean
objects can be stateless, or they can maintain a conversational state across methods
and transactions. If a session bean maintains a state, the EJB container manages this
state if the object must be removed from memory. However, persistent data must be
managed by the session bean object itself.

The tools for a container typically generate additional classes for a session bean
at deployment time. These tools obtain information from the EJB architecture by
examining its classes and interfaces. This information is utilized to generate two
classes dynamically that implement the home and remote interfaces of the bean.
These classes enable the container to intercede in all client calls on the session
bean. The container generates a serializable Handle class as well, which provides a
way to identify a session bean instance within a specific life cycle. These classes can
be implemented to perform customized operations and functionality when mixed in
with container-specific code.

In addition to these custom classes, each container provides a class that provides
metadata to the client and implements the SessionContext interface. This provides
access to information about the environment in which a bean is invoked.

Distinguish Between Session and Entity Beans 3@ §

Entity Beans

An entity bean is an object representation of persistent data maintained in a
permanent data store such as a database. A primary key identifies each instance of
an entity bean. Entity beans are transactional and are recoverable in the event of a
system crash.

Entity beans are representations of explicit data or collections of data, such as a
row in a relational database. Entity bean methods provide procedures for acting on
the data representation of the bean. An entity bean is persistent and survives as long
as its data remains in the database.

An entity bean can be created in two ways: by direct action of the client in
which a create () method is called on the bean’s home interface, or by some
other action that adds data to the database that the bean type represents. In fact,
in an environment with legacy data, entity objects may exist before an EJB is even
deployed.

An entity bean can implement either bean-managed or container-managed
persistence. In the case of bean-managed persistence, the implementer of an entity
bean stores and retrieves the information managed by the bean through direct
database calls. The bean may utilize either Java Database Connectivity (JDBC) or
SQL-Java (SQLJ) for this method. (Session beans may also access the data they
manage using JDBC or SQL]J.) A disadvantage to this approach is that it makes it
more difficult to adapt bean-managed persistence to alternative data sources.

In the case of container-managed persistence, the container provider may
implement access to the database using standard APIs. The container provider
can offer tools to map instance variables of an entity bean to calls to an underlying
database. This approach makes it easier to use entity beans with different databases.

SCENARIO & SOLUTION

You need to maintain nonenterprise You should use a session bean, an EJB that is
data across method invocations for the created by a client and usually exists only for
duration of a session. What kind of EJB = the duration of a single client/server session.
would you use?

You need to create an EJB to represent You should use an entity bean, which is an object
enterprise data. What kind of EJB representation of persistent data maintained in a
should you use? permanent data store such as a database.

Above are some possible scenario questions that will help you review the
differences between session and entity beans.

366 Chapter 7: Enterprise JavaBeans and the EJB Container Model

CERTIFICATION OBJECTIVE 7.03

Recognize Appropriate Uses for Entity, Stateful
Session, and Stateless Session Beans

In an enterprise environment, application use may grow to a point at which systems
based on such things as Java servlets and Hypertext Markup Language (HTML)
are not scalable to provide the required performance. At this point, a distributed
solution can provide the scalability needed to meet changing demands. E]JB allows
the application to be distributed onto as many servers as required.

When to Use Entity and Session JavaBeans

The following details some appropriate scenarios for using E]Bs:

Use entity beans to persist data. An entity bean is a sharable enterprise data
resource that can be accessed and updated by multiple users.

Use stateful session beans when any one of the following conditions is true;
otherwise use stateless session beans:

The session bean must retain data in its member variables across method
invocations.

The state of the bean needs to be initialized when the session bean is instantiated.

The session bean must retain information about the client across multiple
method invocations.

The session bean is servicing an interactive client whose presence must be
known to the applications server or E]B container.

CERTIFICATION OBJECTIVE 7.04

Distinguish Between Stateful and
Stateless Session Beans

Now that you know a little bit about the EJB architecture, session beans, and entity
beans, this objective breaks down each of these components in detail and covers
using session beans and the differences between stateless session beans and stateful

Distinguish Between Stateful and Stateless Session Beans 3 @7

session beans. You'll learn how to define stateless and stateful session bean classes,
add methods to them, define the session bean interface, create a remote interface,
create a home interface, and create deployment descriptors. We'll talk about the
steps required to compile, assemble, and deploy stateless session beans and how to
call them from a client.

Using Session Beans

Building a session bean can be quite simple once you have mastered a few basic
steps. These steps are explained later in this section by walking you through an
example of a session bean that provides validation for fields passed to it in a hash
table.

As mentioned, session beans can either be stateful or stateless. With stateful
beans, the EJB container saves internal bean data during and in-between method
calls on the client’s behalf. With stateless beans, the clients may call any available
instance of an instantiated bean for as long as the EJB container has the ability
to pool stateless beans. This enables the number of instantiations of a bean to be
reduced, thereby reducing required resources.

Stateless Session Beans

A session bean represents work performed by a single client. That work can be
performed within a single method invocation, or it may span multiple method
invocations. If the work does span more than one method, the object must retain
the user’s object state across the method calls, and a stateful session bean would
therefore be required.

Generally, stateless beans are intended to perform individual operations
automatically and don’t maintain state across method invocations. They’re also
amorphous, in that any client can use any instance of a stateless bean at any time at
the container’s discretion. They are the lightest in weight and easiest to manage of
the various EJB component configurations.

Stateful Session Beans

Stateful session beans maintain state both within and between transactions. Each
stateful session bean is therefore associated with a specific client. Containers are able
to save and retrieve a bean’s state automatically while managing instance pools

(as opposed to bean pools) of stateful session beans.

368 Chapter 7: Enterprise JavaBeans and the EJB Container Model

Stateful session beans maintain data consistency by updating their fields each
time a transaction is committed. To keep informed of changes in transaction status, a
stateful session bean implements the SessionSynchronization interface. The container
calls methods of this interface while it initiates and completes transactions involving
the bean.

Session beans, whether stateful or stateless, are not designed to be persistent.

The data maintained by stateful session beans is intended to be transitional. It is
used solely for a particular session with a particular client. A stateful session bean
instance typically can’t survive system failures and other destructive events. While a
session bean has a container-provided identity (called its handle), that identity passes
when the client removes the session bean at the end of a session. If a client needs to
revive a stateful session bean that has disappeared, it must provide its own means to
reconstruct the bean’s state.

Stateful vs. Stateless Session Beans
A stateful session bean will maintain a conversational state with a client. The state
of the session is maintained for the duration of the conversation between the client
and the stateful session bean. When the client removes the stateful session bean,
its session ends and the state is destroyed. The transient nature of the state of the
stateful session bean should not be problematic for either the client or the bean,
because once the conversation between the client and the stateful session bean ends,
neither the client nor the stateful session bean should have any use for the state.

A stateless session bean will not maintain conversational states for specific clients
longer than the period of an individual method invocation. Instance variables
used by a method of a stateless bean may have a state, but only for the duration of
the method invocation. After a method has finished running either successfully
or unsuccessfully, the states of all its instance variables are dropped. The transient
nature of this state gives the stateless session bean beneficial attributes, such as the
following:

B Bean pooling Any stateless session bean method instance that is not
currently invoked is equally available to be called by an EJB container or
application server to service the request of a client. This allows the EJB
container to pool stateless bean instances and increase performance.

B Scalability Because stateless session beans are able to service multiple
clients, they tend to be more scalable when applications have a large number
of clients. When compared to stateful session beans, stateless session beans
usually require less instantiation.

Distinguish Between Stateful and Stateless Session Beans 3 69

B Performance An EJB container will never move a stateless session bean
from RAM out to a secondary storage, which it may do with a stateful session
bean; therefore, stateless session beans may offer greater performance than
stateful session beans.

Since no explicit mapping exists between multiple clients and stateless bean
instances, the E]JB container is free to service any client’s request with any available
instance. Even though the client calls the create () and remove () methods of
the stateless session bean, making it appear that the client is controlling the life
cycle of an EJB, it is actually the E]JB container that is handling the create () and
remove () methods without necessarily instantiating or destroying an EJB instance.

Defining the Session Bean Class (Prior to EJB 3.0)

The session bean class must be declared with the public attribute. This attribute
enables the container to obtain access to the session bean. Java gives a developer
the ability to extend a base class and inherit its properties. This ability pertains
to session beans as well, allowing developers to take full advantage of any object-
oriented legacy code that they may wish to reuse.

The following is an example of a session bean (prior to EJB 3.0) extending a base
class:

public class ValidateInputBean extends TradingBaseClass implements SessionBean

{
}

Session Bean Interface (Prior to E)B 3.0)

Session beans are held to the Java Platform EE (prior to EJB 3.0) specification that
requires all session beans to implement the javax.ejb.SessionBean interface. This
requirement forces session beans to contain the following methods:

B ejbactivate()
ejbPassivate ()

ejbRemove ()

setSessionContext (SessionContext)

370 Chapter 7: Enterprise JavaBeans and the EJB Container Model

A minimum sample of how a bean class must look is shown here:

public class ValidateInputBean extends TradingBaseClass implements SessionBean

{

public void ejbActivate () throws EJBException {..}
public void ejbPassivate () throws EJBException {..}
public void ejbRemove () throws EJBException {..}
protected SessionContext m context;
public void setSessionContext (SessionContext sc)
throws EJBException {
m_context = sc;

Clients of a session bean may either be remote or local, depending on what
interfaces are implemented.

Remote clients access a session bean via their remote and remote home interfaces
(javax.ejb. EJBObject and javax.ejb.EJBHome, respectively). Remote clients have
the advantage of being location independent. They can access a session bean in an
EJB container from any Remote Method Invocation-Internet Inter-ORB Protocol
(RMI-IIOP)—compliant application, including non-Java programs such as CORBA-
based applications. Because remote objects are accessed through standard Java RMI
APIs, objects that are passed as method arguments are passed by value. This means
that a copy of the object being passed is created and sent between the client and the
session bean.

Local clients access a session bean via their local and local home interfaces
(javax .ejb.EJBLocalObject and javax.ejb.EJBLocalHome, respectively). A local client
is location dependent. It must reside inside the same JVM as the session bean with
which it interfaces. Local clients can have objects passed as arguments to methods
by reference. Doing this avoids the overhead of creating copies of objects sent
between clients and session beans. Certain applications will perform considerably
better without this overhead. The enterprise bean provider should be aware that
both the client and the session bean can change common objects.

Both local and remote home interfaces (javax.ejb. LocalHome and javax.ejb. EJBHome,
respectively) provide an interface to the client, allowing the client to create and
remove session objects. However, session objects are more commonly removed by
using the remove () method in the EJBObject interface.

Neither local nor remote clients access session beans directly. To gain access to
session bean methods, they use a component interface to the session bean. Instances
of a session bean’s remote interface are called session EJBObjects, while instances of a
session bean’s local interface are called session EJBLocalObjects.

FIGURE 7-2

EJB session bean
interface exposed
to a client

Distinguish Between Stateful and Stateless Session Beans 37 |

Both local and remote interfaces provide the following services to a client:

B Delegate business method invocations on a session bean instance.
B Return the session object’s home interface.
B Test to determine whether a session object is identical to another session object.

B Remove a session object.

Any method on a session bean class that is to be made visible to a client must
be added to the bean’s remote interface. This makes it possible to hide session bean
methods from clients as well as make different methods of a session bean available
using different interfaces. Figure 7-2 illustrates how the client will see the EJB
session bean interfaces.

When the application is deployed, the container or application server will use the

interfaces defined by the enterprise bean provider and create EJBHome, EJBObject,
stub, and tie classes:

B The EJBHome class is used to create instances of the session bean class and

the EJBObject class.
B The E/BObject class provides access to the desired methods of the session bean.
B The stub classes act as proxies to the remote EJBObjects.

B The tie classes provide the call and dispatch mechanisms that bind the proxy
to the EJBObject.

EJB container

Session bean |

Home interface |
Remote interface |

Client

Session bean 2

Home interface 2
Remote interface 2|

Session bean n

Remote interface n

372 Chapter 7: Enterprise JavaBeans and the EJB Container Model

Creating a Remote Interface (Prior to EJB 3.0) All remote interfaces must
extend the class javax.ejb.EJBObject. The following is an example:

public interface ValidateInputRemote extends EJBObject { .. }

Methods in Remote Interfaces (Prior to EJB 3.0) The enterprise bean
provider provides the session bean’s remote interface, which extends javax.ejb.EJBOb-
ject, and the EJB container implements this interface. An enterprise bean’s remote
interface provides the client’s view of a session object and defines the business methods
that are callable by the client.

All business methods declared in the remote interface must have the same
parameters and same return value types as the bean class. It is not necessary for all
bean class methods to be exposed to the remote client.

All business methods declared in the remote interface must also throw at
least the same exceptions as those in the bean class. They must also throw the
java.rmi .RemoteException exception, because EJBs are dependent on the RMI
package, specifically the java.rmi.Remote package, for distributed processing.

Normally, the container or application server being used will generate the necessary
remote interface code. The container should also update this code when changes are
made to the bean class.

The method names and the signatures in the remote interface must be identical
to the method names and signatures of the business methods defined by the
enterprise bean. This is different from the home interface, where method signatures
must match, as method names can be different.

In addition to business methods that may be defined in the remote interface, the
methods listed here and shown in Figure 7-3 must be contained inside the remote
interface:

B getE]BHome() This method returns a reference to the session bean’s home
interface.

B getHandle() This method returns a handle for the EJBObject. This handle
can be used at a later time to reobtain a reference to the EJBObject. A
session object handle can be serialized to a persistent data store to enable
the retrieval of a session object even beyond the lifetime of a client process.
This is assuming that the EJB container does not crash or time out the session
object, thereby destroying it.

Distinguish Between Stateful and Stateless Session Beans 373

B getPrimaryKey() This method is not to be used for session beans. It returns
the session bean object’s primary key, but since individual session objects are
to be used only by the specific client that creates them, they are intended to
appear anonymous. If getPrimaryKey () is called looking for the identity of
a session object, the method will throw an exception. This is different from
entity objects, which expose their identity as primary keys.

B isldentical() This method is used to test whether the EJBObject passed is
identical to the invoked EJBObject.

B remove() This method is used to remove a session bean object.

Note that these methods are included automatically by virtue of inheritance.
A typical remote interface definition for a session bean looks something like this:

import javax.ejb.x*;
import java.rmi.*;
import java.util.*;
public interface ValidateInputRemote extends EJBObject

{

public void isInt (double amount) throws RemoteException;
public void isNum (double amount) throws RemoteException;

Creating a Home Interface (Prior to EJB 3.0) Session beans are instantiated
when a client makes a call to one of the create () methods defined in the home
interface. The home interface contains a create () method for every corresponding
ejbCreate () method in the bean class.

Application server
FIGURE 7-3
JNDI

EJB JAR file

Methods in the
session bean Bean class

EJB container

awoH
aj0Way

remote interface

create ()
remove ()

Deploy descri
gett)BMetaData (
EJBObject Bean class

| e Extends EJBObject

QWoH

bl
getEJBHome () 3
getHandle () 2
getPrimaryKey ()

isldentical ()

remove ()

eMust be a valid RMI/IDL value

374 Chapter 7: Enterprise JavaBeans and the EJB Container Model

The home interface is implemented in a container through an object called the
home object. The container makes visible an instance of the home object to clients
that want to instantiate a session bean.

In addition to create () methods that are to be defined in the home interface,
the methods listed here and shown in Figure 7-4 are to be contained in the home
interface:

B getE]BMetaData() This method is used to obtain the EJBMetaData
interface of an EJB. EJB deployment tools are responsible for implementing
classes that provide metadata to the remote client. The EJBMetaData
interface enables the client to get information about the enterprise bean.
This metadata may be used to give access to the enterprise bean clients that
use a scripting language to access these enterprise beans. Development tools
may also use this metadata. The EJBMetaData interface is not a remote
interface, so its class must be serializable.

B getHomeHandle() This method is used to obtain a handle of a home
object. The E]B specification allows a client to obtain a handle for the
remote home interface. The client can use the home handle to store a
reference to an entity bean’s remote home interface in stable storage and
recreate the reference later. This handle functionality may be useful to
a client who needs to use the remote home interface in the future but does
not know the JNDI name of the remote home interface.

B remove(Handle h) This method is used to remove EJBObjects that
are identified by their handles. A handle may be retrieved by using the
getHandle () method.

B remove(Object primaryKey) This method should not be used for
session beans. It is used to remove EJBObjects that are identified by their
primary key. Because session objects do not have primary keys that are
accessible to clients, invoking this method on a session bean will result
in a RemoveException. A container may also remove the session object
automatically when the session object’s lifetime expires.

Since all session objects keep their identity anonymous, finder () methods
for session beans should not be defined. The finder () methods for entity
beans are covered later on in this chapter, in the section “Home Interfaces and

finder() Methods.”

FIGURE 7-4

Methods in the
session bean
home interface

Distinguish Between Stateful and Stateless Session Beans 37§

Application server

JNDI

EJB JAR file

Bean class .
EJB container

SwoH
aj0Wway

create ()
remove ()

Deploy descript
gotE|BMetaData (
EJBObject Bean class

Defines one or more create ()
methods
© Extends EJBHome
getE|BMetaData ()
remove (Handle h)
remove (Object PrimaryKey)
© Must follow RMI rules

QawoH

=

2l0Wway

Again, note that the methods in the preceding list are included automatically by
virtue of inheritance. Here is an example of a home interface definition for an E]B:

import javax.ejb.*;
import java.rmi.*;
public interface AccountRemoteHome extends EJBHome

{
}

Account create() throws CreateException, RemoteException;

Session Bean Class Methods (Prior to EJB 3.0)

Session bean classes are used as the “molds” for instantiating session bean instances.
These instances are indirectly called as local and remote clients via home and
remote interfaces. EJBCreate () methods correspond with the create () methods
of the session bean’s home interface and are used for initializing the session bean’s
instance. The business methods created in a session bean class are a superset of those
defined for the session bean’s local or remote interface. These business methods
implement the core business logic for session beans.

create() Methods (Prior to EJB 3.0) The EJB specification requires the session
bean class to contain one or more ejbCreate () methods. These ejbCreate ()
methods are normally used to initialize the bean.

376 Chapter 7: Enterprise JavaBeans and the EJB Container Model

As many ejbCreate () methods as necessary may be added to the bean (only
one ejbCreate () method for stateless session beans, however), as long as their
signatures meet the following requirements:

B They must have a public access control modifier.
B They must have a return type of void.

B They must have RMI compliant arguments, in that they are serializable
objects.

B They must not have a static or void modifier.

Several exceptions may be thrown including the javax.ejb.CreateException and
other application-specific exceptions. The ejbCreate () method will usually throw
a CreateException if an input parameter is not valid.

When a client invokes a create () method of a home interface, the
ejbCreate () method of the session bean is called and the session bean and
EJBObject are instantiated. After the session bean and EJBObject have been
instantiated, the create () method returns a remote object reference of the
EJBObject instance associated with the session bean instance to the client.
The client can then invoke all of the business methods of this reference.

Because the ejbCreate () method is able to throw both javax.ejb.CreateException
when there is a problem creating an object and the javax.ejb. EJBException when there
is a system problem, the create () methods must be declared to throw both of these
exceptions as well. In addition to the two aforementioned exceptions, the create ()
method must also throw any programmer-defined applications exception that may be
thrown in the ejbCreate () method.

Business Methods The primary purpose of a session bean is to execute business
methods that implement business logic for use by a client. The create () (prior to
EJB 3.0) or the EJBContext 1ookup () (EJB 3.0) methods return object references
from which clients may invoke business methods. To the client, these business meth-
ods appear to be running locally; however, they actually run remotely in the session
bean container.

Session bean business methods, like any other Java method, are defined with the
following procedures:

B Add a method to the bean.

B Write and then save the code.
B Debug the code.

B Finish the bean.

Distinguish Between Stateful and Stateless Session Beans 377

[t is important to note that the bean class should not implement the remote
interface. The bean class code is where all of the actual business code exists. This
code is not supposed to be called without a proxy; therefore, it cannot be viewed
directly by the client.

EXERCISE 7-1

Review Code for a Stateless Session Bean (Prior to EJB 3.0)

In the following exercise, the classes and interfaces are provided for a stateless
session bean. The exercise is presented step-wise in the order that the classes and
interfaces would be created. Your completed code should look something like the
code contained in the following sections.

I. Create the Stateless Session Bean Class Here is an example of a stateless
session bean class. As you will see, the only purpose of this bean is to pass back

a simple message to the caller. The inline documentation points out the required
methods along with the business methods.

package javaee.architect.SLSession;

import javax.ejb.*;

// A stateless session bean.

public class SLSessionBean implements SessionBean (
SessionContext sessionContext;
// Bean's methods required by EJB specification.
public void ejbCreate() throws CreateException (

log("ejbCreate()") ;

}

public void ejbRemove () {
log("ejbRemove () ") ;
}

public void ejbActivate()
log("ejbActivate()") ;
}

public void ejbPassivate() {
log("ejbPassivate()") ;
}

public void setSessionContext (SessionContext parm) {
this.sessionContext = parm;

// Bean's business methods.

378 Chapter 7: Enterprise JavaBeans and the EJB Container Model

public String getMsg()
log("getMsg()") ;
return
"This is a message from an stateless session bean!";
}
public void log(String parm) {
System.out.println(new java.util.Date ()
+":SLSessionBean: "+this.hashCode () +" "+parm) ;

2. Create the Stateless Session Bean Home Interface Here is a home
interface for our stateless session bean example:

package javaee.architect.SLSession;
import javax.ejb.*;
import java.rmi.*;
// This is the remote home interface, used by clients as a
// factory for EJB objects (remote references). The EJB
// container vendor implements this extended interface.
// In this home interface there is a create() method that
// corresponds to the ejbCreate() method in bean code.
public interface SLSessionRemoteHome extends EJBHome {
// Creates/returns the EJB Object (remote reference) .
public SLSessionRemote create() throws CreateException, RemoteException;

}

3. Create the Stateless Session Bean Remote Interface Here is a remote
interface for our stateless session bean example:

package javaee.architect.SLSession;
import javax.ejb.*;
import java.rmi.*;
// This is the remote interface, used by clients when
// they need to call an EJB objects. The EJB container
// vendor implements this extended interface, which is
// responsible for delegating subsequent calls to the
// bean code.
public interface SLSessionRemote extends javax.ejb.EJBObject ({
// Returns a String to caller.
public String getMsg() throws RemoteException;

}

Distinguish Between Stateful and Stateless Session Beans 379

The following illustration shows how a client will view the remote interface.

EJB container

/ <home> ... validatelnputBean</home> l
Client ¢

l <ejb-class> ... validatelnputBean</ejb-class> l

T

\A{ <remote> ... validatelnputBean</remote> l

4. Create Deployment Descriptors A deployment descriptor, located within
a Java Archive (JAR) file, allows the properties of an EJB to be maintained outside of
Java code. It allows the bean developer to make information about the bean available
to the application assembler and the bean deployer. A deployment descriptor also
provides runtime information used by the EJB container. The E]B specification is
specific with regard to the content and format of deployment descriptors.

The deployment descriptor, written in XML, contains the structural information
about the EJB, such as the relative path and name of the bean class file, remote
interface, and home interface, as well as the state management type and the
transaction management type.

The deployment descriptor file may also contain optional information pertaining
to multiple role names, environment entries, and data-source references. Note that
all of the attributes of the bean are contained within XML tags.

Here is our deployment descriptor for the stateless session bean:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar PUBLIC
"-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"
"http://java.sun.com/dtd/ejb-jar 2 0.dtd">
<ejb-jar>
<enterprise-beans>
<session>
<display-name>SLSession</display-name>
<ejb-name>SLSession</ejb-name>
<home>javaee.architect.SLSession.SLSessionRemoteHome</home>
<remote>javaee.architect.SLSession.SLSessionRemote</remote>
<ejb-class>javaee.architect.SLSession.SLSessionBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-types>
</sessions>

380 Chapter 7: Enterprise JavaBeans and the EJB Container Model

</enterprise-beans>
<assembly-descriptors>
<container-transactions>

<method>

<ejb-name>SLSession</ejb-name>
<method-name>*</method-name>

</method>

<trans-attribute>Required</trans-attributes>
</container-transactions>
</assembly-descriptors>

</ejb-jar>

Some of the elements in the preceding deployment descriptor sample are

described here:

ejb-jar The root element of the EJB deployment descriptor. These files are
discussed later in the chapter, in the section “The Life Cycle of an E]JB.”

enterprise-beans Declares the session, entity, and/or message-driven beans.

session Defines the enterprise bean to be a session bean as opposed to an
entity or message-driven bean.

ejb-name A unique name of a session, entity, or message-driven bean in
an ejb-jar file; this element is used to tie EJBs together and for constructing a
URL (note that there is no relationship between the element ejb-name and
the JNDI name that is assigned to an enterprise bean’s home).

home The fully qualified name of an enterprise bean’s home interface.
remote The fully qualified name of enterprise bean’s remote interface.
ejb-class The fully qualified name of the enterprise bean’s class.
session-type The session-type element is either stateful or stateless.

transaction-type Declares whether transaction demarcation is performed by
the enterprise bean or the EJB container.

5. Compile, Assemble, and Deploy Stateless Session Bean The next

steps in the process are to compile, assemble, and then deploy the session bean. The
following set of steps is used to complete this process. Although this book is designed
for the architect and actual implementation steps are not required, we have added
the details of these steps for completeness.

As part of the deployment process, references in the deployment descriptor need to
be resolved to actual resources in the container. How these resources are resolved is,

Distinguish Between Stateful and Stateless Session Beans 38 |l

at the moment, container specific. In the WebLogic environment, the following file
can be used for the stateless session bean example:

<?xml version="1.0"?>
<!DOCTYPE weblogic-ejb-jar PUBLIC
"-//BEA Systems, Inc.//DTD WebLogic 8.1.0 EJB//EN"
"http://www.bea.com/servers/wls810/dtd/weblogic-ejb-jar.dtd" »>
<weblogic-ejb-jars
<weblogic-enterprise-beans>
<ejb-name>SLSession</ejb-name>
<jndi-name>SLSessionRemoteHome</jndi-name>
</weblogic-enterprise-bean>
</weblogic-ejb-jars>

Here are the remaining steps to complete the compile/package/deployment
process:

I. Compile the Java classes.
Package the classes and deployment descriptors into a JAR file.
Generate stub and tie code for the container and add them to the JAR file.

Deploy the JAR file to the application server.

AR R

Package the required classes for a remote client of the bean.

Here is an example client of the stateless session bean:

package javaee.architect.SLSession;
import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Properties;
// This client calls a method on a stateless session bean.
public class SLSessionClient {
public static void main(String[] args) throws Exception {
// Get the JNDI initial context.
Context ctx = getInitialContext () ;
// Get a reference to the home object
Object obj = ctx.lookup ("SLSessionRemoteHome") ;
// Narrow (cast) the returned RMI-IIOP object.
SLSessionRemoteHome home = (SLSessionRemoteHome)
javax.rmi.PortableRemoteObject.narrow (obj,
SLSessionRemoteHome.class) ;
// Use the home object (factory) to create the
// SLSB EJB Object (the remote reference).
SLSessionRemote mySLSessionRemote = home.create() ;

382 Chapter 7: Enterprise JavaBeans and the EJB Container Model

}

}

// Call the getMsg() method on the EJB object.
// The remote reference will delegate the call
// to the bean code, receive the response and
// then pass it to this client.
System.out.println (mySLSessionRemote.getMsg()) ;
// When finished with the remote reference,

// remove it and the EJB container will then
// destroy the EJB object.
mySLSessionRemote.remove () ;

private static Context getInitialContext () throws Exception ({

}

// This implementation is specific to the Weblogic
// server and will differ for other server vendors.
String providerUrl = "t3://localhost:7001";
String icFactory = "weblogic.jndi.WLInitialContextFactory";
String user = null;
String password = null;
Properties properties = null;
try {
properties = new Properties();
properties.put (Context.INITIAL CONTEXT FACTORY, icFactory);
properties.put (Context.PROVIDER URL, providerUrl) ;
if (user != null) {
properties.put (Context.SECURITY PRINCIPAL, user);
properties.put (Context.SECURITY CREDENTIALS,
password == null ? "" : password) ;

}

return new InitialContext (properties) ;

}

catch (Exception e) {
System.out.println(
"Unable to connect to JNDI server at " + providerUrl) ;
throw e;

}

Here is the output information provided by the client:
This is a message from a stateless session bean!

Here is the output information provided by the client and the application server
console:

...when the jar is deployed to the server...
Sat Jan 20 12:58:55 EST 2007:SLSessionBean:4536570 ejbCreate ()

Distinguish Between Stateful and Stateless Session Beans 383

Sat Jan 20 12:58:55 EST 2007:SLSessionBean:2076276 ejbCreate()
..when the client application is executed...

Sat Jan 20 12:59:15 EST 2007:SLSessionBean:2076276 getMsg()
...when the server is shut down...

Sat Jan 20 13:01:33 EST 2007:SLSessionBean:2076276 ejbRemove ()

Sat Jan 20 13:01:33 EST 2007:SLSessionBean:4536570 ejbRemove ()

The next section will cover the client side of the calls in a little more detail.

Calling Stateless Session Beans from a Client

When a client calls an E]B, the ultimate goal is to gain the benefits derived from
executing the business methods on a bean class. Before the EJB can get access to these
methods, it must first find the EJBHome interface necessary to make an instance of the
EJB class. The first step in the process of finding the EJBHome starts with creating an
InitialContext class.

InitialContext The InitialContext class acts as the client’s interface to the JNDI
interface. The InitialContext may contain information that will allow a client to bind
to many naming services such as JNDI, CORBA Common Object Service (“COS”),
and Domain Naming Service (DNS). Using the InitialContext class allows a client

to have to maintain only a single interface to any naming service in the client’s
environment that supports JNDI. If any problems are encountered with the creation
of the InitialContext object or with calling one of its methods, the javax.naming
.NamingException will be thrown.

More onType Narrowing In a stand-alone Java application, if a Java object
such as Object is returned from a Hashtable, the return type of the method get ()
will be the supertype Object instead of the derived type String. Here’s an example:

Hashtable hash = ..;

hash.get ("keyToAStringElement") ;

It is up to the developer to cast, or narrow, the return value of the method get ()
to the proper object type. For example:

String aString = (String) hash.get ("keyToAStringElement") ;

In the EJB application, once an object reference is obtained by a client, the
method javax.rmi.PortableRemoteObject .narrow () must be used to perform
type-narrowing for its client-side representation of its home and remote interfaces.

384 Chapter 7: Enterprise JavaBeans and the EJB Container Model

The javax.rmi.PortableRemoteObject class is part of the RMI-IIOP standard extension.
Type-narrowing ensures that the client programs are interoperable with different
EJB containers.

Once the InitialContext has been used as the starting point for looking up
a specific JNDI registered object, the javax.rmi.PortableRemoteObject
.narrow () method should be called to perform type-narrowing of the client-side
representations of the home interface.

Finding Objects and Interfaces:The JNDI Clients that have access to the
JNDI API may use this API to look up enterprise beans, resources such as databases,
and data in environment variables. From the earlier example, the client application
locates an EJB with the following:

// Get a reference to the home object
Object obj = ctx.lookup ("SLSessionRemoteHome") ;

The name that a Java Platform EE client uses to refer to an EJB does not
necessarily have to be identical to the JNDI name of the EJB deployed in the EJB
container or application server. The level of indirection provided by the ability to
map Java Platform EE client names to JNDI registered EJBs gives great flexibility
to distributed applications by allowing the client to use names that reference EJBs
that make logical sense to the client. The client even has the ability to reference
a single EJB with different names, when it makes sense to do so. This flexibility
comes in handy when either the client code or the server code changes dynamically.
The name that a stand-alone Java client uses to refer to an EJB using a JNDI
lookup method must be identical to the EJBs JNDI name in the EJB container or
application server.

Creating an Instance Using EJBHome Finally, after the home reference has
been found, narrowed, and called, the home reference’s create () method can be
called, returning the remote reference upon which the desired business methods can

be invoked. The syntax for the calling of the create () method may look somewhat
like this:

SLSessionRemote mySLSessionRemote = home.create() ;

Remember that create () returns a reference to a remote interface, not the
bean object itself. This means that certain programming practices that may be taken
for granted in Java may not be used with E]Bs. For example, objects are passed to
EJBs via the arguments of the method calls and results are passed back to the client

Distinguish Between Stateful and Stateless Session Beans 385§

via the EJBs return object. It is not possible to maintain a reference to an input
argument of an EJB, change that argument’s values inside of the E]JB, and then have
access to those changes at the client.

Calling Session Bean Methods from a Client After all the components of a
session bean have been created and a remote reference to the EJB is made available to
a client, the exposed business methods of the EJBObject and the life cycle methods of
the EJBHome are available to the client as if the EJB were local to that client.

Coding Clients to Call EJBs After the session bean reference has been made
available to a client, it is up to the client to instantiate the bean components
through the bean’s home interface. Only then can the business logic methods of the
bean class be accessed via the exposed methods of the EJBObject. For Java Platform
EE applications to run in an efficient and stable fashion, both client and server
developers should adhere to standard programming policy practices and procedures,
two of which are mentioned next.

Session Beans, Reentrance, and Loop-Back Calls If a bean is allowed to
invoke methods on itself or another bean that invokes methods on the initial bean,
the initial bean is said to be reentrant. This type of self-accessing call is referred to as
a loop-back call. As opposed to an entity bean, a session bean is never allowed to be
reentrant. If a session bean attempts to make a loop-back, the E]JB container should
throw a java.rmi.RemoteException.

Remove the Bean When Done When a client no longer has use for a session
bean, it should remove the session object using the javax.ejb.EJBObject.
remove () method or the javax.ejb.EJBHome . remove (Handle handle) meth-
od. If the javax.ejb.EJBHome . remove (Object primaryKey) method is called
on a session by mistake, the javax.ejb.RemoveException will be thrown because session
beans, unlike entity beans, do not have a primary key.

Different Types of Clients

The EJB framework allows many different types of clients to instantiate E]Bs and
takes advantage of the business logic that they implement. For the rest of this section,
examples of different types of clients calling a session bean will be presented along
with some of the necessary tasks that must be completed to support these different
clients. This section concentrates on how clients can be integrated with E]Bs.

386 Chapter 7: Enterprise JavaBeans and the EJB Container Model

Servlets Calling Session Beans A servlet is a Java program that runs within a
Web or application server and implements the javax.servlet.Servlet interface. Servlets
are designed to receive and respond to requests from Internet clients or browsers. The
standard protocols used for communication between a browser and a servlet are usually
Hypertext Transfer Protocol (HTTP) or secure Hypertext Transfer Protocol (HTTPS).
Servlets receive and respond to requests from Internet clients using methods defined
by the javax.servlet.Servlet interface. After the web or application server constructs the
servlet, the servlet gets initialized by the life cycle method init ().

EXERCISE 7-2

Review Code for a Stateful Session Bean (Prior to E]B 3.0)

To become more familiar with developing and coding, let’s review the code for a
stateful session bean. Your code should look something like the code shown next.
Again, we use a step-wise approach that covers all the steps required to create,
package, deploy, and call the bean.

I. Create the Stateful Session Bean Class Following is an example of a state-
ful session bean class. The purpose of this bean is to create and initialize a counter
and have a business method increment the counter. The in-line documentation
points out the required methods along with the business methods.

package javaee.architect.SFSession;
import javax.ejb.*;
// A stateful session bean.
// When bean is created a counter is initialized with the
// parameter value. A business method increments the counter.
public class SFSessionBean implements SessionBean {
private SessionContext sessionContext;
// The counter.
private int ctr;
// Bean's methods required by EJB specification
public void ejbCreate (int parm) throws CreateException {
this.ctr = parm;
log("ejbCreate ("+parm+") ") ;
}

public void ejbRemove ()
log("ejbRemove () ctr="+ctr) ;

}

Distinguish Between Stateful and Stateless Session Beans 387

public void ejbActivate()
log("ejbActivate () ctr="+ctr);

}

public void ejbPassivate() {
log("ejbPassivate () ctr="+ctr);

}

public void setSessionContext (SessionContext parm) {
this.sessionContext = parm;

1
// Bean's business methods
public int increment () {

log("increment () ctr="+ctr) ;
return ++ctr;
private void log(String parm)
System.out.println(new java.util.Date ()
+":SFSessionBean: "+this.hashCode () +" "+parm) ;

2. Create the Stateful Session Bean Home Interface Here is a home inter-
face for our stateful session bean example:

package javaee.architect.SFSession;
import javax.ejb.*;
import java.rmi.*;
// This is the home interface, used by clients as a
// factory for EJB objects (remote references). The EJB
// container vendor implements this extended interface.
// In this home interface there is a create() method that
// corresponds to the ejbCreate() method in actual bean code.
public interface SFSessionRemoteHome extends EJBHome {

public SFSessionRemote create(int ct)

throws CreateException, RemoteException;

3. Create the Stateful Session Bean Remote Interface Here is a remote
interface for our stateful session bean example:

package javaee.architect.SFSession;

import javax.ejb.*;

import java.rmi.*;

// This is the remote interface, used by clients when

388 Chapter 7: Enterprise JavaBeans and the EJB Container Model

// they need to call an EJB object. The EJB container

// vendor implements this extended interface, which is

// responsible for delegating subsequent calls to the

// actual bean code.

public interface SFSessionRemote extends EJBObject
public int increment () throws RemoteException;

}

4. Create Deployment Descriptors As mentioned in the preceding exercise,
the deployment descriptor, located within a JAR file, allows the properties of an EJB
to be maintained outside of Java code.

Here is our deployment descriptor for the stateful session bean:

<!DOCTYPE ejb-jar PUBLIC
"-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"
"http://java.sun.com/dtd/ejb-jar 2 0.dtd">
<ejb-jar>
<enterprise-beanss>
<session>
<display-name>SFSession</display-name>
<ejb-name>SFSession</ejb-name>
<home>javaee.architect.SFSession.SFSessionRemoteHome</home>
<remote>javaee.architect.SFSession.SFSessionRemote</remote>
<ejb-class>javaee.architect.SFSession.SFSessionBean</ejb-class>
<session-type>Stateful</session-type>
<transaction-type>Container</transaction-type>
</session>
</enterprise-beans>
<assembly-descriptors>
<container-transaction>
<method>
<ejb-name>SFSession</ejb-name>
<method-name>*</method-name>
</method>
<trans-attributes>Required</trans-attribute>
</container-transactions
</assembly-descriptor>
</ejb-jar>

5. Compile, Assemble, and Deploy Stateful Session Bean The next
steps in the process are to compile, assemble, and then deploy the stateful session
bean. In our example, the following list of steps are used to complete the process.

Distinguish Between Stateful and Stateless Session Beans 3 89

Although this is book is designed for the architect and actual implementation steps
are not required, we have added the details of these steps for completeness.

As part of the deployment process, references in the deployment descriptor need
to be resolved to actual resources in the container. How these resources are resolved
is, at the moment, container specific. In the WebLogic environment, the following
file can be used for the stateful session bean example:

<?xml version="1.0"?>
<!DOCTYPE weblogic-ejb-jar PUBLIC
"-//BEA Systems, Inc.//DTD WebLogic 8.1.0 EJB//EN"
"http://www.bea.com/servers/wls810/dtd/weblogic-ejb-jar.dtd" >
<weblogic-ejb-jar>
<weblogic-enterprise-beans>
<ejb-name>SLSession</ejb-name>
<stateful-session-descriptors>
<stateful-session-cache>
<max-beans-in-cache>3</max-beans-in-cache>
<idle-timeout-seconds>120</idle-timeout-seconds>
<cache-type>LRU</cache-type>
</stateful-session-cache>
</stateful-session-descriptor>
<jndi-name>SLSessionRemoteHome</jndi-name>
</weblogic-enterprise-beans>
</weblogic-ejb-jars>

Here are the remaining steps to complete the compile/package/deployment
process:

I. Compile the Java classes.

. Package the classes and deployment descriptors into a JAR file.

2
3. Generate stub and tie code for the container and add them to the JAR file.
4. Deploy the JAR to the application server.

5

. Package the required classes for a remote client of the bean.

Here is an example client of the stateful session bean:

package javaee.architect.SFSession;

import javax.ejb.*;

import javax.naming.*;

import java.util.Properties;

// This client calls a method on 5 instances of a

// stateful session bean. The EJB container is setup

390 Chapter 7: Enterprise JavaBeans and the EJB Container Model

// to allow only 3 in memory. When executed it will
// demonstrate how beans are passivated to and
// activated from storage.
public class SFSessionClient
private static final int NUMBEANS = 5;
public static void main(Stringl[] args)
try {
// Get the JNDI initial context.
Context ctx = getInitialContext () ;
// Narrow (cast) the returned RMI-IIOP object.
SFSessionRemoteHome home = (SFSessionRemoteHome)
javax.rmi.PortableRemoteObject.narrow (
ctx.lookup ("SFSessionRemoteHome") ,
SFSessionRemoteHome.class) ;
// Create array to hold EJB Objects
SFSessionRemote mySFSession[] = new SFSessionRemote [NUMBEANS] ;
// Populate array with remote references
System.out.println("Instantiating beans") ;
System.out.println("and calling increment()...");
for (int i=0; i < NUMBEANS; i++)
// Create initialized remote reference
mySFSession[i] = home.create(((i+1)*10)-1);
// Call the increment method and print value
System.out.println(new java.util.Date ()
+" loopl: mySFSession["
+i+"] .increment () ="
+mySFSession[i] .increment ()) ;
// Put this thread to sleep for a bit
Thread.sleep(1000) ;
}
// Now call the increment method and see
// what happens with passivation/activation
System.out.println("Calling increment () again.");
for (int i=0; i < NUMBEANS; i++) {
// Again call increment and print value
System.out.println(new java.util.Date ()
+" loop2: mySFSession|["
+i+"] .increment () ="
+mySFSession[i] .increment ()) ;
// Sleep for a bit again
Thread.sleep(1000) ;
}
// Finished with the beans, so remove them
for (int i=0; i < NUMBEANS; i++)
mySFSession[i] .remove () ;

}

}

Distinguish Between Stateful and Stateless Session Beans

} catch (Exception e) {
e.printStackTrace() ;

}

private static Context getInitialContext () throws Exception

}
}

// This implementation is specific to the Weblogic
// server and will differ for other server vendors.
String providerUrl = "t3://localhost:7001";
String icFactory = "weblogic.jndi.WLInitialContextFactory";
String user = null;
String password = null;
Properties properties = null;
try {
properties = new Properties();
properties.put (Context.INITIAL CONTEXT FACTORY, icFactory);
properties.put (Context.PROVIDER URL, providerUrl) ;
if (user != null) {
properties.put (Context.SECURITY PRINCIPAL, user);
properties.put (Context .SECURITY CREDENTIALS,
password == null ? "" : password) ;
}

return new InitialContext (properties) ;
catch (Exception e) ({
System.out.println(
"Unable to connect to JNDI server at " + providerUrl) ;
throw e;

}

Here is the output information provided by the client:

Instantiating beans

and
Sat
Sat
Sat
Sat
Sat

calling increment () ...

Jan 20 13:04:09 EST 2007 loopl: mySFSession[0] .increment ()=10
Jan 20 13:04:10 EST 2007 loopl: mySFSession[1l].increment ()=20
Jan 20 13:04:11 EST 2007 loopl: mySFSession[2].increment ()=30
Jan 20 13:04:12 EST 2007 loopl: mySFSession[3].increment ()=40
Jan 20 13:04:13 EST 2007 loopl: mySFSession[4].increment ()=50

Calling increment () again.

Sat
Sat
Sat
Sat
Sat

Jan 20 13:04:14 EST 2007 loop2: mySFSession[0] .increment ()=11
Jan 20 13:04:15 EST 2007 loop2: mySFSession[1l].increment ()=21
Jan 20 13:04:16 EST 2007 loop2: mySFSession[2].increment ()=31
Jan 20 13:04:17 EST 2007 loop2: mySFSession[3].increment ()=41
Jan 20 13:04:18 EST 2007 loop2: mySFSession[4].increment ()=51

391

392 Chapter 7: Enterprise JavaBeans and the EJB Container Model

Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat

Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan

20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

13:
13:
13:
13:

13

13:
13:
13:
13:
13:
13:
13:
13:
13:
13:

13

13:
13:
13:
13:

Here is the output information provided by the client and the application server
console:

04:09 EST 2007:SFSessionBean:4039138 ejbCreate(9)
04:09 EST 2007:SFSessionBean:4039138 increment () ctr=9
04:10 EST 2007:SFSessionBean:5775816 ejbCreate(19)
04:10 EST 2007:SFSessionBean:5775816 increment () ctr=19
:04:11 EST 2007:SFSessionBean:2897995 ejbCreate (29)
04:11 EST 2007:SFSessionBean:2897995 increment () ctr=29
04:12 EST 2007:SFSessionBean:6664484 ejbCreate(39)
04:12 EST 2007:SFSessionBean:6664484 increment () ctr=39
04:13 EST 2007:SFSessionBean:4034480 ejbCreate(49)

04:13 EST 2007:SFSessionBean:4034480 increment () ctr=49
04:14 EST 2007:SFSessionBean:4039138 increment () ctr=10
04:15 EST 2007:SFSessionBean:5775816 increment () ctr=20
04:16 EST 2007:SFSessionBean:2897995 increment () ctr=30
04:17 EST 2007:SFSessionBean:6664484 increment () ctr=40
04:18 EST 2007:SFSessionBean:4034480 increment () ctr=50
:04:19 EST 2007:SFSessionBean:4039138 ejbRemove () ctr=11
04:19 EST 2007:SFSessionBean:5775816 ejbRemove () ctr=21
04:19 EST 2007:SFSessionBean:2897995 ejbRemove () ctr=31
04:19 EST 2007:SFSessionBean:6664484 ejbRemove () ctr=41
04:19 EST 2007:SFSessionBean:4034480 ejbRemove () ctr=51

Using Entity Beans (Prior to E)B 3.0)

An entity bean is an E]JB that models data that is typically stored in a relational
database management system (RDBMS). Usually, it exists for as long as the data
associated with it exists.

An entity bean is an object representation of data. An object is generally
considered to be any entity with two specific attributes: state and functionality.

Entity beans implement this criteria and are therefore considered objects. An
entity bean contains a copy of persisted data; therefore, it has a state. It also contains
business logic; therefore, it has functionality. With these properties, entity beans can
provide the same types of benefits as those of object databases.

Entity beans allow data to be persisted as Java objects as opposed to existing as
rows in a table. They enable the enterprise bean provider to associate Java objects
abstractly with relational database components (see Figure 7-5). Subsequently,
the EJB deployer is able to map these abstract relational components to existing
persistence devices.

FIGURE 7-5

Entity bean
representing
RDBMS-based
data

FIGURE 7-6

Entity beans
representing
legacy application—
based data

Distinguish Between Stateful and Stateless Session Beans 393

Container

Entity beans access relational databases as well as enterprise systems or
applications used to persist data (see Figure 7-6). Entity beans are able to be written
in a robust and object-oriented fashion so that they can be used with a variety of
data sources or data streams.

Entity beans are most often used for representing a set of data, such as the
columns in a database table, with each entity bean instance containing one element
of that data set, such as a row from a database table.

Methods of the entity bean’s home interface, as defined in the E]B specification,
allow clients to read, insert, update, and delete entities in a database.

Entity bean instances hold a copy of persisted data. If multiple clients execute
the same find operation, for example, all of them will get handles to the same entity
bean instance. Each client will get a handle to the same logical instance of the
bean, but based on the transactional mode, each client could actually be talking to a
different physical instance of the bean class. If contention exists between entity bean
calls, it is handled by regarding each call as a separate transaction.

Uses of Entity Beans

The following are common uses of entity beans:

B Entity beans can be used to enforce the integrity of data that will be persisted
as well as data that might potentially be persisted.

B Entity beans can be reused to cache data, therefore saving trips to the
database.

Container

. . Existing

394 Chapter 7: Enterprise JavaBeans and the EJB Container Model

FIGURE 7-7

Various states of
an entity bean

B Entity beans can be used to model domain objects with unique identities that
might be shared by multiple clients.

B Unlike session beans, entity beans are intended to model records in a data
set, not to maintain conversations with clients.

B Entity beans can be used for wrapping JDBC code, hence giving the
application an object-oriented interface for the data set.

B Entity beans can be wrapped by session beans, giving the developer more
control in determining how clients can control data.

B Entity beans can be used in either bean-managed persistence (BMP) or
container-managed persistence (CMP) mode. CMP mode should be used if at
all possible, allowing the enterprise bean provider to concentrate on writing
business logic instead of JDBC logic.

Entity Bean Life Cycle States

As they execute the bean methods described later in this objective, entity bean
instances can be in one of three states (see Figure 7-7):

B Null The bean instance doesn’t exist.
B Pooled The bean exists but isn’t associated with any specific entity object.

B Ready The bean instance has been assigned an entity object identity.

The EJB container invokes the following entity bean interface methods when life
cycle events occur. The enterprise bean provider is responsible for placing business

Null state

unsetEntityContext()

newlnstance()
setEntityContext(ec)
v

ejbHome(arguments) (Pooled

ejbPassivate()

ejbFind(arguments)
ejbSelect(arguments)

ejbCreate(arguments)

ejbPostCreate(arguments) ejbRemove()

ejbActivate()

ejbLoad() Ready state ejbStore()

Business method ejbSelect(arguments)

Distinguish Between Stateful and Stateless Session Beans 39§

logic in this container to handle the events of the application. The container
invokes the following methods:

B ejbActivate() An entity bean instance is chosen, removed from the
available pool, and assigned to a specific EJBObject.

B ejbLoad() The container synchronizes its state by loading data from the
underlying data source.

B ejbPassivate() An entity bean instance is about to be disassociated with a
specific EJBObject and returned to the available pool.

B ejbRemove() An EJBObject that is associated with an entity bean instance
is removed by a client-invoked remove operation on the entity bean’s home
or remote interface.

M ejbStore() The container needs to synchronize the underlying data source,
or persistent state, with the entity bean instance by storing data to the
underlying data source.

Developing Entity Beans

The preceding sections covered most of the components of an entity bean. The
following exercise completes a checklist of tasks, annotated with helpful hints,
required to develop an entity bean. Often, a development tool will be provided with
the particular application or E]B server in use, such as SilverStream, WebLogic, or
WebSphere. When using development tools, many of these tasks will be wrapped

in a graphical user interface (GUI) integrated development environment (IDE) for
creating interfaces and deployment descriptor files.

EXERCISE 7-3

Review Code for Entity Bean Using Container-Managed
Persistence (Prior to E)B 3.0)

Provide the code for an entity bean. Your code should look similar to the code
shown in the following sections. To increase your familiarity with this process, we
review the code for an entity bean that uses CMP. We use a stepwise approach that
covers all the things required to create, package, deploy, and call the bean.

396 Chapter 7: Enterprise JavaBeans and the EJB Container Model

I. Create the CMP Entity Bean Class The following CMP entity bean class

example assumes that the following table definition exists in the database:

create table tb product (
productId varchar (64) ,
name varchar (64) ,
productPx numeric(18),
description varchar (64)

)i

The in-line documentation points out the required methods along with the
business methods:

package javaee.architect.EntityCMP;

import javax.ejb.*;

import java.util.¥*;

// CMP Entity Bean

abstract public class EntityCMPBean implements EntityBean {
EntityContext entityContext;
// Methods required by the EJB specification.
// They are called by the container only.

// This method corresponds to the create() method

// found in the home interface. Because this

// is CMP, the method will return void and the

// EJB Container will make the primary key.

public java.lang.String ejbCreate(java.lang.String productId,
java.lang.String name, java.lang.Double productPx,
java.lang.String description) throws CreateException {
log("ejbCreate () [primary key="+productId+"]");
// However, with CMP we must set the Bean's fields
// with the parameters passed in, so that the EJB
// Container is able to inspect our Bean and
// insert the corresponding database entries.
setProductId (productId) ;
setName (name) ;
setProductPx (productPx) ;
setDescription (description) ;
return null;

}

// Called after ejbCreate() method.

public void ejbPostCreate(java.lang.String productld, java.lang.String name,

java.lang.Double productPx,

ava.lang.String description) throws CreateException {

log("ejbPostCreate () [primary key="+getProductId()+"1");

Distinguish Between Stateful and Stateless Session Beans

}

public void ejbRemove () throws RemoveException (
log("ejbRemove () [primary key="+getProductId()+"]1");
}
// Loads/re-loads the entity bean instance with
// the current value in database. We can leave
// this basically empty for CMP. The EJB container
// will set public fields to the current values.
public void ejbLoad() {
log("ejbLoad () [primary key="+getProductId()+"]");
}
// Updates the database value with the current
// value of this entity bean instance. We can leave
// this basically empty for CMP. The EJB container
// will save public fields to the database.
public void ejbStore() {
log ("ejbStore() I[primary key="+getProductId()+"1");

}

public void ejbActivate()

log("ejbActivate () [primary key="+getProductId()+"]");
}
public void ejbPassivate() {

log("ejbPassivate () [primary key="+getProductId()+"1");

}

public void unsetEntityContext () {
log ("unsetEntityContext () [primary key="+getProductId()+"]");
this.entityContext = null;

}

public void setEntityContext (EntityContext entityContext) {
log("setEntityContext () called.");
this.entityContext = entityContext;

// No finder methods are required because

// they are implemented by Container

// RAbstract getters and setters

public abstract void setProductlId(java.lang.String productId) ;
public abstract void setName (java.lang.String name) ;

public abstract void setProductPx(java.lang.Double productPx) ;
public abstract void setDescription(java.lang.String description) ;
public abstract java.lang.String getProductId() ;

public abstract java.lang.String getName () ;

public abstract java.lang.Double getProductPx() ;

public abstract java.lang.String getDescription() ;

397

398 Chapter 7: Enterprise JavaBeans and the EJB Container Model

// Log message to console
public void log(String msg) {
System.out.println(Calendar.getInstance() .getTime ()
+":EntityCMPBean:" + msg) ;

2. Create the CMP Entity Bean Home Interface Here is a home interface
for our CMP entity bean example:

package javaee.architect.EntityCMP;
import javax.ejb.*;
import java.util.*;
import java.rmi.*;
// This is the home interface, used by clients as a
// factory for EJB objects (remote references). The EJB
// container vendor implements this extended interface.
// In this home interface there is a create() method that
// corresponds to the ejbCreate() method in actual bean code.
public interface EntityCMPRemoteHome extends javax.ejb.EJBHome {
// Finder methods that return one or
// more EJB Objects (remote reference).
// The functionality of these finder methods
// can be customized at deployment time
public Collection findByName (String string)
throws FinderException, RemoteException;
public Collection findByDescription(String string)
throws FinderException, RemoteException;
public Collection findByProductPx (Double dbl)
throws FinderException, RemoteException;
public Collection findAllProducts ()
throws FinderException, RemoteException;
public EntityCMPRemote findByPrimaryKey (String productId)
throws FinderException, RemoteException;
// Creates/returns the EJB Object (remote reference).
public EntityCMPRemote create (String productId, String name,
Double productPx, String description)
throws CreateException, RemoteException;

3. Create the CMP Entity Bean Remote Interface Here is a remote interface
for our CMP entity bean example. It is important to note that the following code is
not supposed to demonstrate the best practice for the design of the remote interface.

Distinguish Between Stateful and Stateless Session Beans 3 Q©Q

An improved implementation would provide access via a session facade (see Chapter 5),
which would simplify access and reduce potential network traffic.

package javaee.architect.EntityCMP;

import javax.ejb.*;

import java.util.*;

import java.rmi.*;

// This is the remote interface, used by clients when

// they need to call an EJB objects. The EJB container

// vendor implements this extended interface, which is

// responsible for delegating subsequent calls to the

// actual bean code.

public interface EntityCMPRemote extends EJBObject {
// Getters and setters for Entity Bean fields.

public
public
public
public
public
public
public

String getProductId() throws RemoteException;

void setName (String name) throws RemoteException;

String getName () throws RemoteException;

void setProductPx (Double productPx) throws RemoteException;
Double getProductPx () throws RemoteException;

void setDescription(String description) throws RemoteException;
String getDescription() throws RemoteException;

4. Create Deployment Descriptors As mentioned in the first code review
exercise in this chapter, the deployment descriptor, located within a JAR file, allows
the properties of an EJB to be maintained outside of Java code.

Here is our deployment descriptor (ejb-jar.xml) for the CMP entity session bean.
You will notice some EJB Query Language (EJB QL), which defines the queries for
the finder and select methods of an entity bean with CMP.

<?xml version="1.0"?><!DOCTYPE ejb-jar PUBLIC
"-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"
"http://java.sun.com/dtd/ejb-jar 2 0.dtd">

<ejb-jars>

<enterprise-beanss>
<entitys>

<display-name>EntityCMP</display-name>
<ejb-name>EntityCMP</ejb-name>
<home>javaee.architect.EntityCMP.EntityCMPRemoteHome</home>
<remote>javaee.architect.EntityCMP.EntityCMPRemote</remote>
<ejb-class>javaee.architect.EntityCMP.EntityCMPBean</ejb-class>
<persistence-type>Container</persistence-types>
<prim-key-class>java.lang.String</prim-key-class>

400 Chapter 7: Enterprise JavaBeans and the EJB Container Model

<reentrant>False</reentrant>
<cmp-versions>2.x</cmp-versions>
<abstract-schema-name>EntityCMP</abstract-schema-name>
<cmp-fields>
<field-name>productId</field-name>
</cmp-field>
<cmp-fields>
<field-name>name</field-name>
</cmp-field>
<cmp-fields>
<field-name>productPx</field-name>
</cmp-field>
<cmp-fields>
<field-name>description</field-name>
</cmp-field>
<primkey-field>productId</primkey-fields>
<querys
<query-methods>
<method-name>findByName</method-name>
<method-params>
<method-param>java.lang.String</method-param>
</method-params>
</query-method>
<ejb-gl>WHERE name = ?1l</ejb-gl>
</query>
<querys>
<query-method>
<method-name>findByDescription</method-name>
<method-params>
<method-param>java.lang.String</method-params>
</method-params>
</query-method>
<ejb-gl>WHERE description = ?1</ejb-gl>
</query>
<querys
<query-methods>
<method-name>findByProductPx</method-name>
<method-params>
<method-param>java.lang.Double</method-param>
</method-params>
</query-method>
<ejb-gl>WHERE productPx = ?1l</ejb-gl>
</query>

Distinguish Between Stateful and Stateless Session Beans 4.0 |

<querys
<query-methods>
<method-name>findAllProducts</method-name>
<method-params />
</query-method>
<ejb-gl>WHERE productId IS NOT NULL</ejb-gl>
</query>
</entity>
</enterprise-beans>
<assembly-descriptors>
<container-transactions
<method>
<ejb-name>EntityCMP</ejb-name>
<method-names>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transactions>
</assembly-descriptor>
</ejb-jar>

5. Compile, Assemble, and Deploy the CMP Entity Bean The next steps
in the process are to compile, assemble, and then deploy the entity bean. In our
example, the following set of steps are used to complete the process. As part of the
deployment process, references in the deployment descriptor need to be resolved
to actual resources in the container. How these resources are resolved is, at the
moment, container specific.

In the WebLogic environment, the following files can be used for the CMP Entity
bean example:

No, “the following files” above refers to the weblogic-ejb-jar.xml and weblogic-cmp-
rdbms-jar.xml files listed below—paHere’s the code for the weblogic-ejb-jar.xml file:

<?xml version="1.0"?>
<!DOCTYPE weblogic-ejb-jar PUBLIC
"-//BEA Systems, Inc.//DTD WebLogic 8.1.0 EJB//EN"
"http://www.bea.com/servers/wls810/dtd/weblogic-ejb-jar.dtd" >
<weblogic-ejb-jars
<weblogic-enterprise-beans>
<ejb-name>EntityCMP</ejb-name>
<entity-descriptors>
<entity-cache>
<max-beans-in-cache>1000</max-beans-in-cache>
</entity-cache>
<persistence>

4072 Chapter 7: Enterprise JavaBeans and the EJB Container Model

<persistence-type>
<type-identifier>WebLogic CMP RDBMS</type-identifiers
<type-version>6.0</type-version>
<type-storage>META-INF/weblogic-cmp-rdbms-jar.xml</type-storage>
</persistence-type>
<persistence-usex>
<type-identifier>WebLogic_CMP_RDBMS</type-identifiers>
<type-version>6.0</type-version>
</persistence-use>
</persistences>
</entity-descriptors>
<jndi-name>EntityCMPRemoteHome</jndi-name>
</weblogic-enterprise-bean>
</weblogic-ejb-jar>

Here’s the code for the weblogic-cmp-rdbms-jar.xml file:

< !DOCTYPE weblogic-rdbms-jar PUBLIC
'-//BEA Systems, Inc.//DTD WebLogic 6.0.0 EJB RDBMS Persistence//EN'
'http://www.bea.com/servers/wls600/dtd/weblogic-rdbms-persistence.dtd'>
<weblogic-rdbms-jar>
<weblogic-rdbms-bean>
<ejb-name>EntityCMP</ejb-name>
<data-source-name>_ dbPool</data-source-name>
<table-name>tb product</table-name>
<field-map>
<cmp-fields>productId</cmp-£field>
<dbms-column>productId</dbms-column>
</field-map>
<field-map>
<cmp-field>name</cmp-field>
<dbms-column>name</dbms-columns>
</field-map>
<field-map>
<cmp-field>productPx</cmp-£field>
<dbms-column>productPx</dbms-column>
</field-map>
<field-map>
<cmp-field>description</cmp-fields>
<dbms-column>descriptions</dbms-column>
</field-map>
</weblogic-rdbms-bean>
</weblogic-rdbms-jar>

Distinguish Between Stateful and Stateless Session Beans 403

Here are the remaining steps for completing the compile/package/deployment
process:

I. Compile the Java classes.
Package the classes and deployment descriptors into a JAR file.
Generate stub and tie code for the container and add them to the JAR file.

Deploy the JAR file to the application server.

AR SR

Package the required classes for a remote client of the bean.

Here is an example of a client of the CMP entity bean:

package javaee.architect.EntityCMP;
import javax.ejb.*;
import javax.naming.*;
import javax.rmi.*;
import java.rmi.*;
import java.util.*;
// Client application for a CMP Entity Bean.
public class EntityCMPClient {
public static void main(String[] args) throws Exception
EntityCMPRemoteHome home = null;
try {
// Lookup and get a reference to the home object
Context ctx = getInitialContext () ;
home = (EntityCMPRemoteHome) PortableRemoteObject.narrow (
ctx.lookup ("EntityCMPRemoteHome") , EntityCMPRemoteHome.class) ;
// Create some new EJB Objects
System.out.println ("Adding new products...");

home.create("10000", "Penne Pasta", new Double(1l5), "Bowl of pasta");
home.create ("10001", "Tomato Soup", new Double, "Bowl of Tomato soup") ;
home.create("10002", "Apple Pie", new Double(3.5), "Large Apple pie");
home.create ("10003", "Milk", new Double(l), "Glass of milk") ;
home.create("10004", "Juice", new Double(l), "Carton of apple juice");
home.create ("10005", "Juice", new Double(l), "Carton of cranberry juice");
// Find a product and display its description
Iterator i = home.findByName ("Juice") .iterator () ;
System.out.println("Here are the products with name=Juice:");
while (i.hasNext()) {

EntityCMPRemote product = (EntityCMPRemote)

PortableRemoteObject.narrow (i.next (), EntityCMPRemote.class) ;

System.out.println (product.getDescription()) ;
}
// Find all products that cost $1
i = home.findByProductPx (new Double (1)) .iterator() ;
System.out.println("Here are the products that cost $1:");

404 Chapter 7: Enterprise JavaBeans and the EJB Container Model

while (i.hasNext()) {
EntityCMPRemote product = (EntityCMPRemote)
PortableRemoteObject.narrow(i.next (), EntityCMPRemote.class) ;

System.out .println (product.getDescription()) ;
}
} catch (Exception e) {
e.printStackTrace () ;
} finally {
if (home != null) {
// Remove products added by this client
System.out.println("Deleting products added..");

Iterator i1 = home.findAllProducts () .iterator () ;
while (i.hasNext()) {
try {
EntityCMPRemote product = (EntityCMPRemote)
PortableRemoteObject.narrow(i.next (), EntityCMPRemote.class) ;
if (product.getProductId().startsWith("1000"))

product . remove () ;

}
}

catch (Exception e) {
e.printStackTrace () ;
} // end try/catch
} // end while
} // end if
} // end finally
} // end main
private static Context getInitialContext () throws Exception {
// This implementation is specific to the Weblogic
// server and will differ for other server vendors.
String providerUrl = "t3://localhost:7001";
String icFactory = "weblogic.jndi.WLInitialContextFactory";
String user = null;
String password = null;
Properties properties = null;
try {
properties = new Properties() ;
properties.put (Context.INITIAL CONTEXT FACTORY, icFactory);
properties.put (Context.PROVIDER URL, providerUrl) ;
if (user != null) {
properties.put (Context.SECURITY PRINCIPAL, user);
properties.put (Context.SECURITY CREDENTIALS,
password == null ? "" : password) ;

}

return new InitialContext (properties) ;

}

Distinguish Between Stateful and Stateless Session Beans 4.0 5§

catch (Exception e) ({
System.out.println (
"Unable to connect to JNDI server at " + providerUrl) ;
throw e;

}

} // end class

Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat

Here is the output information provided by the client:

Adding new products...

Here are the products with name=Juice:
Carton of apple juice

Carton of cranberry juice

Here are the products that cost $1:
Toasted Sesame

Almond

Cranberry and Carrot

Glass of milk

Carton of apple juice

Carton of cranberry juice

Deleting products added..

Here is the output information provided by the client and the application server
console:

Jan 20 13:20:42 EST 2007:EntityCMPBean:setEntityContext () called.

Jan 20 13:20:42 EST 2007:EntityCMPBean:ejbCreate () [primary key=10000]
Jan 20 13:20:42 EST 2007:EntityCMPBean:ejbPostCreate() [primary key=10000]
Jan 20 13:20:42 EST 2007:EntityCMPBean:ejbStore() [primary key=10000]

Jan 20 13:20:42 EST 2007:EntityCMPBean:setEntityContext () called.

Jan 20 13:20:42 EST 2007:EntityCMPBean:ejbCreate () [primary key=10001]
Jan 20 13:20:42 EST 2007:EntityCMPBean:ejbPostCreate() [primary key=10001]
Jan 20 13:20:42 EST 2007:EntityCMPBean:ejbStore() [primary key=10001]

Jan 20 13:20:42 EST 2007:EntityCMPBean:setEntityContext () called.

Jan 20 13:20:42 EST 2007:EntityCMPBean:ejbCreate () [primary key=10002]
Jan 20 13:20:42 EST 2007:EntityCMPBean:ejbPostCreate() [primary key=10002]
Jan 20 13:20:42 EST 2007:EntityCMPBean:ejbStore() [primary key=10002]

Jan 20 13:20:42 EST 2007:EntityCMPBean:setEntityContext () called.

Jan 20 13:20:42 EST 2007:EntityCMPBean:ejbCreate () [primary key=10003]
Jan 20 13:20:42 EST 2007:EntityCMPBean:ejbPostCreate() [primary key=10003]
Jan 20 13:20:42 EST 2007:EntityCMPBean:ejbStore() [primary key=10003]

Jan 20 13:20:42 EST 2007:EntityCMPBean:setEntityContext () called.

Jan 20 13:20:42 EST 2007:EntityCMPBean:ejbCreate () [primary key=10004]
Jan 20 13:20:42 EST 2007:EntityCMPBean:ejbPostCreate() [primary key=10004]
Jan 20 13:20:42 EST 2007:EntityCMPBean:ejbStore() [primary key=10004]

Jan 20 13:20:42 EST 2007:EntityCMPBean:setEntityContext () called.

Jan 20 13:20:42 EST 2007:EntityCMPBean:ejbCreate () [primary key=10005]

406 Chapter?7:

Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat

Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan

20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:

20:
20:
20:
142
20:
20:
20:
20:
42
142
142
20:
20:
20:
42
142
142
20:
20:
20:
42
142
20:
20:
20:
20:
20:
142
20:
20:
20:
20:
20:
142
20:
20:
20:
20:
20:
142
142
20:
20:
20:
42

20

20
20
20

20
20
20

20
20

20

20

20
20

20

Enterprise JavaBeans and the EJB Container Model

42
42
42

42
42
42
42

42
42
42

42
42
42

42
42
42
42
42

42
42
42
42
42

42
42
42
42
42

42
42
42

EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST

2007:
2007:
2007:

2007

2007:

2007

2007:
2007:

2007
2007
2007

2007:
2007:

2007
2007
2007
2007

2007:
2007:
2007:

2007
2007

2007:
2007:
2007:
2007:
2007:

2007

2007:
2007:
2007:
2007:
2007:

2007
2007

2007:
2007:
2007:

2007
2007
2007

2007:
2007:
2007:

2007

EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
:EntityCMPBean:
EntityCMPBean:
:EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
:EntityCMPBean:
:EntityCMPBean:
:EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
:EntityCMPBean:
:EntityCMPBean:
:EntityCMPBean:
:EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
:EntityCMPBean:
:EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
:EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
:EntityCMPBean:
:EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
:EntityCMPBean:
:EntityCMPBean:
:EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
:EntityCMPBean:

ejbPostCreate ()

ejbStore () [primary key=10005]
setEntityContext () called.
setEntityContext () called.
setEntityContext () called.
ejbActivate () [primary key=10004]
ejbLoad () [primary key=10004]
ejbActivate () [primary key=10005]
ejbLoad () [primary key=10005]
ejbStore () [primary key=10004]
ejbStore () [primary key=10005]
ejbLoad () [primary key=10004]
ejbStore () [primary key=10004]
ejbLoad () [primary key=10005]
ejbStore () [primary key=10005]
setEntityContext () called.
setEntityContext () called.
setEntityContext () called.
setEntityContext () called.
setEntityContext () called.
setEntityContext () called.
ejbActivate () [primary key=10]
ejbLoad () [primary key=10]
ejbActivate () [primary key=40]
ejbLoad () [primary key=40]
ejbActivate () [primary key=50]
ejbLoad () [primary key=50]
ejbActivate () [primary key=10003]
ejbLoad () [primary key=10003]
ejbActivate () [primary key=10004]
ejbLoad () [primary key=10004]
ejbActivate () [primary key=10005]
ejbLoad () [primary key=10005]
ejbStore () [primary key=10]
ejbStore () [primary key=40]
ejbStore () [primary key=50]
ejbStore () [primary key=10003]
ejbStore () [primary key=10004]
ejbStore () [primary key=10005]
ejbLoad () [primary key=10]
ejbStore () [primary key=10]
ejbLoad () [primary key=40]
ejbStore () [primary key=40]
ejbLoad () [primary key=50]

ejbStore () [primary key=50]

[primary key=10005]

Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat

Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan

20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:

20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:

42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42

EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST

2007:
2007:
2007:
2007:
2007:

2007

2007:
2007:
2007:
2007:
2007:
2007:
2007:

2007

2007:
2007:

2007

2007:
2007:
2007:

2007

2007:
2007:
2007:
2007:
2007:
2007:

2007

2007:
2007:
2007:
2007:
2007:
2007:

2007

2007:
2007:
2007:

2007

2007:
2007:
2007:
2007:
2007:
2007:

Distinguish Between Stateful and Stateless Session Beans 407

EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
:EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
:EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
:EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
:EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
:EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
:EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
:EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:

ejbLoad () [primary key=10003]
ejbStore () [primary key=10003]
ejbLoad () [primary key=10004]
ejbStore () [primary key=10004]
ejbLoad () [primary key=10005]
ejbStore () [primary key=10005]
setEntityContext () called.

setEntityContext () called.
setEntityContext () called.
setEntityContext () called.
setEntityContext () called.
setEntityContext () called.
setEntityContext () called.
setEntityContext () called.
setEntityContext () called.
setEntityContext () called.
setEntityContext () called.

setEntityContext () called.
ejbActivate () [primary key=10]
ejbLoad () [primary key=10]
ejbActivate () [primary key=20]
ejbLoad () [primary key=20]
ejbActivate () [primary key=30]
ejbLoad () [primary key=30]
ejbActivate () [primary key=40]
ejbLoad () [primary key=40]
ejbActivate () [primary key=50]
ejbLoad () [primary key=50]
ejbActivate () [primary key=60]
ejbLoad () [primary key=60]
ejbActivate () [primary key=10000]
ejbLoad () [primary key=10000]
ejbActivate () [primary key=10001]
ejbLoad () [primary key=10001]
ejbActivate () [primary key=10002]
ejbLoad () [primary key=10002]
ejbActivate () [primary key=10003]
ejbLoad () [primary key=10003]
ejbActivate () [primary key=10004]
ejbLoad () [primary key=10004]
ejbActivate () [primary key=10005]
ejbLoad () [primary key=10005]
ejbStore() [primary key=10]
ejbStore () [primary key=20]
ejbStore () [primary key=30]

408 Chapter7:

Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat
Sat

Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan

20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:
13:

20:
20:
20:
142
20:
20:
20:
20:
42
142
142
20:
20:
20:
42
143
:43
20:
20:
20:
:43
143
20:
20:
20:
20:
20:
143
20:
20:
20:
20:
20:
143
20:
20:
20:
20:
20:
143
:43
20:
20:
20:
:43

20

20
20
20

20
20
20

20
20

20

20

20
20

20

Enterprise JavaBeans and the EJB Container Model

42
42
42

42
42
42
42

42
42
42

43
43
43

43
43
43
43
43

43
43
43
43
43

43
43
43
43
43

43
43
43

EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST
EST

2007:
2007:
2007:

2007

2007:

2007

2007:
2007:

2007
2007
2007

2007:
2007:

2007
2007
2007
2007

2007:
2007:
2007:

2007
2007

2007:
2007:
2007:
2007:
2007:

2007

2007:
2007:
2007:
2007:
2007:

2007
2007

2007:
2007:
2007:

2007
2007
2007

2007:
2007:
2007:

2007

EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
:EntityCMPBean:
EntityCMPBean:
:EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
:EntityCMPBean:
:EntityCMPBean:
:EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
:EntityCMPBean:
:EntityCMPBean:
:EntityCMPBean:
:EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
:EntityCMPBean:
:EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
:EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
:EntityCMPBean:
:EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
:EntityCMPBean:
:EntityCMPBean:
:EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
EntityCMPBean:
:EntityCMPBean:

ejbStore ()
ejbStore ()
ejbStore ()
ejbStore ()
ejbStore ()
ejbStore ()
ejbStore ()
ejbStore ()
ejbStore ()
ejbLoad ()
ejbStore ()
ejbLoad ()
ejbStore ()
ejbLoad ()
ejbStore ()
ejbLoad ()
ejbStore ()
ejbLoad ()
ejbStore ()
ejbLoad ()
ejbStore ()
ejbLoad ()
ejbStore ()
ejbLoad ()

ejbRemove ()

ejbLoad ()
ejbStore ()
ejbLoad ()

ejbRemove ()

ejbLoad ()
ejbStore ()
ejbLoad ()

ejbRemove ()

ejbLoad ()
ejbStore ()
ejbLoad ()

ejbRemove ()

ejbLoad ()
ejbStore ()
ejbLoad ()

ejbRemove ()

ejbLoad ()
ejbStore ()
ejbLoad ()

ejbRemove ()

[primary
[primary
[primary
[primary
[primary
[primary
[primary

key=40]
key=50]
key=60]
key=10000]
key=10001]
key=10002]
key=10003]
[primary key=10004]
[primary key=10005]
[primary key=10]
[primary key=10]
[primary key=20]
[primary key=20]
[primary key=30]
[primary key=30]
[primary key=40]
[primary key=40]
[primary key=50]
[primary key=50]
[primary key=60]
[primary key=60]
[primary key=10000]
[primary key=10000]
[primary key=10000]
[primary key=10000]
[primary key=10001]
[primary key=10001]
[primary key=10001]
[primary key=10001]
[primary key=10002]
[primary key=10002]
[primary key=10002]
[primary key=10002]
[primary key=10003]
[primary key=10003]
[primary key=10003]
[primary key=10003]
[primary key=10004]
[primary key=10004]
[primary key=10004]
[primary key=10004]
[primary key=10005]
[primary key=10005]
[primary key=10005]
[primary key=10005]

Distinguish Between Stateful and Stateless Session Beans 409

A Closer Look at Entity Beans (Prior to E]B 3.0)

This section provides a more in-depth look at the issues that need to be addressed
when you're developing EJB component methods and configuration files.

Primary Keys
As mentioned, primary key classes can map to either a single field or multiple fields
of an entity bean.

Single-field mappings are the simpler of the two cases. In this scenario, the
primkey-field element in the deployment descriptor is used to specify which field
specified by the container-managed element is to be used as the primary key. The
primkey-field and the container-managed elements are required to be the same type.

In mapping to multiple fields, the fields of the primary key class must be a subset
of the container-managed fields. The primary key class, its parameterless constructor,
and all primary key class fields are required to be declared as public.

The Unknown Primary Key Class If the choice of the primary key field or
fields is to be delayed until deployment time, the findByPrimaryKey () method,
always a single-object finder, must be declared as java.lang.Object. The prim-key-class
element in the deployment descriptor must also be java.lang.Object.

The isldentical() Method Client applications can test to determine whether
different object references are pointing to the same entity object by using the
isIdentitcal () method.

The following example uses this method:

// Get Home references

CustomerRemoteHome custHomel = (CustomerRemoteHome)
javax.rmi.PortableRemoteObject.narrow (
initialContext.lookup ("java:ucny/um2z8/customers"),
CustomerRemoteHome.class) ;

CustomerRemoteHome custHome2 = (CustomerRemoteHome)
javax.rmi.PortableRemoteObject.narrow (
initialContext.lookup ("java:ucny/um2z8/customers"),
CustomerRemoteHome.class) ;

// Get Remote references

Customer customerl = custHomel.findByPrimaryKey (100) ;

Customer customer2 = custHome2.findByPrimaryKey (100) ;

if (customerl.isIdentical (customer2))

System.out.println ("identical objects.");
else
System.out.println ("non-identical objects") ;

4 10 Chapter 7: Enterprise JavaBeans and the EJB Container Model

Object Equality The EJB framework doesn’t specify object equality—that is, the
use of the == operator. Instead, the isIdentical () method should be used to
support this functionality.

The equals() Method The java.lang.0Object equals () method relies
heavily on memory addresses. For this reason, the enterprise bean provider should
either override this method or simply not use it. It is recommended that the
isIdentical () method be used when possible.

The hashCode() Method The EJB framework doesn’t specify the behavior of
the Object .hashCode () method on object references pointing to entity objects.
Instead, the isIdentical () method should be used to determine whether two
entity object references refer to the same entity object. If the enterprise bean provider
wants to use the hashCode () method, the following condition must be enforced:

if custHomel.equals (custHome2) {

if (custHomel.hashCode () == custHome2.hashCode())
System.out.println(this + " is implemented correctly");
else

System.out.println(this + " is NOT implemented correctly");

The EntityBean Class and Life Cycle Event Methods

Much like the primary key class, the bean class can be extended from any Java class.
If the enterprise bean provider extends an EntityBean class from another Java class,
the methods of the base class will be available to the client by defining the base
class’ methods in the stub for the EntityBean.

The Public Constructor To control the initial state of all objects, the enterprise
bean provider creates a public constructor. This constructor enables the container

to create stable instances of the EntityBean class. It is specified that this constructor
should take no arguments. The container calls the public constructor to create

a bean instance. The ejbCreate () and ejbPostCreate () methods are invoked
to initialize that bean instance.

Accessor Methods When using CMP, the enterprise bean provider doesn’t
make direct read and write calls to persistent storage devices. Instead, relational
data is accessed via get and set accessor methods. These accessor methods, as well
as the persistent fields and relationships, are declared in the abstract persistence
schema of the XML deployment descriptor file.

Distinguish Between Stateful and Stateless Session Beans 4] |

The cmr-field-name element in the abstract persistence schema corresponds to the
name used for the get and set accessor methods used for the relationship. The
cmr-field-type element is used only for collection-valued cmr-fields.

The ejbCreate() Method When you're using the create () and remove ()
methods, it is important to note the difference between session beans and entity
beans. When these methods are used with session beans, bean objects are being cre-
ated and destroyed. When these methods are used with entity beans, records in

a database are being created and destroyed.

An entity bean can have zero or more ejbCreate () methods. However, the
signature of each method must map to the entity bean home interface create ()
methods. When a client invokes a create () method to create an entity object,
the container invokes the appropriate ejbCreate () method.

After the ejbCreate () method is completed for a CMP entity bean, the EJB
container performs a database insert.

The ejbPostCreate() Method For each ejbCreate () method declared, a
matching ejbPostCreate () method with a void return type should be declared.
Immediately after the EJB container invokes the ejbCreate () method on an
EntityBean instance, it will call the corresponding ejbPostCreate () method
on that same instance. The ejbPostCreate () method can be used to refine
the instance created by the ejbCreate () method before this instance becomes
available to the client.

The ejbCreate () method can be used to initialize persistent data, whereas the
ejbPostCreate () method might do initialization involving the entity’s context.
Context information isn’t available while the ejbCreate () method is being
invoked, but it is available when the ejbPostCreate () is being invoked.

After the ejbPostCreate () method is invoked, the instance can discover the
primary key by calling the get PrimaryKey () method on its entity context object.

The ejpRemove() Method When a container invokes the ejbRemove ()
method on a bean instance or a client calls the corresponding remove () method in
its remote home or remote interface, it not only removes the entity bean instance,
but it also destroys physical data that is related to the bean instance.

Another way to destroy an entity object and its corresponding physical data is by
use of the deployment descriptor’s cascade-delete deployment descriptor element,
contained in the ejb-relationship-role element.

412

Chapter 7: Enterprise JavaBeans and the EJB Container Model

The ejbFind() Method An ejbFind () method is defined for each

of the find () methods in the home interface. This includes at least an
ejbFindByPrimaryKey () method, which returns the primary key to the
container.

The setEntityContext() Method For an entity bean instance to use its
EntityContext information during the instance’s lifetime, the bean instance must save
the state of the EntityContext internally. The following code example accomplishes this:

EntityContext myContext;
public void setEntityContext (EntityContext ctx)

{

myContext = ctx;

}

The unsetEntityContext() Method The container calls this method before
terminating the entity bean instance:

public void unsetEntityContext ()

{

myContext = null;

}

The ejbLoad() Method When in ready state in the bean pool, an entity
bean must keep its state synchronized with underlying data. During the call to the
ejbLoad () method, the data is read from the database and stored in the instance
variables. In addition, calling the ejbstore () method results in its saving the
entity bean state to the database.

The container invokes the ejbLoad () method right after a bean is instantiated
or when a transaction begins.

The ejbStore() Method When data is to be persisted to a permanent storage
medium, the EJB container invokes the ejbStore () method.

The ejbPassivate() Method The EJB container invokes this method on the
entity bean instance when the EJB container decides to return that instance to the
bean pool. This method allows the entity bean instance to release any resources
that shouldn’t be held while in the bean pool. Therefore, if resources are created or
acquired during the execution of the ejbActivate () method, they should be freed
in the ejbPassivate () method.

Distinguish Between Stateful and Stateless Session Beans 4. | 3

The ejbActivate() Method The EJB container invokes this method when an
entity bean instance is chosen from the bean pool and is assigned a specific object
identity (OID). This method lets the entity bean acquire or create any necessary
resources while the bean is in the ready state.

Home Interfaces and create() Methods

Two types of home interfaces can be used. The first is the remote home interface,
which implements the EJBHome interface. The second is the local home interface,
which implements the EJBLocalHome interface. The remote interface creates entity
beans that can be accessed from outside of the EJB container by clients. The local
interface creates entity beans that are accessed inside the EJB container by clients.
The performance gained by using local entity beans is significant because clients
get access to entity bean objects by reference as opposed to getting access to them by
value. This saves time that would have been spent communicating with RMI-IIOP.

The name of each create () method starts with the prefix create. Unique
signatures for create () methods are made using different method names, as long
as the prefix starts with create, as well as by overloading create () methods with
different arguments.

When an entity bean is first created, the ejbCreate () method creates a primary
key that uniquely identifies that entity object. For the life of the entity bean object,
the entity bean is associated with this primary key. As a result, the entity bean object
can be retrieved by providing this primary key object to the findByPrimaryKey ()
method.

A bean’s home interface can declare zero or more create () methods. A
create () method exists for each different way of creating an entity object.

Each of these create () methods must have corresponding ejbCreate () and
ejbPostCreate () methods in the bean class. These creation methods are
linked at runtime; when a create () method is invoked on the home interface,
the container delegates the invocation to the corresponding ejbCreate () and
ejbPostCreate () methods on the bean class. Here’s an example:

public interface ShoppingCartHome extends javax.ejb.EJBHome

{

public
int

public
throws

ShoppingCart create(String firstName, String lastName,
idNumber) throws RemoteException, CreateException;

ShoppingCart create(Integer customerNumber, int idNumber)
RemoteException, CreateException;

4 14 Chapter7: Enterprise JavaBeans and the EJB Container Model

A client can create a new entity object with code similar to this:

ShoppingCartHome scartHome =
ShopingCart scart = scartHome.create("E", "Matias", 641224);

Home Interfaces and finder() Methods

As mentioned, when an entity bean is first created, the ejbCreate () method
creates a primary key that uniquely identifies that entity object. For the life of the
entity bean object, the entity bean is associated with this primary key. Therefore,
the entity bean object can be retrieved by providing the findByPrimaryKey ()
method of the home interface with a unique primary key object. This primary key is
defined by the developer and can be of any type as long as it is unique.

One or more finder () methods can be defined in the home interface. One
method should exist for every way required to find an entity bean object or collection
of entity bean objects. finder () methods start with a prefix find. The arguments of
a finder () method are used to locate the desired entity objects. The return type of
a finder () method is an instance of an entity bean or a collection of entity bean
instances.

The following example shows the findByPrimaryKey () method:

public interface ItemHome extends javax.ejb.EJBLocalHome

{
/]
public Item findByPrimaryKey (String number)
throws FinderException, RemoteException;
public Item findItemByDescription (String description)
throws FinderException, RemoteException;
public Collection findAllItems ()
throws FinderException, RemoteException;

}

The following example demonstrates how a client uses the findByPrimaryKey ()
method:

ItemRemoteHome itemHome = (ItemRemoteHome)
javax.rmi.PortableRemoteObject.narrow (
initialContext.lookup ("java:ucny/um2z8/items") ,
ItemRemoteHome.class) ;

Item item = itemHome.findByPrimaryKey ("27018301820A") ;

Distinguish Between Stateful and Stateless Session Beans 4. | §

With BMP, the entity bean provider doesn’t write the corresponding ejbFind ()
method for finder () methods. finder () methods are configured by the
development tools provided by the EJB container and then created when the entity
bean is deployed. With BMP, the bean provider does have to write the ejbFind ()
methods.

Home Interfaces and remove() Methods
The remove () method of EJBHome interface supports the destruction of entity
bean objects using either a handle object or a primary key object.

The remove () method of an EJBLocalHome interface supports the destruction of
entity bean objects using only the primary key object.

When a remove () method is invoked on an entity object, the container invokes the
entity bean instance’s ejbRemove () method. After the ejbRemove () method returns
from its invocation, but before the remove () method acknowledges its completion to
the client, the E]JB container removes the entity object from all relationships in which it
participates and then removes its persistent representation.

Home Interfaces and getEJBMetaData() Methods

The getEJBMetaData () method returns a reference to an object that implements the
EJBMetaData interface. The EJBMetaData interface allows application assembly tools
to discover metadata information about an entity bean. This metadata information allows
for loose client/server binding.

Remote Interfaces

Remote interfaces extend the EJBObject interface. They specify what methods of
an entity object, created by the enterprise bean provider while implementing the
EntityBean interface, can be accessed by a client. The client can exist either inside
or outside of the EJB container. If the client exists inside the EJB container, as in
the case of a servlet application, the local interface should be used instead. Remote
interfaces allow clients to

B Obtain the remote home interface for the entity object.
B Remove the entity object.

B Obtain the entity object’s handle.

B Obrain the entity object’s primary key.

4 1 6 Chapter 7: Enterprise JavaBeans and the EJB Container Model

Local Interfaces

Local interfaces extend the EJBLocalObject interface. These interfaces specify
which methods of an entity object, created by the enterprise bean provider while
implementing the EntityBean interface, can be accessed by a client that is local to
the EJB container. The EJBLocalObject interface defines methods that allow the
local client to

B Obtain the local home interface for the entity object.
B Remove the entity object.
B Obtain the entity object’s primary key.

Local interfaces can be used as a replacement for JDBC—supporting fast calls to a
database while the client runs inside the same JVM as the entity bean.

CERTIFICATION OBJECTIVE 7.05

State the Benefits and Costs
of Container-Managed Persistence

One of the evolving aspects of the entity bean is its persistence. Before this persistence
can be meaningful, you need to understand the details of developing entity beans.
Here, you will learn about the uses of entity beans, the entity bean life cycle states, and
the steps involved in developing entity beans. You will take a close look at developing
entity beans and review how to manage persistence. You'll also learn the benefits and

drawbacks of both CMP and BMP.

Managing Persistence (Prior to E)B 3.0)

Bean persistence can be managed in two ways: You can let the container manage
the persistence of the bean via container-managed persistence (CMP), or you can
use bean-managed persistence (BMP). This method requires that the developer
implement the interaction code between the E]JB and the persistence engine. This
is a much more complicated task than opting for the first option. This mode should
not be seen as a standard development model, but more as a means to get to and
implement the lower level persistence mechanism. In other words, use BMP only

State the Benefits and Costs of Container-Managed Persistence 4 | 7

when the limits of CMP have been exceeded. It is not realistic to consider using this
far more complicated model for every EJB that you need to build. The CMP model
should be considered as the general persistence model for most of an application’s
development.

When the container handles the overhead necessary to support a bean in a
manner that is satisfactory to the enterprise bean provider, it stands to reason
that more of the enterprise bean provider’s development efforts can be focused on
actually writing business logic.

However, if the CMP engine provided with the Application Server at hand is
not sufficient and there are no available resources to implement BMP and there
is already so much commitment to the current Application Server that changing
Application Servers is not an option, then integrating a third-party CMP engine
with the current Application Server is another option that may be considered. Even
though being able to plug-in a third-party CMP engine into an Application Server
is not part of the Java EE specification, certain Application Servers will allow the
integration of certain third-party CMP engines. This ability of should be considered
when deciding which Application Server is to be used for a project.

Container-Managed Persistence

In CMP, entity bean data is maintained automatically by the container that uses

the mechanism of its choosing. For example, a container implemented on top of a
RDBMS may manage persistence by storing each bean’s data as a row in a table. The
container may also use the Java programming language serialization functionality

for persistence. When a programmer chooses to utilize CMP beans, the programmer
specifies which fields are to be retained.

A persistence manager is used to separate the management of bean relationships
from the container. With this separation, a container has the responsibility for
managing security, transactions, and so on, while the persistence manager is able to
manage different databases via different containers. Using this architecture allows
entity beans to become more portable across E]B vendors.

Entity beans are mapped to the database using a bean-persistence manager
contract called the abstract persistence schema. The persistence manager is responsible
for implementing and executing find methods based on EJB QL.

The persistence manager generates a mapping of CMP objects to a persistent
data store’s objects based on the information provided by the deployment descriptor,
the bean’s abstract persistence schema, and settings set by the deployer. Persistent
data stores may include relational databases, flat files, Enterprise Resource Planning
(ERP) systems, and so on.

4 18 Chapter 7: Enterprise JavaBeans and the EJB Container Model

A contract between the CMP entity bean and the persistence manager allows for
defining complex and portable bean-to-bean, bean-to-dependent, and even dependent-
to-dependent object relationships within an entity bean. For the persistence manager
to be separated from the container, a contract between the bean and the persistence
manager is defined.

When EJB is deployed, the persistence manager is used to generate an instantiated
implementation of the EJB class and its dependent object classes. It does this based on
its XML deployment descriptor and the bean class. The instantiated implementation
will include the data access code that will read and write the state of the E]JB to the
database at runtime. When this happens, the container uses the subclasses generated
by the persistence manager instead of the EJBs abstract classes defined by the bean
provider. The persistence manager of the EJB container is also used to manage the
persistence of the bean state or data. As previously mentioned, the enterprise bean
provider in this scenario is able to concentrate on implementing business logic with
Java code. A bean using CMP is simpler than one that uses BMP; however, it is also
dependent on a container for database access.

Using CMP, the EJB container is responsible for saving the bean’s state. Because
the persistence process is container managed, the Java code used to retrieve and
store data is independent of the data source. On the other hand, the container-
managed fields do need to be specified in the deployment descriptor file so the EJB
container’s persistence manager can automatically handle the persistence process.

Some benefits and drawbacks of CMP are detailed next.

CMP Pros Benefits of container-managed persistence include the following:

B Database-independence The container, not the enterprise bean provider,
maintains database access code to most popular databases.

B Container-specific features Features such as full-text search are available
for use by the enterprise bean provider.

CMP Cons Drawbacks to container-managed persistence include the following:

B Algorithms Only container-supported algorithms persistence can be used.
B Portability Portability to other EJB containers may be lost.

B Access The developer has no access to the view and cannot modify the
actual code.

B Efficiency Sometimes, the generated SQL is not the most efficient with
respect to performance.

State the Benefits and Costs of Container-Managed Persistence 4 | 9

Bean-Managed Persistence

When using BMP, the bean is responsible for storing and retrieving persisted data.
The entity bean interface provides methods for the container to notify an instance
when it needs to store or retrieve data.

In BMP mode, the EJB must implement persistence. To do this, methods such as
ejbsStore () and ejbLoad () must be created and used, and communication with
SQL databases must be implemented manually using JDBC.

BMP works well when data is being persisted to something other than a relational
database, such as file system or a legacy enterprise application. When a bean manages
its own persistence, it must also define its own JDBC calls. In this case, the entity
bean is directly responsible for saving its own state. On the other hand, the container
isn’t required to make any database calls. Some benefits and drawbacks of BMP are
detailed next.

BMP Pros Benefits of bean-managed persistence include the following:

B Container independent Entity bean code written for one EJB container
should be easily portable to any other certified EJB container.

B Standards based The standard EJB and JDBC APIs can be used for data

access calls.

B Datatype access The ability to access nonstandard datatypes and legacy
applications is supported.

B Maximum flexibility Data validation logic of any complexity is supported.

B Database specific features The application is able to take advantage of
nonstandard SQL features of different SQL servers.

BMP Cons Drawbacks to bean-managed persistence include the following:

B Database specific Because entity bean code is database specific, if access
to multiple databases is required, the enterprise bean provider will have to
account for this in its data access methods.

B Knowledge of SQL The enterprise bean provider must have knowledge of
SQL.

B Development time These beans on average take much longer time to
develop—as much as five times longer.

420 Chapter 7: Enterprise JavaBeans and the EJB Container Model

The Composition of a CMP Entity Bean

The many components of EJB entity beans must interact with each other and with
their container. The following is a summary of the javax.ejb package entity bean
components and the methods they use. The enterprise bean provider creates some
of these components. The EJB container, building on what the enterprise bean
provider created, generates the remainder of the required components.

Components Created by the Enterprise Bean Provider The enterprise
bean provider is responsible for the creation of classes and interfaces. Business logic

is placed in classes. Interfaces are used to define how the EJB container should build
supporting objects as well as to define what business methods are to be visible to
clients. The following sections describe varieties of these components in further detail.

The Primary Key Class The primary key is a unique identifier of an object. The
primary key class doesn’t necessarily have to relate directly to the primary key of a
database table. Quite often, it isn’t necessary to create a primary key class because
you can use Java objects already defined in the entity bean class (for example, strings
or integers) as primary keys. Note that Java’s primitive datatypes (such as int) can be
used only when wrapped by Java objects. A primary key class is defined within the
deployment descriptor file. Although an entity bean class can define a unique class
as its primary key, it is still possible for several entity beans to share the same primary
key class.

The Remote Home Interface—Interface E)JBHome The enterprise bean
provider creates the remote home interface so that the EJB container can create

an EJBHome object. The EJBHome object can be used to create, destroy, and find
entity bean objects inside a home domain. When the EJB container implements the
remote home interface, it enables clients to

Create new entity objects within a home domain
Find existing entity objects within a home domain
Remove an entity object from a home domain
Execute a home instance business method

Obtain a handle to the home interface

Get metadata information allowing for loose client/server binding
and scripting

State the Benefits and Costs of Container-Managed Persistence 42 |

Zero or more create () methods, with the prefix name create, can be defined
in the EJBHome interface. Each entity object should have one or more create ()
methods. Each method’s argument should be used to initialize the state of the entity
object.

One finder () method should be defined for each different way of finding an
entity object or a collection of entity objects within a home domain. The name of a
finder () method should begin with the prefix find. The arguments of the method
are used to locate desired entity objects. The return type must be either the entity
bean’s remote interface or a type that is a collection of objects implementing the
entity bean’s remote interface.

You can also define remove () methods to remove entity objects that are qualified
by either a handle or a primary key. Note that home () methods are static methods
provided by the enterprise bean provider for global business logic that isn’t specific
to any bean instance; home () methods can have any name that doesn’t begin with
create, find, or remove.

The Home Handle—Interface HomeHandle A client can use the home
handle after it loses the JNDI name of a remote home interface. If a home handle
is returned as the result of a get EgJBHome () method, the client will be required to
narrow the results to get the remote home interface.

The Handle—Interface Handle The handle object created according to this
interface is an abstraction on top of a network reference to an EJBObject. It can be
used as a persistent reference to that object.

The Remote Interface—Interface EJBObject An entity bean’s remote
interface is used to define which methods in the abstract entity bean class will be visible
to the client, the so-called business methods. In addition, other required methods of the
remote interface allow the client to

B Obtain the handle of an entity object
B Obtain the home interface of an entity object

B Remove an entity object

The Local Home Interface—Interface EJBLocalHome The local home
interface is similar to the remote home interface; however, it is faster because the
local objects and the clients that call them are inside the same EJB container.

4272 Chapter 7: Enterprise JavaBeans and the EJB Container Model

As a result, these local objects don’t need to support the overhead associated with
distributed applications.

The Local Interface—Interface E)JBLocalObject Local interfaces are similar
to the remote interface, having the benefit of speed like that of the local home
interface when the bean and the client are executing within the same JVM instance.

The Remote Client A remote client accesses an entity bean via methods
defined in both the remote interface and remote home interface of the entity bean.
The EJB container provides remote Java objects that implement those interfaces.
These objects are accessible from a client through the standard Java APIs for remote
object invocation. A remote client of an entity object can be another enterprise
bean deployed in either the same or in a different container. A client can also be

an arbitrary Java program, such as an application, applet, or servlet. In addition, the
remote client view of an entity bean can be mapped to non-Java client environments

such as CORBA.

The Local Client A local client resides in the same JVM and EJB container as
the entity bean it uses. In the interest of speed, a local client should access an entity
bean through that entity bean’s local and local home interfaces. Processing speed

is gained because arguments of the methods of the local interface and local home
interface are passed by reference instead of by value.

The EntityContext The EJB container provides entity bean instances with an
EntityContext. This EntityContext gives an instance access to the references of
any objects associated with the instance, including EJBLocalObjects, EJBObjects,
and primary key objects. This access is provided by the getEJBLocalobject (),
getEJBObject (), and getPrimaryKey () methods, respectively.

The instance is also given access to information returned by the following
methods, which are inherited from the EJBContext object:

B getE]BHome() Returns the remote home interface of the entity bean.
B getE]BLocalHome() Returns the local home interface of the entity bean.

B getCallerPrincipal() Returns the java.security. Principal, identifying the
invoker of the bean instance’s EJBObject.

B isCallerInRole() Tests whether the caller of the entity bean instance has a
particular role.

State the Benefits and Costs of Container-Managed Persistence 42 3

setRollbackOnly() Marks the current transaction so that a rollback is the
only outcome of that transaction.

getRollbackOnly() Tests to see whether the current transaction of an
instance has been marked for rollback.

getUserTransaction() Entity bean instances must not call this method,
which returns the javax.transaction. User Transaction interface.

The XML Deployment Descriptor The deployment descriptor is used to declare
entity bean persistent fields (cmp-fields) as well as field relationships (cmr-fields).
It contains information about entity bean persistence and container-managed
relationships in the form of XML elements. This information, known as the abstract
persistence schema, includes the following:

The ejb-name for each entity bean, which must be unique within an

ejb-jar file.

The abstract-schema-name for each entity bean, which must be unique
within an ejb-jar file. This name can be used when specifying EJB QL queries.

The ejb-relation set, containing a pair of ejb-relationship-role elements.

The ejb-relationship-role, which describes a relationship role, including its
name, its multiplicity within a relation, and its navigability. The name of
the cmr-field is specified from the perspective of the relationship participant.
Each relationship role refers to an entity bean via an ejb-name element
contained in the relationship-role-source element.

Container-Created Objects

After all the required interfaces and abstract classes are designed and developed by
the enterprise bean provider, they are introspected by EJB container. It examines
the entity bean’s deployment descriptor to create concrete objects that have

the additional functionality required to integrate the business logic with the
requirements of the EJB distributed object framework. These classes include the
following:

Bean class Extends the abstract entity bean class, which implements the
EntityBean interface.

EJBHome class Implements the remote home interface EJBHome. The EJB
container makes these instances accessible to the clients through]NDI.

424 Chapter 7: Enterprise JavaBeans and the EJB Container Model

B EJBObject class Implements the remote interface EJBObject.
B E]JBLocalHome class Implements the local home interface EJBLocalHome.
B EJBLocalObject class Implements the local interface EJBLocalObject.

Figure 7-8 illustrates EJB objects provided by beans and containers. Entity bean
objects are considered to be persistent objects; their lifetime isn’t limited by the
lifetime of the JVM process in which the entity bean instance executes. To illustrate,
a JVM crash might result in a rollback of a transaction, but it will neither destroy
previously created entity objects nor invalidate references interfaces held by clients.

EJB Clients (Prior to E)B 3.0)

FIGURE 7-8

E/BObjects
provided by
enterprise bean
provider and EJB
container

Two types of E]JB clients exist: remote clients that exist outside of an EJB container
and local clients that exist inside of an E]B container.

Multiple clients can access an entity object simultaneously while the EJB
container synchronizes access to the entity objects via a transaction manager.

EJB containers make home interfaces available in a JNDI name space, therefore
making these home interfaces available to clients. The home interfaces of entity
beans allow clients to create, find, and remove entity objects within the enterprise
bean’s home domain. These interfaces also allow clients to execute static home
business methods that aren’t specific to a particular entity bean object.

~
Container
EJBHome
I | Enterprise
bean

—— V| instances

EJBObjects I

Enterprise bean |
~

Container

| Enterprise
bean
7| instances

EJBObjects I

Enterprise bean 2

/

Container provided classes : Classes provided by bean provider
and persistence manager

State the Benefits and Costs of Container-Managed Persistence 42 §

Remote Clients

Remote clients can be enterprise beans deployed in the same or different EJB containers,
stand-alone Java applications or applets via Java APIs for remote object invocation, or
non-Java clients such as CORBA clients.

A remote client can get a reference to an existing entity object’s remote interface
in any of the following ways:

B Receive the reference as a parameter in a method call as an input parameter

or a result.

B Find the entity object using a finder () method defined in the entity bean’s
remote home interface.

B Obtain the reference from the entity object’s handle.

A client that has a reference to an entity object’s remote interface can do the
following:

B Invoke business methods on the entity object through the remote interface.
Obtain a reference to the enterprise bean’s remote home interface.

Pass the reference as a parameter or return value of a method call.

Obtain the entity object’s primary key.

Obtain the entity object’s handle.

Remove the entity object.

The physical location of the EJB container is usually transparent to the client.
A client locates an entity bean’s home interface by using the JNDI, which enables
applications to access multiple naming and directory services using a single interface. A
client’s INDI name space can be configured to contain the home interfaces of enterprise
beans located on multiple EJB containers on multiple machines on a network.

A client that is to be interoperable with compliant EJB containers must use
the javax.rmi.PortableRemoteObject .narrow () method to perform type-
narrowing of the client-side representations of the remote home and remote interfaces.

The remote home interface ItemRemoteHome for the ItemMasterBean entity bean
can be located using the following code segment:

Context 1nitialContext = new InitialContext () ;

ItemRemoteHome itemHome = (ItemRemoteHome)
javax.rmi.PortableRemoteObject.narrow (

initialContext.lookup ("java:ucny/um2z8/items"), ItemRemoteHome.class) ;

426 Chapter 7: Enterprise JavaBeans and the EJB Container Model

Locating an entity bean’s local home interface using JNDI is accomplished in
a similar manner. It doesn’t, however, involve the APIs for remote access. For
example, if the Item entity bean provided a local home interface rather than a
remote home interface, a local client might use the following code segment:

Context initialContext = new InitialContext () ;
ItemLocalHome itemHome = (ItemLocalHome)
initialContext.lookup ("java:ucny/um2z8/items") ;

Local Clients
Local clients access entity beans through local and local home interfaces with the
arguments of the local and local home methods being passed by reference. The
enterprise bean provider should be aware that argument objects shared between
local clients and entity beans can be modified by either the local clients or the
entity beans.

A local client can get a reference to an existing entity object’s local interface in
either of the following ways:

B Receive the reference as a result of a method call.

B Find the entity object using a finder () method defined in the entity bean’s
local home interface.

A local client that has a reference to an entity object’s local interface can invoke
business methods on the entity object through the local interface.

Entity Beans (EJB 3.0)

The CMP entity bean has been overhauled with EJB 3.0. Entity beans are now Plain
Old Java Objects (POJOs) and component interfaces are no longer required. The
bean class is now a concrete class and entity beans now support inheritance and
polymorphism. Here is a summary of the major enhancements for EJB 3.0 entity beans:

B Java language annotations (including Object Relational Mapping)
B Support for inheritance and polymorphism

B Simpler lightweight persistence model for Create, Read, Update and Delete
(CRUD) operations using Java Persistence Layer’s EntityManager API

B Enhanced query capabilities

State the Transactional Behavior in a Given Scenario 427

CERTIFICATION OBJECTIVE 7.06

State the Transactional Behavior in a Given
Scenario for an Enterprise Bean Method with a
Specified Transactional Deployment Descriptor

In this section, we review transactions, transaction management, and distributed
transactions. Then we discuss the objective concerning transaction attribute settings
as well as multiple transactions, the Java Transaction Service (JTS), the Java
Transaction API (JTA), and the effect of the transaction attribute on entity and
session bean methods.

Transactions and Transaction Management

A transaction is one or more tasks that execute as a single atomic operation or unit
of work. If all tasks involved in a transaction do not proceed successfully, an inverse
task or rollback procedure for all tasks is performed, setting all resources back to their
original state. Transactions are characterized by the acronym ACID, which stands
for Atomic, Consistent, Isolated, and Durable.

The EJB container provides the services and management functions required to
support transaction demarcation, transactional resource management, synchronization,
and transaction context propagation.

Since JDBC operates at the level of an individual database connection, it does
not support transactions that span across multiple data sources. To compensate for
this, the JTA provides access to the services offered by a transaction manager. If an
EJB requires control of global transaction, it can get access to JTA via the container.

Distributed Transactions

Although the EJB framework can be used to implement a nontransactional system,
the model was designed to support distributed transactions. EJB framework requires
the use of a distributed transaction management system that supports two-phase
commit protocols for flat transactions.

In addition to container-managed transactions, an EJB may participate in client-
managed and bean-managed transactions.

428 Chapter 7: Enterprise JavaBeans and the EJB Container Model

The EJB architecture provides automatic support for distributed transactions in
component-based applications. Such distributed transactions can automatically
update data in multiple databases or even data distributed across multiple sites.
The EJB model shifts the complexities of managing these transactions from the
application developer to the container provider.

Transaction-Management Paradigms The Java Platform EE platform supports
two transaction-management paradigms: declarative transaction demarcation and
programmatic transaction demarcation.

Declarative transaction management refers to a nonprogrammatic demarcation
of transaction boundaries, achieved by specifying within the deployment descriptor
the transaction attributes for the various methods of the container-managed EJB
component. This is a flexible approach that facilitates changes in the application’s
transactional characteristics without modifying any code. Container-managed
transaction demarcation must be used by entity E]B components.

Transaction Attribute Settings

A transaction attribute supports declarative transaction demarcation and conveys to
the container the intended transactional behavior of the associated EJB component’s
method. Six transaction attributes are possible for container-managed transaction
demarcation:

B NotSupported [or @TransactionAttribute (NOT SUPPORTED)
annotation in E]B 3.0] The bean runs outside the context of a transaction.
Existing transactions are suspended during method calls. The bean cannot be
invoked within a transaction. An existing transaction is suspended until the
method called in this bean completes.

B Required [or @TransactionAttribute (REQUIRED) annotation
in E]JB 3.0] Method calls require a transaction context. If a transaction
already exists, the bean will use it; if a transaction does not exist, it will be
created. The container starts a new transaction if no transaction exists.

B Supports [or @TransactionAttribute (SUPPORTS) annotation
in E]B 3.0] Method calls use the current transaction context if one exists,
but they don’t create one if none exists. The container will not start a new
transaction. If a transaction already exists, the bean will be included in
that transaction. Note that with this attribute, the bean can run without a
transaction.

State the Transactional Behavior in a Given Scenario 429

B RequiresNew [or @TransactionAttribute (REQUIRES NEW)
annotation in E]B 3.0] Containers create new transactions before each
method call on the bean and commit transactions before returning. A new
transaction is always started when the bean method is called. If a transaction
already exists, that transaction is suspended until the new transaction
completes.

B Mandatory [or @ ransactionAttribute (MANDATORY) annotation
in EJB 3.0] Method calls require a transaction context. If one does not
exist, an exception is thrown. An active transaction must already exist. If no
transaction exists, the javax.ejb. TransactionRequired exception is thrown.

B Never [or @TransactionAttribute (NEVER) annotation in
EJB 3.0] Method calls require that no transaction context be present. If one
exists, an exception is thrown. The bean must never run with a transaction. If
a transaction exists, the java.rmi. RemoteException exception is thrown.

Multiple Transactions

A container can manage multiple transactions in two different ways: The container
could instantiate multiple instances of the bean, allowing the transaction management
of the DBMS to handle any transaction processing issues. Conversely, the container
could acquire an exclusive lock on the instance’s state in the database, serializing
access from multiple transactions to this instance.

Java Transaction Service

The JTS specifies the implementation of a transaction manager supporting the JTA.
JTS also implements the Java mapping of the Object Management Group’s (OMG)
Object Transaction Service (OTS). The E]B specification suggests but does not
require transactions based on the JTS API. JTS supports distributed transactions,
which have the ability to span multiple databases on multiple systems coordinated
by multiple transaction managers. By using JTS, an EJB container ensures that its
transactions can span multiple EJB containers.

JavaTransaction API

EJB applications communicate with a transaction service using the JTA, which
provides a programming interface to start transactions, join existing transactions,
commit transactions, and roll back transactions.

When a bean with bean-managed transactions is invoked, the container suspends
any current transaction in the client’s context. In its method implementation,

430 Chapter 7: Enterprise JavaBeans and the EJB Container Model

the bean will initiate the transaction through the JTA UserTransaction interface. In
stateful beans, the container will associate the bean instance with the same transaction
context across subsequent method calls until the transaction is explicitly completed by
the bean. However, stateless beans aren’t allowed to maintain transaction context across
method calls. Each method invocation is required to complete any transaction it initiates.

Entity Bean Methods and Transaction Attributes

All developer-defined methods in the remote interface as well as all methods defined
in the home interface (such as create (), remove (), and finder () methods)
require transaction attributes. Note that entity beans have to use container-managed
transactions (CMTs).

Session Bean Methods and Transaction Attributes

All developer-defined methods in the remote interface require transaction attributes.

Transaction attributes are not needed for the methods in the home interface.
Methods in the remote interface run with the NotSupported attribute by default.

Transaction attributes are also not needed for the methods in a session bean if you're

using bean managed transactions (BMTs).

CERTIFICATION OBJECTIVE 7.07

Given a Requirement Specification Detailing
Security and Flexibility Needs, Identify Architectures
That Would Fulfill Those Requirements

Security

Here, we provide a basic review of security and the EJB framework as an architecture,
including containers and their functionality.

To simplify the development process for the enterprise bean provider, the
implementation of the security infrastructure is left to the EJB container provider
and the task of defining security policies is left to the bean deployer. By avoiding
putting hard-coded security policies inside bean code, EJB applications gain
flexibility when configuring and reconfiguring security policies for complex

Given a Requirement Specification Detailing Security and Flexibility 43 |

enterprise applications. Applications also gain portability across different EJB
servers that may use different security mechanisms.
The EJB framework specifies flexibility with regard to security management,

allowing it to be declarative (container-managed) or programmatic (bean-managed).

Container-Managed or Declarative Security

The security management that defines method permissions is usually declared in the

enterprise bean’s deployment descriptor or by using annotations (if using EJB 3.0).
Container-managed security makes an enterprise bean more flexible, since it isn’t
tied to the security roles defined by a particular application.

A security role is a name given to a grouping of information resource access
permissions that are defined for an application. Associating a principal with this
security role grants the associated access permissions to that principal as long as the
principal is “in” the role.

Here is an excerpt from a deployment descriptor (ejb-jar.xml) for an entity bean
that is using container-managed security:

<assembly-descriptors>

<security-role>
<role-name>adm_role</role-name>
</security-role>
<method-permissions
<description>only remote access</descriptions>
<role—name>adm_role</role—name>
<method>
<ejb-name>EntityBMP</ejb-name>
<method-intf>Remote</method-intf>
<method-names>withdraw</method-name>
</method>
</method-permission>

</assembly-descriptors>

The <method-permission> element identifies the only security role that is
allowed to invoke the withdraw method on the remote interface. The <method-
permissions element consists of an optional description, a list of security role
names, and a list of method elements. The <security-roles element contains
the definition of a security role used by the bean. The security roles used in the
<method-permissions> element must be defined in the <security-role>
elements of the deployment descriptor, and the methods must be defined in the
enterprise bean’s interfaces.

432 Chapter 7: Enterprise JavaBeans and the EJB Container Model

You should also note that errors in bean code programming are less likely to be
a factor in causing security holes when using container-managed security, because
the container implements the security mechanism. These features make container-
managed method access the preferred security method.

Bean-Managed or Procedural Security

However, programmatic (procedural) access control is sometimes necessary
to satisfy fine-grained or application-specific conditions. Enterprise beans can
programmatically manage their own security by using the isCallerInRole ()
and getCallerPrincipal () methods contained on the E]JBs context object.
The iscallerInRole () method tests whether the caller has a given security
role, returning true if the caller has and false if not. The getCallerPrincipal ()
method returns the java.security. Principal that identifies the caller.

Here is an excerpt of code from a EJB that uses these methods in a bean-managed
security situation:

public void deposit (double amt)
if (amt >= 10000) {

if (entityContext.isCallerInRole ("admin")) {
this.balance += amt;

} else {
log ("REJECTED deposit (" + amt + ") by user "

+entityContext.getCallerPrincipal () .getName()) ;
throw new EJBException (
"You do not have permission to deposit $10,000 or more") ;

} else {
this.balance += amt;
}

log("deposit (" + amt + ") by user "
+entityContext.getCallerPrincipal () .getName ()
+" balance="+this.balance) ;

The deposit () method here uses the isCallerInRole () method to
determine whether the caller depositing more than $10,000 is in the “admin” role.
If the caller is in this role, the operation is accepted and the balance is updated.

If the caller is not in the “admin” role, the operation is rejected and an exception
is thrown.

Given a Requirement Specification Detailing Security and Flexibility 43 3

The enterprise bean developer is responsible for defining all the security role
names that are used in the bean code. Each of these role names must be added to the
deployment descriptor in the form of a <security-role-ref> element. Part of
this element is the <role-1ink> element that associates the role name to a security
role defined elsewhere in the descriptor file.

Security roles are defined with the element <role-names. The following
deployment descriptor fragment defines a role name admin, which is associated via a
<role-1links> element to role adm_role.

<enterprise-beans>
<entity>
<ejb-name>EntityBMP</ejb-name>
<ejb-class>EntityBMPBean.class</ejb-class>

<security-role-ref>
<role-name>admin</role-name>
<role-link>adm role</role-links>

</security-role-ref>

</entity>
</enterprise-beans>

In this EJB deployment descriptor, the EntityBMPBean class uses the symbolic
name admin to check permissions. In the assembly descriptor section of the
deployment descriptor, the security role adm_role is defined as follows:

<assembly-descriptors>
<security-roles>
<role-name>adm_role</role-name>
</security-role>
</assembly-descriptors>

For completeness, here is an excerpt from the WebLogic deployment descriptor
<weblogic-ejb-jar.xml> file that resolves the role to an actual principal:

<weblogic-ejb-jar>

<security-role-assignment>

434 Chapter 7: Enterprise JavaBeans and the EJB Container Model

<role-name>adm_rolec< /role-name>
<principal-name>system</principal-name>
</security-role-assignment>

</weblogic-ejb-jars>

This use of the deployment descriptor to define a role name and associate
it with a role link allows different enterprise beans to use different internal
names to refer to the same cluster of permissions. For example, another bean
can still refer to the adm_role internally using the string adm instead of admin.
A <security-role-refs is able to associate that bean’s adm reference to the
security role adm_role.

You should also note that a user or principal is allowed to belong to multiple roles

simultaneously. In doing so, the user/principal will benefit from the union set of
permissions that those roles grant.

Security Not Covered by the EJB Specification

As opposed to access control, authentication and communication security are not
specified in the E]B security guidelines. These aspects of security are left to the
proprietary application server or the container.

EJB Framework (Prior to EJB 3.0)

FIGURE 7-9

Distributed
programming
with EJB

The EJB components are declaratively customized. Customizable traits include
transactional behavior, security features, life cycle, state management, and
persistence. Figure 7-9 demonstrates how the home interface, remote interface,
EJBHome object, and EJBobject of the EJB framework fit into the generic
distributed programming model.

Client Server
Stub Tie
Home EJBHome
. > .
|nterface\@ ’(@/ object
Stub Tie

Remote
interface \@

N EJBObject
(9

Given a Requirement Specification Detailing Security and Flexibility 43 §

Containers

The application server provides a container that supports services for components.
A container is an entity that provides life cycle management, security, deployment,
and runtime services to components. Each container type (including E]B, web, JSP,
servlet, applet, and application client) provides component-specific services as well.
After a client invokes a server component, the container will automatically

allocate a process thread and initiate the component. The container manages all
resources on behalf of the component and interactions between the component and
the external systems. A container provides EJB components with services such as the
following:

Bean life cycle management and instance pooling These services include
creation, activation, passivity, and destruction. Individual EJBs do not

need to explicitly manage process allocation, thread management, object
activation, or object destruction. The EJB container automatically manages

the object life cycle on behalf of the EJB.

State management Individual EJBs do not need to explicitly save or restore
the conversational object state between method calls. The EJB container
automatically manages the object state on behalf of the EJB.

Bean transaction management This service intercedes between client calls
on the remote interface and the corresponding methods in a bean to enforce
transaction and security constraints. It can provide notification at both the
beginning and the ending of each transaction that involves a bean instance.
Individual E]Bs do not need to explicitly specify the transaction demarcation
code to participate in distributed transactions. The EJB container can
automatically manage the start, enrollment, commitment, and rollback of
transactions on behalf of the EJB.

Security constraint enforcement EJBs do not need to explicitly authenticate
users or check authorization levels. The E]JB container automatically performs

all security checking on behalf of the E]B.

Distributed remote access EJBs use technologies and protocols that are
commonly used in distributed programming, such as RMI and IIOP.
Container-managed persistence E]Bs do not need to explicitly retrieve

or store persistent object data from a database. The EJB container can
automatically manage persistent data on behalf of the EJB. Entity beans can

436 Chapter 7: Enterprise JavaBeans and the EJB Container Model

either manage their own persistence or delegate those persistence services to
their container. If persistence is delegated to the container, that container
will also perform all data retrieval and storage operations automatically on
behalf of the bean. (Note that the majority of the changes made between
EJB 1.1 and EJB 2.0 are found in the definition of a new CMP component
model. The new CMP model is extremely different from the previous CMP
model because it introduces an entirely new entity, the persistence manager,
and a completely new way of defining container-managed fields, as well as
relationships with other beans and dependent objects.)

B Generated remote stubs The container will create remote stubs for wrappers

such as RMI and CORBA.

Additional Functionality The E]B server provides an environment that
supports the execution of applications developed using E]JB architecture, managing
and coordinating allocation of resources to the applications. The EJB server must
provide one or more EJB containers, which provide homes for the E]Bs. E]B
containers manage the E]Bs contained within them. For each E]B, the container is
responsible for registering the object, providing a remote interface for the object,
creating and destroying object instances, checking security for the object, managing
the active state for the object, and coordinating distributed transactions. In addition,
the container has the ability to manage all persistent data within the object.

Vendor-Specific Containers The exact environment for process and resource
management, concurrency control, and thread pooling has not been defined in the
EJB specification. So vendors can differentiate their products based on the simplicity
or sophistication of the services provided by proprietary containers. A software
vendor may choose to create a new application server to support EJB components
specifically, or what is more likely, to adapt their existing servers.

Container Location Several E]JB classes can be installed in a single E]B
container. The physical implementation of an E]B container is not described in the
EJB specification, so even though a particular class of EJB is assigned to a single EJB
container, the container may not necessarily represent a physical location. The E]JB
container can be implemented as a physical unit, such as a single multithreaded
process within a server, or it can be implemented as a logical unit that can be
replicated and distributed across multiple systems and processes.

Given a Requirement Specification Detailing Security and Flexibility 437

Benefits of Java Plaform EE and the EJB Framework

as an Architecture

The use of the Java Platform EE and EJB framework as an architecture has the
following primary benefits:

EJB components are server-side components written entirely with the Java
programming language; therefore, applications based on EJB components are
not only platform independent but also middleware independent. They can
run on any operating system and on any middleware that supports EJB.

EJB components contain business logic only, giving developers freedom from
maintaining system-level code that would be integrated with their business logic.
The EJB server automatically manages system-level services such as transactions,
security, life cycle, threading, and persistence for the EJB component.

EJB architecture is inherently transactional, distributed, portable, multi-tiered,
scalable, and secure.

Java Platform EE architecture provides authentication, the means by which
communicating entities prove to one another that they are acting on behalf
of specific identities (for example, client to server and/or server to client).

Java Platform EE architecture provides authorization (access control), the
means by which interactions with resources are limited to collections of
users or programs for the purpose of enforcing integrity, confidentiality, or
availability constraints.

Java Platform EE architecture provides data integrity (MAC, or message
authentication check), which is the means used to prove that information
could not have been modified by a third-party (for example, the recipient
of data must be able to detect and discard messages that were modified after
they were originally sent over an open network).

Java Platform EE architecture provides confidentiality (data privacy), the
means used to ensure that information is made available only to users who
are authorized to access it.

Java Platform EE architecture provides nonrepudiation, the means used to
prove that a user performed some action such that the user cannot reasonably
deny having done so.

Java Platform EE architecture provides auditing, the means used to capture
a tamper-resistant record of security-related events for the purpose of
evaluating the effectiveness of security policies and mechanisms.

438 Chapter 7: Enterprise JavaBeans and the EJB Container Model

CERTIFICATION OBJECTIVE 7.08

Identify Costs and Benefits of Using
an Intermediate Data Access Object Between
an Entity Bean and the Data Resource

Here, we review data access objects for entity beans. This is covered in greater detail
in Chapter 5.

Using Data Access Objects for Entity Beans

Sometimes if you decide that BMP is your best approach for entity beans, you

must code the SQL into your entity beans. In a large development environment,

it is sometimes a good idea to reduce the coupling of entity beans with the SQL
necessary to select, insert, update, and delete data using EJB. To achieve reusability,
developers create intermediate data access objects that contain implementation
code to update and access the data source. The downside to the ease of reuse using
a data access object is the additional layer and overhead of creation and garbage
collection. Data access objects are typically developed in situations in which the
developer is familiar with SQL and performance gains can be achieved over CMP,
which sometimes does not provide the best performing SQL.

Why Use a Data Access Object?

The data access object (DAQ) pattern separates the interface to a system resource
from the underlying code used to access that resource. This allows the benefit of
database vendor independence and the ability to represent XML data sources as
objects.

Each enterprise bean that accesses a persistent data resource can have an
associated DAO class, which defines an abstract API of operations on the resource.
This abstract API will make no reference to the resource implementation. The
DAOQO needs to know only how to load itself from a persistent store based on some
identity information (such as a primary key) and how to store itself back to the
persistent store. Therefore, an enterprise bean uses data it obtains from the DAQO,
defers the persistence responsibilities to the DAO, and can concentrate entirely on
implementing business methods.

State the Benefits of Bean Pooling in an EJB Container 439

A DAOQO provides resource functionality for a particular resource, implemented
for a particular persistence mechanism. For example, a class can be created to
encapsulate the database resource access for both single as well as multiple rows. The
benefits are independence achieved at a small cost (the development required to
build the DAQO) that ultimately may save development time.

For CMP entity beans, the E]B container automatically services all persistent
storage access; therefore, applications using CMP entity beans do not need a DAO
layer, since the application server transparently provides this functionality. However,
DAQOs may still be useful when an application has a combination of CMP for entity
beans and BMP for session beans and/or servlets.

DAO:s add a layer of objects between the data client and the data source that
requires extra effort to be designed and implemented. However, the benefit realized
by choosing this approach makes up for the added effort.

When a factory strategy is used, the hierarchy of concrete factories and concrete
products produced by the factories requires additional design and implementation.

CERTIFICATION OBJECTIVE 7.09

State the Benefits of Bean Pooling
in an EJB Container

Here, we review the concept of pooling resources. We explain how the EJB container
uses this concept for E]Bs.

Bean Pooling in the EJB Container

Given that the E]JB container cannot handle an unlimited number of E]Bs, the
classic concept of pooling is used to share the resources among multiple users. When
the EJB is deployed, the deployment descriptor specifies the number of instances

to pool and reuse. The cost of creating and destroying an EJBObject can be high.
The application server manages a pool of E]Bs that can be used throughout the
application. This pool allows the application server to handle more requests, since
the server does not have to spend time creating and destroying EJBObjects. Note
that stateful session beans cannot be a part of this bean pool.

440 Chapter 7: Enterprise JavaBeans and the EJB Container Model

Benefits of Bean Pooling in an EJB Container

Bean pooling is similar to connection pooling, a technique that was pioneered by the
DBMS vendors to allow multiple clients to share a cached set of connections that
provide access to a database resource.

Bean pooling is used in Java Platform EE for stateless session beans. To implement
bean pooling, the application server, as part of a startup process, must create a pool
manager object to control access to the stateless session beans. The client asks
the pool manager to allocate a bean. If a bean is available in the pool, it is made
available to the client immediately; otherwise, a bean is created. When a client
no longer needs the bean, it returns the bean to the pool manager for reuse. This
strategy allows beans to be quickly allocated to clients, avoiding the expense of setup
and initialization.

CERTIFICATION OBJECTIVE 7.10

State the Benefits of Passivation
in an E)JB container

Here, we review the benefits of the passivation/activation technique that is employed
by an EJB container.

Passivation/Activation

Passivation/activation is a technique that the EJB container can choose to temporarily
serialize a bean and store it to the application server’s file system or other persistent
store is such a way to allow it to recreate the bean and its state at a later time. This
technique allows the application to optimally manage resources.

Benefits of Bean Pooling in an EJB Container

The benefit of passivation is that it allows the E]B container to make the best
possible use of server resources by passivating a bean to free up resources and then
reactivating it when resources are available. Note that a session bean can be
passivated only between transactions, and not within a transaction.

Explain How the Enterprise JavaBeans Container 44 ||

CERTIFICATION OBJECTIVE 7.11

Explain How the Enterprise JavaBeans
Container Does Life Cycle Management
and Has the Capability to Increase Scalability

Here, we review the life cycle of E]Bs. We also describe their deployment, which is
determined by the deployment descriptors settings.

The Life Cycle of an EJB

Detailed documentation describing the life cycle of an EJB can be found in the EJB
specifications on the Sun web site and is illustrated in Figure 7-10. The following list
provides a general description of the life cycle states of an E]B session bean:

The client locates the bean’s home reference using the JNDI services
provided by the application server.

The JNDI service returns a home interface reference to the client.

. The client uses the home interface reference to call the home . create ()

method. In response, the home object then creates an EJBObject.
A new instance of the code in the bean class is also instantiated by the

newInstance () method.

. The new instance of the bean class, called a session bean, is allocated a

session context.

. The home object passes a reference to the EJBObject in the container to the

client’s remote interface.

. The client’s remote interface is now able to invoke methods on the

EJBObject in the container. This EJBObject will pass these method calls

to the session bean.

The session bean returns a result to the EJBObject, which in turn returns
it to the client’s remote interface.

4472 Chapter 7: Enterprise JavaBeans and the EJB Container Model

FIGURE 7-10

Life cycle for an
EJB session bean

Client Server
Context.lookup(“Name”) N JNDI
L 3t Home
] Name |$§
o
Home interface
Container
T Bean class
% Home.create() T Home newlnstance()
s | — g create () ejbCreate ()
8 ® | remove () SessionContext
3 <
212" | Beans remote interface getEJBMetaData ()
° 3 v v
b E/BObject SessionBean
5 Invoke method on bean ibC
2 > 5 5 & reate() v
3 g & | ejpRemove()
5 _ 9 % setSessionContext()
h Return result ® ® | ejbPassivate()
L ejbActivate()

How the E)B Container Manages Life Cycle

and
Here

How This Allows for Increased Scalability

are the steps that the container takes to manage the life cycle of an

entity bean:

> w N

w

The container populates the free pool with a working set of bean instances.
A client calls the create () method on a home object.
The home object obtains a bean instance from the free pool.

The home object forwards the create () arguments (if any) to the
ejbCreate () method on the bean class.

The bean class inserts a row into the table in the database.

6. The bean class returns the primary key of the row to the home object.

The container creates an EJBObject for the bean class and sets its

primary key.

The home object invokes the ejbPostCreate () method on the bean class
to finish the initialization process now that the EJBObject can be referenced,
because it now exists.

The home object returns the remote reference to the EJBObject back

to the client.

Explain How the Enterprise JavaBeans Container 443

10. The client can now invoke the business methods on the bean class (via the
remote reference) that have been defined as available.

I'l. When the client is finished, the container moves the bean back to the free
pool list after calling ejbPassivate (for an entity bean).

Note that a substantial overhead is incurred when instantiating bean instances.
Scalability within the E]JB container environment is increased by preinstantiating
a pool of bean instances (bean pool) and allowing them to be quickly utilized by
clients.

Deployment

When an EJB application is ready to be deployed to an EJB container, the desired
beans and deployment information must be placed in a JAR file. The deployment
information that is also placed in this JAR file is contained in an XML file called a
deployment descriptor.

Deployment Descriptors As mentioned earlier, the deployment descriptor
is an XML file containing elements that specify how to create and maintain
EJB components and how to establish runtime service settings. The deployment
descriptor contains settings that are not to be hard-coded inside EJB components.
These settings tell the EJB container how to manage and control EJB components
and can be set at application assembly time or at application deployment time.

Two basic types of elements are contained inside the deployment descriptor file:

B Bean elements These elements declare the internal structure and external
dependencies of EJB components. The descriptor defines, among other
things, the EJB class names, the]NDI namespace that represents the
container, home interface names, and remote interface names.

B Application assembly elements These elements describe how EJB
components are to be integrated into larger applications. Some of the
application assembly elements describe environment values, security roles,
and transaction attributes.

Packaging Hierarchies An important attribute of the EJB specification is that it
not only provides the programming interfaces but also defines how the component/
application has to be packaged. The deployment descriptor that has to go into the
packaging is the standard way of customizing parameters of a specific installation.

444 Chapter 7: Enterprise JavaBeans and the EJB Container Model

EJB components can be packaged as individual E]Bs, as a collection of E]JBs, or as
a complete application system. EJB components are distributed in a JAR file called
an ejb-jar file. The ejb-jar file contains Java class files, as well as home and remote
interfaces for E]Bs. It also contains the XML deployment descriptor for the EJB.

Home and Remote Interfaces The client view is provided through the home
interface and the remote interface. Classes constructed by the container when a bean
is deployed, based on information provided by the bean, provide these interfaces.
The home interface provides methods for creating a bean instance, while the remote
interface provides the business logic methods for the component. By implementing
these interfaces, the container can intercede in client operations of an EJB. This
offers the client a simplified view of the component.

CERTIFICATION SUMMARY |

If you have studied this chapter diligently, you should have an understanding of session
and entity EJBs. You should also understand when it is appropriate to implement the

different EJBs.

Two-Minute Drill 4458

TWO-MINUTE DRILL

List the Required Classes/Interfaces That Must Be Provided
for an Enterprise JavaBeans Component

Qa

Prior to EJB 3.0, the required classes/interfaces that must be provided for an
EJB component are the home (EJBHome) interface, the remote (EJBObject)
interface, business logic (bean) class, context objects, and the XML
deployment descriptor. For EJB 3.0, the only required class is an annotated
bean class. The business interface can be generated by default and the XML
deployment descriptor is now optional and largely unnecessary for simple E]Bs.

Distinguish Between Session and Entity Beans

a

a

A session bean is an EJB that is created by a client and usually exists only for
the duration of a single client/server session.

An entity bean is an object representation of persistent data maintained in

a permanent data store such as a database. A primary key identifies each
instance of an entity bean.

Recognize Appropriate Uses for Entity, Stateful Session,
and Stateless Session Beans

Qa

a

Use stateful session beans for functionality that requires data to be maintained
across business logic method invocations.

Use stateless session beans for functionality that does not require data to be
maintained across business logic method invocations.

Distinguish Between Stateful and Stateless Session Beans

a

Qa

Stateful session beans maintain data (state) across business logic method
invocations.

Stateless session beans do not maintain data (state) across business logic
method invocations.

Stateless session beans can utilize the bean-pooling feature of the EJB
container.

446 Chapter 7: Enterprise JavaBeans and the EJB Container Model

State the Benefits and Costs of Container-Managed Persistence

Q

The benefits of CMP include database independence and container-specific
features (such as full-text search). CMP has drawbacks, as only container-
supported algorithms persistence can be used, and portability to other EJB
containers may be lost.

State the Transactional Behavior in a Given Scenario for
an Enterprise Bean Method with a Specified Transactional
Deployment Descriptor

The following transactional behaviors can be identified for an enterprise bean method:

a

In NotSupported [or @TransactionAttribute (NOT SUPPORTED)
annotation in EJB 3.0] transactional behavior, existing transactions are
suspended during method calls. An existing transaction is suspended until the
method called in this bean completes.

In Required [or @TransactionAttribute (REQUIRED) annotation in
EJB 3.0] transactional behavior, if an enterprise bean method already exists,
it will be used. If one does not exist, it will be created.

In Supports [or @TransactionAttribute (SUPPORTS) annotation

in EJB 3.0] transactional behavior, the container will not start a new
transaction, but if a transaction already exists, the bean will be included in
that transaction.

In RequiresNew [or @TransactionAttribute (REQUIRES NEW)
annotation in EJB 3.0] transactional behavior, a new transaction is always
started when the bean method is called. If a transaction already exists, that
transaction is suspended until the new transaction completes.

In Mandatory [or @TransactionAttribute (MANDATORY) annotation in
EJB 3.0] transactional behavior, if a transaction does not exist, an exception
is thrown.

In Never [or @TransactionAttribute (NEVER) annotation in EJB 3.0]
transactional behavior, if a transaction exists, an exception is thrown.

To encapsulate access to data, an application can use intermediate data
access objects.

The benefits of bean pooling in an EJB container include lowered cost, specific
rates of pool reuse, and increased request handling by the application server.

Two-Minute Drill 447

Given a Requirement Specification Detailing Security

and Flexibility Needs, ldentify Architectures That Would

Fulfill Those Requirements

The following is a list of some of the considerations when dealing with questions for
the preceding objective:

Q

a
a

For EJB systems, deciding on Container-Managed or Declarative Security
(flexibility) vs. Bean-Managed or Procedural Security (fine-grained
approach)

Which distributed object technology is most appropriate—RMI, CORBA,
DCOM, or DCE

Protocols supported in the deployed environment

Ability for object serialization for transporting across a network

Identify Costs and Benefits of Using an Intermediate Data
Access Object Between an Entity Bean and the Data Resource

To encapsulate access to data, an application can use intermediate data access
objects. The use of separate objects to access data results in the following:

a

U000 0U0U

Keeps entity bean code clear and simple

Ensures easier migration to container-managed persistence for entity beans
Allows for cross-database and cross-schema portability

Provides a mechanism that supports tools from different vendors

Not useful for CMP entity beans

Adds an extra layer

Needs more class hierarchy design when using a factory strategy

State the Benefits of Bean Pooling in an EJB Container

a

Qa

The cost of creating and destroying an EJBObject can be expensive, so the
concept of pooling is used to share the resources among multiple users.

The external deployment descriptor specifies the number of instances to pool
and reuse.

This pool allows the application server to handle more requests, since the
server does not have to spend time creating and destroy EJBObjects.

448 Chapter 7: Enterprise JavaBeans and the EJB Container Model

State the Benefits of Passivation in an E]JB container

Q Passivation allows the EJB container to make the best possible use of server
resources by passivating a bean to free up resources and then reactivating it
when resources are available.

Explain How the Enterprise JavaBeans Container Does Life
Cycle Management and Has the Capability to Increase Scalability

Q In the EJB container’s life cycle management, while the container handles
naming, management, transactional integrity, security, and persistence for
the bean developer, the architect needs to determine the settings to tell the
container how these concepts apply to a specific bean. This provides greater
scalability.

O The mechanism for creating the deployment descriptors varies from
application server to application server, but they all contain the same basic

information.

Self Test 449

SELF TEST

The following questions will help you measure your understanding of the material presented in this
chapter. Read all the choices carefully because there might be more than one correct answer. Choose
all correct answers for each question.

List the Required Classes/Interfaces That Must Be Provided for
an Enterprise JavaBeans Component

I. Which of the following is not true about Enterprise JavaBeans (prior to E]B 3.0) objects?

A

C.

D.

The home interface is responsible for locating or creating instances of the desired bean and
returning remote references.

The remote interface, or the EJBObject interface, typically provides method signatures for
business methods.

The bean implements either the EntityBean interface or the SessionBean interface but need
not implement all the methods defined in the remote interface.

The bean must implement one ejbCreate () method for each create () method in the
home interface.

2. Which of the following is true about Enterprise JavaBeans (E]B 3.x) objects?

A

B.

C.
D.

The home interface is no longer required.

The remote interface, or the EJBObject interface, typically provides method signatures for
business methods.

The bean class implements the EJBInterface class.
The bean must be defined in the XML deployment descriptor.

Distinguish Between Session and Entity Beans

3. Which statement is not true when contrasting the use of entity beans and JDBC for database
operations!

A

B.

C.

Entity beans represent real data in a database.
The bean managed entity bean functionally replaces the JDBC API.

The container-managed entity bean automatically retrieves the data from the persistent
storage (database).

When using JDBC, you must explicitly handle the database transaction and the database
connection pooling.

450 Chapter 7: Enterprise JavaBeans and the EJB Container Model

Recognize Appropriate Uses for Entity, Stateful Session,
and Stateless Session Beans

4. Suppose that the business logic of an existing application is implemented using a set of CGI
programs. Which Java technologies can be used to implement the CGI programs as a Java-based
solution?

A. JMAPI

B. Screen scrapers

C. Enterprise JavaBeans
D. Servlets

Distinguish Between Stateful and Stateless Session Beans

5. Which of the following is not true about Enterprise JavaBeans (prior to EJB 3.0) session bean
objects?
A. A session bean can be defined without an ejbCreate () method.

B. Stateful beans can contain multiple ejbCreate () methods as long as they match the
home interface definition.

C. The home interface of a stateless session bean must include a single create () method
without any arguments.

D. The stateless session bean class must contain exactly one ejbCreate () method without
any arguments.

State the Benefits and Costs of Container-Managed Persistence

6. If you try to create an (prior to EJB 3.0) CMP-based entity bean for a table that does not have a
primary key, which of the following statements is not true?

A. You cannot create CMP entity beans without a database primary key.
B. Duplicate records may be entered in the table.
C. You can create CMP entity beans without primary keys, but the findByPrimaryKey ()
method will be unreliable.
7. Can you update the primary key field in a CMP entity bean (prior to EJB 3.0)?
A. No;j you cannot update the primary key field in a CMP entity bean.

B. Yes; you can update the primary key field in a CMP entity bean by using accessor methods
for the primary key cmp-fields in the component interface of the entity bean.

C. Yes; you can update the primary key field in a CMP entity bean by calling ejbStore ().

Self Test 4.5 ||

State the Transactional Behavior in a Given Scenario for an Enterprise
Bean Method with a Specified Transactional Attribute as Defined
in the Deployment Descriptor

8. In an application with several stateless session Enterprise JavaBeans (prior to EJB 3.0), in terms
of performance ramifications of storing the remote reference to a stateless session bean, which of
the following statements is least accurate?

A. You can cache the stateless session bean reference using the EJBObject .getHandle ().
B. You can use the handle (SSB reference) when attempting to access the bean from here on.

C. The cost for a remote lookup on a stateless session bean is insignificant and generally does
not justify using a handle (SSB reference) to access the bean.

D. The stateless session bean has no concurrency problems—that is, there is no shared data to
be corrupted.

Given a Requirement Specification Detailing Security and Flexibility Needs,
Identify Architectures That Would Fulfill Those Requirements

9. Which distributed object technology is most appropriate for systems that consist entirely of Java

objects?

A. RMI

B. CORBA
C. DCOM
D. DCE

10. Which distributed object technology is most appropriate for systems that consist of objects
written in different languages and that execute on different operating system platforms?

A. RMI

B. CORBA
C. DCOM
D. DCE
I1. Which of the following are used by Java RMI?
A. Stubs
B. Skeletons
C. ORBs
D. 1IOP

452

Chapter 7: Enterprise JavaBeans and the EJB Container Model

12. Which of the following is not a tier of a three-tier architecture?

A. Client interface
B. Business logic
C. Security
D. Data storage
13. Which of the following Java technologies implements transaction management?
A. RMI
B. JTS
C. JMAPI
D. JTA
14. Which of the following is not true when discussing application servers and web servers?
A. A web server understands and supports only the HTTP protocol.
B. An application server supports HT TP, TCP/IP, and many more protocols.
C. A web server does not support caching, clustering, and load balancing.
D. We can configure application servers to work as web servers.

I15. Which statement is not true when discussing serialization in E]JB?

A. Serialization means that a machine A’s object passed as part of a method call is flattened
into a byte stream that can be sent over a network connection.

B.

All EJB methods arguments and return values must be serializable.

C. Developers should make sure all objects passed as arguments implement java.io.Serializable.

D. Serialization is not possible in EJB.

Explain How the Enterprise JavaBeans Container Does Life Cycle
Management and Has the Capability to Increase Scalability

16. Which of the following are true about EJB components, containers, and application servers?

A.
B.

C.

D.

Components run in containers.
Containers are hosted by application servers.
Containers run in components.

Application servers run in containers.

17. Which objects would you find in an Enterprise JavaBeans (prior to EJB 3.0) directory service?

A
B.

An EJB home interface
An EJB component

18.

20.

21.

Self Test 4583

C. The EJB API

D. An EJB object interface

Containers and servers have the same function. What is the difference between an Enterprise
JavaBeans container and an Enterprise JavaBeans server?

A. Containers run within servers.

B. Servers run within containers.

C. Only one server can run in a container.

D. Only one container can run in a server.

Which of the following Enterprise JavaBeans (prior to EJB 3.0) CMP entity bean methods are
used by the container to alert the bean when its state is synchronized with the database?

A. ejbLoad()

B. ejbStore()

C. ejbCreate()

D. ejbActivate()

What happens if remove () is not invoked on a stateful Enterprise JavaBeans (prior to EJB 3.0)
session bean?

A. Nothing happens; the bean will last forever.

B. The container will not honor any more requests for the bean.

C. An exception occurs in the session bean.

D. The bean is removed after the session time-out has been reached.

With respect to stateful Enterprise JavaBeans (prior to EJB 3.0) session beans, which of the
following statements is not true?

A. Stateful session beans support instance pooling.

B. The life cycle of a stateful session bean is strictly connected with its client.

C. When the client removes the bean, it cannot be used by another client without being
reinitialized.

D. A stateful session bean has three states: Does not exist, Method Ready, and Passivated.

454 Chapter 7: Enterprise JavaBeans and the EJB Container Model

SELF TEST ANSWERS

List the Required Classes/Interfaces That Must Be Provided
for an Enterprise JavaBeans Component

I. ¥ Cis correct for Enterprise JavaBeans (prior to EJB 3.0). The bean or enterprise bean is not
the EJB object. It extends either the EntityBean interface or the SessionBean interface. It must
implement all the methods defined in the remote interface.

A, B, and D are incorrect because the EJBObject or remote object is a wrapper residing
inside the container, between the client and the code. It performs setup and shutdown tasks
pre— and post—bean call. The EJBObject is generated by the EJB server tools. The developer
must write another interface, called the remote interface or the EJBObject interface, that
extends the interface EJBObject and provides method signatures for all the business methods.
The server automatically generates a Java class that implements the remote interface. The home
interface is a factory object responsible for locating and creating instances of the bean. The
developer must code for the EJBHome interface (that is, extend the interface EJBHome), and
provide method signatures for all the desired create () and £ind () methods.

2. A is correct for Enterprise JavaBeans (EJB 3.x). The home interface is no longer required.
X B, C, and D are incorrect because the remote interface is no longer required, the bean
class does not have to implement the methods of any interface, especially a nonexistent one
(EJBInterface), and the XML deployment descriptor entries for an EJB are now optional.

Distinguish Between Session and Entity Beans

3. K Bis correct. Entity beans represent the data in a data store. Entity beans do not obviate the
JDBC API; they merely provide an alternative.
& A, C, and D are incorrect because in container-managed entity beans, when the bean is
created, the container automatically retrieves the data from the persistent storage (for example,
database) and assigns it to the bean’s object variables for the user to manipulate or use it. The
bean-managed entity bean for the class specifically has to obtain a database connection, retrieve
the row/column values, and assign them to the objects in the ejbLoad (), which will be called
by the container when it instantiates a bean object.

Recognize Appropriate Uses for Entity,
Stateful Session, and Stateless Session Beans

4. 4 C and D are correct. Both Enterprise JavaBeans and servlets may be used to upgrade CGI
programs to Java-based solutions.
A and B are incorrect. JMAPI and screen scrapers are not Java technology.

Self TestAnswers 4.8 8

Distinguish Between Stateful and Stateless Session Beans

5. M A is correct for Enterprise JavaBeans (prior to EJB 3.0). The Java Platform EE specification
requires that the home interface of a Stateless session bean must include a single create ()
method without any arguments.

& B, C, and D are all true statements.

State the Benefits and Costs of Container-Managed Persistence

6. 4 A is correct for Enterprise JavaBeans (prior to EJB 3.0). Yes, you can create CMP entity
beans without primary keys.
B, C, and D are incorrect because duplicate records may be entered in the table and the
findByPrimaryKey () method may return varying rows.

7. 4 A is correct for Enterprise JavaBeans (prior to EJB 3.0). You cannot change the primary key
field of an entity bean.
B and C are incorrect because, according to the EJB specification (prior to EJB 3.0), “Once
the primary key for an entity bean has been set, the Bean Provider must not attempt to change
it by use of set accessor methods on the primary key cmp-fields. The Bean provider should
therefore not expose the set accessor methods for the primary key cmp-fields in the component
interface of the entity bean.” You can affect an update of a primary key field by removing
(deleting) and then recreating (inserting) the bean.

State the Transactional Behavior in a Given Scenario for an Enterprise Bean
Method with a Specified Transactional Deployment Descriptor

8. M Cis correct for Enterprise JavaBeans (prior to E]B 3.0). The cost for a remote lookup on a
stateless session bean can be significant and can justify using a handle (SSB reference) to access
the bean.

&l A, B, and D are all true statements.

Given a Requirement Specification Detailing Security and Flexibility Needs,
Identify Architectures That Would Fulfill Those Requirements

9. A is correct. RMI is the most appropriate distributed object technology for pure Java
applications.
B, C, and D are incorrect because they can work with non-Java objects.

10. K Bis correct. CORBA is the most appropriate object technology for systems that use objects
written in different languages, and it supports a variety of operating system platforms.
A, C, and D Each Works with specific platforms.

456 Chapter 7: Enterprise JavaBeans and the EJB Container Model

A and B are correct. RMI uses stubs and skeletons.
C and D are incorrect because ORBs and IIOP are used with CORBA.

C is correct. Security is not a tier of a three-tiered architecture.
A, B, and D are tiers of a three-tiered architecture.

RN

B is correct. JTS provides an implementation of transaction management.
A, C, and D. These do not implement transaction management. JTA defines an API for
transaction management; it does not implement it.

KN ®HAN

C is correct. A web server understands and supports only the HTTP protocol, whereas an
application server supports HTTE, TCP/IP, and many more protocols.

& A, B, and D are incorrect because web servers and application servers both support features
such as caching, clustering, and load balancing. We can also configure an application server to
work as web server.

D is correct. Serialization is possible.

A, B, and C are incorrect because a good portion of EJB is the framework for underlying
remote method invocation. To allow one JVM space A, the ability to invoke methods remotely
on objects that are in JVM space B (objects running on another machine on the network),

all arguments of each method call and their results must be serializable (that is, classes must
implement java.io.Serializable).

Explain How the Enterprise JavaBeans Container Does Life Cycle
Management and Has the Capability to Increase Scalability

16.

4 A and B are correct because components run in containers that are hosted by application
servers.

&l C and D are not true. Containers do not run in components. Application servers do not run
in containers.

A is correct for Enterprise JavaBeans (prior to EJB 3.0). EJBHome interfaces are placed in
a directory service to facilitate access to an EJB component. The EJB home interface is used to
obtain access to an EJBObject interface.

& B, C, and D are incorrect because EJB components are never accessed directly, but only

through their EJBHome and EJBObject interfaces.

4 A is correct. Enterprise JavaBeans containers run within the context of servers.
B, C, and D are incorrect. Servers do not run within containers. A server does not run in a
container. Many containers can run in a server.

19.

20.

21.

Self Test Answers 487

M A and B are correct for Enterprise JavaBeans (prior to EJB 3.0). The container notifies
the bean using the ejbLoad () and ejbStore () methods. The ejbLoad () method alerts the
bean that its container-managed fields have just been populated with data from the database.
This gives the bean an opportunity to do any postprocessing before the data can be used by the
business methods. The ejbStore () method alerts the bean that its data is about to be written
to the database. This give the bean an opportunity to do any preprocessing to the fields before
they are written to the database.

& C and D have nothing to do with data persistence.

M D is correct for Enterprise JavaBeans (prior to EJB 3.0). A stateful session bean would be
put in an EXIST state until any of the following occurs:

Call remove () on the EJBObjects’ stub from the client

Call remove (handleToEJBObject) on EJBHome’s stub from the client

System exception in bean

Session time-out

Container failure
A, B, and C are not true.

M A is correct for Enterprise JavaBeans (prior to EJB 3.0). There is no clear indication

that a stateful session bean is or is not pooled, while for the stateless session bean there is a
specific paragraph that discusses the sequence for adding or removing a pooled bean instance.
Performance reasons may motivate some containers to pool stateful session beans and avoid the
overhead of recreating the entire object. In the black box, it may be pooled, hence the methods
ejbActivate () and ejbPassivate () are included.

& B, C, and D are all true statements.

