
CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8
Blind Folio 459

8
Messaging

CERTIFICATION OBJECTIVES

 8.01 Identify Scenarios That Are Appropriate
to Implementation Using Messaging

 8.02 List Benefits of Synchronous and
Asynchronous Messaging

 8.03 Identify Scenarios That Are More
Appropriate to Implementation Using
Asynchronous Messaging, Rather Than
Synchronous

 8.04 Identify Scenarios That Are More
Appropriate to Implementation Using
Synchronous Messaging, Rather Than
Asynchronous

 8.05 Identify Scenarios That Are Appropriate
to Implementation Using Messaging,
Enterprise JavaBeans Technology, or Both

✓ Two-Minute Drill

Q&A Self Test

ch08.indd 459 6/5/07 2:27:02 PM

460 Chapter 8: Messaging

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

This chapter is organized a little differently from other chapters in the book. Before we
look at the certification objectives, we are going to cover material that will help you
to understand the basics of messaging and the Java Message Service (JMS) API. This

 material provides a valuable and necessary context for the objectives, particularly if you are new
to messaging or JMS.

Messaging Basics
The main subject areas in the messaging arena with which you need to be familiar
are messages, message-oriented middleware, JMS, message types, and communication
modes. We’ll take a look at each of these subject areas before looking at the
scenarios that are appropriate for messaging.

Messages
A message is a unit of data that is sent from one process to another processes running
on either the same or a different machine. The data in the message can range from
simple text to a more complex data structure (such as a Java HashMap, which can
be used to store name value pairs). The only restriction is that the object must be
serializable so that it can be easily transformed into a sequence of bytes, transmitted
across a network, and then recreated into a copy of the original object.

Middleware
Companies that create large transaction processing solutions to serve their customers,
suppliers, or internal users swiftly become aware of the fact that a poorly designed
system will not be able to keep pace with an ever-increasing transaction volume. They
also quickly realize that just adding new hardware to the mix does not necessarily solve
the problem.

These ever-increasing-in-volume types of applications are created using a
three-tier instead of a two-tier approach. The existing two tiers, containing the
presentation tier and the persistence tier, are supplemented with a middle tier
that contains an application commonly known as middleware. Figure 8-1 depicts
these three tiers.

ch08.indd 460 6/5/07 2:27:02 PM

Messaging Basics 461

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

The middleware provides business solutions and services, such as these:

■ Database management The ability to access a database server such as DB/2,
Oracle, or SQL Server.

■ Messaging The ability to send and receive data between applications.

■ Naming The ability to find a resource by name instead of by location.

■ Security The ability to authenticate and authorize a user (note that this is
not solely a middle-tier responsibility).

The Java Platform Enterprise Edition (Java EE) APIs extend standard Java and
provide access to these services. The middleware is loosely coupled with the parts of
the application that are running in the presentation and persistence tiers. This loose
coupling improves the reliability of middleware by isolating it from failures that may
occur on either of the other tiers.

Message-Oriented Middleware
Message-oriented middleware, also known as MOM, is middleware that is used
for messaging. This middleware is the infrastructure that provides dependable
mechanisms that enable applications to create, send, and receive messages within
an enterprise environment.

The advantage of message-based applications is that they are event driven. They
exchange messages in a wide variety of formats and deliver messages quickly and reliably.

 FIGURE 8-1

Three tiers of an
application

ch08.indd 461 6/5/07 2:27:03 PM

462 Chapter 8: Messaging

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

Here is the most recent list of the enterprise messaging vendors available at the time
of writing:

■ Adobe

■ BEA Systems, Inc.

■ IBM

■ Oracle Corporation

■ Sonic Software

■ SpiritSoft, Inc.

■ Sun

■ TIBCO Software, Inc.

Communication Modes
Typically, applications use synchronous method calls for communication. In this type
of communication, the requester is blocked from processing any further commands
until the response (or a time-out) is received.

Synchronous communication is conducted between two active participants.
The receiver has to acknowledge receipt of the message before the sender can
proceed. From the sender’s perspective, this is known as a blocking call. As the
volume of traffic increases, more bandwidth is required, and the need for additional
hardware becomes critical. These implementations are more easily directly affected
by hardware, software, and network failures. When capacities are exceeded, the
opportunity to process the information is typically lost.

An example of synchronous communication is credit card authorization. When
your card is swiped through a card reader and the details of the purchase are entered,
the machine dials the authorization computer and waits for a response (approval or
denial of the purchase).

In asynchronous communication, the parties are peers and can send and receive
messages at will. Asynchronous communication does not require real-time
acknowledgment of a message; the requester can continue with other processing
once it sends the message. From the sender’s perspective, this is known as a non-
blocking call.

An example of asynchronous communication is e-mail. Even if your computer is
switched off or your e-mail client is not running, other people can still send e-mail
messages to you. When you start your e-mail client, you will be able to view the
e-mail messages that have accumulated in your inbox.

ch08.indd 462 6/5/07 2:27:03 PM

Identify Scenarios That Are Appropriate to Implementation Using Messaging 463

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

Message Models
JMS supports two basic message models known as publish/subscribe (pub/sub), in
which messages are published on a one or more-to-many basis, and point-to-point
(PTP), in which messages are sent on a one-to-one basis. The JMS specification
requires that the messaging vendor product support at least one of these models in
order to be compliant. An in-depth explanation of these two models appears later in
this chapter in the sections, “How the Point-to-Point Message Model Works” and
“How the Publish/Subscribe Message Model Works.”

CERTIFICATION OBJECTIVE 8.01

Identify Scenarios That Are Appropriate
to Implementation Using Messaging

The following table shows some example messaging implementations that can be
used as solutions to the given scenarios.

SCENARIO & SOLUTION
You need to call a validation application to approve
a customer’s credit card purchases. Which type
of messaging model is best used for this type of
communication, and what type of communication
works best in such a scenario?

Point-to-point model messaging is best because the
message only needs to be processed one time by the
validation system. Synchronous communication
works best because the results are required before the
customer is allowed to use the merchandise.

You are using an e-mail application, and you want
to send a message to several recipients and receive
replies from them all. Which type of communication
is best for this type of application?

Asynchronous communication is best suited to an
e-mail application because the recipients are not
required to be online for the sender to send the
message.

You need to broadcast information to many
recipients…

The publish/subscribe messaging model is best
because the broadcast capability is part of its design.

What messaging technology is most appropriate for
guaranteeing the delivery of a message to a single
recipient and to multiple recipients?

For the single recipient, use the point-to-point
messaging model with persistent delivery mode.
For multiple recipients, use the publish/subscribe
model with a persistent delivery mode and a durable
subscriber.

What messaging technology is most appropriate for
sending and receiving messages in a transactional way?

Use the point-to-point model. Create transacted
sessions and process messages with commit and
rollback methods.

ch08.indd 463 6/5/07 2:27:03 PM

464 Chapter 8: Messaging

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

CERTIFICATION OBJECTIVE 8.02

List Benef its of Synchronous and
Asynchronous Messaging

The benefits of synchronous messaging follow:

■ Because both parties must be active to participate in synchronous messaging,
if either party is not active, the message transaction cannot be completed.

■ A message must be acknowledged before proceeding to the next message. If it
is not acknowledged, the message cannot be considered processed.

The benefits of asynchronous messaging are as follows:

■ As the volume of traffic increases, asynchronous messaging is better able to
handle the spike in demand by keeping a backlog of requests in its queue and
then operating at maximum capacity over a period of time instead of needing
to service the requests instantaneously.

■ Asynchronous messaging is less affected by failures at the hardware, software,
and network levels.

■ When capacities are exceeded, information is not lost; instead, it is delayed.

CERTIFICATION OBJECTIVE 8.03

Identify Scenarios That Are More Appropriate to
Implementation Using Asynchronous Messaging,
Rather Than Synchronous

The following scenarios are more appropriate to implementation using asynchronous
messaging:

ch08.indd 464 6/5/07 2:27:03 PM

Java Message Service 465

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

CERTIFICATION OBJECTIVE 8.04

Identify Scenarios That Are More Appropriate
to Implementation Using Synchronous Messaging,
Rather Than Asynchronous

The following scenario is more appropriate to implementation using synchronous
messaging:

SCENARIO & SOLUTION
You are using a credit card authorization/user login
authentication system to send a message in which the
response to the message is required before the transaction can
be completed. Which type of messaging is most appropriate?

Synchronous messaging

Java Message Service
Message-oriented middleware products allow a developer to couple applications
loosely together. However, these products are proprietary and quite often complex and
expensive. The JMS provides a standard Java interface to these messaging middleware
products, freeing developers from having to write low-level infrastructure code, or
“plumbing,” and allowing solutions to be built quickly and easily. In short, the JMS
API provides a convenient and easy way to create, send, receive, and read an enterprise
messaging system’s messages using Java.

SCENARIO & SOLUTION
You need to implement a messaging system in which a response is not
required or not immediately required. Which messaging system is most
appropriate?

Asynchronous messaging

You need a high-volume transaction processing capability for sending
messages. Which type of messaging is best suited for this use?

Asynchronous messaging

You want a messaging system that uses your system hardware in an
efficient manner. Which type of messaging should be used?

Asynchronous messaging

ch08.indd 465 6/5/07 2:27:04 PM

466 Chapter 8: Messaging

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

JMS applications can use databases to provide the storage to support message
persistence that is necessary for guaranteeing delivery and order of messages. With
the arrival of the Enterprise JavaBeans (EJB) 2.0 specification, the EJB message-
driven bean (MDB) has been able to receive and process messages asynchronously
within the EJB container. These message-driven beans can be instantiated multiple
times to provide concurrent processing (and therefore faster throughput) of a
message queue.

JMS provides an interface from Java applications to messaging products. JMS
enables clients (or peers) to exchange data in the form of messages.

Following are the major advantages of using messaging for this exchange:

■ Easy integration of incompatible systems

■ Asynchronous communications

■ One-to-many communications

■ Guaranteed messaging

■ Transactional messaging

Table 8-1 shows the various components of a JMS messaging application.

Handling Exceptions
If a problem occurs, an application can be notified asynchronously via
the ExceptionListener interface. This interface identifies the JMS provider
problem details to the JMS client. To handle exceptions, the developer must
create a listening object that implements the ExceptionListener interface
and codes the onException (JMSException exception) method.

Component Function

JMS provider The host application on which the JMS application runs. The
JMS provider converses with JMS applications and supplies the
underlying mechanisms required for a messaging application.

Administered objects JMS objects that are created and maintained by an
administrator to be used by JMS clients.

Clients Applications that can send and/or receive messages.

Messages Bundles of information that are passed between applications.
Each application defines the types of information a message can
contain.

 TABLE 8-1

Components of
a JMS Messaging
Application

ch08.indd 466 6/5/07 2:27:04 PM

Java Message Service 467

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

The listening object must register itself with the JMS provider by calling the
setExceptionListener (listenerobject) method on the session.

Managing Sessions
Table 8-2 describes the details of a JMS session. Unless noted otherwise, this
information applies to both the publish/subscribe and point-to-point models.

Session Detail Description

Transacted session A related group of messages that are treated as a single work unit. The
transaction can be either committed or rolled back.
When a message sender uses a transacted session and calls the commit
method, the messages it produces are accepted for delivery. If it calls the
rollback method, the messages it produces are destroyed.
When a message receiver uses a transacted session and calls the commit
method, the messages it consumes are acknowledged. If it calls the rollback
method, the messages it consumes are recovered (not acknowledged).

Duplicate messages Clients send messages knowing that JMS will deliver them only once.
Therefore, the JMS provider must never deliver a message more than once or
deliver a copy of a message that has already been acknowledged. When a copy
of a message is delivered, the message header contains a redelivery flag field
that will be set, telling the client that this message may have been received
before but that, for whatever reason, the JMS server did not receive the client’s
acknowledgment of receipt. The redelivery flag is set by the JMS provider
application, usually as the result of a recovery operation.

Message acknowledgment If a JMS session is transacted, messages are acknowledged automatically by
the commit mechanism and recovered by the rollback mechanism. If a session
is not transacted, recovery must be handled manually, and messages are
acknowledged in one of three ways:
AUTO_ACKNOWLEDGE: For each message, the session automatically
acknowledges that a client has received the message when the client returns
from a call to receive a message or the MessageListener called by the session to
process the message returns successfully.
CLIENT_ACKNOWLEDGE: Client acknowledges the message by calling
the acknowledge method on the message. This also acknowledges all
messages that were processed during the session.
DUPS_OK_ACKNOWLEDGE: Because the session lazily acknowledges the
delivery of messages, duplication of messages may result if the JMS provider
fails. This mode should be used only if consumers can tolerate duplicate
messages. This mode reduces session overhead by minimizing the work the
session does to prevent duplicate messages.

 TABLE 8-2 JMS Session Details

ch08.indd 467 6/5/07 2:27:04 PM

468 Chapter 8: Messaging

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

Components of a JMS Message
JMS messages have a simple and flexible format that allows the sender to create
message formats used by non-JMS applications. The message can contain simple or
complex data types. A JMS message is made up of one required component, called
the header, and two optional components, called properties and a body. Figure 8-2
illustrates the structure of a JMS message.

Header Fields
The JMS message header includes a number of fields that contain information that
can be used to identify and route messages. Each of these header fields includes the
appropriate get/set methods. Most of the values are automatically set by the send or
publish method, but the client can set some of them.

Table 8-3 describes a few header fields. For a complete list, refer to the JMS
specification at the Sun web site (http://java.sun.com/products/jms).

Properties
Properties are values that can add to the information contained in header fields.
The JMS API provides some predefined property names that the JMS provider can
support (these properties have a JMS_ prefix).

The use of properties is optional. If you decide to use them, they can be of the
type boolean, byte, double, float, int, long, short, or String. They can be set by the
producer when the message is sent or by consumers upon receipt of the message.
These properties, along with the header field, can be used in conjunction with a
MessageSelector to filter and route messages based on the criteria specified.

Body
Five different message body formats, or types, allow a JMS client to send and receive
data in many different forms and provide compatibility with existing messaging
formats. Table 8-4 describes these message body formats.

 FIGURE 8-2

Structure of a
JMS message

ch08.indd 468 6/5/07 2:27:04 PM

Java Message Service 469

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

Header Field Description

JMSMessageID Unique identifier for every message.

JMSDeliveryMode PERSISTENT means that delivery of a message is guaranteed. It
will continue to exist until all subscribers who requested it receive
it. The message is delivered only once.
NON-PERSISTENT delivery means that every reasonable
attempt is made to deliver the message. But in the event of some
kind of system failure, the message may be lost. These messages
are delivered at most once.

JMSExpiration The length of time, in milliseconds, that a message will exist
before it is removed. Setting this to zero will prevent the message
from being removed.

JMSPriority Although it is not guaranteed, messages with a higher priority are
generally delivered before messages with a lower priority. Priority 0
is the lowest and 9 is the highest. Priority 4 is the default. Priorities
of 0–4 are grades of normal priority, and priorities of 5–9 are grades
of higher priority.

JMSRedelivered Notifies the client that it probably received this message at
least once earlier, but for whatever reason, the client did not
acknowledge its receipt. The JMS provider sets this flag, typically
during a recovery operation after a failure.

 TABLE 8-3

JMS Message
Headers

Message Body Format Content

ByteMessage A stream of uninterpreted bytes. This type of message
body should be used to match most legacy messages.

MapMessage A set of name/value pairs, similar to a HashMap. The
name part is a String object and the value is a Java
primitive type.

ObjectMessage A single serializable Java object or a collection of
objects.

StreamMessage A stream of Java primitive values that are entered and
read sequentially.

TextMessage Text formatted as a String. This form is well suited to
exchanging XML data.

 TABLE 8-4

JMS Message
Body Formats

ch08.indd 469 6/5/07 2:27:04 PM

470 Chapter 8: Messaging

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

Required Components of a JMS Application
Several main components are required by an application that uses JMS. The first
type is known as an administered object, because the administrator of the JMS
provider application creates them. These objects are placed in a Java Naming and
Directory Interface (JNDI) namespace and are administered from either a command-
line program, a GUI, or an HTML-based management console. Table 8-5 contains a
list of the main interfaces used by a JMS application.

JMS has two types of administered objects: Destination and ConnectionFactory. The
Destination object contains configuration information supplied by the JMS provider. The
client uses this object to specify a destination for messages that it wishes to send and/or a
location from which to receive messages. Two types of Destination interfaces can be used:
a Queue for the PTP model and a Topic for the pub/sub model. The ConnectionFactory is
obtained via a JNDI lookup, and it contains the connection configuration information,
or handle containing the IP address, enabling a JMS client application to create a
connection with the JMS server.

The other main components required by an application that uses JMS are the
Connection and the Session. The Connection component provides the physical
connection to the JMS server, and the Session component is responsible for sending
and receiving messages, managing transactions, and handling acknowledgments.
Figure 8-3 shows the relationships between the JMS components.

JMS Common Interfaces Publish-Subscribe Interfaces Point-To-Point Interfaces

Destination Topic Queue

ConnectionFactory TopicConnectionFactory QueueConnectionFactory

Connection TopicConnection QueueConnection

Session TopicSession QueueSession

MessageProducer TopicPublisher QueueSender

MessageConsumer TopicSubscriber QueueReceiver, QueueBrowser

 TABLE 8-5 JMS Interfaces

 FIGURE 8-3

JMS component
relationships

ch08.indd 470 6/5/07 2:27:05 PM

Java Message Service 471

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

Objects Used to Create and Receive Messages
in a JMS Client Application

Four objects are used to create and receive messages in a JMS client application:

■ MessageProducer

■ MessageConsumer

■ MessageListener

■ MessageSelector

MessageProducer
A MessageProducer is created by a session and used to send messages to a destination.
In the PTP model, the destination is called a queue. For the pub/sub model, the
destination is called a topic.

When creating a MessageProducer, you can also specify the default delivery mode
(setDeliveryMode). This can be either NON_PERSISTENT, which has a lower
overhead because the message is not logged, or PERSISTENT, which requires the
message to be logged, typically to a database. You can also specify the priority of the
message (setPriority). Priority 0 is the lowest priority and 9 is the highest priority
(4 is the default). Priorities of 0–4 are grades of normal priority, and priorities
of 5–9 are grades of higher priority. You can also specify the expiration time
(setTimeToLive), which is the amount of time, in milliseconds, that a message
should be available (set to 0 for unlimited time).

MessageConsumer
A MessageConsumer is created by a session and used to receive messages sent to the
destination. The messages can be received in one of two ways: synchronously, where
the client calls one of the receive methods (receive and receiveNoWait) after
the consumer is started, or asynchronously, where the client registers a MessageListener
and then starts the consumer.

The following code is an example of a synchronous connection. (Asynchronous
connections are covered in the next section.)

// start the connection
queueConn.start();
// receive the first message (wait for a message)
Message message = queueReceiver.receive();
// receive the next message (wait for a minute only)
Message message = queueReceiver.receive(60000);

ch08.indd 471 6/5/07 2:27:05 PM

472 Chapter 8: Messaging

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

All messages in JMS are exchanged asynchronously between the clients, in
that the producer does not receive acknowledgment from the consumer that
it has processed the message. As soon as the message is sent or published,
the producer is not blocked from sending or publishing another message
immediately.

MessageListener
A MessageListener is an interface that needs to be implemented to process messages in
an asynchronous fashion. To receive and process an asynchronous message, you must
do the following:

■ Create an object that implements the MessageListener interface. This includes
coding the onMessage() method.

■ Register the object with the session via the setMessageListener()
method.

■ Call the Start() method on the Connection object to begin receiving messages.

MessageSelector
A MessageSelector is a java.lang.String object specified by the client by the
createSubscriber() method. The MessageSelector filters out messages that do
not meet the criteria specified. The MessageSelector examines the message header
and properties fields and compares them to an expression contained in a string.
The syntax of this expression is based on a subset of SQL92 conditional expression

syntax. SQL92 is a standard published by
the SQL Standards committee formed by the
American National Standards Institute and the
International Standards Organization.

Table 8-6 shows some examples of these
expressions, and the PTP example that is
covered next shows a receiver that reads the
queue with and without a MessageSelector.

How the Point-to Point Message Model Works
The PTP message model sends messages to a receiver on a one-to-one basis. Figure 8-4
is a diagram showing the PTP model.

A message digest is a
digital fingerprint value that is computed
from a message, file, or byte stream.

ch08.indd 472 6/5/07 2:27:06 PM

Java Message Service 473

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

Examples of PTP implementation include the following:

■ Instant messaging

■ Receiving a transaction from another system

■ Sending an order to another system

■ Supply-chain processing

A message is delivered to a destination, known as a queue. Messages in a queue
are processed on a first-in, first-out (FIFO) basis. In other words, the subscriber is
guaranteed to get each message in the order in which it was sent. The first available
receiver processes each message once. This differs from the pub/sub model, in
which a single message can be published to one or more subscribers. In addition to
processing the next message in a queue, the receiver is also able to browse through
the messages in a queue (for example, to count them), but the receiver is unable to
process the messages in any other order than FIFO.

The following is a list of the steps and interface classes required for the PTP
model of communication:

 1. Obtain the QueueConnectionFactory object via a JNDI lookup (the JNDI name
will vary depending on the messaging vendor and site naming conventions).

Value Example

Arithmetic operators +, -, *, /

Comparison operators <, >, <=, >=, IS NULL, IS NOT NULL, BETWEEN

Expressions (Qty * Price) >= 12300
Day = 'Tuesday'
Month NOT IN ('June', 'July', 'August')
Description LIKE 'UNITED%'

Identifiers $name, JMSPriority, JMSXId, JMS_timeout

Literals 'string literal', 64, FALSE

Logical operators AND, OR, NOT

 TABLE 8-6

JMS Message
Selector
Examples

 FIGURE 8-4

Point-to-Point
(PTP) model

ch08.indd 473 6/5/07 2:27:07 PM

474 Chapter 8: Messaging

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

 2. Obtain a QueueConnection to the provider via the QueueConnectionFactory.
(If security is enabled, pass a user ID and password to the createQueue
Connection method.)

 3. Obtain a QueueSession with the provider via the QueueConnection.

 4. Obtain the queue via a JNDI lookup (the JNDI name will vary depending on
the messaging vendor and site naming conventions).

 5. Create either a QueueSender or a QueueReceiver via the QueueSession for the
required queue.

 6. Send and/or receive messages.

 7. Close the QueueConnection (this will also close the QueueSender or Queue
Receiver, and the QueueSession).

In the following example code, a JMS client sends a variety of TextMessages and
ObjectMessages to a queue. Some of these messages are marked with a property called
Interesting that is set to true. The sending client finishes up by sending text
messages containing the text finish to indicate to the receiver that it can stop
processing. The receiving JMS client is started with or without a command-line
argument, and it will process the messages in the queue according to this argument
setting.

The JNDI name for the connection factory and the queue will differ across
messaging vendor implementations and also depend on your site’s naming
conventions.

Here is the code for the sending client:

package javaee.architect;
import java.util.*;
import javax.naming.*;
import javax.jms.*;
public class PTPSend {
 private static final String THIS = "PTPSend";
 public static final String JMS_FACTORY = "myQueueConnectionFactory";
 public static final String QUEUE = "myQueue1";
 public static void main(String[] args) throws Exception {
 // get the initial context
 InitialContext ctx = new InitialContext(System.getProperties());
 // lookup the queue connection factory
 QueueConnectionFactory qconnf =
 (QueueConnectionFactory) ctx.lookup(JMS_FACTORY);

ch08.indd 474 6/5/07 2:27:07 PM

Java Message Service 475

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

 // create a queue connection
 QueueConnection qconn = qconnf.createQueueConnection();
 // create a queue session
 QueueSession qsess = qconn.createQueueSession(
 false, Session.AUTO_ACKNOWLEDGE);
 // lookup the queue object
 Queue queue = (Queue) ctx.lookup(QUEUE);
 // create a queue sender
 QueueSender qsend = qsess.createSender(queue);
 qsend.setDeliveryMode(DeliveryMode.NON_PERSISTENT);
 // start the connection
 qconn.start();
 // get the number of messages to send
 int numMsgs = (args.length > 0) ? new Integer(args[0]).intValue() : 10;
 // create messages
 Message msg = qsess.createMessage();
 TextMessage tmsg = qsess.createTextMessage();
 ObjectMessage omsg = qsess.createObjectMessage();
 Hashtable hTable = new Hashtable();
 log("Started.");
 // send the messages
 for (int i=0,j=0,k=0; i < numMsgs; i++) {
 j++;k++; //Increment counters
 if (k == 1) {
 tmsg.setText("News item #"+(i+1));
 // randomly set the Interesting property to true or false
 tmsg.setBooleanProperty("Interesting",((j==3)?true:false));
 log(tmsg.getText()+((j==3)?" (Interesting)":""));
 qsend.send(tmsg);
 } else {
 hTable.clear();
 hTable.put("symbol","ucny");
 hTable.put("bid",new String(""+(100+i)));
 hTable.put("ask",new String(""+(100+i+1)));
 omsg.setObject(hTable);
 // randomly set the Interesting property to true or false
 omsg.setBooleanProperty("Interesting",((j==3)?true:false));
 log(hTable+((j==3)?" (Interesting)":""));
 qsend.send(omsg);
 k=0; //reset counter
 }
 if (j==3) j=0;
 }
 // create a couple of close messages
 tmsg.setText("***CLOSE***");

ch08.indd 475 6/5/07 2:27:07 PM

476 Chapter 8: Messaging

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

 // set the Interesting property to true on this one
 tmsg.setBooleanProperty("Interesting", true);
 log(tmsg.getText()+" (Interesting)");
 qsend.send(tmsg);
 // set the Interesting property to false on this one
 tmsg.setBooleanProperty("Interesting", false);
 log(tmsg.getText());
 qsend.send(tmsg);
 // close up
 qsend.close();
 qsess.close();
 qconn.close();
 ctx.close();
 log("Finished.");

 }
 private static void log(String msg) {
 System.out.println(new java.util.Date()+" "+THIS+" "+msg);
 }
}

Here is the code for the receiving client. Note that the receiving client has been
coded by implementing a message listener:

package javaee.architect;
import javax.naming.*;
import javax.jms.*;
public class PTPReceive implements MessageListener {
 private static final String THIS = "PTPReceive";
 public static final String JMS_FACTORY = "myQueueConnectionFactory";
 public static final String QUEUE = "myQueue1";
 private InitialContext ctx;
 protected QueueConnectionFactory qconnf;
 protected QueueConnection qconn;
 protected QueueSession qsess;
 protected Queue queue;
 protected QueueReceiver qrecv;
 private boolean quit = false;
 public boolean ready;
 public static void main(String[] args) throws Exception {
 // instantiate the receiver, if there is no argument
 // pass a null to the constructor.
 PTPReceive rec = new PTPReceive(args.length>0?args[0]:null);
 // if constructor code does not initialize, we exit.
 if (!rec.ready) {
 log("Not ready to receive messages.");

ch08.indd 476 6/5/07 2:27:07 PM

Java Message Service 477

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

 System.exit(-1);
 }
 log("Started"+(args.length>0?
 " with filter ("+args[0]+").":" with no filter."));
 // Start the thread.
 rec.run();
 // We're done, so clean up.
 rec.close();
 log("Finished.");
 }
 public PTPReceive(String filter) {
 try {
 // get the initial context
 ctx = new InitialContext(System.getProperties());
 // lookup the queue connection factory
 qconnf = (QueueConnectionFactory) ctx.lookup(JMS_FACTORY);
 // create a queue connection
 qconn = qconnf.createQueueConnection();
 // create a queue session
 qsess = qconn.createQueueSession(false, Session.AUTO_ACKNOWLEDGE);
 // lookup the queue object
 queue = (Queue) ctx.lookup(QUEUE);
 // create a queue receiver
 if (filter == null)
 // this is a queue receiver WITHOUT a filter
 qrecv = qsess.createReceiver(queue);
 else
 // this is a queue receiver WITH a filter
 qrecv = qsess.createReceiver(queue, filter);
 // set the message listener
 qrecv.setMessageListener (this);
 // start the connection
 qconn.start();
 ready = true;
 } catch (Exception e) {
 ready = false;
 log("Initialization failed. "+e);
 close();
 }
 }
 /*
 * The following loop suspends the main thread
 * until the quit boolean is set to true by the
 * onMessage method. While the main thread is
 * suspended the JMS provider calls the onMessage

ch08.indd 477 6/5/07 2:27:07 PM

478 Chapter 8: Messaging

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

 * method with its thread.
 */
 public void run() {
 if (!ready) return;
 synchronized (this) {
 while (!quit) {
 try { wait(); }
 catch (InterruptedException ie) { }
 }
 }
 }
 public void onMessage (Message msg) {
 String text;
 try
 {
 if(msg instanceof ObjectMessage) {
 // we received an object message
 ObjectMessage objmsg = (ObjectMessage)msg;
 log(objmsg.getObject().toString());
 } else if(msg instanceof TextMessage) {
 // we received a text message
 text = ((TextMessage) msg).getText();
 log(text);
 if (text.equals("***CLOSE***")) {
 // we've received the close down message
 // so set the quit boolean to true and
 // wake up all threads that are waiting on
 // this object's monitor (i.e. the main thread)
 synchronized(this) {
 quit = true;
 this.notifyAll();
 }
 }
 } else log("message type not supported");
 } catch (JMSException e) {
 e.printStackTrace ();
 }
 }
 public void close () {
 try { if (qrecv != null) qrecv.close();
 } catch (Exception e) { log("Can't close queue receiver. "+e); }
 try { if (qsess != null) qsess.close();
 } catch (Exception e) { log("Can't close session. "+e); }
 try { if (qconn != null) qconn.close();
 } catch (Exception e) { log("Can't close connection. "+e); }
 try { if (ctx != null) ctx.close();

ch08.indd 478 6/5/07 2:27:07 PM

Java Message Service 479

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

 } catch (Exception e) { log("Can't close context. "+e); }
 }
 private static void log(String msg) {
 System.out.println(new java.util.Date()+" "+THIS+" "+msg);
 }
}

When executed, the following output is from the sending client:

Sun Oct 01 17:28:48 EDT 2006 PTPSend Started.
Sun Oct 01 17:28:48 EDT 2006 PTPSend News item #1
Sun Oct 01 17:28:48 EDT 2006 PTPSend {bid=101, symbol=ucny, ask=102}
Sun Oct 01 17:28:48 EDT 2006 PTPSend News item #3 (Interesting)
Sun Oct 01 17:28:48 EDT 2006 PTPSend {bid=103, symbol=ucny, ask=104}
Sun Oct 01 17:28:48 EDT 2006 PTPSend News item #5
Sun Oct 01 17:28:48 EDT 2006 PTPSend {bid=105, symbol=ucny, ask=106} (Interesting)
Sun Oct 01 17:28:48 EDT 2006 PTPSend News item #7
Sun Oct 01 17:28:48 EDT 2006 PTPSend {bid=107, symbol=ucny, ask=108}
Sun Oct 01 17:28:48 EDT 2006 PTPSend News item #9 (Interesting)
Sun Oct 01 17:28:48 EDT 2006 PTPSend {bid=109, symbol=ucny, ask=110}
Sun Oct 01 17:28:48 EDT 2006 PTPSend ***CLOSE*** (Interesting)
Sun Oct 01 17:28:48 EDT 2006 PTPSend ***CLOSE***
Sun Oct 01 17:28:48 EDT 2006 PTPSend Finished.

When executed, here is the output from the receiving client when it is executed
with an argument Interesting=true, which becomes the message filter, and
when it is executed with no argument, which means it must read all items in the
queue:

Sun Oct 01 17:28:56 EDT 2006 PTPReceive Started with filter (Interesting=true).
Sun Oct 01 17:28:57 EDT 2006 PTPReceive News item #3
Sun Oct 01 17:28:57 EDT 2006 PTPReceive {ask=106, symbol=ucny, bid=105}
Sun Oct 01 17:28:57 EDT 2006 PTPReceive News item #9
Sun Oct 01 17:28:57 EDT 2006 PTPReceive ***CLOSE***
Sun Oct 01 17:28:57 EDT 2006 PTPReceive Finished.

Sun Oct 01 17:29:02 EDT 2006 PTPReceive Started with no filter.
Sun Oct 01 17:29:02 EDT 2006 PTPReceive News item #1
Sun Oct 01 17:29:02 EDT 2006 PTPReceive {ask=102, symbol=ucny, bid=101}
Sun Oct 01 17:29:02 EDT 2006 PTPReceive {ask=104, symbol=ucny, bid=103}
Sun Oct 01 17:29:02 EDT 2006 PTPReceive News item #5
Sun Oct 01 17:29:02 EDT 2006 PTPReceive News item #7
Sun Oct 01 17:29:02 EDT 2006 PTPReceive {ask=108, symbol=ucny, bid=107}
Sun Oct 01 17:29:02 EDT 2006 PTPReceive {ask=110, symbol=ucny, bid=109}
Sun Oct 01 17:29:02 EDT 2006 PTPReceive ***CLOSE***
Sun Oct 01 17:29:02 EDT 2006 PTPReceive Finished.

ch08.indd 479 6/5/07 2:27:08 PM

480 Chapter 8: Messaging

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

How the Publish/Subscribe Message Model Works
The pub/sub message model allows an application to publish messages on a one-to-
many or a many-to-many basis. Figure 8-5 is a diagram depicting the pub/sub model.

Following are some examples of a pub/sub implementation:

■ Sending sales forecasts to various people in an organization

■ Sending news items to interested parties

■ Sending stock prices to traders on the trading floor

Messages are published to a topic (or subject). One or more publishers can publish
messages to the same topic. Any client application that wants to receive messages on
this topic must first subscribe to the topic. Multiple clients can subscribe to the topic
and subsequently receive a copy of the message.

In the nondurable subscription model, the subscriber must be connected at the
time a message is published to receive that message. If no subscribers are online, the
messages will be published and destroyed soon thereafter. The subscriber can also
use a durable subscription model, in which case the messages will be received when
the subscriber is reconnected to the topic. Durable subscriptions come with greater
overhead because they require additional resources to persist the messages until they
can be delivered to all of the known durable subscribers.

The following is a list of the steps and interface classes required for the pub/sub
model of communication:

 1. Obtain the TopicConnectionFactory object via a JNDI lookup (the JNDI name
will vary depending on the messaging vendor and site naming conventions).

 2. Obtain a TopicConnection to the provider via the TopicConnectionFactory.
(If security is enabled, pass a user ID and password to the createTopic
Connection method.)

 FIGURE 8-5

Publish/subscribe
(pub/sub) model

ch08.indd 480 6/5/07 2:27:08 PM

Java Message Service 481

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

 3. Obtain a TopicSession with the provider via the TopicConnection.

 4. Obtain the topic via a JNDI lookup. (The JNDI name will vary depending on
the messaging vendor and site naming conventions.)

 5. Create either a TopicPublisher or a TopicSubscriber via the TopicSession for the
required topic.

 6. Publish and/or receive messages.

 7. Close the TopicPublisher or TopicSubscriber, the session, and the connection.

In this example, the publishing client publishes text and object messages to the
topic. The subscribing client receives the text and object messages from the topic.
The text messages are displayed, and the object messages are executed. Note that
the JNDI name for the connection factory and the queue will differ according to the
messaging vendor and site naming convention.

Here is the code for the publishing client:

package javaee.architect;
import java.io.*;
import java.util.*;
import javax.naming.*;
import javax.jms.*;
public class PSPublish {
 private static final String THIS = "PSPublish";
 public static final String JMS_FACTORY = "myTopicConnectionFactory";
 public static final String TOPIC = "myTopic1";
 public static void main(String[] args) throws Exception {
 // get the initial context
 InitialContext ctx = new InitialContext(System.getProperties());
 // lookup the topic connection factory
 TopicConnectionFactory tconnf =
 (TopicConnectionFactory) ctx.lookup(JMS_FACTORY);
 // create a topic connection
 TopicConnection tconn = tconnf.createTopicConnection();
 //tconn.setClientID(THIS);
 // create a topic session
 TopicSession tsess = tconn.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);
 // lookup the topic object
 Topic topic = (Topic) ctx.lookup(TOPIC);
 // create a topic publisher
 TopicPublisher tpublish = tsess.createPublisher(topic);
 tpublish.setDeliveryMode(DeliveryMode.PERSISTENT);
 // start the connection

ch08.indd 481 6/5/07 2:27:08 PM

482 Chapter 8: Messaging

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

 tconn.start();
 log("Started.");
 ObjectMessage omsg = tsess.createObjectMessage();
 TextMessage tmsg = tsess.createTextMessage();
 publishText(tpublish, tmsg, "Market open.");
 publishObject(tpublish, omsg, new PSOrder("BUY", "200", "UCNY"));
 publishObject(tpublish, omsg, new PSOrder("BUY", "100", "UCUS"));
 publishObject(tpublish, omsg, new PSOrder("SELL", "50", "UC"));
 publishText(tpublish, tmsg, "Market closed.");
 publishText(tpublish, tmsg, "After hours market open.");
 publishObject(tpublish, omsg, new PSOrder("SELL", "25", "UC"));
 publishObject(tpublish, omsg, new PSOrder("BUY", "150", "UCUS"));
 publishText(tpublish, tmsg, "After hours market closed.");
 publishText(tpublish, tmsg, "***CLOSE***"); // Close message
 // close up
 tpublish.close();
 tsess.close();
 tconn.close();
 ctx.close();
 log("Finished.");
 }
 public static void publishObject(TopicPublisher tpublish,
 ObjectMessage omsg, Serializable obj) {
 try {
 log(obj.toString());
 omsg.setObject(obj);
 tpublish.publish(omsg);
 sleep(1000);
 } catch (Exception e) { log("Can't publish message: " + e); }
 }
 public static void publishText(TopicPublisher tpublish,
 TextMessage tmsg, String s) {
 try {
 log(s.toString());
 tmsg.setText(s);
 tpublish.publish(tmsg);
 sleep(1000);
 } catch (Exception e) { log("Can't publish message: " + e); }
 }
 private static void log(String msg) {
 System.out.println(new java.util.Date()+" "+THIS+" "+msg);
 }
 private static void sleep(int m) {
 try { Thread.currentThread().sleep(m);
 } catch (Exception e) {}
 }
}

ch08.indd 482 6/5/07 2:27:08 PM

Java Message Service 483

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

Here is the code for the object that is published:

package javaee.architect;
import java.io.Serializable;
// The object implements 'Runnable' so that the receiver
// can call the run() method. This is not a typical use
// of messaging nor of runnable objects.
public class PSOrder implements Runnable, Serializable {
 String side;
 String security;
 String quantity;
 /* constructor methods */
 public PSOrder() {
 setSide("<side not set>");
 setQuantity("<quantity not set>");
 setSecurity("<security not set>");
 }
 public PSOrder(String t, String q, String s) {
 setSide(t);
 setQuantity(q);
 setSecurity(s);
 }
 /* run method */
 public void run() {
 System.out.println(new java.util.Date()+" PSOrder "+this.toString());
 }
 /* toString method */
 public String toString() {
 return getSide()+" "+getQuantity()+" "+getSecurity();
 }
 /* get/set methods */
 public String getSide() {
 return side;
 }
 public void setSide(String t) {
 side = t;
 }
 public String getSecurity() {
 return security;
 }
 public void setSecurity(String s) {
 security = s;
 }

ch08.indd 483 6/5/07 2:27:08 PM

484 Chapter 8: Messaging

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

 public String getQuantity() {
 return quantity;
 }
 public void setQuantity(String s) {
 quantity = s;
 }
}

Here is the code for the subscribing client. Note that the subscribing client has
been coded by implementing a message listener:

package javaee.architect;
import java.util.*;
import javax.naming.*;
import javax.jms.*;
public class PSSubscribe implements MessageListener {
 private static String THIS = "PSSubscribe";
 public static final String JMS_FACTORY = "myTopicConnectionFactory";
 public static final String TOPIC = "myTopic1";
 private InitialContext ctx;
 private TopicConnectionFactory tconnf;
 private TopicConnection tconn;
 private TopicSession tsess;
 private TopicSubscriber tsubscribe;
 private Topic topic;
 private boolean quit = false;
 public boolean ready;
 public static void main(String[] args) {
 PSSubscribe sub = new PSSubscribe(args.length>0?args[0]:"");
 if (!sub.ready) {
 log("Not ready to subscribe to messages.");
 System.exit(-1);
 }
 log("Started.");
 sub.run();
 sub.close();
 log("Finished.");
 }
 public PSSubscribe(String durable) {
 THIS = THIS+durable;
 try {
 ctx = new InitialContext(System.getProperties());
 tconnf = (TopicConnectionFactory) ctx.lookup(JMS_FACTORY);
 tconn = tconnf.createTopicConnection();
 tconn.setClientID(THIS);

ch08.indd 484 6/5/07 2:27:09 PM

Java Message Service 485

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

 tsess = tconn.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
 topic = (Topic) ctx.lookup(TOPIC);
 // Create a durable or non-durable based on argument
 if (durable.equalsIgnoreCase("durable"))
 tsubscribe = tsess.createDurableSubscriber(topic,
 tconn.getClientID());
 else
 tsubscribe = tsess.createSubscriber(topic);
 tsubscribe.setMessageListener(this);
 // start the connection
 tconn.start();
 ready = true;
 } catch (Exception e) {
 ready = false;
 log("Initialization failed. "+e);
 close();
 }
 }
 public void run() {
 if (!ready) return;
 synchronized (this) {
 while (!quit) {
 try { wait(); }
 catch (InterruptedException ie) { }
 }
 }
 }
 public void onMessage(Message msg) {
 if (!ready) return;
 // Declare a reference for the 'Runnable' object messages
 Runnable obj = null;
 try {
 if (msg instanceof ObjectMessage) {
 try {
 obj = (Runnable) ((ObjectMessage) msg).getObject();
 } catch (Exception e) {
 log("Message is not an object!");
 return;
 }
 // The object messages implement 'Runnable'. This is not
 // a typical use of messaging nor of runnable objects.
 try { if (obj != null) { obj.run(); }
 } catch (Exception e) {
 log("Can't run the object.");
 }

ch08.indd 485 6/5/07 2:27:09 PM

486 Chapter 8: Messaging

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

 } else if (msg instanceof TextMessage) {
 String text = ((TextMessage) msg).getText();
 log(text);
 if (text.equals("***CLOSE***")) {
 synchronized (this) {
 quit = true;
 notifyAll();
 }
 }
 } else {
 log("Message must be ObjectMessage or TextMessage.");
 log(msg.toString());
 }
 } catch (Exception e) {
 log("Can't receive message: " + e);
 }
 }
 public void close() {
 try {
 if (tsubscribe != null) tsubscribe.close();
 if (tsess != null) tsess.close();
 if (tconn != null) tconn.close();
 if (ctx != null) ctx.close();
 } catch (Exception e) {
 log("Can't close up. "+e);
 }
 }
 private static void log(String msg) {
 System.out.println(new java.util.Date()+" "+THIS+" "+msg);
 }
}

When executed, here is the output from the publishing client:

Sun Oct 01 17:25:25 EDT 2006 PSPublish Started.
Sun Oct 01 17:25:25 EDT 2006 PSPublish Market open.
Sun Oct 01 17:25:27 EDT 2006 PSPublish BUY 200 UCNY
Sun Oct 01 17:25:28 EDT 2006 PSPublish BUY 100 UCUS
Sun Oct 01 17:25:29 EDT 2006 PSPublish SELL 50 UC
Sun Oct 01 17:25:30 EDT 2006 PSPublish Market closed.
Sun Oct 01 17:25:31 EDT 2006 PSPublish After hours market open.
Sun Oct 01 17:25:32 EDT 2006 PSPublish SELL 25 UC
Sun Oct 01 17:25:34 EDT 2006 PSPublish BUY 150 UCUS
Sun Oct 01 17:25:35 EDT 2006 PSPublish After hours market closed.
Sun Oct 01 17:25:36 EDT 2006 PSPublish ***CLOSE***
Sun Oct 01 17:25:37 EDT 2006 PSPublish Finished.

ch08.indd 486 6/5/07 2:27:09 PM

Java Message Service 487

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

When executed, here is the output from the subscribing client:

Sun Oct 01 17:25:18 EDT 2006 PSSubscribe Started.
Sun Oct 01 17:25:26 EDT 2006 PSSubscribe Market open.
Sun Oct 01 17:25:27 EDT 2006 PSOrder BUY 200 UCNY
Sun Oct 01 17:25:28 EDT 2006 PSOrder BUY 100 UCUS
Sun Oct 01 17:25:29 EDT 2006 PSOrder SELL 50 UC
Sun Oct 01 17:25:30 EDT 2006 PSSubscribe Market closed.
Sun Oct 01 17:25:31 EDT 2006 PSSubscribe After hours market open.
Sun Oct 01 17:25:33 EDT 2006 PSOrder SELL 25 UC
Sun Oct 01 17:25:34 EDT 2006 PSOrder BUY 150 UCUS
Sun Oct 01 17:25:35 EDT 2006 PSSubscribe After hours market closed.
Sun Oct 01 17:25:36 EDT 2006 PSSubscribe ***CLOSE***
Sun Oct 01 17:25:36 EDT 2006 PSSubscribe Finished.

Message-Driven Bean (MDB) Component
The message-driven bean (MDB) is a stateless component that is invoked by the
EJB container when a JMS message arrives for the destination (topic or queue) for
which the bean has registered. An MDB is a message consumer, and like other JMS
message consumers, it receives messages from a destination because it implements
the javax.jms.MessageListener interface. It is then able to perform business logic based
on the message contents.

MDBs receive JMS messages from clients in the same manner as any other JMS
servicing object. A client that writes to a destination has no knowledge of the fact
that an MDB is acting as the message consumer. MDBs were created to have an EJB
that can be asynchronously invoked to process messages, while receiving all of the
same EJB container services that are provided to session and entity beans.

When a message is sent to a destination, the EJB container ensures that the MDB
registered to process the destination exists. If the MDB needs to be instantiated,
the container will do this. The onMessage() method of the bean is called, and
the message is passed in as an argument. MDBs and stateless session EJBs are similar
in the sense that they do not maintain state across invocations. MDBs differ from
stateless session beans and entity beans in that they have no home or remote
interface. Internal or external clients cannot directly access the MDBs methods.
Clients can only indirectly interact with MDBs by sending a message to the
destination.

The EJB deployer is the person responsible for assigning MDBs to a destination at
deployment time. The EJB container provides the service of creating and removing
MDB instances as necessary or as specified at deployment time.

ch08.indd 487 6/5/07 2:27:09 PM

488 Chapter 8: Messaging

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

EJB Container and Message-Driven Beans
The EJB container allows for the concurrent consumption of messages and provides
support for distributed transactions. This means that database updates, message
processing, and connections to Enterprise Information Systems using the Java EE
Connector Architecture (JCA) can all participate in the same transaction context.

The EJB container or application server provides many services for MDBs, so the
bean developer can concentrate on implementing business logic. Here are some of
the services provided by the EJB container:

■ Handles all communication for JMS messages

■ Checks the pool of available bean instances to see which MDB is to be used

■ Enables the propagation of a security context by associating the role specified
in the deployment descriptor to the appropriate execution thread

■ Creates and associates a transactional context if one is specified in the
deployment descriptor

■ Passes the message as an argument to the onMessage() method of the
appropriate MDB instance

■ Reallocates MDB resources to a pool of available instances

The EJB container also provides the following services based on the entries in the
deployment descriptor file.

MDB Life cycle Management The life cycle of an MDB corresponds to the life
span of the EJB container in which it is deployed. Since MDBs are stateless, bean
instances are usually pooled by the EJB container and retrieved by the container
when a message is written to the destination for which it is a message consumer.

The container creates a bean instance by invoking the newInstance() method
of the bean instance class object. After the instance is created, the container creates
an instance of javax.ejb.MessageDrivenContext and passes it to the bean instance via
the setMessageDrivenContext() method. The ejbCreate() method is also
called on the bean instance before it is placed in the pool and is then made available
to process messages.

Exception Handling MDBs may not throw application exceptions while
processing messages. This means that the only exceptions that may be thrown by
a MDB are runtime exceptions indicating a system-level error. The container will

ch08.indd 488 6/5/07 2:27:09 PM

Java Message Service 489

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

handle these exceptions by removing the bean instance and rolling back any trans-
action started by the bean instance or by the container.

Threading and Concurrency An MDB instance is assumed to execute in a
single thread of control. The EJB container will guarantee this behavior. In addition,
the EJB container may provide a mode of operation that allows multiple messages to
be handled concurrently by separate bean instances. This deployment option utilizes
expert level classes that are defined in the JMS specification. The JMS provider
is not required to provide implementations for these classes, so the EJB container
may not be able to take advantage of them with every JMS implementation. Using
these classes involves a trade-off between performance and serialization of messages
delivered to the server.

Message Acknowledgment The container always handles message acknowl-
edgment for MDBs. It is prohibited for the bean to use any message acknowledgment
methods—for example, acknowledge() or rollback(). The message acknowl-
edgment can be set to either AUTO_ACKNOWLEDGE, allowing the message
to be delivered once, or DUPS_OK_ACKNOWLEDGE, allowing the delivery of
duplicate messages after a failure. Note that if a bean has the Required transaction
attribute, it will process the onMessage() method inside a transaction.

Because the MDB has no client, no security principal is propagated to the EJB
container on receipt of a message. The EJB framework provides facilities for a bean
method to execute in a role specified in the deployment descriptor. As a result,
the MDB can be configured to execute within a security context that can then be
propagated to other EJBs that are called during the processing of a message.

Example MDB Code
In the following example code, the publishing client publishes simple messages to
a topic. The subscribing MDB client receives the simple messages from the topic.
Note that the JNDI name for the connection factory and the topic will differ per the
messaging vendor and site naming convention.

Here is the code for the publishing client:

package javaee.architect;
import javax.naming.*;
import javax.jms.*;
public class PSMDBPublish {
 private static final String THIS = "PSMDBPublish";
 public static final String JMS_FACTORY = "myTopicConnectionFactory";

ch08.indd 489 6/5/07 2:27:09 PM

490 Chapter 8: Messaging

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

 public static final String TOPIC = "myTopic3";
 public static void main(String[] args) throws Exception {
 // get the initial context
 InitialContext ctx = new InitialContext(System.getProperties());
 // lookup the topic connection factory
 TopicConnectionFactory tconnf =
 (TopicConnectionFactory) ctx.lookup(JMS_FACTORY);
 // create a topic connection
 TopicConnection tconn = tconnf.createTopicConnection();
 // create a topic session
 TopicSession tsess = tconn.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);
 // lookup the topic object
 Topic topic = (Topic) ctx.lookup(TOPIC);
 // create a topic publisher
 TopicPublisher tpublish = tsess.createPublisher(topic);
 tpublish.setDeliveryMode(DeliveryMode.NON_PERSISTENT);
 // start the connection
 tconn.start();
 log("Started.");
 // create a simple message
 TextMessage tmsg = tsess.createTextMessage();
 // publish the messages
 tmsg.setText("Market open.");
 tpublish.publish(tmsg);
 log(tmsg.getText());
 tmsg.setText("Market closed.");
 tpublish.publish(tmsg);
 log(tmsg.getText());
 tmsg.setText("After hours market open.");
 tpublish.publish(tmsg);
 log(tmsg.getText());
 tmsg.setText("After hours market closed.");
 tpublish.publish(tmsg);
 log(tmsg.getText());
 // close up
 tpublish.close();
 tsess.close();
 tconn.close();
 ctx.close();
 log("Finished.");
 }
 private static void log(String msg) {
 System.out.println(new java.util.Date()+" "+THIS+" "+msg);
 }
}

ch08.indd 490 6/5/07 2:27:09 PM

Java Message Service 491

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

Here is the code for the subscribing MDB client:

package javaee.architect;
import javax.ejb.*;
import javax.jms.*;
public class PSMDBSubscribe implements MessageDrivenBean, MessageListener {
 private static final String THIS = "PSMDBSubscribe";
 protected MessageDrivenContext ctx;
 // Associate bean instance with a particular context.
 public void setMessageDrivenContext(MessageDrivenContext ctx) {
 this.ctx = ctx;
 }
 // When the bean is initialized.
 public void ejbCreate() { log("ejbCreate()"); }
 // When the bean is destroyed.
 public void ejbRemove() { log("ejbRemove()"); }
 // main business method.
 public void onMessage(Message msg) {
 try {
 // This class processes TextMessages.
 if (msg instanceof TextMessage) {
 log(((TextMessage) msg).getText());
 }
 } catch (Exception e) { log("Can't receive message: " + e); }
 }
 private void log(String msg) {
 System.out.println(new java.util.Date()+" "+THIS+" "+msg);
 }
}

Here is the deployment descriptor for the subscribing MDB client:

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD
Enterprise JavaBeans 2.0//EN"
"http://java.sun.com/dtd/ejb-jar_2_0.dtd">
<ejb-jar>
 <enterprise-beans>
 <message-driven>
 <ejb-name>PSMDB</ejb-name>
 <ejb-class>javaee.architect.PSMDBSubscribe</ejb-class>
 <transaction-type>Container</transaction-type>
 <message-driven-destination>
 <destination-type>javax.jms.Topic</destination-type>
 </message-driven-destination>
 </message-driven>
 </enterprise-beans>
</ejb-jar>

ch08.indd 491 6/5/07 2:27:09 PM

492 Chapter 8: Messaging

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

Here is the WebLogic 8.1 deployment descriptor for the subscribing MDB client:

<?xml version="1.0"?>
<!DOCTYPE weblogic-ejb-jar PUBLIC "-//BEA Systems, Inc.//DTD WebLogic 8.1.0
EJB//EN" "http://www.bea.com/servers/wls810/dtd/weblogic-ejb-jar.dtd">
<weblogic-ejb-jar>
 <weblogic-enterprise-bean>
 <ejb-name>PSMDB</ejb-name>
 <message-driven-descriptor>
 <pool>
 <max-beans-in-free-pool>10</max-beans-in-free-pool>
 <initial-beans-in-free-pool>2</initial-beans-in-free-pool>
 </pool>
 <destination-jndi-name>myTopic3</destination-jndi-name>
 </message-driven-descriptor>
 <jndi-name>PSMDB</jndi-name>
 </weblogic-enterprise-bean>
</weblogic-ejb-jar>

When executed, here is the output from the publishing client:

Sun Oct 01 17:19:23 EDT 2006 PSMDBPublish Started.
Sun Oct 01 17:19:23 EDT 2006 PSMDBPublish Market open.
Sun Oct 01 17:19:23 EDT 2006 PSMDBPublish Market closed.
Sun Oct 01 17:19:23 EDT 2006 PSMDBPublish After hours market open.
Sun Oct 01 17:19:23 EDT 2006 PSMDBPublish After hours market closed.
Sun Oct 01 17:19:23 EDT 2006 PSMDBPublish Finished.

When executed, here is the output from the subscribing MDB client:

Sun Oct 01 17:19:23 EDT 2006 PSMDBSubscribe Market open.
Sun Oct 01 17:19:23 EDT 2006 PSMDBSubscribe Market closed.
Sun Oct 01 17:19:23 EDT 2006 PSMDBSubscribe After hours market open.
Sun Oct 01 17:19:23 EDT 2006 PSMDBSubscribe After hours market closed.

EJB 2.1 Message Driven Beans
Everything described to this point for message-driven beans (MDB) is prior to the
EJB 2.1 specification. With the EJB 2.1 specification, MDBs are no longer restricted
to simply supporting JMS messages. In fact, they can be defined to handle any kind
of messaging system from any vendor. As such, an MDB can now implement any
interface, with the only requirements of the EJB 2.1 vendors being that new types
of MDBs implement the javax.ejb.MessageDrivenBean interface and adhere to the
message-driven bean’s life cycle. In addition, EJB 2.1 vendors must also support any
MDB type that is based on the Java EE Connector Architecture (JCA) 1.5 (See
Chapter 6 for more information on JCA).

ch08.indd 492 6/5/07 2:27:10 PM

Java Message Service 493

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

This flexibility means that an MDB is no longer limited to being passed a JMS
message. The onMessage method now receives a Record object, which also means
that something other than a JMS message arriving at a destination can trigger the
invocation of the method. So, conceivably an MDB can now be driven as the result
of a resource adapter receiving a prompt from a back-end system or an internal
event—it could even be driven by a timer event.

So the first difference for non-JMS-driven MDBs lies in defining the type of
messaging server interface being implemented. For example, in order to listen to JAXM
messages, the MDB must implement javax.xml.messaging.OneWayListener or
javax.xml.messaging.ReqRespListener. To listen to messages from the JCA
Common Client Interface (CCI) connector, the MDB must implement javax
.resource.cci.MessageListener, which is shown here:

public interface MessageListener {
 Record onMessage(Record inputData)
 throws ResourceException;
}

The second difference is in the configuration of the MDB. The EJB container
needs to know which destination or endpoint to which it must connect. This is
done via new tags within the deployment descriptor. The <messaging-type> tag
defines the interface being implemented. The other configuration properties are
defined with the <activation-config> tag, which contains arbitrary name/value
pairs for properties that are specific to the messaging service being used. Here is an
example deployment descriptor for an MDB using a JCA CCI connector:

<ejb-jar>
 <enterprise-beans>
 <message-driven>
 <ejb-name>SCEA MDB</ejb-name>
 <ejb-class>com.ucny.sceaMdb </ejb-class>
 <messaging-type>com.ucny.SCEA_JCAListener</messaging-type>
 <transaction-type>Bean</transaction-type>
 <activation-config>
 <activation-config-property>
 <activation-config-property-name>
 HostID
 </activation-config-property-name>
 <activation-config-property-value>
 ZOSCICS07
 </activation-config-property-value>
 </activation-config-property>
 <activation-config-property>

ch08.indd 493 6/5/07 2:27:10 PM

494 Chapter 8: Messaging

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

 <activation-config-property-name>
 UserID
 </activation-config-property-name>
 <activation-config-property-value>
 LCPRA
 </activation-config-property-value>
 </activation-config-property>
 </activation-config>
 </message-driven>
 </enterprise-beans>
</ejb-jar>

CERTIFICATION OBJECTIVE 8.05

Identify Scenarios That Are Appropriate to
Implementation Using Messaging, Enterprise
JavaBeans Technology, or Both

The following table shows messaging and EJB implementations that can be used as
solutions for the given scenarios.

SCENARIO & SOLUTION
You need to perform a transaction that is
distributed across multiple applications and
systems; which technology is most appropriate
for maintaining this type of distributed
transaction?

The EJB container provides support for database updates,
message processing, and connections to EIS systems using
the Java EE Connector Architecture (JCA). This will
allow all to participate in the same transaction context.
Messaging by itself is not a complete solution for this
scenario.

You need to broadcast stock prices to
applications executing on a trader’s desktop…

A publish/subscribe messaging solution will be sufficient.

You need to send an order request to another
system…

Possibly use a combination of EJB for retrieving order data
and messaging for sending the data to the other system.

What technology is appropriate for easier
integration of incompatible systems?

Use a messaging solution to provide the interface between
systems that are not able to communicate directly.

ch08.indd 494 6/5/07 2:27:10 PM

Identify Scenarios That Are Appropriate to Implementation 495

CertPrs8 /Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

CERTIFICATION SUMMARY
JMS provides a highly flexible and scalable solution for building loosely coupled
applications in the enterprise environment. It brings all of the advantages of a
messaging-based application into the Java language. JMS links messaging systems
with all the benefits of Java technology for rapid application deployment and
application maintenance.

This chapter should give you an understanding of the JMS and messaging in
general and the appropriate scenarios for using messaging-in applications.

ch08.indd 495 6/5/07 2:27:10 PM

496 Chapter 8: Messaging

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

TWO-MINUTE DRILL

Here are some of the key points from each certification objective in Chapter 8.

Identify Scenarios That Are Appropriate to Implementation
Using Messaging

❑ Scenarios appropriate to implementation using message include asynchronous
communication, one-to-many communication, guaranteed messaging, and
transactional messaging.

List Benefits of Synchronous and Asynchronous Messaging

❑ Some benefits to synchronous messaging are that both parties must be active
to participate and the message must be acknowledged before proceeding to
the next.

❑ Asynchronous messaging benefits are that as the volume of traffic increases,
more bandwidth or additional hardware is not required; it is less affected by
failures at the hardware, software, and network levels; and when capacities
are exceeded, information is not lost but is instead only delayed.

Identify Scenarios That Are More Appropriate to Implementation
Using Asynchronous Messaging, Rather Than Synchronous

❑ Scenarios more appropriate to asynchronous messaging include those in
which a response is not required or not immediately required.

❑ Asynchronous processing is also more appropriate for high-volume
transaction processing.

Identify Scenarios That Are More Appropriate to Implementation
Using Synchronous Messaging, Rather Than Asynchronous

❑ One scenario more appropriate to synchronous messaging includes that in
which a response to the message is required before continuing, for example,
for transactions requiring credit card or user login authentication.

❑ A second scenario includes a transaction where both parties must be active
participants.

✓

ch08.indd 496 6/5/07 2:27:10 PM

Two-Minute Drill 497

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

Identify Scenarios That Are Appropriate to Implementation
Using Messaging, Enterprise JavaBeans Technology, or Both

❑ The scenarios appropriate for messaging technology include broadcasting
stock prices to traders, instant messages, and in situations when integration of
incompatible systems is necessary.

❑ The scenarios appropriate for EJB technology include those that perform
business logic and those that maintain persistent data.

❑ The scenarios appropriate for messaging and EJB technology including those
that require maintenance of distributed transactions and those that send an
order to another system.

ch08.indd 497 6/5/07 2:27:11 PM

498 Chapter 8: Messaging

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

SELF TEST
The following questions will help you measure your understanding of the material presented in this
chapter. Read all the choices carefully because there may be more than one correct answer. Choose
all correct answers for each question.

Identify Scenarios That Are Appropriate to Implementation Using Messaging

 1. Which of the following are characteristics of publish/subscribe message model?
 A. Always use a URL to identify publishers.
 B. Subject-based addressing.
 C. Location-independent publishers.
 D. Only synchronous communication between publishers and subscribers is possible.

 2. Which of the following are valid methods for a TopicSubscriber?
 A. receive()

 B. receiveNoWait()

 C. receiveWait()
 D. receiveSync()

 3. What are the types of messaging models supported in JMS?
 A. Point-to-point
 B. Send/receive
 C. Transmit/receive
 D. Publish/subscribe

 4. What is a message digest?
 A. A digital fingerprint value that is computed from a message, file, or byte stream
 B. A shortened summary of a message
 C. The subject line of a message
 D. A processing function of the mail server

 5. Which of the following scenarios are suitable for publish/subscribe messaging model?
 A. It is used to receive news stories.
 B. It is used for receiving sales forecasts.
 C. It is used for sending stock prices to traders on the trading floor.
 D. It is used to authorize a user ID and password.

ch08.indd 498 6/5/07 2:27:11 PM

Self Test 499

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

 6. What deliver modes are available in JMS?
 A. PERSISTENT
 B. NON_PERSISTENT
 C. PERMANENT
 D. DURABLE

 7. Which of the following are valid message acknowledgment types?
 A. AUTO_ACKNOWLEDGE
 B. CLIENT_ACKNOWLEDGE
 C. DUPS_OK_ACKNOWLEDGE
 D. NO_ACKNOWLEDGE

 8. Which of the following are not valid message body formats?
 A. MapMessage
 B. ObjectMessage
 C. TextMessage
 D. StringMessage

 9. Which of the following are not valid JMS objects?
 A. MessageProducer
 B. MessageConsumer
 C. MessageViewer
 D. MessageSelector

 10. Which of the following would not be used in a client application performing point-to-point
messaging?

 A. Topic
 B. InitialContext
 C. Queue
 D. Session

List Benefits of Synchronous and Asynchronous Messaging

 11. Which of the following are advantages of asynchronous messaging architectures?
 A. Better use of bandwidth
 B. Supports load balancing
 C. Provides sender with instant response
 D. Scalability

ch08.indd 499 6/5/07 2:27:11 PM

500 Chapter 8: Messaging

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

 12. Which of the following statements are true for asynchronous messaging?
 A. It decouples senders and receivers.
 B. It can increase performance.
 C. It is better suited to smaller message sizes.
 D. It only works with blocking calls.

Identify Scenarios That Are More Appropriate to Implementation Using
Asynchronous Messaging, Rather Than Synchronous

 13. Which method must be called to receive messages asynchronously?
 A. The receive method
 B. The processMessage method
 C. The readMessage method
 D. The onMessage method

 14. Which of the following are not features of asynchronous messaging?
 A. As the volume of traffic increases, it is better able to handle the spike in demand.
 B. A message must be acknowledged before the producer can send another.
 C. It is less affected by failures at the hardware, software, and network levels.
 D. When capacities are exceeded, information is not lost; instead, it is delayed.

Identify Scenarios That Are More Appropriate to Implementation Using
Synchronous Messaging, Rather Than Asynchronous

 15. Which method must be called to receive messages synchronously?
 A. The receive method
 B. The processMessage method
 C. The readMessage method
 D. The onMessage method

 16. Which of the following cases are better suited to synchronous messaging?
 A. Electronic mail
 B. Credit card authorization
 C. Electronic processing of tax returns
 D. Validation of data entered

ch08.indd 500 6/5/07 2:27:11 PM

Self Test 501

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

 17. Which of the following are features of synchronous messaging?
 A. Both parties must be active to participate.
 B. Messages must be acknowledged before proceeding.
 C. It decouples senders and receivers.
 D. It does not work with blocking calls.

 18. Which of the following are not features of synchronous messaging?
 A. Both parties must be active to participate.
 B. It is unaffected by increases in traffic volume.
 C. Message must be acknowledged before proceeding to the next.
 D. Message is queued until it is ready for processing.

Identify Scenarios That Are Appropriate to Implementation Using Messaging,
Enterprise JavaBeans Technology, or Both

 19. Which of the following scenarios are not suitable for publish/subscribe messaging model?
 A. Sending an instant message
 B. Sending an order to another system
 C. Sending news stories to interested parties
 D. Sending a transaction to another system

 20. What method must be implemented to receive messages in a message-driven bean (MDB)?
 A. The receive method
 B. The onMessage method
 C. The readMessage method
 D. The processMessage method

ch08.indd 501 6/5/07 2:27:12 PM

502 Chapter 8: Messaging

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

SELF TEST ANSWERS

Identify Scenarios That Are Appropriate to Implementation Using Messaging

 1. ®✓ B and C are correct. Publish/subscribe messages use subject-based addressing and provide
location-independence for publishers.
®̊ A and D are incorrect. URLs are not used to identify publishers. Publish/subscribe is not
limited to synchronous communication.

 2. ®✓ A and B are correct. receive() and receiveNoWait() are valid methods for
TopicSubscriber.
®̊ C and D are incorrect. receiveWait() and receiveSync() are not valid methods.

 3. ®✓ A and D are correct. Point-to-point and publish/subscribe are the messaging models
supported in JMS.
®̊ B and C are incorrect. Send/receive and transmit/receive are not valid messaging models.

 4. ®✓ A is correct. A message digest is a digital fingerprint value that is computed from a message,
file, or byte stream.
®̊ B, C, and D are incorrect. These are not definitions of a message digest.

 5. ®✓ D is correct. Authorizing user IDs and passwords must use a synchronous process.
®̊ A, B, and C are incorrect. Receiving news stories, sales forecasts, and sending stock prices
are suitable for asynchronous messaging.

 6. ®✓ A and B are correct. PERSISTENT and NON_PERSISTENT are valid delivery modes.
®̊ C and D are incorrect. PERMANENT and DURABLE are invalid delivery modes.

 7. ®✓ A, B, and C are correct. AUTO_ACKNOWLEDGE, CLIENT_ACKNOWLEDGE, and
DUPS_OK_ACKNOWLEDGE, are valid.
®̊ D is incorrect. NO_ACKNOWLEDGE is an invalid message acknowledgment type.

 8. ®✓ D is correct. StringMessage is not a valid message body format.
®̊ A, B, and C are incorrect. MapMessage, ObjectMessage, TextMessage are valid.

 9. ®✓ C is correct. MessageViewer is not a valid JMS object.
®̊ A, B, and D are incorrect. MessageProducer, MessageConsumer, MessageSelector are valid.

 10. ®✓ A is correct. Topics are used in publish/subscribe messaging.
®̊ B, C, and D are incorrect. These are valid classes in point-to-point messaging.

ch08.indd 502 6/5/07 2:27:12 PM

Self Test Answers 503

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

List Benefits of Synchronous and Asynchronous Messaging

 11. ®✓ A, B, and D are correct. Asynchronous architectures make better use of bandwidth, support
leveling of workloads, and are more scalable.
®̊ C is incorrect. These architectures do not provide senders with instant response.

 12. ®✓ A, B, and C are correct. Asynchronous messaging decouples senders and receivers, can
increase performance, and is better suited to smaller message sizes.
®̊ D is incorrect. Asynchronous messaging does not work with blocking calls.

Identify Scenarios That Are More Appropriate to Implementation Using
Asynchronous Messaging, Rather Than Synchronous

 13. ®✓ D is correct. The onMessage method must be implemented to receive messages
asynchronously.
®̊ A, B, and C are incorrect. The processMessage and readMessage methods do not
exist. The receive method is used for synchronous messaging.

 14. ®✓ B is correct. A message is not acknowledged before a producer can send another in
asynchronous messaging.
®̊ A, C, and D are incorrect. These are valid features.

Identify Scenarios That Are More Appropriate to Implementation Using
Synchronous Messaging, Rather Than Asynchronous

 15. ®✓ A is correct. The receive method must be implemented to receive messages
synchronously.
®̊ B, C, and D are incorrect. The processMessage and readMessage methods do not
exist. The onMessage method is used for asynchronous messaging.

 16. ®✓ B and D are correct. Credit card authorization and validation of data entered are better
suited to synchronous messaging because of the need for an instant response.
®̊ A and C are incorrect. Electronic mail and electronic processing of a tax return do not need
instant responses.

 17. ®✓ A and B are correct. Both parties must be active to participate, and messages must be
acknowledged before proceeding.
®̊ C and D are incorrect. Synchronous messaging does not decouple senders and receivers and
only works with blocking calls.

ch08.indd 503 6/5/07 2:27:12 PM

504 Chapter 8: Messaging

CertPrs8 / Certified Enterprise Architect for J2EE Study / Allen & Bambara / 148861-8 / Chapter 8

 18. ®✓ A and C are correct. Synchronous messaging is affected by volume increase, and
synchronous messages are not queued.
®̊ B and D are incorrect. These are not valid features for synchronous messaging.

Identify Scenarios That Are Appropriate to Implementation Using Messaging,
Enterprise JavaBeans Technology, or Both

 19. ®✓ A, B, and D are correct. Sending an instant message, an order to another system, or a
transaction to another system is not suitable for the publish/subscribe message model.
®̊ C is incorrect. Sending news stories to interested parties is suitable for the publish/subscribe
message model.

 20. ®✓ B is correct. The onMessage() method is the correct method.
®̊ A, C, and D are incorrect. These are incorrect methods to receive messages in a message-
driven bean (MDB).

ch08.indd 504 6/5/07 2:27:12 PM

