9.0l

9.02

CERTIFICATION OBJECTIVES

Internationalization
and Localization

State Three Aspects of Any Application v Two-Minute Drill
That Might Need to Be Varied or

Customized in Different Deployment Q&A Self Test

Locales

List Three Features of the Java
Programming Language That Can Be
Used to Create an Internationalizable/
Localizable Application

BO6 Chapter 9: Internationalization and Localization

pplications often need the flexibility to support the language and presentation

customs for several geographic locations. In Java parlance, this process is known as

internationalization and localization. This chapter covers the issues surrounding this
process and the aspects of an application affected by it.

CERTIFICATION OBJECTIVE 9.01

State Three Aspects of Any Application That
Might Need to Be Varied or Customized
in Different Deployment Locales

Internationalization is the process of preparing application code to support multiple
languages, and localization is the process of adapting an internationalized application
so that it supports a specific language or locale. A locale is an environment that
includes regional and language-specific information.

Internationalization and Localization

Internationalization involves isolating portions of the application that present output
data to the user so that the data can be converted to the appropriate language and
character set. Localization involves translating these strings into a specific language and
maintaining them in a file that the application can access—for example, a property file.
Thus, internationalizing an application allows it to be adapted to new languages and
regions, while localization provides the adaptation of an internationalized application to
a specific country or region. It is important to note that the Enterprise JavaBeans (EJB)
container need not be running in the same locale as the client browser.

Applications need to customize the presentation of data according to the locale
of the user. An application must be internationalized, and then it can be localized.
During internationalization (also known as 118N, because the number of characters
between the first and last character is 18), locale dependencies are separated from an
application’s source code. Examples of these locale dependencies include user interface
labels; messages character set; encoding; and numeric, currency, and time formats.
During localization (also known as LION), an internationalized application is adapted
to a specific locale. Internationalization and localization make Java Enterprise Edition
(JEE) applications available to a global audience.

State Three Aspects of Any Application §Q7

Internationalization is typically overlooked when developing an enterprise web
application, because these sorts of applications are usually targeted to a particular local
user space. When developing an enterprise application that may be used globally,
however, you should consider internationalization from the outset. It is easier to design
an application that is capable of being internationalized than to redesign an existing
application later. As with other redesigns, a great deal of time and money can be saved
by planning for internationalization and localization at the outset.

With a web-based enterprise application, the presentation layer is the focus
of internationalization and localization efforts. The presentation layer includes
JavaServer Pages (JSPs), servlets, and any supporting helper JavaBeans components.

Overview of Internationalizing an Application

Before we get to the details of internationalizing an application, let’s review our
objectives. After the architectural design and development is completed, an
internationalized enterprise application will have the following characteristics:

B With the addition of localization data, the same executable—such as an
application Enterprise Archive (a file with an .ear extension)—can run

worldwide.

B GUI component labels and other textual elements (such as messages) are

not hard-coded within the program but are stored outside and retrieved

dynamically.

B Regionally dependent data, such as dates and currencies, appear in formats

that conform to the end user’s region and language.

B Recompilation is not required to support a new language. It can be localized
quickly by the addition of the new language property file entries.

So what should you analyze to internationalize your application? Many types
of data vary with region or language, so your approach depends on the application
being delivered. A nonexhaustive item list of this data includes the following:

messages labels on GUI components online help
colors graphics Icons

dates times Numbers
currencies measurements phone numbers
personal titles postal addresses page layouts
legal rules sounds

B08 Chapter 9: Internationalization and Localization

CERTIFICATION OBJECTIVE 9.02

List Three Features of the Java Programming
Language That Can Be Used to Create an
Internationalizable/Localizable Application

Now let’s take a look at Java’s support for internationalization and localization. We’ll
look at specific API classes and objects that have been designed to help with [I8N
and L1ON.

Java Support for Internationalization and Localization

An internationalized JEE application cannot assume that it is being executed from a
single locale and often needs to service requests for many locales simultaneously. That is
to say that a client request will arrive with an associated locale and consequently expect
the response with the same locale. Because internationalization affects all tiers of a JEE
application, it is an architecturally fundamental issue. Unfortunately, on many JEE
projects, application internationalization is an afterthought and usually requires a great
deal of refactoring to incorporate it later. As stated previously, internationalization and
localization dependencies need to be identified during the project design phase.

Let’s review some of the internationalization and localization classes, tools, and
features available to use in Java.

Using java.util.Properties for Localization

The java.util. Properties class represents a set of properties that can be persisted. The
properties can be loaded from or saved to a stream. Both the key and its corresponding
lookup value in the list of properties is a string. The properties object typically stores
information about the characteristics of an application or its environment, and this
can also include information pertaining to internationalization and localization.

By creating a properties object and using the 1oad () method, a program can read a
localized properties file or any arbitrary input stream and then access the appropriate
localized values using the same key:

Properties props = new Properties() ;

String myProps = "llOnfile";

props.load(new BufferedInputStream(new FileInputStream(myProps) ;
String msgvalue = System.getProperty ("msgkey") ;

List Three Features of the Java Programming Language 5§09

See “ResourceBundle” a little later in this chapter for more advanced uses of
properties for localization.

Locale

As mentioned, a locale is a way of identifying and using the exact language and
cultural settings for a particular session or user. In Java, a locale is identified by one,
two, and occasionally three elements:

B Language This is the basic identifier for a locale. It contains a valid
International Standards Organization, ISO 639, two-letter language code.
Examples are en for English and es for Spanish. (A complete list of two-letter

language codes can be found at http://ftp.ics.uci.edu/pubfietflhttp/relatedfiso639..txt.)

B Regional variation This is a country code. It contains a valid ISO 3166 two-
letter country code. Examples are GB for United Kingdom, CO for Colombia,
and US for United States. (A complete list can be found at hetp:/fwww.chemie.
fu-berlin.de/diverse/doc/ISO_3166.html or http://std.dkuug.dk/il8n/ISO_3166.)

B Variant This element is less frequently specified. It is used for creating
locales with vendor- or browser-specific code. Examples are WIN for
Windows, MAC for Macintosh, and POSIX for POSIX (Linux or UNIX). It
is also used to allow for the possibility of more than one locale per country
and language combination. Most European countries also now have the
EURQO variant for currency formatting.

Locales are defined with the language and country code separated by an underscore,
like so: es_CO or en_US. The Locale class provides a number of constants that you
can use to create locale objects for common locales. For example, Locale. US creates
a locale object for the United States. Other locale names include, for example, de for
German, de_ CH for Swiss-style German, and de_ CH_POSIX for Swiss-style German
on a POSIX-compliant platform.

The locale object controls formatting for numeric, data, currency, and percent
display. It can affect many other areas, such as how case folding (uppercasing and
lowercasing of letters) is handled. It can affect the way a list is sorted (called the
collation sequence), or which day appears in the leftmost column on a calendar. Based
on the locale, Java provides mechanisms for loading the user interface, messages,
and specialized code from resource bundles (which are defined next). In short, locales
provide a way of configuring classes to match the user requirements dynamically.

Platforms other than Java have slight variations for locale objects, names, and
structures. For example, Microsoft Windows uses a proprietary three-letter code to
identify a locale.

B 10 Chapter 9: Internationalization and Localization

Many developers confuse character-set problems with locales. Character-set
problems are usually the primary aspect that is addressed when internationalizing
code. Terms such as double-byte enabling, kanji, or Unicode enabling are key
internationalization discussions. However, the issues surrounding character set
are only a part of making a product locale-aware. Without the correct character-
set handling, data will not display correctly. However, internationalization and
localization go beyond just manipulating the characters.

In Java, the java.util.Locale object represents a specific geographical or
cultural region. An operation that requires a locale to perform its task is called
locale-sensitive and uses the locale to refine information for the user. For example,
displaying a number is a locale-sensitive operation—that is, the number should be
formatted according to the conventions of the user’s native country or region.

Because locale objects are merely region identifiers, no validity check is performed
when they are constructed. You can query particular resources to determine whether they
are available for your locale. For example, you can call the getAvailableLocales ()
method on DateFormat to obtain an array of locales for which DateFormats are installed.
When a resource is requested for a particular locale, the best available match is returned,
which is not necessarily precisely what was requested.

After you've created a locale, you can access it for information about itself.

Use getCountry () for the ISO country code and getLanguage () for the ISO
language code. You can use getDisplayCountry () for the name of the country
suitable for displaying to the user. Similarly, you can use getDisplayLanguage ()
for the name of the language suitable for displaying to the user. Interestingly, the
getDisplay accessor methods are locale-sensitive and have two versions: one that
uses the default locale and one that uses the locale specified in the argument.

ResourceBundle

The java.util. ResourceBundle class defines a naming convention for locales, which
should be used whenever organizing resources by locale. Resource bundles hold
locale-specific objects. When your class requires a locale-specific resource, for
example a string, your class can load it from the resource bundle that matches the
current user’s locale. Correspondingly, you can write class code that is independent
of the user’s locale. This allows you to write classes that can do the following:

B Can be localized—translated into different languages
B Can handle multiple locales simultaneously

B Can be modified to support additional locales

List Three Features of the Java Programming Language § | |

A resource bundle is a set of related classes that are inherited from java.util.
ResourceBundle. Each ResourceBundle subclass has the same base name plus a
component that identifies its locale. For example, suppose your resource bundle is
named UCResources. The first class you are likely to write is the default resource
bundle, which simply has the same name as its family—UCResources. You can then
create related locale-specific classes as needed—for example, you can provide a
German class named UCResources_de.

Each subclass of ResourceBundle contains the same objects, but the objects have
been translated for the locale represented by that subclass of ResourceBundle.

The resource bundle lookup searches for classes with a name assembled from the
following that are concatenated, separated by underscores. Consider the following
example: UCResources_en_GB_cockney. This class name includes the following:

B A base class (UCResources)
B The desired language (en)

B The desired country (GB)

B The desired variant (cockney)

During runtime, if the class or a properties file of the same name with the
properties extension cannot be found, the lookup will review each of the elements
in turn until a match is found. By providing a class with no suffixes (that is, the base
class), a match will always be found.

The base class must also be fully qualified (for example, UCPackage. UCResources,
not just UCResources). It must also be accessible by your class code; it cannot be a
private class to the package where ResourceBundle.getBundle is called. While keys
must be defined as java.lang.String, the lookup values can be any subclass of java.
lang.Object. PropertyResourceBundle is a subclass of ResourceBundle that handles
resources for a locale using a set of static strings from a property object containing
the resource data. ResourceBundle.getBundle will look for the appropriate properties
object and create a PropertyResourceBundle that refers to it.

Character Sets

A character set is a group of textual or graphical symbols that is mapped to a set of
(positive) integers called code points. The ASCII (American Standard Code for
Information Interchange) character set is commonly used for representing American
English. ASCII contains uppercase and lowercase Roman alphabets, European
numerals, punctuation, a group of control codes, and some symbols. For example,

the ASCII code point for A is 65 (hexadecimal 41).

B 12 Chapter 9: Internationalization and Localization

The ISO 8859 character-set series was created because ASCII was not good
for supporting languages other than American English. Each ISO 8859 character
set can have up to 256 code points. ISO 8859-1, also known as “Latin-1,” has the
ASCII character set, symbols, and characters with accents, circumflexes, and other
diacritics. With the ISO 8859 series of character sets, it is possible to represent texts
for dozens of languages.

Unicode (ISO 10646) defines a standard and universal character set. It was
designed to represent practically all character sets in use around the world and
can be extended. Unicode encompasses alphabetic scripts and ideographic writing
systems, and it may be rendered in any direction.

Unicode is an international effort to provide a single character set for everyone.
Java uses the Unicode 2.x character-encoding standard. In Unicode, every character
uses two bytes. Ranges of character encoding represent various writing systems and
other special symbols. For example, Unicode characters in the range Ox9FFF through
0xACO0 represent the Han characters used in Asia: China, Japan, Korea, Taiwan,
and Vietnam. Despite the obvious advantages of Unicode, it has a big shortcoming:
Unicode support is limited on many platforms because of the lack of fonts capable of
displaying all the Unicode characters.

The Java programming language internally represents characters and string
objects as encoded Unicode. Classes written in the Java programming language can
process data in multiple languages, natively performing localized operations such as
string comparison, parsing, and collation. Unicode characters in a Java class may be
represented as escape sequences, using the notation \uXXXX, where XXXX is the
character’s 16-bit code point in hexadecimal. These Unicode-escaped strings are
useful for Java source files that are not encoded as Unicode.

Unicode Transformation Format (UTF), where the U stands for UCS (Universal
Character Set), is a multibyte encoding format that stores some characters in one
byte and others in two or three bytes. If most of the data is ASCII based, UTF is
more compact than Unicode, but in a worst-case scenario, the UTF string can be
50 percent larger than the equivalent Unicode string. Overall, UTF is still fairly
efficient and is the most widely used character-encoding scheme.

Encoding

An encoding will map the code points in a character set to units of a specific width,
and it defines byte serialization and ordering rules. Many of these character sets

have more than one encoding. The java.io package contains classes that support the
reading and writing of character data streams using a variety of encoding schemes.
Some of these classes are discussed later in this chapter, and they all have names that

List Three Features of the Java Programming Language § | 3

end in either Reader (for example, BufferedReader and InputStreamReader) or Whriter
(for example, BufferedWriter, PrintWriter, and OutputStreamWriter).

Programmers use PrintWriter within JSPs and servlets to produce textual
responses, which are automatically encoded. It is possible for servlets to output
binary data with no encoding using an OutputStream class. You must explicitly set
an encoding if you create an application that uses a character set that cannot be
handled by the default encoding (ISO 8859-1, Latin_1).

UTF-8 is an 8-bit form of UTE, the unification of US-ASCII and Unicode. UTF-8
is a variable-width character encoding that encodes 16-bit Unicode characters into
one or two bytes. Encoding internationalized content in UTF-8 is recommended by
Sun because it is compatible with the majority of existing web content and provides
access to the Unicode character set. In addition, most current browsers and e-mail

clients support it, and it is one of the two required encoding schemes for XML
documents (the other being UTF-16).

Handling Text Dates and Numbers with the java.text Package

This package provides several classes and interfaces that can be used for handling
text, dates, numbers, and messages in ways that are independent of natural
languages. This means that an application can be created in a language-independent
manner and can rely on separate, dynamically linked, (and therefore) localized
resources.

All of the classes in the java.text package are sensitive to either the default or
provided locale. This package of classes provides the ability to format numbers,
dates, and messages; to parse, search, and sort through strings; and to iterate over
characters, words, sentences, and line breaks.

This package contains three main groups of classes and interfaces: iteration,
formatting, and string collation. Here is a list of some of the classes in the java.text
package:

B Annotation
B CollationKey
B Collator

B Format

An annotation object is a wrapper for a text attribute value if the attribute
has annotation characteristics. One characteristic is the text range to which the
attribute is applied; this is critical to the semantics of the range. Wrapping the

B 14 Chapter 9: Internationalization and Localization

attribute value into an annotation object guarantees that adjacent text does not get
merged, even if the attribute values are equal, and it indicates to text containers that
the attribute should be discarded if the underlying text is modified.

The different languages of the world use alphabets that differ, and thus they
require unique ways to sort strings written in those languages. Collation is the process
of sorting strings according to locale-specific customs. The Collator is an abstract
base class that provides locale-sensitive string comparison. Use this class when
building search and sort routines for natural-language text. Subclasses implement
specific collation requirements. Use the static factory method, get Instance (), to
obtain the proper collator object for a given locale.

A CollationKey represents a string that is controlled by the rules of a specific
collator object. Comparing two CollationKeys will return the relative order of the
strings they represent and is typically faster than using the Collator.compare ()
method when sorting a list of Strings. CollationKeys are generated by calling the
getCollationKey () method on a collator, and they can be compared only
when generated from the same collator. The generation process converts the
string to a series of bits that can then be compared bitwise. This translates into fast
comparisons once the keys are generated. The cost of generating keys is justified in
faster comparisons when strings need to be compared many times. Alternatively, the
first couple of characters of each string often determine the result of a comparison.
Collator.compare () examines only as many characters as it needs, and as soon as
an inequality is arrived at, the comparison is over.

Format is obviously important. Again, Format is an abstract base class for formatting
locale-sensitive information such as dates, messages, and numerics. Format defines
the programming interface for formatting locale-sensitive objects into strings (use
the format () method) and for parsing strings into objects (use the parseobject ()
method). Any string formatted by Format is parsable by parseobject (). Format has
three concrete subclasses, DateFormat, MessageFormat, and NumberFormat, which will
be covered later in this chapter in the sections “Internationalization with Respect to
Data Handling,” “Message Formatting,” and “Date Formatting.”

InputStreamReader

An InputStreamReader is a mechanism for converting from byte streams to character
streams: [t reads bytes and converts them into characters according to a specified
character encoding. The class has two constructors: one with no arguments will

use the platform default encoding, and the other takes an encoding argument (as

a string). The ISO numbers are used to represent an encoding—for example, ISO
8859-9 is represented by 8859_9.

List Three Features of the Java Programming Language § | §

There is no simple way to determine which encodings are supported, but you
can call the getEncoding () method to obtain the name of the encoding used by
the InputStreamReader. Characters that do not exist in a specific character set are
substituted with another character, usually a question mark.

OutputStreamWriter

An OutputStreamWriter is a mechanism for converting data from character streams
to byte streams: Characters written to it are translated into bytes according to a
specified character encoding. The encoding that it uses is either specified explicitly
by name (again an ISO number), or the default encoding for the platform is the
default.

Every invocation of the write () method will in turn call the encoding converter
for the given character(s). The converted bytes are buffered before being written to
the output stream.

Again, as with InputStreamReader, you cannot determine which encodings are
supported, but calling the getEncoding () method will return the encoding used by
the OutputStreamWriter. Characters that do not exist in a specific character set are
substituted with another character, usually a question mark.

Internationalization with Respect to Data Handling

Data handling is the part of a web application most affected by internationalization,
with impact in three areas: data input, storage, and presentation.

Data input is typically input to a web application by a Hypertext Transfer
Protocol (HTTP) post back to a servlet from a form on a Hypertext Markup
Language (HTML) page. Typically, the client platform will provide a means for
inputting the data.

The browser running in the client’s native locale encodes the form parameter data
in the HTTP request so that it is in a readable format for the web application. When
the application receives the data, it is in Unicode format, obviating character-set
issues. Word breaking or parsing can be handled with the Breaklterator class in the
java.text package.

Data storage for international applications means setting your database to a
Unicode 2.0 character encoding (such as UTF-8 or UTF-16). This allows data to be
saved in many different languages. The content you save must be entered properly
from the web tier. The Java Database Connectivity (JDBC) drivers must support the
encoding you choose.

B 1 6 Chapter 9: Internationalization and Localization

To enable locale-independent data formatting, an application must be designed
to present localized data appropriately for a target locale. The developer must
ensure that locale-sensitive text such as dates, times, currency, and numbers are
presented in a locale-specific way. If you design your text-related classes in a locale-
independent way, they are reusable throughout an application.

The following code demonstrates methods used to format currency in locale-
specific and locale-independent ways:

package com.ucny.utils;
public class Formatter ({

//Format currency for the default locale.
public static String formatCCY (double amount) {
String pattern = "SH###, ###, #H#H#.00";
//Get number format for the default (system) locale.
NumberFormat nf = NumberFormat.getCurrencyInstance () ;
DecimalFormat df = (DecimalFormat)nf;
df.setMinimumFractionDigits;
df . setMaximumFractionDigits;
df .setDecimalSeparatorAlwaysShown (true) ;
df .applyPattern (pattern) ;
return df.format (amount) ;
}
//Format currency for the specified locale.
public static String formatCCY(Locale locale, string prefix,
double amount) {
String pattern = prefix+"###, ###,6 ###.00";
//Get number format for the passed in locale.
NumberFormat nf = NumberFormat.getCurrencyInstance (locale) ;
DecimalFormat df = (DecimalFormat)nf;
df .setMinimumFractionDigits;
df . setMaximumFractionDigits;
df .setDecimalSeparatorAlwaysShown (true) ;
df .applyPattern (pattern) ;
return df.format (amount) ;

}

In a JSP page, the following code snippet shows calls to the currency format
function for the default locale and for the Great Britain locale:

<%=JSPUtil.formatCCY (Locale.UK, order.getTotal()) %>

<%=JSPUtil.formatCCY (Locale.UK, "£", order.getTotal())%>

List Three Features of the Java Programming Language § | 7

These JSP expressions use the two versions of the formatccCy () method of the
Formatter utility. The total that is returned from the order.getTotal () method is
a Java double primitive data type. Note that when using this code, the JSP will need
to import the java.util. Locale and com.ucny.utils. Formatter classes.

Using Java Internationalization APIs in JEE Applications

Java internationalization APIs include utility classes and interfaces for externalizing
application resources, formatting messages, formatting currency and decimals,
representing dates and times, and collating. The next sections explain how to use
J2SE internationalization APIs in JEE applications.

Message Formatting

The java.text.MessageFormat class provides a generic way to create concatenated
message strings. It contains a pattern string that has embedded format specifiers.
The MessageFormat . format () method then formats an array of objects using
these embedded format specifiers and returns the result in a StringBuffer. The
MessageFormat class is good for formatting system-level messages such as error or
logging strings. Here is an example:

// Format the message

String pattern =
"Catalog number {0}, item code{1}: has been sent to order processing.";

MessageFormat mf = new MessageFormat (pattern) ;

Object[] objs =

new Object[] {new Integer (catalogNumber),new Integer (itemNumber) };
StringBuffer result = new StringBuffer();

String message = mf.format (objs,result, new FieldPosition()) ;

In this code snippet, the MessageFormat holds the pattern and uses it to format
the resultant string, substituting formatted objects (integers) in place of the
embedded format specifiers ({0} and {1}). The MessageFormat class is very effective
for internationalizing custom tags for a JSP.

Date Formatting

Typically, enterprise applications store, compare, and perform arithmetic on date
values. JEE applications typically persist date and time values to a JDBC data store
using java.sql. Date; hold them in memory using java.util. Date; manipulate and

B 18 Chapter 9: Internationalization and Localization

interpret them using the java.util. Calendar class; and parse, format, and present them
using the java.text.DateFormat class. The java.text. DateFormat class is an abstract
class that provides a locale-sensitive API for parsing, formatting, and normalizing
dates for presentation. The java.text.SimpleDateFormat class implements simple date
and time value formatting for all supported locales.

Collation

As mentioned, collation is the process of ordering text using language- or script-
specific rules, rather than using binary comparison; it is therefore locale-specific.
It is possible for a character set to have more than one collating sequences. These
lists of characters may be ordered numerically or lexically. For an internationalized
application, the abstract class java.text.Collator is recommended for use when
ordering lists of items. The java.text.Collator class and its related classes provide
collation facilities that are locale-aware. For example, a component that produces
ordered lists of NASDAQ stock issue entries could use Collator to place the entries
in an order appropriate to the client’s locale.

You could rely on the database to provide this collation. However, this may not
be a good idea for internationalization, because most databases support a single
sort order (typically specified at installation) and may not be portable to another
database vendor.

Web Tier Internationalization

The web tier has JSP, JavaBean, and servlet components that need to be designed
with internationalization and localization in mind. The essential areas that are

covered for [I8N and LION in this layer are

B HTTP requests and responses

B Design of web tier components

HTTP Requests and Responses

For an internationalized web application to work correctly, it must be able to
determine the encoding of an incoming request and then ensure that the outgoing
response is encoded the same way. However, the default locale for any component
in the web tier is not the calling client’s locale but the actual web container’s default
locale. To complicate matters, in a distributed environment, the default locale may
differ among containers, making the default locale the locale of the web container
servicing the specific part of the request.

List Three Features of the Java Programming Language § | 9

The management of locale and encoding can be simplified by a few recommended
techniques. The first approach is to choose a single and consistent request encoding.
Therefore, if all web components transmit pages using a single encoding, requests
from those generated pages will remain in that encoding. As mentioned earlier
in this chapter, UTF-8 is considered the best encoding choice because it provides
the broadest coverage of character sets, efficient data transmission, and wide
browser support. Along with this approach, it is also recommended that you add a
servlet filter to compensate for components that do not or forget to set the chosen
encoding. The servlet filter sets the response encoding to a single value before a
servlet or JSP page receives the request. This provides a single point of control for
enforcing (and changing to) the required encoding before a servlet handles the
response.

The other approaches are to store the locale and encoding either in hidden
variables on HTML forms or in URL parameters, or to store this information on the
server in the users’ session state or in a stateful session EJB.

As mentioned, the encoding of the responses from JSP pages and servlets
determines not only the format of characters in the response but also the encoding
of any subsequent request from the served page.

The two attributes in the page directive for a JSP control encoding are

B contentType
B pageEncoding

Note that when using these attributes, the content type and encoding will be
fixed at page translation time. When using JavaServer Pages Standard Tag Library
(JSTL), it is possible for a component to explicitly set the locale via the fmt:
setLocale tag.

For a more dynamic approach, use either a custom tag or a servlet to set encoding.
For a servlet, the two ways to set encoding of the response are to use the following
methods on the ServletResponse:

B setContentType ()
B setlLocale()

These methods must be called before calling the Servlet.getWriter () method
to ensure that the writer obtained is formed with the required encoding.

When using Java Server Faces (JSF) applications that support different locales
you can store localized text in a resource bundle properties file. Then you inform

B20 Chapter 9: Internationalization and Localization

the application about the existence of this file by adding the following to the JSF
faces-config.xml file:

<message-bundle>WebResourceBundle.properties</message-bundle>
<locale-configs>
<default-locale>en</default-locale<
<!--Add other locales here.-->
</locale-config>

When using JavaServer Faces , it is possible to explicitly select the locale and
store the locale in the FacesContext object.

Design of Web Tier Components
The design and implementation of JSPs, custom tags, and JavaBean helper
components are affected by [18N and LION. Any of these components that are
responsible for ordering data in a collating sequence or for formatting numbers,
dates, currency, or percentages need to take into account the locale to display the
data in an appropriate manner for that locale.

The two most common approaches exist for localizing JSP pages are as follows:

B Creating a JSP for each locale, with each file stored in a separate directory in the
server’s name space. Typically, a servlet or servlet filter forwards each request
for a JSP page to the appropriate file based on the requesting client’s locale.
The name of each directory uses the standard resource bundle suffix naming
convention.

B Using resource bundles with a single JSP. You can put together sets of localized
text using locale-aware custom tags. When the page is served, the custom tags
grab the necessary text from the resource bundle for the current locale.

The recommendation is to use separate |SP pages for each locale when the
structure of the content and display logic differs greatly between locales or when
messages depend on the target locale. For all other cases, the recommendation is
to use resource bundles, especially for logging and error messages or when content
varies in data values and not in content structure.

Here are the advantages to creating a JSP for each locale:

B Maximum customizability This approach also allows for customization of
the structure as well as the content for a locale.

B Source clarity Everything is in one place instead of being spread across the
JSP file containing the structural tags and a properties file or resource bundle
containing named strings.

List Three Features of the Java Programming Language §72 ||

The disadvantage to creating a JSP for each locale is that it’s difficult to keep a
consistent look and feel among locales. This approach requires more maintenance
because separate files must be maintained consistently for multiple locales.

Here are the advantages to using resource bundles with a single JSP:

B Easier maintenance A change to the JSP page is reflected for all locales.

B Consistent page structure The JSP keeps the same structure in all locales.
Only data values, message text, and the language displayed can change.

B Easy extensibility Defining a new resource bundle provides support for a
new locale.

Here are the disadvantages to using resource bundles with a single JSP:

B Customizing its structure to locales is more difficult, because a single JSP
produces the content for every locale.

B Page encoding must be compatible with the encoding of all application
character sets.

Logging and Error Messages

Internationalization and localization are also needed when providing users and
administrators with meaningful messages if exceptional conditions occur.

Messages and Exceptions

The presentation layer is responsible for localizing messages for clients of an
application. When dealing with exceptions, subclasses of java.lang. Exception are
recommended for communicating errors. They also need to be serializable so that
they can be passed across tiers.

Exception classes should contain information detailing the error and must not
already be localized. The presentation tier can use the error information contained
in the message to create a message that is appropriate for the client. For the web
tier,]SPs are probably the best mechanism for formatting error messages. Uncaught
exceptions in a JSP are forwarded to the defined error page, if present. Here is an
example:

<%@ page language="java" errorPage="jsp/exception/notFound.jsp" %>

The errorPage element argument defines the URL for the page to be displayed if a
JSP page request results in an error.

£272 Chapter 9: Internationalization and Localization

Message Logging and System Exceptions

Logging messages and system exceptions are intended mostly for support personnel.
The recommended approach is to use resource bundles to localize log messages and
system exceptions. The easy way to determine a locale for system messages is to

use the system default locale. However, if the application happens to be distributed
and has differing locales, the locale for all system messages may be defined in an
environment entry in the deployment descriptor for the component that creates and
outputs the message.

Any system exception should be a subclass of java.lang. RuntimeException. With
an internationalized design, the exception message should not contain the message
itself but a key for the message that can be looked up within a resource bundle. The
component that is responsible for writing the message to a log will use the resource
bundles and the MessageFormat class to build and output a localized exception
message. You can create your own subtree below Exception and RemoteException to
indicate exceptions that will return properly localizable error codes.

How Would You Confirm the 118N Status of an Application?

To confirm that [18N validation is successful, you must run the application in
another locale where a localized version of it is properly installed and then check
that the following statements are true:

B When the application runs in another locale where translated message files
are properly installed, the messages and other values that were localized, such
as font names and sizes, come from the message files of that locale and not
from any hard-coded defaults. This applies to messages from the message class
files, startup message files, and install application messages.

B The following information and functional items come from the locale that
the application is started in and/or from locale-specific files, as applicable:

B Images
Code templates
Text files

Font names and sizes

Date, time, number, and currency formatting
B Collation
B Multibyte characters print correctly from the application.

List Three Features of the Java Programming Language §72 3

B If a user runs the application in a locale that does not have the application
installed correctly, the application falls back to using the messages and
other nonmessage localizable resources for the default locale. Localizable
nonmessage items include window sizes, font names, and help files.

B Presentation objects resize dynamically to account for both the difference
in the size of labels or other information displayed and information that
contains multibyte characters.

B Presentation objects that receive keyboard input can receive it from different
keyboards, and all legal keys are recognized.

M Browsers, their encoding choices, as well as policies work as expected.
B For multibyte and extended ASCII within files and directory names,

B Directory names with multibyte as part of the paths to various files used
in the application are processed correctly.

B Multibyte encoding, where legal in files, is parsed and shown correctly.

Message files are reviewed and deemed clear for translation.

B Any registration, comments, and installation functionality and procedures,
including any involving e-mail or web transmissions of information that may
include multibyte information, was validated to ensure that the information
is processed and received correctly.

CERTIFICATION SUMMARY |

An application must be internationalized, and then it can be localized. The Java
APIs provide tools that enable the developer to internationalize a JEE application.
A JEE application requires the correct behavior for locale and character-set encoding
when accepting input, communicating data between tiers, and presenting data

back to the client. An application also needs to report system errors in all tiers in a
language appropriate for support personnel.

B24 Chapter 9: Internationalization and Localization

TWO-MINUTE DRILL

Here are some of the key points from each certification objective in Chapter 9.

State Three Aspects of any Application That Might Need
to Be Varied or Customized in Different Deployment Locales

a

0000000

Presentation of text, dates, numbers

Labels on presentation components

Sounds

Colors

Images or icons

Input and output routines that read and write text files

Collation or ordering of data presented in a list

List Three Features of the Java Programming Language That
Can Be Used to Create an Internationalizable/Localizable
Application

a

O 000

U

java.util. Properties for obtaining localized values using the same key
java.text. NumberFormat to handle numbers and currencies
java.text.DateFormat to handle date and time

java.text.Collator and java.text.CollationKey for ordering data

java.text.MessageFormat, java.util. ResourceBundle, or java.util.
PropertyResourceBundle to handle text

java.io.InputStreamReader and java.io. OutputStreamWriter for reading and
writing files
java.util.Locale and contentType and pageEncoding attributes for JSPs

java.util.Locale and ServletResponse.setContentType () and
ServletResponse.setLocale () methods for servlets

Self Test §2 5§

SELF TEST

The following questions will help you measure your understanding of the material presented in this
chapter. Read all the choices carefully because there may be more than one correct answer. Choose
all correct answers for each question.

State Three Aspects of Any Application That Might Need to Be Varied
or Customized in Different Deployment Locales

I. Why is Internationalization called I118N?
A. Because the internationalization is just too long to write in a presentation.
B. The number of characters between the first and last character is 18.
C. Because I18N is the encoded UTF version of internationalization.
D. Because I18N is the default ISO code for internationalization.

2. Which of the following application aspects can be customized for different locales?
A. Labels
B. Reading a text file
C. Ordering of data presented in a list
D. Writing a text file

List Three Features of the Java Programming Language That Can Be Used
to Create an Internationalizable/Localizable Application

3. What statement is true with respect to Unicode?
A. Unicode provides a standard encoding for the character sets of different languages.

B. Unicode is an encoding that is dependent of the platform, program, or language used to
access said data.

C. Unicode provides a non-unique number for every character.
D. The Unicode Standard has not been adopted by Microsoft.

4. What statement is true with respect to a ResourceBundle?
A. A ResourceBundle allows you to have various lookup tables based on the locale (language/
country) upon which the server but not the client is running.
B. Resource bundles support a fourth-level descriptor beyond language/country variants,
such that you can have customized messages for people in the northern and people in the
southern part of a country, for example.

B26 Chapter 9: Internationalization and Localization

A ResourceBundle is a Hashtable that maps strings to values.

Resource bundles contain locale-specific objects. When your program needs a locale-
specific resource, it can load the resource from the resource bundle that is appropriate for
the current user’s locale.

5. When using ResourceBundle, what is the procedure the system uses to determine which bundle
to bind?

A

The resource bundle lookup searches for classes with various suffixes on the basis of the
desired locale and the current default locale as returned by Locale.getDefault (), and
the root resource bundle (base class), in the following order: from parent level to lower level.

The resource bundle lookup searches for classes with various suffixes on the basis of the
desired locale and the current default locale as returned by Locale.getHelp (), and the
root resource bundle (base class), in the following order: from lower level (more specific) to
parent level (less specific).

The resource bundle lookup searches for classes with various suffixes on the basis of the
desired locale and the current default locale as returned by Locale.getDefault (),

and the root resource bundle (base class), in the following order: from lower level (more
specific) to parent level (less specific).

The resource bundle lookup searches for classes with various suffixes on the basis of the
desired locale and the current default locale as returned by Locale.getDefault (),and
the root resource bundle as returned by Locale.getBase (), in the following order: from
parent level (less specific) to lower level (more specific).

6. How do you determine the default character encoding for file operations, JDBC requests, and
so on!

A

You can identify the default file encoding by checking the Jum property named
default.properties, as follows:

System.out.println (Jvm.getProperty ("default.encoding"))

The default encoding used by locale/encoding-sensitive API in the Java libraries is
determined by the system property defaultfile.encoding.

You can identify the default file encoding by checking the system property named
file.properties, as follows:
System.out.println(System.getProperty("file.encoding"))

You can set the default file encoding by checking the Jum property named default.properties,
as follows:

System.setProperty ("default.encoding"))

7. What does UTF stand for?

A
B.

Universal Technical Frontend

Unicode Transformation Format

Self Test 5§27

C. United Text Format
D. Universal Transformation Formula
8. What internationalization areas does Java not support?
A. Locales such as country, regional, or area/cultural identifiers
B. Localized resources by virtue of the ResourceBundle series of classes
C. Formatting for dates, numbers and decimals, and messages
D. Planetary variants
9. How can you handle input of different decimal symbols—for example, 343,4 as opposed to
343.47
A. Use NumberFormat and its methods format () and parse (). This will handle the default
locale for you.
B. Use Format and its methods format () and parse (). This will handle the default locale
for you.
C. Use DecimalFormat and its methods format () and parse (). This will handle the default
locale for you.
D. Use Format and its methods numberformat () and numberparse (). This will handle the

default locale for you.

10. What is the difference between UTF-8 and UTF-16?

A

B.

C.

UTF-16 represents every character using two bytes. UTE-8 uses the one-byte ASCII
character encodings for all languages except English.

UTF-16 represents every character using two bytes. UTF-8 uses three bytes per character for
all languages except English.

UTE-16 represents every character using two bytes. UTF-8 uses the one-byte ASCII
character encodings for ASCII characters and represents non-ASCII characters using
variable-length encoding.

UTF-16 represents every character using one byte. UTFE-8 uses the two-byte ASCII
character encodings for ASCII characters and uses three bytes per character for all
languages except English.

What is a locale and how is it used for [18N?

A.

A locale is an object that represents and provides information about a specific geographical,
political, or cultural region. An operation that requires a locale to perform its task is called
locale-sensitive and uses the locale to format information correctly for the user.

A locale is an object that represents and provides information about a specific geographical,
political, or cultural region. A globale is an object that represents and provides information
about a geographical, political, or cultural region.

B28 Chapter 9: Internationalization and Localization

C. A locale is an object that Java calls to present information to the user based upon the locale
location of the browser.

D. A locale is an object that represents the supported geographical, political, or cultural regions.
An operation that requires a locale to perform its task is called locale-intensive and uses the
locale to display information for the user.

12. Which of the following are logical fonts in Java?

A. Sans-serif

B. Time New Roman

C. Monospaced

D. Dialog

Self Test Answers §29

SELF TEST ANSWERS

State Three Aspects of Any Application That Might Need to Be Varied or
Customized in Different Deployment Locales

l. B is correct. The number of characters between the first and last character is 18.

& A, C, and D are untrue.

2. 4 A, B, CandD. All four application aspects can be customized for different locales.

List Three Features of the Java Programming Language That Can Be Used
to Create an Internationalizable/Localizable Application

3. 4 A is correct. Unicode provides a standard encoding for the character sets of different
languages.
B, C, and D are incorrect. Unicode is an encoding that is independent of the platform,
program, or language used to access said data. Unicode provides a unique number for every
character. The Unicode Standard has been adopted by Microsoft, as well as by Apple, HP, IBM,
JustSystem, Oracle, SAP, Sun, Sybase, Unisys, and others.

4. 4 D is correct. Resource bundles contain locale-specific objects. When your program needs a
locale-specific resource, your program can load it from the resource bundle that is appropriate
for the current user’s locale.

A, B, and C are incorrect. A ResourceBundle allows you to have various lookup tables based
upon what locale (language/country) the client’s browser is running in. Resource bundles also
support a third-level descriptor beyond language/country, such that you can have customized
messages for presentation beyond just language and country. A ResourceBundle is analogous to a
Hashtable that maps strings to values.

5. C is correct. The resource bundle lookup searches for classes with various suffixes on the
basis of the desired locale, the current default locale as returned by Locale.getDefault () ,and
the root resource bundle (base class), in the following order: from lower level (more specific) to
parent level (less specific).

& A, B, and D are incorrect, as they are at odds with the correct answer, C.

6. 4 Ciscorrect. You can identify the default file encoding by checking the System property
named file.properties, as follows:
System.out.println(System.getProperty ("file.encoding"))
A, B, and D are incorrect, as they are at odds with the correct answer, C.

B30 Chapter 9: Internationalization and Localization

7.

1 B is correct. UTF stands for Unicode Transformation Format.
Kl A, C, and D are incorrect.

1 D is correct. Calendar and planetary variants.

A, B, and C are true. Java internationalization supports locales such as country, regional,
or area/cultural identifiers, as well as localized resources by virtue of the ResourceBundle series of
classes and formatting for dates, numbers and decimals, and messages.

1 A and C are correct. Use NumberFormat or DecimalFormat and its methods format () and
parse (). This will handle the default locale for you.
X B and D are incorrect, as they are at odds with the correct answers, A and C.

1 Cis correct. UTF-16 represents every character using two bytes. UTF-8 uses the one-byte
ASCII character encodings for ASCII characters and represents non-ASCII characters using
variable-length encoding.

A, B, and D are incorrect, as they are at odds with the correct answer, C. UTF-16
represents every character using two bytes. UTF-8 uses the one-byte ASCII character encodings
for ASCII characters and represents non-ASCII characters using variable-length encodings.
Note that while UTF-8 can save space for Western languages, which are the most common, it
can actually use up to three bytes per character for other languages.

4 A is correct. A locale is an object that represents and provides information about a specific
geographical, political, or cultural region. An operation that requires a locale to perform its task
is called locale-sensitive and uses the locale to refine and properly format the date and numeric
information for the user.

& B, C, and D are incorrect.

A, C, and D are correct. Java recognizes five font names—Serif, Sans-serif, Monospaced,
Dialog, and Dialoglnput—along with four font styles—plain, bold, italic, and bolditalic. These
are physical fonts but are standard names mapped to physical fonts known to be installed

by default on the platform. The mapping is handled by font.properties. See the lib/fonts
subdirectory of the Java JDK.

B. Java does not recognize Times New Roman as platform-standard.

