10

Security

CERTIFICATION OBJECTIVES

10.01

10.02

Identify Security Restrictions That Java
Technology Environments Normally
Impose on Applets Running in

a Browser

Given an Architectural System
Specification, Identify Appropriate
Locations for Implementation of
Specified Security Features and Select
Suitable Technologies for
Implementation of Those Features

\/ Two-Minute Drill
Q&A Self Test

£ 32 Chapter 10: Security

n an enterprise computing environment, the failure, compromise, or lack of availability of

computing resources can jeopardize the life of the enterprise. To survive, an enterprise

must identify, minimize, and, where possible, eliminate threats to the security of enterprise
computing system resources. Resources for our purposes refer to goods and services. A good is a
tangible property—that is, the physical server. A service is an intangible property such as software
or data. A threat against a resource is basically an unauthorized use of a good or a service.

Security

Out of the box, Java provides the ability for class code to be easily downloaded and
executed. From the point of view of security, the easily downloaded code poses

a threat because it may be possible for the code to access enterprise data resources.
Therefore, it is important that your system be able to distinguish between code that
can be trusted and code that cannot.

The Java security model takes into consideration the origin of the classes, and
perhaps who signed them, when it permits or denies operations. This chapter
concentrates on threats to services (software and data) and how Java and Java
Platform, Enterprise Edition (JEE) fit into the scheme of things. JEE applications do
not obviate existing enterprise security infrastructure; they do, however, have value
when integrated with existing infrastructures. The JEE application model leverages
existing security services as opposed to requiring new services.

This chapter begins with a brief review of threats to security, followed by a look at
the security restrictions that Java technology environments normally impose on applets
running in a browser. Then an overview of Java and some of its security and related APls
is presented. The rest of the chapter describes the security concerns and explores the
application of JEE security mechanisms to the design, implementation, and deployment
of secure enterprise applications, this includes the use of Java 5’s Annotation facility.

Threats to enterprise resources fall into a few general categories that can overlap,
as shown in Table 10-1.

Depending on the environment in which an enterprise application operates, these
threats manifest themselves in different forms. For example, in a nondistributed
system environment, a threat of disclosure might manifest itself in the vulnerability
of information kept in files—for example, a client/server .INI file with user identities,
passwords, IP addresses, and listener ports for enterprise databases.

Security §33

TABLE 10-1 Threats to Enterprise Resources

Example Result of Threat

Threat Description Execution
Compromise of In legal parlance, this is known UserX logs on as UserY. UserX uses
accountability as “fraud in the impersonation” UserY’s identity to make system
or “identity theft.” Someone is requests and is afforded all rights and
masquerading as another user. permissions of UserY.
Disclosure of confidential Enterprise data is intentionally, Patient medical record compromised,;
information negligently, or accidentally made bank account number compromised.
available to parties who have no
legal “right to know.”
Modification of information Enterprise data is intentionally, Corporate money account balance
negligently, or accidentally modified. modified; computer virus stored on
an enterprise server.
Misappropriation of In legal parlance, this is known as UserX gains access to the lottery
protected resources “theft of service”; the perpetrator system and causes the system to
is accessing an enterprise computer create a winning ticket for UserX.
system and using the system to
perform, on its behalf, services that
provide illegal gain or purpose.
Misappropriation that The service misappropriation or data Computer virus causes enterprise
compromises availability modification causes an interruption server to be unusable; a hacker
of the enterprise system. causes the Amazon.com e-commerce
server(s) to be unavailable.

In a distributed system, the code that performs business operations may be spread
across multiple servers. A request will trigger the execution of code based on
a server, and that code could possibly manipulate enterprise data. To prevent a threat
to security, it is important that trusted requests be distinguished from those that are
not. The server must verify the identity of the caller to evaluate whether the caller is
permitted to execute the code. The client may also want to verify the identity of the
server before engaging in the transaction—for example, the consumer will not want
to send a credit card number to www.stealyourcreditcard.com.

A distributed system is typically made up of code executing on behalf of different
principals (uniquely identified users or machines within the system). To obviate threats,
the server requires that the caller provide credentials that are known only to the caller,
as proof of identity. The credentials are then checked and verified with an authority, in
what is known as the authentication process. Authenticated callers are then checked to
determine whether they are permitted to access the requested resource; this is known
as authorization. These are the fundamental phases in security threat prevention.

B34 Chapter 10: Security

Obviously, it is impractical to believe that all threats can be eliminated (because
new ones are developed every day). The objective is to reduce the exposure to
a minimal and therefore acceptable level through using proper authentication and
authorization augmented by the use of the security techniques including signing,
encryption, and postfacto auditing. Java also provides some packages that can
facilitate the security techniques used by an enterprise, as shown in Table 10-2.

Security Packages of the Java Platform

Package Description

java.security

Framework of classes and interfaces for security, including access control and
authentication. Also provides support for cryptographic operations, including
message digest and signature generation.

java.security.acl

Deprecated as of Java 1.2, replaced by classes in java.security.

java.security.cert

Classes and interfaces for parsing and managing X.509 certificates, X.509
certificate revocation lists (CRLs), and certification paths.

java.security.interfaces

Interfaces for RSA (Rivest, Shamir, and Adleman AsymmetricCipher algorithm)
and DSA (Digital Signature Algorithm) key encryption.

java.security.spec

Classes and interfaces for DSA, RSA, DER, and X.509 keys and parameters used
in public-key cryptography.

javax.crypto

Classes and interfaces for encrypting and decrypting data.

javax.crypto.interfaces

Interfaces for Diffie-Hellman public/private keys.

javax.crypto.spec

Classes and interfaces for key specifications and algorithm parameter
specifications used in cryptography.

javax.net.ssl

Classes for encrypted communication across a network using the Secure Sockets
Layer (SSL).

javax.security.auth

A framework for authentication and authorization used by Java Authentication
and Authorization Service (JAAS).

javax.security.auth.callback

Classes providing low-level functionality that obtains authentication data and
displays information to a user.

javax.security.auth.kerberos

Classes that support the Kerberos network authentication protocol.

javax.security.auth.login

Provides a plug-in framework for user authentication.

Jjavax.security.auth.spi

LoginModule interface for implementing plug-in user authentication modules.

javax.security.auth.x500

Classes for representing X.500 Principal and X.500 Private Credentials.

New or modified packages for
Java 5 and above

javax.annotation

Common classes to support Java 5’s annotation facility.

javax.annotation.security

Common security classes to support Java 5’s annotation facility.

javax.ejb

Additionally contains classes to support Java 5’s annotation facility.

Identify Security Restrictions §3 §

CERTIFICATION OBJECTIVE 10.01

Identify Security Restrictions That Java Technology
Environments Normally Impose on Applets
Running in a Browser

We will now take a look at the restrictions that are normally imposed upon Java
applets that execute within the confines of a browser.

Applets in a Browser

There are two flavors of applet, signed and unsigned. Unsigned applets work in a
sandbox, are severely restricted, and are very safe to run. A signed applet is an applet
with a digital signature added that proves that it came untampered from a particular
publisher. The user of the signed applet can remove the default sandbox restrictions
by indicating so on a dialog that is presented when the applet is first loaded in the
browser.

A common misconception of most newcomers to Java is that security restrictions
apply only to applets (Java classes downloaded and executed within a web browser).
In fact, security restrictions can apply to all Java classes. (However, they do not apply
to classes loaded from the boot classpath.) Before the Java API performs an action
that is potentially unsafe, it calls the Java Security Manager (JSM) to determine
whether the action is permitted. Here is a partial list of the actions for which checks
take place:

B Reading, writing, or deleting a file
B Opening, waiting for, or accepting a socket connection
B Modifying a thread attribute (for example, priority)

B Accessing or updating system properties

If the Java Security Manager does not permit the action, the Java API will not
allow the action to take place. Now, you might ask, how is my application able to do
one of these so-called unsafe calls, such as read or write a file? The answer is that the
Java Security Manager is not installed by default; but it can be by calling it within
your class or specifying a parameter to the Java command line. To establish the Java

B 36 Chapter 10: Security

Security Manager within code, place the following as the first line in the main ()
method:

System.setSecurityManager (new SecurityManager ()) ;

To establish the Java Security Manager via the command line, add the following
parameter to the command line:

-Djava.security.manager

Once installed, the Java Security Manager checks whether a particular permission
is granted to the specific requesting class; it throws a SecurityException if the permission
is denied. The Java Security Manager checks by examining the call trace, so if an
untrusted piece of code is invoked as part of a call to a secured method, it will fail
because of the presence of the untrusted code. The permission is itself an abstract
class representing access to a system resource. The permission can optionally contain
a name and an action. When specified, these optional attributes further refine the
permission being granted. For example, java.io.SocketPermission can be established with
a host name of 66.108.43.211:9080 and an action of accept,connect,listen, which will
allow the code to accept connections on, connect to, or listen on port 9080 on a host
specified by IP address 66.108.43.211.

Here is a list of the security restrictions that Java technology environments
normally impose on an unsigned applet running in a browser:

B Can make network connections only to the host from which it was
downloaded.

Can utilize only its own code and is not allowed to load libraries or define
native methods.

Cannot change thread priority.
Cannot execute any native code.

Cannot install software.

Cannot issue an RMI call to a remote object running on a different server
than the applet’s.

Cannot monitor mouse motion.
Cannot programmatically read from or write to the clipboard.
Cannot read or write local files on the host that is executing it.

Cannot read the system properties specified in Table 10-3.

Cannot send e-mail to a server other than the host from which it was
downloaded.

Identify Locations for Implementation of Security Features §3 7

Property Description

Security Packages | java.home Java installation directory
f th .
of the Java java.class.path Java classpath
Platform
user.name User account name
user.home User home directory
user.dir User’s current working directory

B Cannot start any program on the local host.

Cannot talk to a serial or parallel port.

B Cannot use System.setOut () or System.setErr () methods to redirect the
console.

B Cannot use the Preferences API.
B Cannot use the Reflection API.

CERTIFICATION OBJECTIVE 10.02

Given an Architectural System Specification, ldentify
Appropriate Locations for Implementation of
Specified Security Features and Select Suitable
Technologies for Implementation of Those Features

We will now take a look at the authentication and authorization security features that
are part of a distributed network environment. We'll look at specific implementations
and provide example code for review.

Authentication

In distributed computing, authentication is the device used by callers and service
providers to prove to one another that they are to be “trusted.” When the proof
is bidirectional, it is called mutual authentication. Authentication establishes
an actor’s identities and proves that each instance is “authenticated.” An entity
participating in a call without establishing an identity is “unauthenticated.”

£38 Chapter 10: Security

Authentication is achieved in phases. Initially, an authentication context is
established by performing authentication, requiring knowledge of a secret password.
The authentication context encapsulates the identity and is able to fabricate an
authenticator—a proof of identity. The authentication context is then used to
provide authentication to other entities with which it interacts. The utility of
authentication context should be well planned by the enterprise security team. Of
late, security and identity management has become a critical enterprise function.
Most large enterprises now have an adjunct group responsible for maintaining a
user identity throughout the enterprise environment. Some large enterprises will
have thousands of applications, each with its own authentication and identity
maintenance. Software such as Thor (www.thortech.com) is designed to maintain
users, groups, and security policy that provisions authentication for all of the
secured resources (programs and data) within an enterprise.

Potential policies for controlling access to an authentication context are listed
here:

B Once the user performs an authentication, the processes the user invokes
inherit access to the authentication context.

B When a component is authenticated, access to the authentication context
may be available to other trusted components.

B When a component is expected to impersonate its caller, the caller delegates
its authentication context to the called component.

The whole issue of propagation of authentication context from client to the
Enterprise JavaBeans (E]JB) server to the Enterprise Information System (EIS)
server is still evolving, both in terms of the specification as well as vendor offerings.
According to the current Java specification, the container is the authentication
boundary between callers and components hosted by the container. To this end,
JAAS is a package that enables services to authenticate and enforce access controls
upon clients. It implements a Java version of the standard, pluggable authentication
module framework and supports client-based authorization. JAAS was integrated
into Java in version 1.4. The core facilities of Java’s security design are intended to
protect a client from developers. The client gives permissions to developers to access
resources on the client machine. JAAS allows developers to grant or deny access
to their programs based on the authentication credentials provided by the client.
The JAAS specification extends the types of principals and credentials that can be
associated with the client, but it is also evolving.

The Java
protection
domain

Identify Locations for Implementation of Security Features §3©

Java Protection Domains

Some components communicate without the need for authentication. This is
because the communication is based on a preestablished trust mechanism. A
protection domain is the name given to a group of components that have this trust
established. Components within the same protection domain do not need to be
authenticated with each other, and consequently no constraint is placed on the
identity associated during a call. Authentication is required only for components
that interact across the boundary of the protection domain. Figure 10-1 illustrates
the authentication requirements for interactions that are contained within and that
cross the boundary of a protection domain.

The container in the JEE environment provides the authentication boundary
between external and internal components. It is possible that the authentication
boundary is not synchronized with the boundaries of protection domains. Even
though it is the responsibility of the container to enforce the boundaries, you may
encounter an environment that contains protection domains that span multiple
containers. The issue of protection boundaries is extremely important, as enterprise
requirements fuse JEE web and EJB components with back-end EIS resources that
have preexisting application security in place—for example, IBM RACF (Resource
Access Control Facility) security for CICS (Customer Information Control System)
transactions interacting with JEE.

In general, it is the responsibility of the container to authenticate component
calls and police the boundaries of the protection domain. On an inbound call, the
container passes the authenticated credentials to the component being called. The
credentials can be a simple identity or a more complicated item such as an X.509
certificate. Similarly, when a component makes an outbound call, the container is
responsible for establishing the identity of the component making the call. When
a call is made across containers and the identity of the calling component has
not been authenticated, the containers will check whether an existing trust exists
between the interacting containers. If the trust exists, the call is permitted; if not,
the call is rejected.

Security and trust:

Protection domains

Universal Trust:

Protection domain | No authentication Protection domain 2
required m
[]

Authentication
Trust zone required Trust zone

B840 Chapter 10: Security

[t is important that you differentiate the identity “propagation” model from the
“delegation/impersonation” model. In the propagation model, the providers must
determine whether or not to accept propagated identities as authentic. In delegation/
propagation, the called component is given access to the caller’s authentication
context, thus enabling the called component to use the passed credentials to act on
behalf of (or to impersonate) the caller.

Authentication in JEE

In a JEE application, the user’s client container communicates with containers

in the web, EJB, or EIS layers to access resources in their respective zones. These
resources can be either protected or unprotected. A resource is protected when an
authorization constraint is defined to the container that hosts it. When a user wishes
to access a protected resource, the client container must present credentials (along
with, when no trust exists between the containers, an authenticator that proves the
caller has a right to use the identity) so that the container can validate them against
the defined authorization constraint and then either permit or deny access to the
resource.

Authentication in the Web Container

Collections of web resources, such as JSPs, servlets, HTML documents, image files,
and compressed archives, are protected in the JEE environment when the deployer
specifies one or more authorization constraints for the collection at deployment
time. In the deployed or target environment, when a user of a browser attempts
to access protected resources, the web container determines whether the user has
been authenticated; if not, the user will be prompted to identify himself using the
mechanism specified in the application’s deployment descriptor. When the user is
successfully authenticated, he still will not be able to access the resource unless his
identity is one that is granted permission according to the authorization constraint.
As already mentioned, the deployer specifies the authentication mechanism in
the application deployment descriptor. A JEE web container typically supports the
following types of authentication mechanisms:

B HTTP basic

B HTTP digest

B FORM based

B HTTPS mutual

Identify Locations for Implementation of Security Features §4 ||

In HTTP basic authentication, the web server authenticates a principal using
the user name and password obtained from the web client. The following process
shows the conversation between the client browser and the web container to help
elaborate on the basic authentication mechanism.

I. Client browser attempts to access a protected resource by sending an HTTP
GET request—for example:

GET /secure/declarative.html HTTP/1.1 Host: ucny.com

2. The web container sends back a challenge to the client to authenticate. The
WWW-Authenticate header within the response contains the type of the
authentication mechanism required and the security realm:

HTTP/1.1 401 Unauthorized WWW-Authenticate: Basic
realm="weblogic"

3. The user enters a user ID and a password for the security realm, and the
request is resubmitted along with an additional HTTP header whose value
contains the authentication mechanism, the security realm, and the creden-
tials. The credentials are formed by concatenating the user ID, a colon, and
the password and then encoding this using the base-64 encoding algorithm.
The following HTTP GET request contains the base-64 encoded credentials:

GET /secure/declarative.html HTTP/1.1 Host: ucny.com
Authorization: Basic ¢31zdGVtOnBhc3N3b3Jk

4. The server will then attempt to authenticate the credentials within the
security realm. If unsuccessful, the server will prompt again for valid
credentials. If the credentials are valid, the identity will be checked against
the authorization constraint. If the identity is permitted, access to the
resource is allowed; otherwise, it is denied.

Basic authentication is limited, because HTTP is a stateless protocol. Once
authenticated, a browser has to send this authentication data along with each and every
client request. This is clearly a security threat because the request is not encrypted and
can be captured and then retransmitted by a determined unauthorized individual. What's
more, base-64 encoding is simple to decode and gives the hacker a real user ID and
password that can be used to gain access to other protected resources. This potentially
opens up the enterprise to the threat based upon a “compromise of accountability.”
For these reasons, it is pragmatic to use basic authentication with an encrypted link
and server authentication, more commonly known as digest authentication.

B472 Chapter 10: Security

Digest authentication is an improvement over basic authentication because it
allows the client to prove knowledge of a password without actually transmitting it
across the network. The web client authenticates by sending the server a message
digest as part of the HTTP request. This message digest is calculated by taking parts
of the message along with the client’s password and passing them though a one-way
hash algorithm. The mechanism works similarly to basic authentication, but in this
case, the web container sends back some additional data with the challenge to the
client to authenticate.

HTTP/1.1 401 Unauthorized WWW-Authenticate: Digest realm="ucny",
gop="auth", nonce="7fef9f6789b0526151d6efbdl2196cdc",
opaque="c8202b69f571bdf3eerft43cebee2466"

The www-Authent icate header contains the name of the authentication
mechanism (Digest), the realm ("ucny"), and some additional parameters to
authenticate. These additional parameters include the nonce, or number once,
which is a value that is used by the server and is valid for the current authentication
sequence only. The browser client must then take the user name, password, realm,
nonce, HTTP method, and request Uniform Resource Identifier (URI) and calculate
a digest. The digest, a fixed-length encoding, has the properties that hide the actual
data. The client will then resubmit the HT TP request along with a response parameter
that is the calculated digest:

GET /secure/declarative.html HTTP/1.1 Host: ucny.com
Authorization: Digest username="system", realm="weblogic",
gop="auth", nonce="7fef9f6789b0526151d6efbdl2196cdc",
opaque="c8202b69f571bdf3eerftd43lcebee2466",
response="5773a30ebe9e6ce90bcb5a535b4dc417"

The server in turn calculates the message digest from the inbound request and
then compares it to the response value. If the values are not equal, the server
responds with a “401 Unauthorized” error. If the values are equal, the credentials are
deemed valid and then subsequently used for the authorization check to determine
whether the client should have access to the protected resource. If the user is
authorized, access to the resource is granted. If the authorization step fails, the server
responds with a “403 Access Denied” error.

Form-based authentication allows for the use of a custom HTML form as the
user interface for capturing the authentication information. However, as in basic
authentication, the target server is not authenticated, and the authentication
information is transmitted as plain text and as such is still vulnerable.

Asymmetric
cryptography

Identify Locations for Implementation of Security Features §43

With mutual authentication, X.509 certificates are used to establish their identity
on the client and on the server. The transmission occurs over a secure channel
(SSL) and is much more difficult for a hacker to break into.

Encrypted Communication

Cryptography is a mechanism whereby data is encrypted using a key such that it can
be decrypted only with a matching key. The two types of encryption are known as
symmetric and asymmetric. In symmetric encryption, both sender and recipient know
a common key, and this is used to encrypt and decrypt messages. In asymmetric
encryption, also known as public-key cryptography, a key is split into two parts and
referred to as a key pair, or private key and public key. Their most interesting feature
is that each key is able to decrypt data that was encrypted by the other. The private
key is obviously kept private and known only to a single individual or business, and
the public key is given to all those who wish to communicate securely back and
forth with the private key holder. So the private key holder is the only one who can
decrypt data encrypted by the public key holders, and the public key holders are the
only ones who can decrypt data encrypted by the private key holder. Figure 10-2
shows how asymmetric cryptography works.

Several choices can be made regarding which type of encryption to use and how
much data should be encrypted in any given communication. For example, all the
data can be encrypted with a private key so that only the public key holder can
decrypt it, or it can be encrypted using a symmetric key known to both sides. Another
possibility is to append an encrypted piece on to the communication—in effect,

a signature or seal—so that the recipient will know that the sender genuinely sent
the data and that the data was not tampered with on the way. In this case, the sender
produces a hash code result by executing an algorithm on the complete message.

Message Message

Message is Encryped
Sender | encrypted with |—| YP »
s o message —>
sender’s private key

/' "\
g Public key is given to receiver ;

Private Public

Message is
decrypted with Receiver
sender’s public key

Encrypted
message

544 Chapter 10: Security

This hash code result then gets encrypted and appended with the original data. Once
the message is received, the recipient will attempt to decrypt the encrypted portion of
the message to obtain the sender’s hash code result. If successful, the recipient knows
the message came from the sender. The recipient then executes an algorithm on the
complete message, producing a hash code result to be compared with the sender’s
hash code. If they are the same, the message has been received without any tampering
along the way.

Asymmetric encryption is slower than symmetric encryption when dealing with
large amounts of data. This is due in part to the increased length of the keys required
in asymmetric cryptography to achieve the same level of protection as the symmetric
variety. The longer keys demand more computing resources. Because of this, the bulk
of data that needs to be secured is usually encrypted using symmetric cryptography,
and a smaller amount is encrypted with asymmetric cryptography. In fact, a large
number of hardware manufacturers sell SSL accelerator boards to avoid the overhead
of key generation, encryption, and decryption.

Digital Certificates

A big issue with public key (asymmetric) cryptography is the way that recipients
obtain the public key. If a public key is received in person, it can be deemed
trustworthy. However, if it is received via some other means, it may not be deemed
trustworthy. To alleviate the logistical issue of all public keys being handed out in
person, a popular solution is for the private key holder to place the public key into

a package known as a digital certificate, and then sign it with the private key of a
trusted authority, known as a Certificate Authority (CA). These digital certificates
can then be sent securely to recipients that are willing to trust the same CA and
have access to the CAs public key. Several CAs are universally trusted, and their
public keys are well known. VeriSign (www.verisign.com) is a leader in issuing digital
certificates globally. The VeriSign public keys get distributed with commercial client
and server software such as browsers and web servers.

Secure Sockets Layer

Created by Netscape, SSL is a security protocol that ensures privacy on the Internet.
The protocol allows applications to communicate in such a way that eavesdropping
cannot easily occur. SSL offers data encryption, server authentication, and message
integrity. Servers are authenticated for each request, and clients can be optionally
authenticated as well. SSL is independent of the application protocol, and as such,
protocols such as HTTP or FTP can transparently execute on top of it. All the data
is encrypted before it is transmitted.

Typical J2EE
application
configuration

Identify Locations for Implementation of Security Features §45§

SSL uses a series of handshakes to establish trust between two entities using
asymmetric encryption and digital certificates. These handshakes finish with the
two entities negotiating a code set, including a set of session keys to be used for bulk
encryption and data integrity. SSL has two authentication modes, mutual and server.
In mutual authentication mode, the client and server exchange digital certificates to
verify identities. In server authentication mode, the server sends a certificate to the
client to establish the identity of the server. Note that HTTPS (HTTP running over
SSL) typically uses port 443 instead of HTTPs default port 80. A digital certificate,
provided by a CA such as VeriSign, must be installed on the server before server
authentication can take place.

Authentication Within the EJB Container

Although EJB containers implement authentication mechanisms, they often rely on
the web container to have authenticated a user already. The web container enforces
the protection domain for web components and the E]Bs that they call. A typical
configuration is shown in Figure 10-3.

EJB containers and E]B client containers support version 2 of the Object
Management Group’s (OMG) Common Secure Interoperability (CSI) protocol.
CSIv2 is a standard wire protocol for securing calls over the Internet Inter-ORB
Protocol (IIOP). At its core, CSlv2 is an impersonation or “identity assertion”
mechanism. It provides the mechanism for an intermediate entity to impersonate, or
assert, an identity other than its own. This feature is based on the fact that the target
trusts the intermediate entity.

Here is a summary of CSIv2:

B An Interoperable Object Reference (IOR) holds a component that identifies
the security mechanisms supported by the object. The IOR also includes
information about the transport, client authentication, and identity and
authorization tokens.

J2EE setup:
Protection domains
Client | | . WebContainer | ’ EJB container
browser Authentication o
required No authentication
Servlet required E|B
Authentication Al | A4
context E|B
JavaServerPage A3 EJB
A7
Protection domain AS
Trust zone | | Trust zone

Protection domain: Interaction between application components (A#)

B46 Chapter 10: Security

CSlIv2 protocol
architecture

B The security mechanisms contained within the IOR are examined and the
mechanism that supports the options required by the client is selected.

B The client uses CORBAs Security Attribute Service (SAS) protocol to set
up a security context. This protocol defines messages contained within the
service context of requests and replies. The security context established can
be either stateful (used for multiple invocation) or stateless (used for a single
invocation).

B CSlv2 supports Generic Security Services APl (GSSAPI) initial context
tokens, but to comply with conformance level 0, only the user name and
password must be supported.

CSIv2 is intended for situations where protecting the integrity of data and the
authentication of clients are carried out at the transport layer level, along with, for
example, SSL. JEE containers use CSIv2 impersonation to assert the identity of
a caller to a component. Figure 10-4 illustrates the CSIv2 architecture components
and the enterprise beans that they invoke.

When a JEE application is deployed to an application server, the deployer defines
the CSlIv2 security policy to be enforced by the application server. This includes
specifying certain security requirements, such as the following:

B Does the target require a protected transport?
B Does the target require client authentication?

B [f so, what type of authentication is required?

Configuring Authentication in JEE

As part of the web application’s authentication mechanism, the servlet container
uses the login-config element contained in the application deployment descriptor

J2EE setup:
CSIv2 protocol architecture

Identity assertion Client authentication Message protection
Target-client authentication
Client authentication

Supplemental
client
i authentication
Security [Transport layer
attribute layer
SAS service context SSL/TLS

protocol

Identify Locations for Implementation of Security Features §47

file (web.xml). The container performs many checks, some of the most common of
which are listed here:

B Does the request need to be decrypted?
B Does the request have authorization constraints?

B Does the request have authentication or authorization requirements?

Typically, resources in an application are protected via a combination of
authentication and authorization constraints. Specifying authentication constraints
without authorization constraints (and vice versa) does not add any value and
therefore does not make sense.

If the container cannot determine the caller’s identity, it uses the <login-config>
element specified in the application deployment descriptor. The following code
listing example is an excerpt from an application deployment descriptor. It contains
the authentication entries required to enforce the constraint using FORM-based
authentication. Note that the associated authorization constraints, specified
within the web-resource-collection element, are covered in detail in the section
“Authorization” found later in this chapter.

<web-app>
<security-constraint>
<web-resource-collection>
... (resources to be protected)
</web-resource-collections>
<auth-constraints>
<role-name>secure role</role-name>
</auth-constraints>
<user-data-constraints>
<transport-guarantee>NONE</transport-guarantee>
</user-data-constraints>
</security-constraints>
<login-configs>
<auth-method>FORM</auth-method>
<form-login-configs>
<form-login-page>login.html</form-login-page>
<form-error-page>loginError.html</form-error-page>
</form-login-config>
</login-config>
<security-role>
<role-name>secure role</role-name>
</security-role>
</web-app>

548

Chapter 10: Security

Here is the <login-config> excerpt that uses BASIC authentication. Note that the

realm-name is used only in BASIC authentication.

<login-configs>

<auth-method>BASIC</auth-method>

<realm-name>weblogic</realm-name>
</login-config>

Here is the <login-config> excerpt that uses DIGEST authentication:

<login-config>

<auth-method>DIGEST</auth-method>

</login-config>

Here is the <login-config> excerpt that uses CLIENT-CERT authentication.

<login-config>

<auth-method>CLIENT-CERT</auth-method>

</login-config>

With BASIC authentication, the browser displays and controls the login process
and user interface. The browser will display a simple dialog box prompting for user
name and password. With FORM authentication, the web application defines and
therefore controls the login process to a greater extent. Here is some example code

for a login form:

<heads><title>Security Demo: login</title></head>
<h2>Login</h2>

Please authenticate yourself:

<form method="POST" action="j_ security check">
Username: <input type="text" name="j username">

Password: <input type="password" name="j password"s

<input type="submit" value="Login"s>
<input type="reset" value="Reset">
</form>

<p>home
</html>

Identify Locations for Implementation of Security Features 549

Here is the code for loginError.html:

<head><title>Security Demo: login error</title></head>
<h2>Login Error</h2>

<hr width="100%">

Invalid username/password.

<p>home

</body>

</html>

In FORM-based authentication, the web container performs the authentication
check. It does so according to the servlet specification, which specifies that the
form method must be a POST, the name of the action must be j_security_check, and
the names of the user name and password fields must be j_username and j_password,
respectively. When the container sees the j_security_check action, it uses an internal
mechanism to authenticate the caller. If the logon is authenticated and authorized to
access the secured resource, the container produces a session 1D to identify a logon
session for the caller. The container maintains the logon session ID within a cookie.
The server sends the cookie back to the client, and the client caller must then send
this cookie back on all subsequent requests. If the authentication fails, the page
identified by the <form-error-page> is returned to the client.

As mentioned, FORM-based authentication is still not secure by default. But
it can be made more secure by conducting it over a secure channel by specifying
a transport guarantee for the secured resource. For example, use <transport-
guarantee>SSL</transport-guarantees.

Authentication in the Enterprise Information System Layer
When JEE components need to access and therefore integrate with EISs, they may
need to employ alternative mechanisms for security. In addition, they most likely
will be operating from protected domains that do not cover the EIS resources they
need to access. To provide for these situations, the calling container can be set up
to manage the calling component’s authentication for the resource. This is known
as container-managed resource manager sign-on. The JEE architecture also provides
the ability to specify the caller’s credentials. This is known as application-managed
resource manager sign-on.

Within the deployment descriptor, the <resource-ref> element specifies a resource
called by a component. The <res-auth> element specifies whether the resource sign-on
is to be handled by the container or the application. Components that use application-
managed resource manager sign-on can use either the getUserPrincipal ()

B 50 Chapter 10: Security

(for web components) or getCallerPrincipal () (for EJB components) method
to access the identity of the caller. This identity can then be mapped according to the
requirements of the EIS. When container-managed resource manager sign-on is used,
the container takes care of the mapping for the component.

Identity Selection

In a JEE server-side component, the container sets up the identity when the
component calls another JEE component. The identity that is created is dependent on
the identity selection policy specified in the deployment descriptor. For the identity
selection policy, the deployer can specify either a <use-caller-identity> element or a
<run-as> element. Component identity selection policies may be defined for web and
EJB resources. When <use-caller-identity> is specified, the container uses the identity of
a component’s caller in all subsequent calls made by the component. When the <run-
as> element is specified, the container uses the identity specified within the element.
In short, <use-caller-identity> maintains accountability and traceability for actions
taken by components, and <run-as> can quickly give the caller privileges that their
own identity lacks.

The following EJB deployment descriptor snippet shows examples of both types of
client identity selection policy:

//Configuring EJB Component Identity Selection Policies
<enterprise-beans>
<entity>
<security-identity>
<use-caller-identity/>
</security-identity>

</entitys>
<session>
<security-identity>
<run-ass>
<role-name>guest</role-name>
</run-as>
</security-identity>

</session>
</enterprise-beans>

The following deployment descriptor snippet shows an example of client identity
selection policy for a web component. Note that when a <run-as> element is not
specified, the use-caller-identity policy is assumed.

Identify Locations for Implementation of Security Features §§ ||

//Configuring Web Component Identity Selection Policies
<web-app>
<servlet>
<run-ass>
<role-name>guest</role-name>
</run-as>

</servlets>

</web-app>

Authorization

Authorization is the mechanism that controls caller access and interaction with
application resources or components. The caller’s credentials (identity), which

can also be anonymous or arbitrarily set by the caller, can be determined via
authentication contexts that are available to the called component. Access can then
be determined by comparing the caller’s credentials with the access control rules for
the required component or resource.

These access control rules are in effect a matching of the application’s capabilities
with the caller’s permissions. The application’s capabilities define what can be
performed within the application, and the caller’s permissions define what the caller
is allowed to perform.

In the JEE architecture, the container provides the “border patrol” between
callers requiring access to the target resources and components that execute within
the container. So on an inbound call, the container compares the caller’s credentials
with the access control rules for the target component or resource. If the rules are
satisfied, the call will continue; if not, the call is rejected.

Authorization in the JEE environment can be enforced in two ways: declaratively,
configured by the deployer and managed by the container, or programmatically,
embedded in and managed by the component.

Declarative authorization controls access from outside of the application code,
whereas programmatic authorization controls access from within the application
code. The pros and cons for each technique are detailed in Table 10-4.

The client to a JEE application typically uses the application container to interact
with enterprise resources in the web or EJB layer. Resources that are secured (or
protected) have authorization rules that are either declared in deployment descriptors or
embedded within component code. These rules control the access to the components,
and clients will need to present credentials to be evaluated against the access rules that
are in place.

B 5?2 Chapter 10: Security

TABLE 10-4 Pros and Cons for Declarative and Programmatic Authorizations

Technique

Pros Cons

Declarative authorization Continued flexibility once application ~ May not provide enough fine-
(external) is developed. Easily viewed and grained flexibility.

interpreted by deployer.
Programmatic authorization Provides fine-grained flexibility. No flexibility after application is
(internal) developed. Functionality is buried

within code.

Authorization Enforced by the Container (Declarative)

As mentioned, declarative authorization is established externally to the web or
EJB component. It is defined within the deployment descriptor files. Entries within
these files map the application permissions (usually defined by the assembler) to the
policies or mechanisms that exist in the actual target environment.

The deployment descriptor file contains definitions that associate the security roles
(logical privileges) with components and the privileges required for permission
to access components. The deployer assigns security roles to specific callers, thus
establishing the abilities of users in the target environment.

Using Declarative Authorization

A client typically uses a JEE application’s container to access enterprise resources in
the web or E]B tier. To control access to a web resource declaratively, an application
component provider or application assembler must specify the security-constraint
element along with the auth-constraint subelement in the application deployment
descriptor. The following deployment descriptor excerpt shows the specification of a
protected web resource:

<security-constraints>
<web-resource-collection>

<web-resource-name>SecurePages</web-resource-name>
<description>Security constraint for protected resources</descriptions
<url-pattern>/secure/*</url-pattern>
<http-method>POST</http-method>
<http-method>GET</http-method>

</web-resource-collections>

<auth-constraints>

<description>Users in this role can login</description>
<role—name>secure_role</role—name>
</auth-constraints>

</security-constraints>

Identify Locations for Implementation of Security Features £ §3

This excerpt indicates to the container that the URL conforming to the pattern /
secure/* can be accessed only by users that are in the secure_role role. However, some
web content typically does not need to be protected with authorization rules. This
unrestricted access is achieved simply by not adding an authentication rule.

To protect or declaratively control access to an enterprise bean resource, the
application component provider or application assembler can declare security roles
and the methods of the bean’s interfaces (remote, home, local, and local home)
that each security role is allowed to call. This is declared using method-permission
elements in the deployment descriptor.

The following deployment descriptor excerpt shows two method-permission
elements. The first refers to method2 of all of the interfaces (which could be remote,
home, local remote, and local home) of the enterprise bean. The second refers to
method3 on the remote interface of the same enterprise bean.

<assembly-descriptors>

<security-role>
<role—name>usr_role</role—name>

</security-role>

<security-role>
<role-name>adm_role</role-name>

</security-role>

<method-permission>
<description>remote method2 access</descriptions>
<role-name>usr_role</role-name>
<method>
<ejb-name>DeclarativeSecurity</ejb-name>
<method-name>method2</method-name>
</method>
</method-permission>
<method-permission>
<description>remote method3 access</description>
<role—name>adm_role</role—name>
<methods>
<ejb-name>DeclarativeSecurity</ejb-name>
<method-intf>Remote</method-intf>
<method-name>method3</method-name>
</method>
</method-permission>

</assembly-descriptors>

B854 Chapter 10: Security

Note that if another method were to use the same name (that is, overloaded
methods were in the bean code), this permission scope would refer to both methods.
You can refine the scope further by identifying methods with overloaded names
by parameter signature, or you can refer to methods of a specific interface of the
enterprise bean (such as remote, local).

You can also indicate to the container that it should allow the call to a method to
proceed regardless of the caller’s identity. By adding the unchecked element to the
method-permission element, the container authorizes the use of a method to anybody.
Here is a deployment descriptor excerpt showing the unchecked element:

<assembly-descriptors>

<method-permissions>
<unchecked/>
<method>
<ejb-name>DeclarativeSecurity</ejb-name>
<method-name>methodl</method-name>
</method>
</method-permissions>

</assembly-descriptor>

Additionally, method specifications may be added to an exclude-list. This indicates
to the container that access to these methods is denied regardless of the caller’s
identity, even if the methods have been specified in the method-permission element.
Here is a deployment descriptor excerpt showing the exclude-list element:

<assembly-descriptors>

<exclude-list>
<method>
<ejb-name>DeclarativeSecurity</ejb-name>
<method-name>method4</method-name>
</method>
</exclude-list>

</assembly-descriptors>

Authorization Enforced by the Component (Programmatic)
There may be a time when declarative authorization is not sufficient. For example, if

a more fine-grained authorization model is required, the developer of a web component
can use a combination of the getUserPrincipal () and isUserInRole ()

<html>

Identify Locations for Implementation of Security Features £ 5§

methods that exist on the HttpServletRequest object, and the developer
of an EJB component can use a combination of the getCallerPrincipal ()
and isCallerInRole () methods that exist on the EJBs context object, to
carry out access control at the component level. This is known as programmatic
authorization. The web or EJB component can use these methods to determine
whether the caller is allowed to perform the functionality that has been called
within the component.

Using Programmatic Authorization

As mentioned, the web component developer will use getUserPrincipal ()
and isUserInRole () methods within a JSP or servlet to control access to the
web resource’s functionality. These methods typically require that the client also
be authenticated, so it makes sense to use the technique in conjunction with
declarative authorization.

The following example shows the use of the programmatic authorization methods
getUserPrincipal () and isUserInRole () in a JSP. The JSP is part of an
application that also has some resources protected with declarative authorization.
Here is example code for a JSP:

<head><title>Security Demo</title></head>

<body bgcolor="#FFFFFF">

<head><title>Security Demo: programmatically protected page</title></head>
<h2>Programmatically Protected Page</h2>

<hr width="100%">

)
<3

java.security.Principal principal = request.getUserPrincipal () ;
if (principal != null) {

boolean inRole = request.isUserInRole("secure role");

if (inRole) {

if

("system".equals (principal.getName ())) {

out.write("
You are the correct user ("+principal.getName ()
+") and role, so access is granted!");

// This is where code for the protected

// functionality would reside...

} else {
out.write ("
You are NOT the correct user ("+principal.getName ()
+"), so access is denied!");
} else {

out . .write ("
You are NOT in the correct role, so access 1s denied!");

B 56 Chapter 10: Security

} else {

out.write ("<p>You are not authenticated, so access is denied!");

1
%>
<p><a href=".
</body>
</html>

./index.html">home

To control access programmatically to an enterprise bean resource, the enterprise
bean provider uses the isCallerInRole () and getCallerPrincipal ()
methods to determine whether the caller is within the specified role or is, in fact,

a specific user that is authorized to perform the called functionality. Within the EJB
deployment descriptor, the assembler must add a security-role-ref element for every
role that is referred to within the bean code. The assembler must also add a security-
role element for the role-link in every security-role-ref element that has been added.
Here is an excerpt for an E]JB deployment descriptor:

<ejb-jar>
<enterprise-beanss>
<ejb-name>ProgrammaticSecurity</ejb-name>

<security-role-refs>
<role-names>programmatic</role-name>
<role-link>programmatic_role</role-links>
</security-role-ref>

</enterprise-beans>

<assembly-descriptors>
<security-roles>
<role-name>programmatic_role</role-name>
</security-role>

</assembly-descriptors>
</ejb-jar>
When deployed, each role-name specified in the assembly-descriptor element of the
EJB deployment descriptor must be mapped to actual resources in the target server.

The following excerpt is from a WebLogic server deployment descriptor that resolves
the role-name to specific resources within the server:

Identify Locations for Implementation of Security Features

<weblogic-ejb-jar>
<weblogic-enterprise-bean>
<ejb-name>ProgrammaticSecurity</ejb-name>

</weblogic-enterprise-beans>
<security-role-assignment>
<role—name>programmatic_role</role—name>
<principal-name>system</principal-name>
<principal-names>auser</principal -name>
</security-role-assignment>
</weblogic-ejb-jars>

557

In this excerpt, the security-role-assignment declares and resolves the role-name
(programmatic_role), specified within the assembly-descriptor element of the EJB
deployment descriptor, to one or more principal identities (system and auser) that are

known to an authentication realm within the WebLogic server.

Here is an example of enterprise bean code that programmatically determines

whether the caller is permitted to execute the method:

package javaee.architect.ProgrammaticSecurity;

import javax.ejb.*;

// A stateless session bean.

public class ProgrammaticSecurityBean implements SessionBean
SessionContext sessionContext;
private static final String ROLE REQUIRED = "programmatic";

// Bean'’s methods required by EJB specification.

public void ejbCreate() throws CreateException {log("ejbCreate()");

public void ejbRemove () {log("ejbRemove()");}
public void ejbActivate() {log("ejbActivate()");}
public void ejbPassivate() {log("ejbPassivate()");}

public void setSessionContext (SessionContext parm)
this.sessionContext = parm;

// Bean’s business methods.
public String methodl () {
log("methodl () called by user "
+sessionContext.getCallerPrincipal () .getName ()) ;
return " methodl executed.";
}
public String method2 () throws EJBException {
log("method2 () called by user "
+sessionContext.getCallerPrincipal () .getName ()) ;
if (!sessionContext.isCallerInRole (ROLE REQUIRED))

throw new EJBException ("insufficient permission to access method2") ;

B58 Chapter 10: Security

// Place method functionality here...
return " method2 executed.";

}

private void log(String parm)
System.out.println(new java.util.Date ()
+":ProgrammaticSecurityBean: "+this.hashCode () +" "+parm) ;

Authorization Summary

By defining a clear separation of the responsibilities for securing an application
among those that develop components, those that assemble components, and those
that deploy application components, the JEE platform achieves its goal of making
the details of security much more simple and easy to implement.

The component-provider role identifies all the security dependencies embedded in
the component, including the following:

B The role names used in method isUserInRole () for web components and
isCallerInRole () for EJB components

B References made by the component to other components
B References to external resources accessed by the component

B The method permission model, including information that identifies the
sensitivity of the information exchanged or processing that occurs in
individual methods

The application-assembler role combines one or more components into an
application package and then produces an overall security view for the whole
application. The deployer role takes this overall security view and uses it to secure
the application for target environment. The deployer does this by mapping the
security view elements to the actual policies and mechanisms that exist in the target
environment. How this mapping occurs will depend on the vendor for the web
and EJB containers. In some cases, additional deployment descriptors resolve this
mapping, and in other cases a vendor-specific tool must be used.

Java 5 Annotation Facility

With the arrival of Java 5, one of the most significant changes in authorization
is in the use of annotations. It is now possible to define custom annotations and

Identify Locations for Implementation of Security Features &£ 59

then apply these annotations to fields, methods, classes, etc. Annotations do not
directly affect program semantics, but compile or runtime tools can examine them to
generate additional constructs (for example, deployment descriptors) or implement
required runtime behavior (for example, EJB component’s state).

Using Java 5 Annotations with Web components With Java version 5 and
beyond, in addition to the declarative and programmatic security specifications
mentioned already, application developers can now programmatically set up the
security for web components by using Java’s annotation facility.

If a value is specified in an annotation and also in the deployment descriptor, the
value in the deployment descriptor takes precedence. The granularity of overriding
is on the per-method basis.

In addition, the web-app element of the web application deployment descriptor
can now contain a full attribute. This full attribute states whether deployment
descriptor is complete, or whether the class files of the web archive (WAR) file
should be examined for annotations that specify deployment information. If the
full attribute is missing or set to false, the deployment descriptors examine the
class files of applications for annotations that specify deployment information. If
the full attribute is set to true, the deployment descriptor ignores any servlet
annotations present in the class files. This feature allows the application deployer to
customize or override the values specified in annotations.

Web application class files can specify the following annotations:

B Declare roles for the EJB module using the @beclareRoles annotation.

B Set the security identity using the @RunAs annotation.

Using Java 5 Annotations with EJB components One of the goals in EJB
3.0 is to reduce the number of pieces that a bean provider must provide. In the

EJB 3.0 world, all kinds of enterprise beans are plain old Java objects (POJO) with
appropriate annotations. Annotations can be used to define the bean’s business
interface, Object/Relational (O/R) mapping information, resource references, and
practically anything else that was previously defined by deployment descriptors or
interfaces in the prior EJB specifications. Consequently, deployment descriptors are
no longer required, the home interface is no more, and you don’t necessarily have
to implement a business (remote) interface because the container can generate it
for you.

B60 Chapter 10: Security

Applications that have been written using the EJB 3.0 specification can specify
the following authorization security options with the annotation facility:

Declare roles for the EJB module using @securityRoles annotation.

Assign roles to the bean class and/or bean methods with
@MethodPermissions annotation.

Override bean role permissions to allow unrestricted access with
@Unchecked annotation.

Disable access to a business method with @Exclude annotation.

Set the security identity of a bean with @RunAs annotation.

CERTIFICATION SUMMARY |

The security mechanisms covered in this chapter show how the features of Java
Platform, Enterprise Edition provide a robust solution for interoperable and
distributed security.

Two-Minute Drill 56 ||

TWO-MINUTE DRILL

Here are some of the key points from each certification objective in Chapter 10.

Identify Security Restrictions That Java Technology
Environments Normally Impose on Applets Running
in a Browser

Q

UO00U U

U U

An unsigned applet can make network connections only to the host from
which it was downloaded.

An unsigned applet can utilize only its own code and is not allowed to load
libraries or define native methods.

An unsigned applet cannot change thread priority.
An unsigned applet cannot execute any native code.
An unsigned applet cannot install software.

An unsigned applet cannot issue an RMI call to a remote object running on
a different server than the applet’s.

An unsigned applet cannot monitor mouse motion.

An unsigned applet cannot programmatically read from or write to the
clipboard.

An unsigned applet cannot read or write local files on the host that is
executing it.

An unsigned applet cannot read the following system properties: java.home,
java.class.path, user.name, user.home, and user.dir.

An unsigned applet cannot send e-mail to a server other than the host from
which it was downloaded.

An unsigned applet cannot start any program on the local host.
An unsigned applet cannot talk to a serial or parallel port.

An unsigned applet cannot use the System. setout () or
System.setErr () method to redirect the console.

An unsigned applet cannot use the Preferences API.

An unsigned applet cannot use the Reflection API.

B62 Chapter 10: Security

Given an Architectural System Specification, Identify
Appropriate Locations for Implementation of Specified
Security Features and Select Suitable Technologies for
Implementation of Those Features

Q Authentication

a

OO0 U0 U0

Authentication method: BASIC, FORM, DIGEST, and CLIENT-CERT
Digital certificates, certificate authorities

Secure Sockets Layer (SSL)

Common Secure Interoperability (CSIv2)

Identity selection: <run-as> or <use-caller-identity> or @RunAs annotation

Security roles, including @DeclareRoles and @SecurityRoles annotations

O Authorization

Qa

]

Authorization enforced by the container (declarative), defined in the de-
ployment descriptor and/or within the component itself via annotations
Authorization enforced by the component (programmatic), defined
within the application code

Self Test §63

SELF TEST

The following questions will help you measure your understanding of the material presented in this
chapter. Read all the choices carefully because there may be more than one correct answer. Choose
all correct answers for each question.

Identify Security Restrictions That Java Technology Environments Normally
Impose on Applets Running in a Browser

I. Which of the following properties cannot be read by an unsigned applet?
A. o0s.name
B. file.separator
C. java.home

D. java.version

2. Which of the following is possible with an unsigned applet?
A. Connect to the host from which it was downloaded.
B. Draw a button.
C. Load a library.
D. Read from the clipboard.

3. A company is building an application that allows its sales force to access and process sales
information via a web browser. As part of the application, the plan is to develop an applet
that will upload data read from a directory on the salesperson’s machine. What are your
recommendations on the use of applets for this purpose?

A. The Applet technology is not a viable solution because it is not allowed to access local
resources.

B. The Applet technology is a viable solution provided that it is packaged as a signed Applet
and the salesperson explicitly allows (trusts) the Applet to be run in its signed state.

Given an Architectural System Specification, Identify Appropriate Locations
for Implementation of Specified Security Features and Select Suitable
Technologies for Implementation of Those Features

4. What is a message digest?
A. A digital fingerprint value that is computed from a message, file, or byte stream
B. A shortened summary of a message

564 Chapter 10: Security

C. The subject line of a message

D. A processing function of the mail server

What method can be used to help programmatically determine the caller’s identity within
enterprise bean code?

A. getIdentity ()

B. getCallerPrincipal ()

C. getCallerIdentity ()

D. getUserId()

Within enterprise bean code, what method can be used to determine whether the caller is in
a security role and authorized to execute the method?

A. inRole()

B. isAuthorized()

C. isCallerInRole()

D. isvalid()

What method can be used to help programmatically determine the caller’s identity within
a JSP?

A. getUserPrincipal ()

B. getPrincipal ()

C. getUser()

D. getIdentity()

Within a JSP, what method can be used to determine whether the caller is programmatically
authorized to execute its functionality?

A. inRole()

B. okToExecute()

C. isvalid()

D. isUserInRole()

What role maps the declarative authorization rules to the target environment?
A. Deployer

B. Component provider

C. Application assembler

D. Authorizer

What role maps the programmatic authorization rules to the target environment?
A. Application assembler

B. Component provider

Self Test §65

C. Coder
D. Deployer

For Enterprise JavaBeans (E]Bs), where are the declarative authorization rules defined?
A. Application properties

B. EJB deployment descriptor

C. JNDI

D. Enterprise bean code

For web resources, where are the declarative authorization rules defined?
A. EJB deployment descriptor

B. Application deployment descriptor

C. In the web resource

D. JMS

For Enterprise JavaBeans (E]JBs), where are the programmatic authorization rules implemented?
A. JNDI

B. EJB deployment descriptor

C. In the enterprise bean code

D. JMS

For web resources, where are the programmatic authorization rules defined?
A. Java Security Manager

B. Security policy file

C. JNDI

D. Within the JSP or servlet

Which of the following is not a valid authentication method (auth-method)?
A. FORM

B. HTTP
C. DIGEST
D. CLIENT-CERT

566 Chapter 10: Security

SELF TEST ANSWERS

Identify Security Restrictions That Java Technology Environments Normally
Impose on Applets Running in a Browser

I. & Ciscorrect. An unsigned applet cannot read the java.home system property.
Xl A, B, and D are incorrect. os.name, file.separator, and java.version can be read by an
unsigned applet.

2. B is correct. An unsigned applet is allowed to draw a button.
X A, C, and D are incorrect because they are actions that are not permitted by an unsigned
applet.

3. 4 Biscorrect. A signed applet is permitted to access local resources.
&l A is incorrect because the signed type of applet is allowed to access local resources.

Given an Architectural System Specification, Identify Appropriate Locations
for Implementation of Specified Security Features and Select Suitable
Technologies for Implementation of Those Features

4. 4 A iscorrect. A message digest is a digital fingerprint value that is computed from a message,
file, or byte stream.
X B, C, and D are not definitions of a message digest.

5. B is correct. The getCallerPrincipal () method returns the principal object. The
getName () method can then be used to determine the caller’s name (identity) from within
enterprise bean code.
® A, C, and D are incorrect because getCallerIdentity () is a deprecated method, and
getIdentity () and getUserId() are not valid methods.

6. 1 Ciscorrect. The isCallerInRole () method can be used to determine if the caller is
within the specified role and therefore able to execute the EJB functionality.
A, B, and D are incorrect because inRole (), isAuthorized (), and isvalid () are not
valid methods.

7. A is correct. The getUserPrincipal () method returns the principal object. The
getName () method can then be used to determine the caller’s name (identity) from within
a JSP.
Xl B, C, and D are incorrect because getPrincipal (), getUser (), and getIdentity ()
are not valid methods.

Self Test Answers 5§67

Ml D is correct. The isUserInRole () method can be used to determine whether the caller is
within the specified role and therefore able to execute the JSP functionality.

A, B, and C are incorrect because inRole (), okToExecute (), and isvValid ()are not
valid methods.

A is correct. The deployer is responsible for mapping declarative authorization rules to the
target environment.

B, C, and D are incorrect because the Component Provider and Application Assembler are
not responsible for providing this mapping. Authorizer is not a JEE role, so it can’t be correct
either.

M D is correct. The deployer is responsible for mapping programmatic authorization rules to
the target environment.

A, B, and C are incorrect because the application assembler and component provider are
not responsible for providing this mapping. Coder is not a JEE role, so it can’t be correct either.

B is correct. The declarative authorization rules for E]Bs are defined within the EJB
deployment descriptor.

A, C, and D are incorrect because EJB authorization rules are not declaratively defined in
application properties, JNDI, or Enterprise bean code.

M B is correct. The declarative authorization rules for web resources are defined within the
application deployment descriptor.

&l A, C, and D are incorrect because authorization rules for web resources are not
declaratively defined in the EJB deployment descriptor, in the web resource, or in JMS.

C is correct. The programmatic authorization rules for EJBs are implemented within the
enterprise bean code.

A, B, and D are incorrect because EJB authorization rules are not programmatically
implemented in JNDI, the EJB deployment descriptor, or JMS.

D is correct. The programmatic authorization rules for web resources are implemented
within the JSP or servlet.

&l A, B, and C are incorrect because authorization rules for web resources are not
programmatically implemented in the Java Security Manager, security policy file, or JNDI.

M B is correct. HTTP is not a valid authentication method.
A, C, and D are incorrect. FORM, DIGEST, and CLIENT-CERT are valid authentication
methods.

