Case Study: Overview
of Securities Trading
System

CERTIFICATION OBJECTIVES

11.01 Example of SCEA Part 2

B70 Chapter |I: Case Study: Overview of Securities Trading System

his chapter presents a case study that will help you to prepare for and complete Part 2

and 3 of the SCEA exam.You should also review Chapter 3 on object-oriented design.

Parts 2 and 3 do not require any code. Part 2 is an architecture and design project.
Part 3 is a set of essay questions related to your project.The essays we include in other chapters
in the book should help you with this part.The nature of the Part 2 assignment requires that
you architect a solution for a small business system.To keep the amount of work involved to a
reasonable level, the programs you create will be restricted in capability, and simpler than anything
you would actually create for a “real-world” client.You will be graded on correctly solving the
technical and performance requirements.

According to the Sun site, your project will be evaluated on a large number of
g y p1Oj g
objective criteria that fall into three categories:

I. Class Diagram This category covers how well your class diagram(s) address
the object model needed to satisfy the requirements.

2. Component Diagram This category covers how well your component
diagram(s) convey the structure of the architecture in satisfying the
requirements.

3. Sequence/Collaboration Diagrams This category covers how well your
sequence or collaboration diagrams satisfy the requirements of the assignment.

Additionally, each category is evaluated on UML compliance.
The maximum number of possible points is 100. The minimum passing grade is
70. The maximum points per category are

Class Diagram(s) 44 maximum points

Component Diagram(s) 44 maximum points

Sequence/Collaboration Diagrams 12 maximum points

In this chapter, we present you with a securities trading application that includes
use cases, a domain object model, and additional requirements. Most systems in
the real world start off with requirements, and the exam assignment chooses to
define the requirements in use cases and a domain model. As the architect for the
application, you must develop the class diagram(s), component diagram(s), and
sequence or collaboration diagrams to describe your architecture.

This particular case study application was developed for a Wall Street clearing
firm, which interacted with hundreds of correspondent trade brokers and their
customers. It was intended to help the firm by facilitating the customers’ ability to
trade securities on the web. To be successful, a trading firm (broker-dealers) must

The Case Study Infrastructure §7 |

transition their firm to a customer-centric, web-based environment. The Internet
was seen as a way to maintain and grow new and existing distribution channels,
customers, and strategic partnerships. Basically, the challenge was to determine how
this trading firm could develop a winning strategy to compete for customers and
brokers who wanted the ease of trading securities via the web.

The solution is the same for all businesses competing in the new e-commerce
world—a three-step approach to successful enterprise development:

I. Spend the time to understand what the client needs—in this case, browser-
based trading functionality.

2. Choose the right technology—in this case, Java and Java 2 Enterprise
Edition (JEE).

3. Develop a team and teamwork atmosphere to implement the technology—
choose architects and developers skilled in trade processing and JEE design
and development.

The Case Study Infrastructure

As with many large organizations, Bank of New Amsterdam (BNA) has several
different operating systems running many kinds of software systems. The primary
platform for the production business data is the IBM Mainframe S/390 (the
mainframe). In addition, Microsoft NT boxes use Internet Information Services
(IIS) and other Microsoft software to provide reporting capabilities, using a SQL
Server shadow copy of the business data. BNA also has an investment in Oracle on
the S/390. Several preexisting legacy applications provide trade-processing links

to the major securities exchanges. These applications work well and have been
developed and maintained for the past two decades, during which time a great deal
of time and money has been spent. The applications do not need modification;
instead, they need a new web front end to make them look good. The development
environment is primarily Windows-based.

The advantages of using the mainframe include its reliability, scalability, flexibility,
and security. The mainframe has been running continuously for years in BNA without
major problems. The mainframe can easily be amended to add hardware resources, such
as CPU, memory, disk, or networking hardware, to increase capacity without changing
the operating system or application systems. In addition, the CPU, memory, and disk
space can be redistributed as application requirements change.

B 72 Chapter |I: Case Study: Overview of Securities Trading System

Traditionally, the downside to the mainframe has been the user interface—the
3270 dumb terminal (the green screen), which is not user friendly. Prior to the
commencement of BNAs Java project, another group spent a few months trying to
develop Windows Active Server Pages (ASPs) to talk to the mainframe. The only
solution providing ASP reports, a portfolio management system, solved the interface
problem, but it was difficult to connect to the mainframe using ASP for trading.

BNA has experienced difficulty getting the order messages to the mainframe.
Along with performance problems, it seemed that every ASP order transaction
required multiple dedicated connections to the SQL Server database. Fortunately, Java
Database Connectivity (JDBC) connection pooling and Java’s platform independence
provided the performance and scalability that was needed. Moreover, it allowed us
to take advantage of the mainframe for deployment and Windows for development.
(Because budget is a limiting factor in an economic downturn, where every developer
is competing for business, it is critical that you deliver a solution quickly that will
integrate with an organization’s existing infrastructure.)

The IBM HTTP server, WebSphere application server, and Oracle 9i Enterprise
relational database management system (RDBMS) are all in existence on the
company’s legacy IBM mainframe enterprise server.

Table 11-1 describes the software components of the web front end.

Figure 11-1 illustrates the enterprise architecture as a diagram, and Figure 11-2
shows a Unified Modeling Language (UML) sequence diagram.

Web Front End Software

Type of

Component

Vendor/Component Software/Hardware
Name/Version Description Required for Support

Application server ~~ WebSphere Application ~ Serves up JSPs and servlets, IBM S/390, Windows XP

Server 5 runs EJBs, and provides SP2
JDBC connection pools to
user data
DBMS Oracle 10.0i Database required for Oracle 10i
application data (orderdb)
JavaScript Netscape/JavaScript ECMA JavaScript IE 6 and above or
Navigator 5 and above
Browser Microsoft or Mozilla Web browser required to IE 6 and above or
Firefox support JavaScript Navigator 5 and above
XML Tool IBM/XML Parser for A library for parsing and Windows XP SP2

Java/3.1.1 generating XML documents

Production
architecture
components

Production
architecture as a
UML sequence
diagram

ﬂ

Mainframe

Router

Internet/Intranet
users

The Case Study Infrastructure

XML

Bank New Amsterdam
Internal interfaces
Production servers

BNA
Other servers

XML messages

via TCP/IP socket

Address: NTAPI
Production 0002

Correspondent accessible ‘secure’ segment (Ethenlnet) PR

573

g ‘WebSphere JBBC
H & Server v4 (data)
a
E HTML JDBC
& data)
4 ‘WebSphere (
;" Server v4 l
SQLGBIS
I (Production)
B /—\
>
=
I Web server Oracle server
(bis.BNAclearing.com),

‘WebSphere
Denmark Training Day
IDBMJmxonarabj

I i WebSphere
e—— Foreign Training Day
Router Proprietary messages IDBMJmxonarabj
§ via TCP/IP socket
Firewall Address: 777.343.95.40
Ports: 910,911,912
Uler/Trad Browser ’ Http server ’ J2EE server ’ J2EE JDBC I ’ Oracle database
ser/Trader

|: Enters the si(ei
1
i

4’ 2: Https request

[

2.1: Access JSP
D 3:Instantiate EJB

3.1:Make a JDBC call

B74 Chapter |I: Case Study: Overview of Securities Trading System

WebSphere Application Server
The WebSphere partition is also connected via TCP/IP sockets to the BNACS API.

This API is used to communicate with and retrieve information from the mainframe
system via an XML-based message format. Finally, the WebSphere partition is
connected to the Stratus TCAM CTPS (the continuous trade processing system
from TCAM) application. The WebSphere application sends and maintains orders,
and it can look up order status by communicating with CTPS via a proprietary
message format.

Continuous Trade Processing

The CTPS system is an order-routing system that is connected to several exchanges
and market makers (firms that stand ready to buy and sell a particular stock on a
regular and continuous basis at a publicly quoted price). The system receives orders
either by direct entry into its terminals or via an in-house-built TCP/IP socket server
(sometimes known as the Stratus Gateway Interface). These orders are routed to the
appropriate exchange or market maker according to a set of correspondent-defined
rules. Executions are then passed back from the exchange or market maker to CTPS,
which updates the order file and forwards the result of the execution to the mainframe.

SQLBIS Database Server

The SQLBIS database server was created to service BNAs trading web site, Brokerage
Information System (BIS). On the database server are several databases (or data marts)
that are used by BIS and the BIS Trading Area to look up account and application
access as well as cross-references and other information. The ORDERDB database was
created exclusively to support the WebSphere applications. In development, the tables
and views were created by developers and migrated to production by the database
administration (DBA) group.

Model and Develop the Case Study

This section describes the case study trading application using text and diagrams
(mostly UML diagrams). This task is not unlike what you as a SCEA Part 2 test
taker must accomplish. As you saw in Chapter 3, UML diagrams and use cases

Model and Develop the Case Study §7 58

can replace what was formerly called the functional requirements in an application
development scenario. Moreover, UML is an adopted and widely accepted standard
used to describe business processing. UML provides benefits to architects and
enterprises by facilitating the construction of robust and maintainable business
models, which can support the entire software development life cycle (SDLC).

The use case model describes the target functionality of a new application. A use case
represents a unit of interaction between an actor and some function. A use case diagram
describes an interaction between an actor and the system. It presents a collection
of use cases and actors and typically specifies or characterizes the functionality and
behavior of an enterprise application interacting with one or more external actors.
The users and any system that may interact with the system are the actors. Actors help
delimit the system and give a clearer picture of what it is supposed to do.

Use cases are developed on the basis of the actors’ needs. This ensures that the
system will turn out to be what the users expected. Use case diagrams contain stick
figure icons that represent actors, association relationships, generalized relationships,
packages, and use cases. A top-level use case diagram shows the context of a system
and the boundaries of the system’s behavior. One or more use case diagrams can be
drawn to describe a part of an application system. Use cases can include other use
cases as part of their behavior. A use case diagram shows the set of external actors
and the system use cases in which the actors participate.

After the use case model is completed and signed off by the business managers,
development begins in earnest. For the remainder of the chapter, we will mix some
of the UML modeling techniques with the actual development product to illustrate
the case study.

A use case model typically comprises the following interrelated components:

B Actor definition
Business process model
Sequence diagrams
Class descriptions

Class diagrams

State transition (life cycle) diagrams

Actor Definition

The people involved in the business process are described as a series of actors, who
may represent existing jobs or roles in the organization or may be completely new
jobs or roles. Table 11-2 shows the various actors involved in a business process and
their roles.

B76 Chapter |I: Case Study: Overview of Securities Trading System

Actor Description

Actors and Their
Roles

Customer Trades with the application according to limits
Trader Trades with the application without limits
Continuous trade processing system Routes orders to the mainframe trading system
(CTPS)

Mainframe Trading System Holds BNACS back office books and records
SQL (Oracle) Contains the database reference data

Business Process Model

A number of scenarios, specific examples of performing the task, are identified for
each task that is carried out in the business process.

The business process, or task model, describes how the business processes will
perform the necessary tasks with or without a computer application. It represents
an important aspect of the business requirements, since it describes from a user and
business perspective what work is done. The model provides the basis for designing
the functionality of the computer application.

A business process model is a model of one or more business processes. Each process
has a process owner and process goals (such as cycle time, defect rate, and cost) and
consists of a set of business activities (in sequence and/or parallel). Figure 11-3 shows
an example of a securities trade order and the processing steps it goes through from
submission to completion.

Development Environment and Database Design

Before we begin the physical construction of the application components, we must
make certain that prerequisite physical items such as infrastructure, development
environment, and so on are in place for use by the development team. In addition to
an adequate workstation and the appropriate server(s), the JEE project libraries and
the development GUI presentation tool such as JBuilder are accessible to developers
with the appropriate permissions in place. The RDBMS application database, in this
case Oracle, with current maintenance and whatever third-party or in-house JEE
development software, is ready for use from each workstation. Developers have been
availed of the guidelines and naming standards that the project team agreed to use to
develop both the database and the application.

Important for development is the preliminary physical database design used for
the application. The database design at this point can differ from that of the final

Model and Develop the Case Study §77

m A trade as a business process

.
GJ

g Places an Reject Order
§ order order confirmed
O

Y A
v

o

3 Verifies | Submit | Process No Yes
6 order | order | account

| No

o Yes
& v l Amen
= order,

vo H .

E Validate ! Yes Submit Research

g account and Valid order? order problem

O order details to CTPS

< Y

o

—~

g v

3

[¢)

[~4

4 Submit order to mainframe

<

= Q —
(%]

v No

Q

£

£ Process

% order

>

v

a

8o Ord Yes C |
c rder omplete
« _> <

S Process accepted? order
X

w

878 Chapter |I:

Case Study: Overview of Securities Trading System

IS he ORDERDB database

tbIMF Orderinst

wrapname: WVARCHARZ(ZS)
zaqno: INTEGER
tag: CHAR(E)

Sub_no: SMALLINT

acoount: GHARCTT)

userid: CHAR(Z)

qtv: INTEGER

symbal: CHARCTE)

side: CHARCZ)

acot_type: CHAR(T)

qualifier: CHARE)

com_type: CHARCE)

commiszion: CHARCTO)
mi_type: CHAR(Z)
matoup_down: CHARAO)
zal_unzol: CHAR(T)
confirm_status: CHART)

updts: DATE

updby: WARGHARZ(1E)

stewen: CHAR()

addts: DATE

exchange_symbal WARCHARZZO)
addby: WARCHARZ(E)
new_account_ind: WARCHARZ(1)
msg: WARCHARZ(Z55)

reg_state: CHAR(Z)

cxl_repl_ind: CHAR(1)
registration: CHAR(1)

repl_tag: CHARCE)
reinvest_dividend: CHAR(T)
mamet: CHAR

It_cap_gain: CHAR(T)
st_cap_gain: CHAR(T)

ira: CHAR(1)

nawv: CHAR(1)
handling_fee_owerride: INTEGER
fund_account: WARCHARZ(ZO)
related_account: WARCHARZZO)
acct_ind: CHAR(T)

roa_dollar: INTEGER

loi_dollar INTEGER
loi_number: WARCHARZ(ZO)

loi date: DATE

DATA
BASE
ORDERDB
12/16/02

tblbashetels

basketname: WARCHARZ(1E)
firm: VARCHARZ(Z)

updts: DATE

updby: VARCHARZ(1E)
addts: DATE

addby: WARCHARZ(1E)
bazhetp:: FLOAT
bashetpx_ts: DATE
basketp_wateh: CHAR(CT)

thib agdeetelzdtl

basketname: WVARCHARZ(16)
firm: CHAR(Z)
zaqno: INTEGER

qty: INTEGER

symbol: CHARCE)
mamket: CHARE)
updts: DATE

updby: VARCHARZ(1E)
addts: DATE

addby: WARCHARZ(E)

thlbnyaceount

firm: WARCHARZ(E)
acct_no: CHARE)

keyid: INTEGER
name_address1: WARCHARZ(30)
name_addressz2: WARCHARZ(30)
name_addressZ: WARCHARZ(Z0)
name_addressd: WARCHARZ(Z0)
name_address5: WARCHARZ(Z0)
name_addressG: WARCHARZ(30)
ismameline_1: CHAR(1)
ismameline_2: CHART)
rep_code: CHARED

imv_obj: CHAR(T)

institution: CHAR{1)

zip_code: CHAR(S)

ira_type: CHARZ)
ira_fee_schedule: CHAR(T)
ira_fee_status: CHAR(1)

: : SN

EOTLYN

tbibasketexec

basketname: VARCHARZ(1G)
saqno: INTEGER

firm: CHARCE)

acoount: GHARCTO)
uszerid: CHAR(Z)
bashetp:: FLOAT

updts: DATE

updby: WARCHARZ(E)
addts: DATE

addby: WARGHARZ(1E)

tblExeclnstDdl

Orders

Order_Number: INTEGER

basketname: WVARCHARZ(16)
seqno: INTEGER

firm: CHAR(Z)

tag: CHAR(Z)

acocount: CHARCTO)

uzerid: CHAR(Z)

symbol: CHARCTE)

side: CHARCZ)

qty_leawves: INTEGER
qty_exec: INTEGER
axecpx: FLOAT
confirm_status: CHARCT)
updts: DATE

updby: VARCHARZ(1E)
addts: DATE

addby: VARCHARZ{ME)
tag_full: CHAR(T1)
commission_num: FLOAT
sec_fee_num: FLOAT
handle_chrg_num: FLOAT
net_commiszion_num: FLOAT

thlsecurityps

symbol: CHARCTE)

bidp:: FLOAT

ashpx: FLOAT

updts: DATE

updby: VARCHARZ(1E)
addts: DATE

Original_Order_Date: DATE
Order_Date: DATE
Abszolute_Order_Wumber: INTEGER
Aotive: SMALLINT

Security_ID: VARCHARZ(20)
Trading_Account: WARCHARZ(ZO)
Customer_|D: WARCHARZ(ZO)
Buy_Sell: WARCHARZ(E)
Capacity: VARCHAR2(10)
Execution_Status: VARCHARZ(Z2O)
Allocation_Status: VARCHARZZO)
Order_Entry_[ate: DATE
Trade_Date: DATE
Settlement_Date: DATE
Order_Type: WARCHARZ(10)
Duration: WARCHARZ(1D)
Good_Till_Date: DATE

Quantity: FLOAT
Quantity_Executed: FLOAT
Quantity_Allocated: FLOAT
Awverage_Price: FLOAT
Price_Locked: SWMALLINT
Commizsion: FLOAT
Transfer_Tax: FLOAT

WAT: FLOAT

SE_Fee: FLOAT

Interest: FLOAT

Charges: FLOAT
Commission_Basiz Points: SMALLINT
Transfer_Tax_Basis_Points: SMALLINT
WAT_Basis_Points: SMALLINT
SE_Fee_Basis_Points: SMALLINT
Recalo_|nterest: SMALLINT
Met_lssue: FLOAT

Het_Settle: FLOAT
Izzue_Currenay: WARCHARZ(Z)
Settla_Currency: VARCHARZIZ)
lss_Stl_Rate: FLOAT

Salesperson: WARCHARZZO)
Money_Agent: VARCHARZZO)
Security_Agent: VARCHARZZO)

In_Housze_Execution: SMALLINT

application database design, but it is eventually reconciled in terms of function back
to the overall design.
This design of the trade system ORDERDB, shown in Figure 11-4, meets the
constraints of the DBMS, and since it is derived directly from a composite data
model, it also satisfies the system requirements. The rules ensure that the physical
design is valid and that it follows good practice. During development, no attempt
is made to achieve good performance. Rather, the design provides a sound starting
point for physical tuning when the design of both database and Java classes is
adjusted to achieve performance objectives. The database characteristics can vary

depending on the DBMS being used.

The key characteristics of many of the popular DBMS engines, such as Oracle, are

built according to the following rules:

Model and Develop the Case Study 579

I. Entities Most entities on the composite data model become tables. The
key-only entities may be paired with other key-only entities to form junction
tables, which can speed up joins.

2. Primary Keys The primary key of each entity becomes the primary key of
the corresponding table. Specify a UNIQUE index for the entire primary key.

3. Alternate Keys Each alternate key becomes a UNIQUE secondary index.

4. Foreign Keys Indexing each entity foreign key becomes a secondary NON-
UNIQUE index.

5. Referential Integrity Make each entity foreign key a FOREIGN KEY for
the table, referencing the master of the supported relationship.

6. Other Non-Unique Keys Each other non-unique key becomes a NON-
UNIQUE index on the corresponding column(s).

. Exclusive Relationships If a detail entity has two or more mutually exclu-
sive masters:

B Provide foreign key indexes to support each relationship as defined in

Rule 4.

B The foreign key columns for the relationships should all be defined as
NULLS ALLOWED.

B Maintenance of exclusivity must be handled by program.

Developing the Trading System

The trading system is a browser-based user interface that provides trading
functionality—that is, the ability to send trade orders (even baskets of stocks) and
view customer account and trade order requests to BNA. Written in Java with JEE,
it provides the customer with an integrated, platform-independent method for
accessing account information and submitting and viewing orders via the Internet
or a private network. All trading functionality is accessible via a single menu page,
which uses a frameset with a header, footer, and a navigation frame on the left to
expose the functionality in the right side mainframe (no pun intended). Figure 11-5
shows the main trading frameset.

On the left side of the trading page is a frame that exposes the functionality that is
currently available for trading—stocks, bonds, mutual funds, as well as baskets and
multiple orders—along with some basic operational functionality used to maintain
accounts and other external information. The main trading application page and
operations page can be depicted as use case diagrams, as shown in Figures 11-6 and 11-7.

B80 Chapter II: Case Study: Overview of Securities Trading System

http: /localhost: 8080/UCTrading/app/ - Microsoft Intemnet Explorer

Fie Edt ‘iew Favoites Toolz Help n

Trading page main & D B o a = @B g o .=

© =
Back Tt Stop Refresh Home | Search Favarites History | Mail Prirt Edit Discuss
Address |€| hittp:/#localhost: 8080/ CTrading app/ j i Go || Links 2| | Morton Antivius ’_r‘_| -

UCNY, Inc.
Universal Computing & Consulting
Globally Enabled Trading Systems service mark 2001

Welcome to the Electronic Trading Area

menu frameset

Browse existing dema (4d77h7634e5h11d7hebd0050dacfeart)
orders to cancel or — ™ For agsgistance, please call the Helpdesk at +1 212-3562-9372 or email alobaltradingl TEducny.carm
replace them. Single Entry

Provide HTML pages to capture
Provide HTML pages details for single order entry of

stocks, options, bonds, mutual

to create, maintain
’ ’ funds, and post facto executions.

execute, and browse —

baskets of stocks. It Muitinle Entry

includes a “pricing” [Provide HTML page to
feature to calculate <+ capture details for multiple
the current price of Operations order entry of stocks.

the basket. Baskets
can be based on
established indices or
created for each firm.

@ Done _'i! Local intranet

Trading Page
functionality as

>

7
Cancel order /
/

Order browse

Trading area

Trader Stock order N Replace order / s
@ use case //' BIS order entry
trading area
Option order r;7| Za/;ez
Bond order
O ________ > Mainframe
Customer e

Execution

Multiple entry stock order

Model and Develop the Case Study §8 |l

Operations page

FIGURE 11-7 i

functionality as a

use case - Customer administrator

Trader

Account|maintenance

Delete Add account v Delete account

Change |account

v
Q

Customer

v
Q

Mainframe

Q"’/ BIS order entry
SQL

Log browse OPemtu::es cpar:ecedures
12/18/02

Table 11-3 describes the use case task goals and scenarios.

Sequence Diagrams

Sequence diagrams are models of business processes that represent the different
interactions between actors and objects in the system. Each process has a process
owner and goals (such as cycle time, defect rate, and cost) and consists of a set of
business activities (in sequence and/or in parallel). Figure 11-8 depicts the sequence
of a trade order being placed by a customer as it moves through the JEE application
server for verification and onto the trade process router to the mainframe and then
to the securities exchange, where the actual trade is executed. After a confirmed
execution, each of the front-end processors is notified, and ultimately the customer
is availed of the completed order and price.

B82 Chapter |I: Case Study: Overview of Securities Trading System

TABLE 11-3 Tasks and Scenarios

Task Name Task Goal Task Scenarios

All forms of order entry: equity, Send order to CTPS routed to the = Order information is keyed in, and

bonds, mutual funds, baskets mainframe trading system information is edited and routed to
CTPS and ultimately to mainframe
trading system for processing.

Order browse Review/cancel/replace orders Previously entered order information
that have been previously sent to is edited and sometimes replaced;
CTPS-mainframe trading system information is edited and routed to

CTPS and ultimately to mainframe
trading system for processing.

Account maintenance Add/update/delete retail customer Account information is edited and
accounts sometimes replaced; information
is edited and routed to mainframe
trading system for processing.

Customer application Add/update/delete customer Application information is edited

maintenance application entitlement and sometimes replaced; information
is edited and routed to SQL for
processing.

Customer account maintenance Add/update/delete customer Account/user information is edited

account/user entitlement and sometimes replaced; information

is edited and routed to SQL for
processing.

Class Descriptions

Table 11-4 describes the business classes included in the business process sequence
diagram in Figure 11-8.

Class Diagrams

Using the initial list of business classes, you develop class diagrams by identifying
and defining the relationships among the classes. This is best done in an interactive
development workshop with business partners. It is also useful to keep these
diagrams on display on a whiteboard or other medium, and to develop it gradually
as the project progresses. The diagrams can also be stored on a UML tool to provide
access to all team members and other interested parties.

Model and Develop the Case Study §83

5]
Sequence of trade £ Places an Reject Order

a order order confirmed
order 3

A
A

. §)

%’ Verifies Submit | Process No Yes

le) order order account

] e

fmy

& v

>

14 Validate Submit R h Order

s account and Valid order? L order esearch| gNo accepted?,

3 . problem pted’

O order details to CTPS

g ry

; I

.

g v

=3

4]

[~4

g Submit order to mainframe

3

&]

A No

£

£ Process

£ order

>

v

5 Y

& Order es Complete

4‘:; Process accepted? order

w

The class diagrams are also used to show relationships among classes. This aspect
of the diagrams will tend to emerge later in the design process, as “lower level”
classes are identified. The class diagrams will improve the definition of the classes,
which in turn may require changes to the sequence diagrams and, when developed,
the state transition diagrams. These other diagrams will also have an impact on the
class diagrams.

B84 Chapter |I: Case Study: Overview of Securities Trading System

TABLE | 1-4 At
_ Class Description

Business Classes | Customer A person who orders securities
and Descriptions Potential Customer A member of the general public who makes inquiries about our
publications to potentially order publications from the company
Order A request for a security
Order Inquiry An inquiry from a customer concerning an order that has been
placed
Delivery The security that is purchased is sent to the customer portfolio
Payment The payment by a customer for securities ordered and/or received
Company BNACS
Order Browse A request to view all outstanding security orders
Order Cancel A request to cancel all outstanding security orders
Order Replace A request to replace all outstanding security orders

Two important classes in terms of the back-end processing are the Enterprise
JavaBeans (E]B) session beans that process orders: the AccessOrderBean will send
and track orders, and the AccessDataBean will provide associated data pertaining
to the customer and the associated order(s). Figures 11-9 and 11-10 are UML class
diagrams illustrating the methods and associations for each of these classes.

State Transition (Life cycle) Diagrams

It is useful to trace what happens to a class through the execution of a business
process, or through the computer system that is developed to support the business
process. The state transition diagrams show the various states in which a class can
exist and the way in which the class changes from one state to another. Figure 11-11
shows a state transition of trade order processing.

Model and Develop the Case Study 5§85

JEauo)eu]
[— —
Bunueu-xene|
_ uondasx3grl _ i uondadxiajeary _
a,l |||||| sw E—— sl
ylarxene(

[demusen |[aweq |[#ogdsod | [isreny |

i] i [—
- —T{ Plos: 3o o
ueagiasn : Quasnaqew Lu
neael ugagfouelL : QFoTuel [BHEW off
UeagIapI0 | (UBpJOaHEL off
[uermres | [uondasxaios |[msimsed | | uedoid | [uot 2 | pio: (0] §F
) .ﬂ] _._,l | O pIoA: (UEaguOlssagaz) o

plos: 0Bnoap off

Buls : O810nEd0 4428y Lu

ploA: (HEU0DUDISSESIS 4
uesgIasn : (UBsah 4

uopas|oo : Osbouel payuessial S
UORIBINGD OSIBPIORaYIEISIEN 4
UEBEARIC | (UBPIOIAE 4

ploa: (asowaynla ¢

RIoA : (BeAISSE4RlR &

PIoA T QEIEAIDNE 4

PloA T RIS 4

pios - (UBSNBIEEI 4

I
|

|

|

|

|

|

[l
[l
[l
Il
Il
Il
Il
Il
Il
1
I
I

IIHI

-
=
I
|
|
il
[l
[l
[l
Il
Il
Il
'l
I
I

IIHI

Buerenel Buls 438N L0138 4y
Auls | 593080”a3HOHYIS 10T 13S
[weansmng e —— BULAS : 00T 03HOHYIS™LIT138 Ay A0S HET
Buins - ¥30407103138 Gy
auN0gele] | EEPSEa10ET W Fy

_ ueaglasq __ uondasx3BuIpel] Jn __ ueagfiojuel) : uondanx3syoogIamIs : ueagapiQ _ % W
uesjoog : Bngaggl \/H

HRAUDHUAISSIS | HA0ITIW 4y

=
\
\
\
\
\
\
\
[l
[l
[l
[l
[l
[l
[l
[l
[l
[l
Il
[l
[
L
R R

_ BUIpRIyPAUINWoI ueagejeqssadiy E

_ sueaguoISsas ylaBuIpe Iy AN wod

_ rV_ ueogloIssas | _ L={ paluo

_ gfarxeap(_ Buejenel

Ueaq UOISSS JIP.IO SSIIJE .10} WedSelp SSe|D E

B86 Chapter |I: Case Study: Overview of Securities Trading System

Class diagram for access data session bean

com.ucnytrad

javalang

String

AccessOrderBean

repaccount type :int
& rephlofter_code s int
& tephranch ;int

!
javar.ejb

& int
& repousin int
& repdate int
« repexchange :int
& repexec_y sint

int

& tepexpiratian . int
replvs_gly - int

« reprmanual_fig : int
repopen_elose - int

reporig_price : int
teporig_gy - int
& repprice int

¢ reppteat—int
& represtiiction : int

& reprev_rel int

& tepseq int

repshort_name : int

& repside s int

repstatus :int

& repsufi: int

repsymbol int

& reptag :int

By m_conted : SessionCantext
T BODY_LENGTH - int

p ibDB : boolean

G ibDebuy : boolean

Tp ibDeleteRequired : boalean
T ibTrace boolean

Tp iHdr: string

T inPams : Hashtable

Tp ihReturn : Hashtable

T iiPort :int

T iiPort2:int

T iiPort3 - int

Tp info_code :int

T isAddress : String

Tp isserver: sting

T isSenverfull - String

T isub: sting

T ten int]

T line : String

T offs :inf)

T rephody_lengtn :int

T repfids_count: int

T sCode : Sting

T sMsg: String

T sTag: Sting

T THIS : String

T weiRecords : Vector

3 m_accessorder : DataSource
iy SELECT_ORDERBROWSE : String

UCTradingException

I |
] I I |
DatalnputStream |[DataOutputStream |[I0Exception |[npuiStream |[OutputStream |[PrintStream

javalang

| I I
] I il) ¥ ']
Exception Integer Math NumberFormatException StringBuffer System Throwahle

={ Socket

i ¥
SQLException Statement

I
v Y
Connection | [ResuitSet

1
DateFormat ||_SimpleDateFormat
Javva.util

] |
Calendar |[Date |[Random

1
CreateException | [EJBException

javaxnaming

® gjbactivaleq ;vaid

© gjbCreate(void

* gjhPagsivatey void

© gjbRemoveq void

S euporderBrawss0 : Hashtable
“ insertOETranLog() : woid
S apenordersumman0 : Hashtable
“ orderBrowse(: Hashtable
® sendorder(| Hashtable
© setSessionConte:d) void
checkForQuote(: String
2 debug() void

& encadeKey(: String

2 get_intg) - int

i get_socket): Socket

2 getaddressPon < void

i intialize SessionBeang :void
2 1090 : void

Ipadg String

#* massagePriceq) : String
i pracessDataEOBY : void
#* processDatanB() : void
processDatad0S0 void
2 recvDataEOB(- String
& recvData0(: String

i recyData0B0 : String

recwData00S0 : Sting

& madg : String

sendDataEOBO : void

sendData0q :void

& sendDataOBY : void

sendData00s0 : void

2 trace(void

Trade System Design and Implementation 5§87

| FIGURE 111 |

Order for a security

State transition
(life cycle) | N State transition diagram
for

diagrams trade order processing
v

Customer order
submitted and
stored in
ORDERDB

Modify order

»| Cancel order

Send
order to
Exchange

Modify
customer
portfolio

Log
order

Trade System Design and Implementation

This section describes the user-interface layout, class diagrams, controls, actions, and
navigational aspects for the trading application. It is a comprehensive description of
how the application works and affects the underlying data elements.

Stock Order Entry Screen

Figure 11-12 shows the stock order entry screen, in which a buyer clicks Stock Order
and enters information in all the fields.

Figure 11-13 shows a class diagram that identifies and defines the relationships
between the classes.

B88 Chapter |I: Case Study: Overview of Securities Trading System

Equity trade
order screen

3 http: /flocalhost:8080/UCT rading/app/ - Microsoft Internet Explorer

J File Edit “iew Favortes Toolz Help |

@ . @ [0 A QA @ 3 - 3 # .
Back Fanyard Stop Refresh Home Search Favorites History il Frint Edit Dizcuss
| Addhess [&] hitp. /localhost:8080/UC T rading/app/ x| PG |J Links **| | Mortan Antivius [~

UCNY, Inc.
Universal Computing & Consulting
Globally Enabled Trading Systems sendce mark 2001

Stock Order Entry

Account Account Type
ICash—D1 vl
Single Ertry Transaction Duantity
IPIease choose 'l I

Symbol or CUSIP Order Type
Market =

Stop Price Limit Price

[§

Duration Qualifiers

|G00d Far Day j IND Festriction 'l

Commission Type and Amount

Multiple Entry

|Regu|ar j |
Operations RR Compensation Type and Amount Solicited / Unsolicited?
|N0ne j | |Unso|icited j
Confirmation Trailer Special Trailer
Submit | Fewview | Clear |
|@ ’_ ’_ |_!§,I Local intranet i

In Figure 11-14, you can see that a buy order has been placed for 100 shares of
IBM at the market for account 14112345678.

Table 11-5 shows the controls and description of the information entered and
validity notes regarding what each control should contain.

Figure 11-15 shows the stock Order Browse screen, where you enter an account,
a transaction side (i.e., B for Buy or S for Sell), or a symbol and then click Find The
Orders. All of the buy orders are shown here.

Figure 11-16 shows a class diagram that identifies and defines the relationships
among the classes.

Trade System Design and Implementation

m Equity trade order class diagram

java.lang

org.apache.struts.action
[aon

com.ucny.trading.action

po_OEEquityProfessionalAction

String

1% ibDebug : boolean
Ty ibTrace : boalean
Ay THIS : String

® performi ; ActionForeard

& ckanull : String

2 debugd void

2 lnadHashtableFromForm : Hashtable

® loadOrderBeand ; OrderBesan
2 logi s void
2 trace : void

com.ucnytrading |

A

[ordentian | s |

com.uchy.trading.data
- — — == JDBCSessionMgr |

com.uchy.trading.ejb.sessionbeans |

- —— -~ Accessorder |

com.uchy.trading.form

= —>| py_OEEquityProfessionalForm |

java.lang

589

|
¥

v
= |[Date [¢ |
Javax.serviet
T~ y
[senetException |[SendatR t]

¥
[actionrorm || actionForward |[actionMapping |

590 Chapter II:

Case Study: Overview of Securities Trading System

=T = I wie |
| @ |

2 http://localhost: 7001 /app/pg_DE_htm! - Microsoft Internet Explorer

| Fle Edt View Favortes Tools Help

- D DB & 5.
sumeSSIon and Back Foreard Stop Refiesh Home Seach Favoites History Mail Print Edit Discuss

| Address [2] hitp:/ locathast 7001 ¢ appépa_OE. htrl ~| @G0 ||Liks &1 @H || NotonAnivius [-

execution of

trade order st ehes
inkversal Computing & Consulting
Globally Enabled Trading Systems seriice mark 2001
Stock Order Entry
Account Account Type
14112345678 Cash-01 =
Single Entry Transaction Quantity
Buy 2 100
Symbol or CUSIP Order Type
(=13 Market >
Stop Price Limit Price
Multiple: Eritry Duration Qualifiers
Good For Day hd Mo Restriction =
Cc i Type and Amount
IRegu\ar L] ‘
Operations RR Compensation Type and Amount Solicited / Unsolicited?
INnne j ‘ |Unsu|\cwted LI
Confirmation Trailer Special Trailer
Review | Clear
1]
|&] Done) Local intranet

werll= e Controls Description

Controls on the Account The customer’s Account number
Trading Page Valid values: This is from the Customer Information System CIS system
Account Type The valid values are: Cash/Margin/Short
Transaction Side of the transaction
Valid values: B/SL/SS/Buy Cover
Quantity How many shares of the security
Valid values: Numeric/integer > 0
Symbol of CUSIP Security identifier/symbol or CUSIP
Valid values: Symbol checked against warehouse security table
Messages Green or Red, depending upon the result. Green is success; red is
problematic
Submit button Process the data and exit the form
Review button Review and exit the form
Clear button Cancel the data entered and exit the form

Equity trade
Order Browse
screen

Trade System Design and Implementation

591

]| 55 5T | o 20 8 8] | | | S0 T]

23 http: //lacalhast: 7001 /app/pg_OE html - Microsoft Internet Explarer

File Edit Miew Favoites Tools Help

o, 9 0 o8 @ @B g .=
Back_ Stop Refiesh Home | Search Faventes History il Print Edit Discuss

~| @G |[Links @11 @1H1 || NoronAntvius L] + |

Address [€] hip://localhost: 7001 /app/pa_OE himl

UCNY, Inc.

Universai Computing & Consulling
Globally Enabled Trading Systems senice mark 2001

Order Browse
Enter search criteria and click Find
Account Transaction

Please choose >
Find The Orders

Status: ¥=Cancelled, R=Replaced, O=0pen, P=Partial

Single Entr
e : Symbol or CUSIP

Tag Account $tatus Date SideSymbolExecQtyOrigQtyLusQty Action
23145582141123456780 1204028 SUNW 0 100 100 DetailReplace Cancel
2314558114112345678X 0820028 IBM 0O 100 100 DefailReplaceCancel

Muitiple Entry 2314558014112345678X 0804028 IBM 0O 10 10 DetailRenlaceCancel
2314557912312345678X 0522028 MSFT 0O 100 100 DefailReplaceCancel
23145578777123456780 0412028 VRSM 0 200 200 DelailRenlaceCancel
23145576141123456780 0410028 BM 0O 100 100 DetailReplace Cancel
2314557532112345678X 0408028 VRSN 0 200 200 DefailReplaceCancel
Operations 23146574321123456780 0408028 A 0 100 100 DefallReplace Cancel
2314557312312345678X 0408028 IBM 0O 200 200 DefailReplaceCancel
2314557212312345678X 0406028 BEAS 0 1000 1000 DetailRenlace Cancel
23145571123123456780 040602 FAUL 0 400 400 DetailReplace Cancel
23145570123123456780 0406028 MSFT 0 500 500 DefailReplaceCancel
23145569999123456780 0406028 BM 0 100 100 DetailRenlace Cancel
23145568123123456780 0406028 SSSW 0 200 200 DefailReplaceCancel
23145563141110015190 0305028 VRSM 0 100 100 DetailRenlace Cancel
23145561 14111001519% 0121028 X2 0 100 100 DetailReplace Cancel
2314556077712345678X 122601B X¥Z 0O 100 100 DefailReplaceCancel
2314555977712345678K 1127018 S88W 0 100 100 DetailRenlace Cancel
2314554677712345678X 112001B SSSW 0 100 100 DefailReplaceCancel
T |
] Done T Local intranet 1

Trade Application Packages

After all of the application components are completed and the application is ready
for deployment, a package diagram(s) can be used to describe associations among the
component classes. Figures 11-17, 11-18, and 11-19 show package diagrams for com
.ucny.trading, com.ucny.trading.ejb.sessionbeans, com.ucny.trading.data, and com.ucny
.trading.action, which ties together all of the components (JSPs, E]Bs, JavaBeans,
and so on).

Trade Application Implementation Infrastructure

After the application is deployed, a component diagram(s) can be useful for
describing associations among the hardware and software components and the
system functionality. Figure 11-20 shows the hardware and software involved in the
trade process flow.

Figure 11-21 shows the hardware and software involved in the security pricing
process flow.

B9 Chapter |I: Case Study: Overview of Securities Trading System

m Class diagram for equity trade Order Browse screen

org.apache.struts.action |

Action = ‘

com.uchy.trading.action |

java.lang com.ucny.trading |

py_OEBrowseSearchiction

String

L

Ty ibDebug : boalean
T ibTrace : boolean
T sDisplayl : String

T : S
i sDisplayZ : String -
T THIS : String com.ucny.trading.data

H — ——== JDBCSessionMgr |
* perform ; ActionForward

a* checkForQuoteq : String com.ucny.trading.ejb.sessionbeans |
2 ckdnullp : String
& debugd : void (B — T ——
a* logd :void

M racen void

| ActionBean || OrderBean || UserBean |

i
| AccessData || AccessOrder|

| I0Exception || PrintStream |

java.lang

1! y]
| Calendar | Collection || Date |[HashMap || Hashtable |

i
| SendetException || Servieﬂequest|

javax.sendet.hitp

| HttpSenvieiReqguest || HtipSenvieiResponse || HttpSession |

org.apache.struts.action |

Ui
| ActionFonn || ActionForward || ActionMapping |

FIGURE I1-17

Package diagram
for com.ucny
.trading

[1

Trade System Design and Implementation

1

com.uchytrading.action

com.ucnyirading

1

no_OEBrowseSearchAction
pg_OECancelProfessionalAction
no_OEEguityProfessionalAction
no_OEOptionProfessionalAction
ng_OESSFProfessionalAction
po_OETranBrowseAction
no_OEUserBeanAction
pg_OEUserLoginAction

[1

java.lang

Boaolean
Exception
Integer
Object
String

ActionBean
OrderBean
SilverBooksException
TranLogBean
LCTradingConstants
UCTradingException
UserBean
alidationException

com.uchy.trading.data

JOBCEessiontgr

[1

com.ucny.trading.ejb.sessionbeans

AccessData

| AccessDataBean

AccessOrder
AccessOrderBean

1

java.io

Serializable

1

java.sql

Timestamp

594 Chapter |I:

Case Study: Overview of Securities Trading System

m Package diagram for com.ucny.trading.ejb.sessionbeans

]

[]

com.uchytrading.action

com.ucmy.trading.ejb.sessionbeans

po_OEBrowseSearchAction
po_OECancelProfessionalAction
po_OEEquityProfessionalAction
po_OEOptionProfessionalAction
po_OESSFProfessionalAction
po_OETranBrowseAction
po_OEUszerLoginAction

1

java.io

DatalnputStream
DatadutputStream
IDException
InputsStream
COuloutStream
FrintStream

e —

java.lang
Exception
Integer
Math
MumberFormatException
Ohbject
String
StringBuffer
System
Throwahle
Java.util
ArrayList
Calandar
Coliection
Date
Hashhiap
Hashtable
Random
Wector
javax.sql
DataSource

AccessData
AccessDataBean
AccessDataHome
AccessOrder
AccessOrderBean
AccessOrderHome

]

com.uchytrading.data

JDBCSessioniar

[]

com.uchy.trading

CrderBean
SilverBooksException
TranLogBean
LICTradingException
LiserBean

1

java.net

Socket

1

java.rmi

RemoteException

]

java.sql

Cohhection
FreparedStaternant
Resultset
SELException
Statement

]

javatext

DateFormat
SimpleDateF ormat

1

Javax.ejb

CreateException
EJBException
EJBHome
EJBODject
SessionBean
SesslonContexd

[

javax.naming

Context
Initial Context

Trade System Design and Implementation 59§

| FIGURE 11-19 | -
—| com.uchy.trading.data —|

Package diagram com.ucmy.trading.action JDBCSessionMgr . com.uchy-trading
for com.ucny pg_OEBrowseSearchAction ’ UCTradingException
. po_OECancelProfessionalAction
‘trading.data po_OEEquityProfessionalAction | __ |]
ng_DEOptionProfessionalaction com.uchy.trading.ejb.sessionbeans
po_OESSFProfessionalAction
pg_DETranBrowseAction AccessData
po_OEUserLoginAction —— | AccessDataHome
AccessOrder
_| AccessOrderHome
java.io
PrintStream | ;la.util
] | pate
java.lang
1
Class javax.naming
ClasshotFoundException
Exception —— | Coniext
NoClassDefFoundError | | InitialContesxt
Ohject)
String]
StringBuffer javax.rmi
System]
Throwahle “| Portableremateobiect

i Mainframe Trade Processor i
Hardware and J2EE JSP ! <+ — ¢ ¢ ¢ i
. ; — - '
software involved WebSphere Send order | - CTPS OREX editor 1
. Order 4? ! router | Exec processor | |
in the trade antry - dOK:)Fan | eI . ¢ 3
process flow ——ICCTDIOWSEy, router Oracle <
Order Open orders | 1
cancel/replace Cxl/Replace i i
OK/Fail 1 — - 3
— !
PEESP [\ | (T [T :
WebSphere \ Reads from queue and i
—— Shadow updates databases !
Open | Post DB | w4 - '
orders h - I 1
i ShadowPost (MTS) 4—— C/C++ program !
Executed = N k/ 3
orders N —— Writes to queue 1
Position i
MoneyLine e eeeeeeeeeemeeeeeeesee—eeeeeeeeee—————)
Transaction BNA trade process order flow
DBs
v

596 Chapter |

Hardware and Business Function:

software involved Basket and Security Pricing

. . ® Browse Baskets
in the security

Case Study: Overview of Securities Trading System

| Create filter: retrieve symbols
from basket
class table
(Nitely/Intraday)

BRIDGE

pricing flow

o Edit filter-based on browse listed and
© Monitor px delta’s NASD level |
o Price basket(s) pre-execution v
— Security Monitor:
=] Last pri
2 NT Bridge service oas i
— pen price
C/C++ program High price
» = MQ Get Request I price
[
= . MQ Put Beply Prev day closing price
Listed/NASD Bridge $Quote Bid price
v [Ask price
—— NT Bridge Feed 3 i
id time
———»(Write directly to SQL J&———————P Aq\ time
database SBlirce
Leverage existing Bridge / Triad pricing gurrency
o Existing license gte
«—> - g ficense > Split (maintain eSIAC file)
® Inhouse experience
& A

o NYSE + OTC (level 1)

NT IBM MQ server MQ request queue

BIS PRO PX_TO_BRIDGE

Assumptions:

Security pricing o The NT Bridge machine will start a service at 4AM each business day

SQL Server Database
PRICEDB tblSecurityPX

o It will establish a connection with Bridge and send a request for issues (currently approximately 4000)

o The service will issue MQ GET’s to determine requests for symbols and their prices

o A special request message type will be set up to “throttle” the speed of the price feed delivery

o The service will issue MQ PUT's to reply with price information
® The queues are configured for destructive read

CERTIFICATION SUMMARY |

This case study is an example of a real-world application. As architects, and for
the purposes of the exam, you will create use cases, sequence diagrams, component
diagrams, and other types of diagrams to provide a clear picture of the functions

of an enterprise application. Its infrastructure, functionality, and

deployment

particulars can be illustrated using UML in conjunction with other diagramming
and text descriptions to help users and others to evaluate and understand the

application.

