
16
Database Issues

CERTIFICATION OBJECTIVE

• Understand Database Issues

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16
Blind Folio 16:879

Copyright 2008© by The McGraw-Hill Companies. This SCJD
bonus content is part of ISBN 978-0-07-159106-5, SCJP Sun
Certified Programmer for Java 6 Study Guide (Exam 310-065).
All use of The McGraw-Hill Companies’ SCJD bonus content
is subject to the terms and conditions set forth in the License
Agreement included with this book and CD.

P:\010Comp\CertPrs8\SCJD ebook\To Apollo\CH16.vp
Thursday, May 15, 2008 11:30:30 AM

Color profile: Generic CMYK printer profile
Composite Default screen

CERTIFICATION OBJECTIVE

Understand Database Issues
Judge a man by his questions rather than his answers.

–Voltaire

A prudent question is one-half of wisdom.
–Francis Bacon

You’re on your own for the other half.
–The Authors

As with the previous chapter, this chapter asks—you got it—questions. Some will
seem obvious, some won’t. But this is the area where your solution to the problem
is going to have the greatest impact on your score. You’re going to be asked to build
a database. From scratch. And since there will be concurrent clients (or at least the
possibility of concurrent clients), you’ll have to be certain—dead certain—that you
correctly manage record locking.

How you implement your searching, updating, and locking mechanism is entirely
up to you. Again, there is definitely no One Right Answer for your solutions to
these issues. But however you choose to do it, be certain that the logic is sound. For
example, even if you never experience deadlock during testing, if there’s even the
slightest possibility (no matter how remote the chance) that it could happen, you
could easily fail the exam even if nearly everything else in your application is perfect.

The two biggest issues are locking and searching, but locking is where the Big
Money really is. We’ll start with a brief overview of the key concepts, followed by
yet another inspiring list of thought-provoking questions.

Building a Database
If you remember from Chapter 11, you’re the one who has to build the database;
the client’s too cheap or neurotic to invest in a commercial database, even a free one.
So what is a database? That depends on your assignment, but for the purposes of
the exam, software-that-lets-you-access-a-set-of-records will do. You have some data,
in some file format somewhere, with a known schema, and your job is to write an

880 Chapter 16: Database Issues

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

P:\010Comp\CertPrs8\SCJD ebook\To Apollo\CH16.vp
Thursday, May 15, 2008 11:30:35 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Understand Database Issues 881

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

application that allows that data to be searched and modified. You might also need
to add and delete records.

So the concept is simple: the client makes a request, based on some search criteria,
and your database returns a result. Sometimes the client might want to, say, book a
Horse Cruise, in which case one or more records will have to be updated. And you
might need to insert a new cruise or delete a cancelled cruise. Regardless of the
actual scenario, the Really Big Issue is

How do I protect the data from concurrent access?

In other words, how do I lock the records?

Your locking design and implementation decisions (and execution) are the
most important parts of your Developer assignment. Spend the greatest
percentage of your time making sure you have a sound solution. Be sure
you’ve met any requirements in your assignment document that pertain to
locking and unlocking. If part of your assignment specification is vague or
ambiguous, you need to make an interpretation (your best guess about
what to do) and then document your assumption and strategy.

And remember, the clients could be either local or remote (in other words, on
the same machine as the database or on a machine somewhere else on the network),
so you’ll have to think of issues related to both of those scenarios. Locking is crucial,
but fortunately the Developer exam isn’t asking you to implement a complete
distributed transaction system using the two-phase commit protocol. In fact, this is
much simpler than transactions, but it will require you to understand the fundamental
issues surrounding concurrent access to data. Remember the bank account example
from Chapter 9? The one where the husband and wife both shared the same account?
If you’re not absolutely clear about how to handle synchronization, then reread that
chapter. In order to correctly implement your locking strategy, you’re going to need
a solid grasp on synchronization, wait(), notify(), and notifyAll().
So, ready for some questions? Once again, these are in no particular order.

Questions to Ask Yourself
We’ve split these into two categories, searching and locking. But there’s a lot about
searching that also falls into the category of GUI issues (Chapter 14). Specifically,
you’ll need to be certain that your end-users know how to build a search query, and
that’s discussed in Chapter 14.

P:\010Comp\CertPrs8\SCJD ebook\To Apollo\CH16.vp
Thursday, May 15, 2008 11:30:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Searching

■ How easy is it for clients to perform a search? Assuming the GUI itself is
user-friendly (and we have a lot to say about that in Chapter 14), what
about the criteria?

■ How are the search criteria items represented? A String? A CriteriaObject?

■ How does a client know exactly what they can base a search on?

■ Does your search support boolean matches? Does it need to?

■ The database won’t necessarily be indexed, so have you thought about other
ways to make the search as efficient as possible?

Don’t sacrifice clarity and simplicity for a small performance gain. If the
performance gain is big, then redesign so that you can have a reasonably
efficient algorithm that is also clear and maintainable.

■ Have you documented your search algorithm?

If you find yourself writing a lot of documentation to explain your search
algorithm, there’s probably something wrong with the design.

■ Is the documentation of your search algorithm easy to read and understand?

■ When the client submits a search query, is a specific piece of the search
criteria explicitly matched to a particular field? Or do you search all fields
for each search?

■ If you’re using 1.4 or Java 5, have you investigated whether regular expressions
would help?

■ What happens if nothing matches the client’s search criteria?

■ Will it need to be an exact match?

■ Could there be a scenario in which too many records match the search
criteria?

■ Have you considered bandwidth issues when designing and implementing
the format of the search criteria requests and server results? Are you shipping
things over the wire that are bigger than they need to be?

■ Is your search capability flexible for the end-user?

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

882 Chapter 16: Database Issues

P:\010Comp\CertPrs8\SCJD ebook\To Apollo\CH16.vp
Thursday, May 15, 2008 11:30:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Is your search capability flexible for future changes to the program?

■ How much code, if any, would have to change if the database schema
changes? Have you isolated the places where changes can occur to avoid
maintenance problems?

■ Are you absolutely certain that you’ve met the searching requirements
defined in your assignment specification? Go back and reread them.
Sloooooooowly.

Locking

■ Are you absolutely certain that your locking scheme works in all possible
scenarios?

■ Does your exam assignment specify a particular kind of locking with respect
to reads and writes?

■ What happens when a client attempts to get a record and the record is
already locked? What does the client experience?

This is crucial. Think long and hard about what you want to happen.

■ How will you keep track of which records are locked?

■ How will you keep track of who locked each record? Do you need to
know that?

■ How will you uniquely identify clients in such a way that you can know
which client locked which record? Is it the server’s responsibility or the
client’s?

■ Have you considered whether the ID of a thread is appropriate to uniquely
identify a client?

■ Have you considered whether a Math.random() number is appropriate
to uniquely identify a client?

■ If a client makes a request on a locked record, how will you verify that it’s
the same client who holds the lock?

■ What happens if a client attempts to use a locked record when that client is
not the client holding the lock?

Understand Database Issues 883

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

P:\010Comp\CertPrs8\SCJD ebook\To Apollo\CH16.vp
Thursday, May 15, 2008 11:30:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Is it possible to have a record locked for too long a time? How much time is
too long?

■ Is there anything you can or should do about the duration of a lock?

■ What happens if a client goes down without releasing a lock?

■ Does the server need a way to know a client went down? (As opposed to
simply taking their sweet time or if they’re on a painfully slow connection.)

■ Is there any possibility of a deadlock? Where two or more clients are waiting
for each other’s locks?

Check for this more than you check for anything else.

■ Are you correctly using wait(), notify(), and notifyAll()?

■ Are you clear about the implications of notify() versus notifyAll()?

If not, go back and read Chapter 9.

■ Are you relying on a nondeterministic thread mechanism such as priorities
and/or yielding to guarantee your threads will behave properly?

■ Are you synchronizing on the right objects?

■ Are you sure?

■ Are you really really really sure?

■ Is everything that needs to be thread-safe, thread-safe?

■ Have you made sure that things that don’t need to be thread-safe, aren’t?
(You already know that synchronization carries a performance hit.)

■ Have you selected appropriate data structures for implementing your
lock scheme?

■ Are you absolutely certain that you’ve met the locking requirements
defined in your assignment specification?

■ Would you like to revise your answers to the last two questions from
Chapter 15?

884 Chapter 16: Database Issues

CertPrs8(SUN) / Sun Certified Programmer & Developer for Java 2 Study Guide / Sierra / 222684-6 / Chapter 16

P:\010Comp\CertPrs8\SCJD ebook\To Apollo\CH16.vp
Thursday, May 15, 2008 11:31:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

