1/

Exam
Documentation

CERTIFICATION OBJECTIVE

° Understand the Sun Certified Java
Developer Exam Documentation
Requirements

Copyright 2008° by The McGraw-Hill Companies. This SCJD
bonus content is part of ISBN 978-0-07-159106-5, SCJP Sun
Certified Programmer for Java 6 Study Guide (Exam 310-065).
All use of The McGraw-Hill Companies’ SCJD bonus content
is subject to the terms and conditions set forth in the License
Agreement included with this book and CD.

886 Chapter 17: Exam Documentation

CERTIFICATION OBJECTIVE

Understand the Sun Certified Java Developer
Exam Documentation Requirements

We know that you all know the benefits of thorough, accurate, and understandable
documentation. There may be some of you out there who wish that documentation
wasn’t an integral part of a programmer’s job. There may be others of you who are
thrilled to write documentation, to exercise a different part of your brain, to help
your fellow programmers, to capture (hey you, in the back, stop laughing!) your
company’s technical assets. Well, whatever your inclination, you’re going to have
to write good, solid documentation to support your project if you want to have any
chance of passing this exam. It turns out that proper documentation plays as big a
role in determining your exam score as many of the software aspects themselves.

The assessors will be expecting several pieces of documentation when you submit
your exam. They are discussed briefly in the exam packet you receive from Sun; we
will go into them more thoroughly in this chapter. The five areas of project
documentation that we will cover are

B Developer’s Documentation
End User Documentation

Javadoc
The Developer Choices File

[|
[|
[|
B Comments and the Version File

Developer’s Documentation

This area of the project’s documentation is the most open ended. Your assessor is
most interested in the final results of your project; these optional documents represent
the design work that you did as you were working on the project. Documentation
that you might consider providing in this section includes UML diagrams, schema
documentation, algorithm documentation, flow diagrams, prototype plans, and test
results. Given that the rest of the standalone documentation is to be submitted via
ASCII text files or HTML, we recommend the same here.

Understand the Sun Certified Java Developer Exam Documentation Requirements 887

End User Documentation

Your assessor is going to wear at least two hats when reviewing your project. (This
makes her appear taller than she really is.) Initially, she will review your project from
the standpoint of an end user. Once the end user review is complete, she will put on
her ‘techie’ hat and dive into your code and technical documentation. But (and this
is a big but), if she can’t get through the end user portion easily and with no problems,
she probably has no choice but to fail the project. It won’t matter how unbelievably
fabulous your code is, she’ll never see it if the end user experience is challenging.

The actual end user documentation should be pretty easy; all it has to do is
describe how to install, launch, and run your project. You will probably be told
exactly how the application must be installed and launched, and from the end user’s
perspective, those tasks will have to be incredibly easy and relatively option free, so
there won't be much to document. The key will be to document how to use the
programs once they have been launched. When documenting the GUIs, the most
important concepts to remember are

B Keep it simple.

B Keep it concise.

The GUIs themselves, if designed properly, should be very easy to use, so there
is no need to go on and on.

The end user documentation can take several forms. The install and launch
documentation must be provided in either an ASCII text file or as HTML. Make
sure to follow the naming conventions described in your instructions! The GUI
documentation can be added to either of these files, or it can be provided as
online help.

javadoc and You

One of Java’s more wonderful features is javadoc. While we’re sure that all of you
are well versed in the use of javadoc, and use it religiously, we are bound to review
it here on the off chance that this bit of Java technology has somehow eluded you.

An Overview of javadoc
When you crank up your browser to look at the Java API documentation (let’s
say you've forgotten what arguments the set InitialContextFactory

888 Chapter 17: Exam Documentation

Builder () method takes), you are really looking at the output of the javadoc
utility. Most likely, that online documentation was created by the guy who actually
wrote that method for that class (in this case the NamingManager class). javadoc is a
utility for programmers to use to help other programmers use their programs. (We'll
get off our soapbox in a minute.)

Every programmer should use javadoc. Even if you're a one-man shop, someday
you'll want to refresh your memory on how a certain method works, and the very
Jjavadoc that you wrote months earlier will be right there to help you out. If you
work with other programmers, then javadoc is truly a miracle. When you add javadoc
comments to your code as you are creating it, you have an instant answer for anyone
who wants to bug you about how your code works. (If the cute programmer in the
cubicle next to you wants help, you can always provide additional assistance.) Likewise,
if you're trying to update a class that was written by somebody else, you'll be grateful
for their javadoc documentation, especially if for some reason that programmer is no
longer around.

At a high level, javadoc comments are nothing more than specially formatted
comments that you add in certain, very specific places in your code. When you run
the javadoc utility on your Java files, it takes those comments, and the appropriate
adjacent code, and creates HTML-based API documentation, just like you see on
your browser.

If you've never used javadoc (gasp!), we recommend trying some experiments
once you've read through more of this chapter. It’s very useful to write a little code,
produce some javadoc, and compare the two. With a little practice your javadoc
comments will look just like those created by those ‘think-tank’ boys at Sun. Earlier,
we promised to get off our soapbox; consider us officially off.

A Summary of the Project’s javadoc Requirements

To pass the developer’s exam, your code must include javadoc comments. Once your
code is properly commented, you must then run the javadoc utility against it and
include the resulting javadoc files in the docs directory for your project. Specifically,
your javadoc comments might document some of the classes and interfaces you are
submitting, including class, interface, constructor, method, constant, and exception
comments. Your instructions will specify which elements you must document.

A Brief Tutorial on the Use of javadoc
It has often been said that if you know 20 percent of a certain technology you can
accomplish 80 percent of everything that you ever have to do with it. That said,

Understand the Sun Certified Java Developer Exam Documentation Requirements 889

we're going to describe for you what is, in our humble opinion, the most crucial
20 percent of the commands provided by the javadoc utility. If you want to know
more about javadoc we recommend starting with these two links:

http://java.sun.com/j2se/1.4/docs/tooldocs/solaris/javadoc.html, and
http://java.sun.com/j2se/javadoc/writingdoccomments/index.html

The Structure of a Comment As you will soon see, a single comment

can grow to quite a large size. Comments can contain a wide variety of elements,
but there are some restrictions to the order in which you can place these elements.
To begin, the first line must start with /** (the / must be in column 1), all of the
rows that contain descriptive content start with an * in column 2, and the closing
delimiter is */ with the * in column 2. Finally, remember that the member
declaration follows immediately after the javadoc comment. This format will hold
true for any multiline javadoc comment used in documenting classes, interfaces,
constructors, methods, instance variables, or exceptions; for example,

/**

* the descriptive section

* of a multiline javadoc comment
*/

public class Test {

A comment can contain two main sections: the description section followed by
the tag section. Both sections are optional. When used, the descriptive section can
contain any free form text following the column 2 *, and can span multiple lines.

The tag section of the comment begins with the first occurrence of a ‘@’ that
starts a new line of the comment (ignoring the leading *). There are two types of
tags: standalone and inline. A standalone tag has the general form @tag. An inline
tag has the general form { @tag }. Inline tags can be included in the descriptive
section of the comment, but once a standalone tag has been encountered in a
comment, no more descriptive text can be used in that comment; for example,

/*
* the descriptive section

* we're still in the descriptive section

* {@link doStuff doStuff} and

* after this line the tag section will begin:

* @author Joe Beets (the leading @ marked the beginning
* of the tag section

890 Chapter I7:

Exam Documentation

* @version 2.1

*/

Launching javadoc, and Exciting javadoc Capabilities
We’re not forgetting our orientation toward 80/20, and at the same time we

want to let you know about some of javadoc’s other capabilities. Think of this

as a high-level briefing.

B Doclets javadocs output format is determined by a ‘doclet’. The default,

standard doclet is built-in to javadoc, and produces the HTML API
documentation normally associated with javadoc. If you want to create
custom output you can subclass the standard doclet, or you can write
your own doclet. For the adventurous, you can create XML or RTF; we
know one guy who used javadoc to capture all his favorite beef jerky recipes.
A good placed to start your doclet odyssey is at:

http://java.sun.com/j2se/1.4/toolodocs/javadoc/overview.html

Command-line Cornucopia Let’s look at a few simple examples of
calling javadoc:.

To run javadoc against all the java files in the current directory,

)

% javadoc *.java (we tried to start with an easy one.)

To run javadoc on a package called com.testpkg, first move to the parent
directory of the fully qualified package (in other words, the directory
containing the package), then

% javadoc -d /home/html-dest com.testpkg

In this case we used the —d flag to indicate the destination directory for the
HTML output. So the command line reads, “Run javadoc, put the output in
a directory called home/html-dest, and run the utility against all of the java
files in the com.testpkg package.”

Other Capabilities javadoc has a wide range of command line options, in
fact, a huge range of command-line options...so many that there is a facility
that allows you to store your command-line options in a file. Let’s cover
some of options you might find useful for your project:

B -windowtitle Allows you to specify the description that appears
in the title bar of your browser window. See Figure 17-1.

Understand the Sun Certified Java Developer Exam Documentation Requirements 89 |

e L [] my_custom_titlebar C

Example of a
custom title bar
and header =

T Tree Deprecated Index Help
CLAaSs MEXT CLASS

FEAMES HNO FRAMES
ARY: INMER | FIELD | CONSTR | METHOL: DETAIL: FIELD | COMSTR | METHOD

ss ClassTags

.lang.Chiject

B -header Allows you to specify a description that appears in the top
right of your class documentation. See Figure 17-1.

B -footer Allows you to specify a description that appears in the lower
right ‘footer’ area of your class documentation. See Figure 17-2.

B -bottom Allows you to specify a description that appears in the
bottom of your class documentation. See Figure 17-2.

The following collection of command-line arguments allow you to specify
which classes and members are documented, based on their access modifiers:

B -public Documents only public classes and members.

B -protected Thisis the option if you don’t specify a command-line
argument. It documents only protected and public classes and members.

FIGURE 17-2

Example of a
custom footer
and bottom

ClassTags

public €lassTags()

[®EE) Tree Deprecated Index Help @
FREW CLASS HEHT CLASS FEAMES MNO FRAMES

SUMMARY: INNER | FIELD | COMSTR | METHOD DETAIL: FIELD | CONSTE | WMETHOD

my_custom_bottom

8972 Chapter 17: Exam Documentation

B -package Documents package level (default), protected, and public
classes and members.

B -private Documents a//classes and members. (private means
"everything," including things marked private.)

Here are some more potentially useful command line arguments:
B -help Displays online help—a good way to access all of these options.

B -source 1.4 Enables javadoc to handle assertions if you have used
them in your code. Use it for documenting code that you’ve compiled
using the -source 1.4 flag.

The World’s Shortest Review of HTML Tags

Inside your javadoc comments you can format your text using standard HTML
tags. The following (exhaustive) list of tags should be enough for you to properly
document your project.

B Theanchor tag will allow you to link your
javadoc to a URL, for example, <a href="http://www.wickedlysmart.com/
newindex.html”>Go to Wickedly Smart

B <code> </code> This tagwill tell the javadoc utility to use code style
font (probably courier) for the enclosed content, perfect for indicating code
snippets in your comments.

B <pre> </pre> This tag will tell the javadoc utility to maintain the
formatting of the enclosed content. This is very useful if you want to include
a multiline code snippet in your javadoc and maintain the formatting
(indenting, spacing, etc.).

The following code snippet was run through the javadoc utility, and Figure 17-3
shows a portion of the API style documentation that was generated. Notice that
the javadoc utility ignored the formatting of the paragraph documentation, but
preserved the formatting of the code snippet inside of the <pre> tag. Also notice
how the <a href> tag was formatted to produce a live link to a website.

/**

* An example of HTML tags in a javadoc comment.

Understand the Sun Certified Java Developer Exam Documentation Requirements 89 3

* The <code>Byte</code> class wraps a primitive type
* <codes>byte</code> in an object. An object of type

* <code>Byte</code> contains a single field whose type
* is <code>byte</codes.

* <pre>

* int doStuff () {
* if (x < vy) {
* X = 42;
* }

* }</pre>

* @see Go to Wickedly Smart

*/
public class Tags { }

Common HTML tags enhancing javadoc APl output
Class Tags

Java. lang.Chjsct

I
+--Tags

public class Tags
extends java lang Object

An example of HTML tags in a Javadoc comment. The Byte class wraps a primitive type byte in an
object. An object of type Byte contains a single field whose type is byte.

int doStuffi) {
if (% < w) o
®x = 42;

See Also:
Go to Wickedly Smart

894 Chapter 17: Exam Documentation

Useful javadoc Tags for Classes and Interfaces
Here are some useful javadoc tags for classes and interfaces:

B @author You can provide from zero to many author tags in your class
comments. Although, given the nature of the exam, we’d advise zero or one.
There are no formatting rules for the content after these tags. By default,
author information is not included in the final API documentation; it will
only be seen by people reading your source code. If you want to include the
author information in your final javadoc output, you must run javadoc with
the —author flag.

B @version This tag allows you to tie into Source Code Control Systems,
which will automatically provide accurate versioning and date updates. Given
that this is a one-person project, we recommend that if you use this tag, you
insert your own manual version and date information. By default, version
information is not included in the final API documentation; it will only be
seen by people reading your source code. If you want to include the version
information in your final javadoc output, you must run javadoc with the
-version flag.

Useful Tags for All javadoc Comments
Here are some useful tags for all javadoc comments:

B @see This tag allows you to add a “See Also” entry to your javadoc. These
entries are extremely flexible; you saw one in action in Figure 17-3, providing
an intro to a URL link. @see can also be used to preface character strings
(for instance referring to a reference book), or it can be used to preface other
members in the same or other classes. Figure 17-4 shows the @see tag used
in several different ways. There are many more wonderful possibilities that
the @see tag offers, but we're sticking to our 80/20 guns.

B @link This tagis similar to @see; however, it creates an inline link
with a label. These inline links allow online users of your API documentation
to navigate quickly through your content using the hypertext links you have
created with @link.

The following code snippet shows an example of how to use the links we just
discussed. Figure 17-4 illustrates how the code sample was converted into javadoc.

Understand the Sun Certified Java Developer Exam Documentation Requirements 89§

In this case javadoc was run with two flags, -version and -author; without
these flags the final output would not have included that information.

*

/
An example of class and interface tags
link to testMethod {@link TestJD2#testMethod testMethod}

@author Joe Beets
@version 1.02

@see "The Fortran Coloring Book"

L . S

~

public class ClassTags { }

Useful Tags for Constructors and Methods

Here are some useful tags for constructors and methods:

B @param This tag allows you to add method or constructor argument
names and a description for the argument to the ‘Parameters’ section of
the javadoc.

Class and interface tags in action
Class ClassTags

jJava. lang.CObject

I
+—-ClassTags

public class ClassTags
extends java.lang Object

An example of class and mterface tags link to testhdethod testMethod

Version:
1.02
Author:
Joe Beets
See Also:
"The Fortran Coloring Book"

896 Chapter 17: Exam Documentation

B @return This tag allows you to add a method return description to the
‘Returns’ section of the javadoc.

B @exception This tag has the same functionality as the @chrows
tag. They allow you to add a “Throws’ subheading to the javadoc for the
constructor or method being documented. These tags take the exception
class name and a description of the exception.

The following code example and Figure 17-5 demonstrate method and
constructor tags in action:

/**

* link to {@link TestJD#jdMethod jdMethod}

* @param custId takes an int representing the customer ID
* @return returns the answer to everything

* @throws FooException throws a Foo exception

*/

public int methodl (int z) throws FooException {

javadoc Comments for Classes

The javadoc comment for the class must directly precede the class declaration. This
comment is used to describe the purpose of the class and its capabilities. It may also
describe, at a high level, how the class is implemented. The Java API often includes
a class comment that can run several pages long. That level of detail is probably not
necessary, but it’s a good idea to provide a paragraph or two of explanation. Later
on in the class you will be documenting your constructors and methods, so this is

FIGURE 17-5 methodl

Method and public int methodl (int z)

constructor throws FooException
tags in action
link to jdMethod

Parameters:

custId - takes an mt representing the cutomer ID
Returns:

retumns the answer to everything
Throws:

FooException - throws a Foo exception

Understand the Sun Certified Java Developer Exam Documentation Requirements 89Q7

not the appropriate place for that documentation. The following is an example of
a class level javadoc comment:

/**
* The <code>Byte</code> class wraps a primitive type <codesbyte</codes>
* in an object. An object of type <codes>Byte</code> contains a single
* field whose type is <codesbyte</codes.
*
* In addition, this class provides several methods for converting a
* <codesbyte</code> to a <code>String</code> and a <code>String</codex>
* to a <codes>byte</code>, as well as other constants and methods
* useful when dealing with a <codesbyte</codes.
*
* @author Joe Beets
* @version .997
*
*/

public class ByteSample {

There are several things to notice in the above example. First, notice the use of the
tags <code> and </code>. These tags tell javadoc to use a different font (probably
a courier font) for the content between the tags, to indicate a code snippet. The
next things to notice are the @author and @version tags whose purposes were
described in the previous “Useful Tags for Constructors and Methods” section.

javadoc Comments for Interfaces

The javadoc comment for an interface must directly precede the interface declaration.
This comment is used to describe the purpose of the interface. The Java API often
includes an interface comment that can run several pages long. That level of detail
is probably not necessary, but it’s a good idea to provide a paragraph or two of
explanation. The following is an example of an interface level javadoc comment:

/**

*

The <code>Runnable</code> interface should be implemented by any class
whose instances are intended to be executed by a thread. The class
must define a method of no arguments called <codes>run</codes.

This interface is designed to provide a common protocol for objects
that wish to execute code while they are active. For example,
<code>Runnable</code> is implemented by class <code>Thread</codes.
Being active simply means that a thread has been started and has not
yet been stopped.

* % kX X X X X X F F

@author Joe Beets

898 Chapter 17: Exam Documentation

* @version .997
*

*/

public interface RunnableSample {

javadoc for Constructors

The javadoc comment for a constructor must directly precede the constructor
declaration. This comment is used to describe the purpose of the constructor. When
creating a comment for a constructor, it’s a good idea to provide a paragraph or

two of explanation. The following is an example of a constructor comment from
the Java API:

*

/
Constructs a newly allocated <code>Byte</code> object that represents
the <codesbyte</code> value indicated by the <code>String</code>
parameter. The string is converted to a <codesbyte</code> value in
exactly the same manner used by the <codes>parseByte</code> method

for radix 10.

@param s the <code>String</code> to be converted to <codes>Byte</code>
@throws NumberFormatException If the <code>String</code> does not
contain a parseable <codesbyte</codes.

EE I I D R I

~

public Byte(String s) { }

javadoc for Methods

The javadoc comment for a method must directly precede the method’s declaration.
This comment is used to describe the purpose of the method. When creating a
comment for a method it’s a good idea to provide a paragraph or two of explanation.
The following is an example of a method comment from the Java API:

*

/

Returns a new <code>String</code> object representing the specified
<code>byte</code>. The radix is assumed to be 10.

@param b the <codesbyte</code> to be converted
@return the string representation of the specified <codesbyte</codes>

E I I A

~

public static String toString(byte b) {

javadoc for Exceptions

The javadoc comment for an exception must directly precede the declaration of the
method that throws the exception. This comment is a part of the overall comment
for the method in question. This comment is used to describe the class of the

Understand the Sun Certified Java Developer Exam Documentation Requirements 899

exception thrown along with a description of why the exception might be thrown.
The Java APT often includes an exception comment that can run a page long. That
level of detail is probably not necessary, but it’s a good idea to provide a paragraph
or two of explanation. After a brief discussion of using javadoc for variables, we will
give an example of a method that throws an exception and the javadoc to support
that. In this case, we used @exception and in an earlier example we used
@throws; they work the same way. Finally, see Figure 17-6 to see how this javadoc
looks in a browser.

javadoc for Variables

The javadoc comment for a variable must directly precede the variable declaration.
This comment is used to describe the purpose of the variable. The most common
reason to use javadoc for a variable is for constants (static final variables).
Constants are often used to represent minimum or maximum values. When
documenting a constant it’s a good idea to provide a sentence or two of explanation.
The following code listing and Figure 17-6 show an exception throwing method
and a related constant.

/** Minimum allowable Radix is 2 */
public static final int MIN_RADIX = 2;

*

/
Parses the string argument as a signed byte in the radix specified
by the second argument. The characters in the string must all be
digits, of the specified radix. The resulting <codes>byte</code>
value is returned.

<pre>
An exception of type <codes>NumberFormatExceptions</code>

is thrown if any of the following situations occur:

- The first argument is <codes>null</code> or is
a string of zero length.

- The radix is either smaller than {@link Tags#MIN_RADIX
Character .MIN RADIX}
- Any character of the string is not a digit</pre>

@param s the <code>String</code> containing the <codesbyte</code>

representation to be parsed
@param radix the radix to use while parsing s
@return the <code>byte</code> value represented by the string
argument in the specified radix
@exception NumberFormatException If the string does not contain a
parseable <codesbyte</codes>.

EE N S T N R N . N N T . NN N N N

~

public static byte parseByte(String s, int radix) throws
NumberFormatException

Q900 Chapter I7: Exam Documentation

[V {-MVA M Documenting exceptions and constants

Field Detail

MIN RADIX
public static final int MIN RADIX

Iinimum allowable Fadix is 2

parseByte

public static bhyte parseByte|java.lang.String s,
int radix)
throws java.lang.NurberFormatException

Parses the stnng argument as a signed byte m the radux specified by the second argument. The characters i the strmg must all be
digits, of the specified radie. The resuling byte walue is returned.

An exception of type NumberFormatException is thrown if any of the following situations occurs:

— The first argument is null or is a string of zero length.
- The radix is either smaller than Character MIN _RADIX
— Any character of the string is not a digit

Parameters:
s - the String contaming the byte representation to be parsed
radix - the radix to use while parsing s
Returns:
the byte value represented by the string argument i the specified radx
Throws:
java. lang.NurberFormatException - If the string does not contain a parsable byte.

The Developer’s Choices Document

One of the key pieces of documentation you must provide when you submit your
project is the document that reviews and justifies the choices you made during the
design phase of your project. This document is affectionately referred to as the
‘Choices’ document. Your instruction packet will tell you exactly what this document
must be named and where it must be located. The intention of this document is to
briefly explain and justify the thinking you did while designing and implementing
your application. In Chapters 15 and 16 we gave you lists of things to think about
while designing your application. Those lists can give you good clues as to what to
talk about in this document. You will have to make sure that a lot of situations are

Understand the Sun Certified Java Developer Exam Documentation Requirements Q@ |l

handled correctly when you design this application. In some cases, there is no perfect
solution, and you will have to consider the tradeoffs and weigh the pros and cons
of several possible solutions to a problem. This is the place to review those tradeoffs
and pros and cons!

As is hinted at in the instruction packet, the assessors are looking for solutions
that are understandable and maintainable. If you come up with a new search algorithm
that is 3 percent faster than a well-known solution, youd better be careful. Your
solution had better be really clear and really easy to understand, or you might be
penalized for a solution that is a bit slower, but is well known and clear. That said,
you will probably have to think about database implementation issues, networking
issues (RMI vs. sockets), record-locking issues, and GUI design issues in the course
of this project. You may well have other design issues also. Without creating a masters
thesis, describe them all in the ‘Choices’ document.

The Return of Comments and the Versions File

We're almost finished with javadoc, but there are still a couple of issues to look at.
Besides correctness of your javadoc, your documentation should be clear and helpful.
Remember, the easier it is for the assessor to figure out what your code is doing, the
better your chances for a good score on the exam.

Just a Little More About Comments
We spent a lot of time in this chapter discussing the nuts and bolts of javadoc. Now
let’s spend just a little time discussing the style of the comments that you should
create. There is a definite art to proper code commenting—we wish we could say it
was a science, but it’s not. The key points to remember for this exam are

B Make sure your code comments and clear and concise.

B Make sure the comment you are about to type is necessary.
Keep in mind that the best Java code is to a large degree self-documenting. If you
find yourself documenting a lot of your code, think about these things:

B Are your variable names self-descriptive?

B Are your method names self-descriptive?

B Do you find yourself explaining why you wrote your code a certain way?

Q9072 Chapter I7: Exam Documentation

B Do you just really love to type?

B Remember some of the best Java code you’ve ever read, how little commenting
it needed, and how clear it was.

M s excessive commenting making up for a muddy design?

Lest We Forget, the Versions File

Not much to say here really. In the interest of being complete, we somewhat
redundantly offer this advice. The instruction packet will probably ask you to
provide a very small document in which you will list the version of the JDK that
you used, and on which host platform(s) you developed and tested your project.
Do as you're told. :)

Key Points Summary
Here, in a handy portable format, are the highlights from this chapter:
B You'll probably want to include these six forms of documentation

(plus anything else the instructions ask for):
B The Developer’s Documentation—design docs.
B End User Documentation—how to install and run the application.
B javadoc—the programmer’s technical inline comments.
B The Choices Document—the architect’s design choices and tradeofs.
B Inline code comments—in addition to the javadoc.

B The Version file—SDXK version used and hardware platform(s) used.

B Developer’s documents are probably optional documents; include them
if they briefly and clearly aid in understanding your project.

B End User documents; keep them simple and concise.
Jjavadoc highlights:

B It’s how the Java API was created.
W It generates HTML.

B It’s mandatory for your project.

Understand the Sun Certified Java Developer Exam Documentation Requirements Q@@ 3

Comments can have a descriptive section and a tag section.
Tags can be inline {@tag}, or standalone @tag.
javadoc has a huge arguments library.

You can store your command line arguments in a file.

You can use HTML tags in your javadoc.

Not all javadoc tags can be used for all class members.

You can document the following members in javadoc:
Classes
Interfaces

Constructors
Variables
Methods

Exceptions

B The Choices document describes architectural decisions that you make:
B Database design

B Networking design

B GUI design

B Record-locking design

Keep your code comments clear and concise.

Try to make your variable and method names self-documenting.

Are your comments propping up a muddy design?

Don’t forget your Versions file.

