Declarations and
Access Control

CERTIFICATION OBJECTIVES

e Declare Classes & Interfaces e Use Static Methods, JavaBeans

Naming, & Var-Args
e Develop Interfaces &

Abstract Classes ‘/ Two-Minute Drill

e Use Primitives, Arrays, Enums, & Q&A SelfTest
Legal Identifiers

2 Chapter I: Declarations and Access Control

e assume that because you're planning on becoming certified, you already know

the basics of Java. If you're completely new to the language, this chapter—and the

rest of the book—wiill be confusing; so be sure you know at least the basics of the
language before diving into this book.That said, we're starting with a brief, high-level refresher to
put you back in the Java mood, in case you've been away for awhile.

Java Refresher

A Java program is mostly a collection of objects talking to other objects by invoking
each other's methods. Every object is of a certain type, and that type is defined by a
class or an interface. Most Java programs use a collection of objects of many different

types.

Class A template that describes the kinds of state and behavior that objects
of its type support.

Object At runtime, when the Java Virtual Machine (JVM) encounters the
new keyword, it will use the appropriate class to make an object which is an
instance of that class. That object will have its own state, and access to all of
the behaviors defined by its class.

State (instance variables) Each object (instance of a class) will have its
own unique set of instance variables as defined in the class. Collectively, the
values assigned to an object's instance variables make up the object's state.

Behavior (methods) When a programmer creates a class, she creates meth-
ods for that class. Methods are where the class' logic is stored. Methods are
where the real work gets done. They are where algorithms get executed, and
data gets manipulated.

Identifiers and Keywords

All the Java components we just talked about—classes, variables, and methods—
need names. In Java these names are called identifiers, and, as you might expect,
there are rules for what constitutes a legal Java identifier. Beyond what's legal,

Java Refresher 3

though, Java programmers (and Sun) have created conventions for naming methods,
variables, and classes.

Like all programming languages, Java has a set of built-in keywords. These
keywords must not be used as identifiers. Later in this chapter we'll review the details
of these naming rules, conventions, and the Java keywords.

Inheritance

Central to Java and other object-oriented (OO) languages is the concept of
inheritance, which allows code defined in one class to be reused in other classes. In
Java, you can define a general (more abstract) superclass, and then extend it with
more specific subclasses. The superclass knows nothing of the classes that inherit from
it, but all of the subclasses that inherit from the superclass must explicitly declare the
inheritance relationship. A subclass that inherits from a superclass is automatically
given accessible instance variables and methods defined by the superclass, but is also
free to override superclass methods to define more specific behavior.

For example, a Car superclass class could define general methods common to all
automobiles, but a Ferrari subclass could override the accelerate () method.

Interfaces

A powerful companion to inheritance is the use of interfaces. Interfaces are like a
100-percent abstract superclass that defines the methods a subclass must support, but
not how they must be supported. In other words, an Animal interface might declare
that all Animal implementation classes have an eat () method, but the Animal
interface doesn't supply any logic for the eat () method. That means it's up to the
classes that implement the Animal interface to define the actual code for how that
particular Animal type behaves when its eat () method is invoked.

Finding Other Classes

As we'll see later in the book, it's a good idea to make your classes cohesive. That

means that every class should have a focused set of responsibilities. For instance,

if you were creating a zoo simulation program, you'd want to represent aardvarks

with one class, and zoo visitors with a different class. In addition, you might have

a Zookeeper class, and a Popcorn vendor class. The point is that you don't want a

class that has both Aardvark and Popcorn behaviors (more on that in Chapter 2).
Even a simple Java program uses objects from many different classes: some that

you created, and some built by others (such as Sun's Java API classes). Java organizes

classes into packages, and uses import statements to give programmers a consistent

4 Chapter |I: Declarations and Access Control

way to manage naming of, and access to, classes they need. The exam covers a lot of
concepts related to packages and class access; we'll explore the details in this—and
later—chapters.

CERTIFICATION OBJECTIVE

Identifiers & JavaBeans (Objectives 1.3 and |.4)

1.3 Dewelop code that declares, initializes, and uses primitives, arrays, enums, and
objects as static, instance, and local variables. Also, use legal identifiers for variable names.

1.4 Develop code that declares both static and non-static methods, and—if appropriate—
use method names that adhere to the JavaBeans naming standards. Also develop code that
declares and uses a variable-length argument list.

Remember that when we list one or more Certification Objectives in the book,
as we just did, it means that the following section covers at least some part of that
objective. Some objectives will be covered in several different chapters, so you'll see
the same objective in more than one place in the book. For example, this section
covers declarations, identifiers, and JavaBeans naming, but using the things you
declare is covered primarily in later chapters.

So, we'll start with Java identifiers. The three aspects of Java identifiers that we
cover here are

B Legal Identifiers The rules the compiler uses to determine whether a
name is legal.

B Sun's Java Code Conventions Sun's recommendations for naming classes,
variables, and methods. We typically adhere to these standards throughout
the book, except when we're trying to show you how a tricky exam question
might be coded. You won't be asked questions about the Java Code Conven-
tions, but we strongly recommend that programmers use them.

B JavaBeans Naming Standards The naming requirements of the JavaBeans
specification. You don't need to study the JavaBeans spec for the exam,
but you do need to know a few basic JavaBeans naming rules we cover in
this chapter.

Legal Identifiers (Exam Objectives 1.3 and 1.4) §

Legal Identifiers

Technically, legal identifiers must be composed of only Unicode characters,
numbers, currency symbols, and connecting characters (like underscores). The
exam doesn't dive into the details of which ranges of the Unicode character set are
considered to qualify as letters and digits. So, for example, you won't need to know
that Tibetan digits range from \u0420 to \uof29. Here are the rules you do need
to know:

B Identifiers must start with a letter, a currency character ($), or a connecting
character such as the underscore (_). Identifiers cannot start with a number!

B After the first character, identifiers can contain any combination of letters,
currency characters, connecting characters, or numbers.

B [n practice, there is no limit to the number of characters an identifier can
contain.

B You can't use a Java keyword as an identifier. Table 1-1 lists all of the Java
keywords including one new one for 5.0, enum.

M Identifiers in Java are case-sensitive; foo and FOO are two different identifiers.

Examples of legal and illegal identifiers follow, first some legal identifiers:

int _a;
int Sc;
int 2 w;
int _$;

int this is a very detailed name for an identifier;

The following are illegal (it's your job to recognize why):

int :b;
int -d;
int e#;
int .f;

int 7g;

6 Chapter I:

Declarations and Access Control

Complete List of Java Keywords (assert added in 1.4, enum added in 1.5)
abstract boolean break byte case catch
char class const continue default do
double else extends final finally float
for goto if implements import instanceof
int interface long native new package
private protected public return short static
strictfp super switch synchronized| this throw
throws transient try void volatile while
assert enum

Sun's Java Code Conventions

Sun estimates that over the lifetime of a standard piece of code, 20 percent of the
effort will go into the original creation and testing of the code, and 80 percent

of the effort will go into the subsequent maintenance and enhancement of the
code. Agreeing on, and coding to, a set of code standards helps to reduce the effort
involved in testing, maintaining, and enhancing any piece of code. Sun has created
a set of coding standards for Java, and published those standards in a document
cleverly titled "Java Code Conventions," which you can find at java.sun.com. It's
a great document, short and easy to read and we recommend it highly.

That said, you'll find that many of the questions in the exam don't follow the
code conventions, because of the limitations in the test engine that is used to deliver
the exam internationally. One of the great things about the Sun certifications is that
the exams are administered uniformly throughout the world. In order to achieve
that, the code listings that you'll see in the real exam are often quite cramped,
and do not follow Sun's code standards. In order to toughen you up for the exam,
we'll often present code listings that have a similarly cramped look and feel, often
indenting our code only two spaces as opposed to the Sun standard of four.

We'll also jam our curly braces together unnaturally, and sometimes put several
statements on the same line...ouch! For example:

class Wombat implements Runnable {
private int i;

public synchronized void run()

if (i%5 != 0)

for (int x=0;

{ 1++; }

Uk w N

xX<5; X++, 1++)

w J O

9.
10.
11.
12.

Sun’s Java Code Conventions (Exam Objectives 1.3 and 1.4) 7

{ if (x > 1) Thread.yield(); }
System.out.print (i + " ");
!
public static void main(String[] args) {
Wombat n = new Wombat () ;
for (int x=100; x>0; --x) { new Thread(n).start(); }

I

Consider yourself forewarned—you'll see lots of code listings, mock questions, and
real exam questions that are this sick and twisted. Nobody wants you to write your
code like this. Not your employer, not your coworkers, not us, not Sun, and not the
exam creation team! Code like this was created only so that complex concepts could
be tested within a universal testing tool. The one standard that is followed as much
as possible in the real exam are the naming standards. Here are the naming standards
that Sun recommends, and that we use in the exam and in most of the book:

Classes and interfaces The first letter should be capitalized, and if several
words are linked together to form the name, the first letter of the inner words
should be uppercase (a format that's sometimes called "camelCase"). For
classes, the names should typically be nouns. For example:

Dog
Account
PrintWriter

For interfaces, the names should typically be adjectives like

Runnable
Serializable

Methods The first letter should be lowercase, and then normal camelCase
rules should be used. In addition, the names should typically be verb-noun
pairs. For example:

getBalance
doCalculation
setCustomerName

8 Chapter I: Declarations and Access Control

B Variables Like methods, the camelCase format should be used, starting with
a lowercase letter. Sun recommends short, meaningful names, which sounds
good to us. Some examples:

buttonWidth
accountBalance
myString

B Constants Java constants are created by marking variables static and
final. They should be named using uppercase letters with underscore
characters as separators:

MIN HEIGHT

JavaBeans Standards

The JavaBeans spec is intended to help Java developers create Java components
that can be easily used by other Java developers in a visual Integrated Development
Environment (IDE) tool (like Eclipse or NetBeans). As a Java programmer, you
want to be able to use components from the Java API, but it would be great if you
could also buy the Java component you want from "Beans 'R Us," that software
company down the street. And once you've found the components, you'd like to be
able to access them through a development tool in such a way that you don't have
to write all your code from scratch. By using naming rules, the JavaBeans spec helps
guarantee that tools can recognize and use components built by different developers.
The JavaBeans API is quite involved, but you'll need to study only a few basics for
the exam.

First, JavaBeans are Java classes that have properties. For our purposes, think of
properties as private instance variables. Since they're private, the only way
they can be accessed from outside of their class is through methods in the class. The
methods that change a property's value are called setter methods, and the methods
that retrieve a property's value are called getter methods. The JavaBean naming rules
that you'll need to know for the exam are the following:

JavaBean Property Naming Rules

B If the property is not a boolean, the getter method's prefix must be get. For
example, getSize () is a valid JavaBeans getter name for a property named
"size." Keep in mind that you do not need to have a variable named size

JavaBeans Standards (Exam Objectives 1.3 and 1.4) ©

(although some IDEs expect it). The name of the property is inferred from the
getters and setters, not through any variables in your class. What you return
from getSize () is up to you.

If the property is a boolean, the getter method's prefix is either get or is. For
example, getStopped () or isStopped () are both valid JavaBeans names for
a boolean property.

The setter method's prefix must be set. For example, setSize () is the valid
JavaBean name for a property named size.

To complete the name of a getter or setter method, change the first letter of
the property name to uppercase, and then append it to the appropriate prefix
(get, is, Oor set).

Setter method signatures must be marked public, with a void return type
and an argument that represents the property type.

Getter method signatures must be marked public, take no arguments, and

have a return type that matches the argument type of the setter method for
that property.

Second, the JavaBean spec supports events, which allow components to notify
each other when something happens. The event model is often used in GUI
applications when an event like a mouse click is multicast to many other objects
that may have things to do when the mouse click occurs. The objects that receive
the information that an event occurred are called listeners. For the exam, you need to

know that the methods that are used to add or remove listeners from an event must
also follow JavaBean naming standards:

JavaBean Listener Naming Rules

Listener method names used to "register" a listener with an event source
must use the prefix add, followed by the listener type. For example,
addActionListener () is a valid name for a method that an event source
will have to allow others to register for Action events.

Listener method names used to remove ("unregister") a listener must use
the prefix remove, followed by the listener type (using the same rules as the
registration add method).

The type of listener to be added or removed must be passed as the argument
to the method.

Listener method names must end with the word "Listener".

I O Chapter I: Declarations and Access Control

Examples of valid JavaBean method signatures are

public void setMyValue (int v)

public int getMyValue ()

public boolean isMyStatus ()

public void addMyListener (MyListener m)
public void removeMyListener (MyListener m)

Examples of invalid JavaBean method signatures are

void setCustomerName (String s) // must be public
public void modifyMyValue (int v) // can't use 'modify’
public void addXListener (MyListener m) // listener type mismatch

Datch
The objective says you have to know legal identifiers only for variable

names, but the rules are the same for ALL Java components. So remember that a legal
identifier for a variable is also a legal identifier for a method or a class. However, you
need to distinguish between legal identifiers and naming conventions, such as the
JavaBeans standards, that indicate how a Java component should be named. In other
words, you must be able to recognize that an identifier is legal even if it doesn’t conform
to naming standards. If the exam question is asking about naming conventions—not just
whether an identifier will compile—JavaBeans will be mentioned explicitly.

CERTIFICATION OBJECTIVE

Declare Classes (Exam Objective 1.1)

1.1 Dewelop code that declares classes (including abstract and all forms of nested classes),
interfaces, and enums, and includes the appropriate use of package and import statements
(including static imports) .

Source File Declaration Rules (Exam Objective I.1) | ||

When you write code in Java, you're writing classes or interfaces. Within those
classes, as you know, are variables and methods (plus a few other things). How you
declare your classes, methods, and variables dramatically affects your code's behavior.
For example, a public method can be accessed from code running anywhere in your
application. Mark that method private, though, and it vanishes from everyone's
radar (except the class in which it was declared). For this objective, we'll study
the ways in which you can declare and modify (or not) a class. You'll find that we
cover modifiers in an extreme level of detail, and though we know you're already
familiar with them, we're starting from the very beginning. Most Java programmers
think they know how all the modifiers work, but on closer study often find out that
they don't (at least not to the degree needed for the exam). Subtle distinctions
are everywhere, so you need to be absolutely certain you're completely solid on
everything in this section's objectives before taking the exam.

Source File Declaration Rules

Before we dig into class declarations, let's do a quick review of the rules associated
with declaring classes, import statements, and package statements in a source file:

B There can be only one public class per source code file.

B Comments can appear at the beginning or end of any line in the source code
file; they are independent of any of the positioning rules discussed here.

B If thereis a public class in a file, the name of the file must match the name
of the public class. For example, a class declared as public class Dog { }
must be in a source code file named Dog. java.

B If the class is part of a package, the package statement must be the first line
in the source code file, before any import statements that may be present.

B If there are import statements, they must go between the package statement
(if there is one) and the class declaration. If there isn't a package statement,
then the import statement(s) must be the first line(s) in the source code file.
If there are no package or import statements, the class declaration must be
the first line in the source code file.

B import and package statements apply to all classes within a source code file.
In other words, there's no way to declare multiple classes in a file and have
them in different packages, or use different imports.

B A file can have more than one nonpublic class.

I 2 Chapter |I: Declarations and Access Control

B Files with no public classes can have a name that does not match any of the
classes in the file.

In Chapter 10 we'll go into a lot more detail about the rules involved with
declaring and using imports, packages, and a feature new to Java 5, static imports.

Class Declarations and Modifiers

on the

Qob

Although nested (often called inner) classes are on the exam, we'll save nested class
declarations for Chapter 8. You're going to love that chapter. No, really. Seriously.
The following code is a bare-bones class declaration:

class MyClass { }

This code compiles just fine, but you can also add modifiers before the class
declaration. Modifiers fall into two categories:

B Access modifiers: public, protected, private.

B Non-access modifiers (including strictfp, final, and abstract).

We'll look at access modifiers first, so you'll learn how to restrict or allow access
to a class you create. Access control in Java is a little tricky because there are four
access controls (levels of access) but only three access modifiers. The fourth access
control level (called default or package access) is what you get when you don't use
any of the three access modifiers. In other words, every class, method, and instance
variable you declare has an access control, whether you explicitly type one or not.
Although all four access controls (which means all three modifiers) work for most
method and variable declarations, a class can be declared with only public or
default access; the other two access control levels don't make sense for a class, as
you'll see.

Java is a package-centric language; the developers assumed that for good
organization and name scoping, you would put all your classes into packages.
They were right, and you should. Imagine this nightmare:Three different
programmers, in the same company but working on different parts of a
project, write a class named Utilities. If those three Utilities classes have

Class Declarations and Modifiers (Exam Objective I.1) | 3

not been declared in any explicit package, and are in the classpath, you won't
have any way to tell the compiler or [VM which of the three you're trying

to reference. Sun recommends that developers use reverse domain names,
appended with division and/or project names. For example, if your domain
name is geeksanonymous . com, and you're working on the client code for

the TwelvePointOSteps program, you would name your package something
like com.geeksanonymous.steps.client. That would essentially change the
name of your class to com.geeksanonymous.steps.client.Utilities.You
might still have name collisions within your company, if you don't come up
with your own naming schemes, but you're guaranteed not to collide with
classes developed outside your company (assuming they follow Sun's naming
convention, and if they don't, well, Really Bad Things could happen).

Class Access

What does it mean to access a class? When we say code from one class (class A) has
access to another class (class B), it means class A can do one of three things:

B Create an instance of class B.
B Extend class B (in other words, become a subclass of class B).

B Access certain methods and variables within class B, depending on the access
control of those methods and variables.

In effect, access means wisibility. If class A can't see class B, the access level of the
methods and variables within class B won't matter; class A won't have any way to
access those methods and variables.

Default Access A class with default access has no modifier preceding it in the
declaration! It's the access control you get when you don't type a modifier in the
class declaration. Think of default access as package-level access, because a class with
default access can be seen only by classes within the same package. For example, if
class A and class B are in different packages, and class A has default access, class B
won't be able to create an instance of class A, or even declare a variable or return
type of class A. In fact, class B has to pretend that class A doesn't even exist, or the
compiler will complain. Look at the following source file:

14 Chapter I:

Declarations and Access Control

package cert;
class Beverage { }

Now look at the second source file:

package exam.stuff;
import cert.Beverage;
class Tea extends Beverage { }

As you can see, the superclass (Beverage) is in a different package from the
subclass (Tea). The import statement at the top of the Tea file is trying (fingers
crossed) to import the Beverage class. The Beverage file compiles fine, but when we
try to compile the Tea file we get something like:

Can't access class cert.Beverage. Class or interface must be
public, in same package, or an accessible member class.

import cert.Beverage;

Tea won't compile because its superclass, Beverage, has default access and is in
a different package. You can do one of two things to make this work. You could put
both classes in the same package, or you could declare Beverage as public, as the next
section describes.

When you see a question with complex logic, be sure to look at the access
modifiers first. That way, if you spot an access violation (for example, a class in
package A trying to access a default class in package B), you'll know the code won't
compile so you don't have to bother working through the logic. It's not as if you
don't have anything better to do with your time while taking the exam. Just choose
the "Compilation fails" answer and zoom on to the next question.

Public Access A class declaration with the public keyword gives all classes
from all packages access to the public class. In other words, dall classes in the Java
Universe (JU) have access to a public class. Don't forget, though, that if a public
class you're trying to use is in a different package from the class you're writing, you'll
still need to import the public class.

In the example from the preceding section, we may not want to place the subclass
in the same package as the superclass. To make the code work, we need to add the
keyword public in front of the superclass (Beverage) declaration, as follows:

Class Declarations and Modifiers (Exam Objective I.1) | §

package cert;
public class Beverage { }

This changes the Beverage class so it will be visible to all classes in all packages.
The class can now be instantiated from all other classes, and any class is now free to
subclass (extend from) it—unless, that is, the class is also marked with the nonaccess
modifier final. Read on.

Other (Nonaccess) Class Modifiers

You can modify a class declaration using the keyword final, abstract, or
strictfp. These modifiers are in addition to whatever access control is on the class,
so you could, for example, declare a class as both public and final. But you can't
always mix nonaccess modifiers. You're free to use strictfp in combination with
final, for example, but you must never, ever, ever mark a class as both final and
abstract. You'll see why in the next two sections.

You won't need to know how strictfp works, so we're focusing only on
modifying a class as final or abstract. For the exam, you need to know only that
strictfp is a keyword and can be used to modify a class or a method, but never a
variable. Marking a class as strict fp means that any method code in the class will
conform to the IEEE 754 standard rules for floating points. Without that modifier,
floating points used in the methods might behave in a platform-dependent way. If
you don't declare a class as strictfp, you can still get strictfp behavior on a
method-by-method basis, by declaring a method as strictfp. If you don't know the
IEEE 754 standard, now's not the time to learn it. You have, as we say, bigger fish to
fry.

Final Classes When used in a class declaration, the final keyword means
the class can't be subclassed. In other words, no other class can ever extend (inherit
from) a final class, and any attempts to do so will give you a compiler error.

So why would you ever mark a class fina1? After all, doesn't that violate the
whole object-oriented (OO) notion of inheritance? You should make a final class
only if you need an absolute guarantee that none of the methods in that class will
ever be overridden. If you're deeply dependent on the implementations of certain
methods, then using final gives you the security that nobody can change the
implementation out from under you.

You'll notice many classes in the Java core libraries are final. For example, the
String class cannot be subclassed. Imagine the havoc if you couldn't guarantee how
a String object would work on any given system your application is running on! If

I & Chapter I: Declarations and Access Control

programmers were free to extend the String class (and thus substitute their new
String subclass instances where java.lang.String instances are expected),
civilization—as we know it—could collapse. So use final for safety, but only when
you're certain that your final class has indeed said all that ever needs to be said

in its methods. Marking a class final means, in essence, your class can't ever be
improved upon, or even specialized, by another programmer.

A benefit of having nonfinal classes is this scenario: Imagine you find a problem
with a method in a class you're using, but you don't have the source code. So you
can't modify the source to improve the method, but you can extend the class and
override the method in your new subclass, and substitute the subclass everywhere
the original superclass is expected. If the class is final, though, then you're stuck.

Let's modify our Beverage example by placing the keyword final in the
declaration:

package cert;
public final class Beverage {
public void importantMethod() { }

}
Now, if we try to compile the Tea subclass:

package exam.stuff;
import cert.Beverage;
class Tea extends Beverage { }

We get an error something like

Can't subclass final classes: class
cert.Beverage class Tea extends Beverage(
1 error

In practice, you'll almost never make a final class. A final class obliterates a key
benefit of OO—extensibility. So unless you have a serious safety or security issue,
assume that some day another programmer will need to extend your class. If you
don't, the next programmer forced to maintain your code will hunt you down and
<insert really scary thing>.

Abstract Classes An abstract class can never be instantiated. Its sole
purpose, mission in life, raison d'étre, is to be extended (subclassed). (Note, how-
ever, that you can compile and execute an abstract class, as long as you don't try

Class Declarations and Modifiers (Exam Objective I.1) |7

to make an instance of it.) Why make a class if you can't make objects out of it?
Because the class might be just too, well, abstract. For example, imagine you have

a class Car that has generic methods common to all vehicles. But you don't want
anyone actually creating a generic, abstract Car object. How would they initialize its
state? What color would it be? How many seats? Horsepower? All-wheel drive? Or
more importantly, how would it behave? In other words, how would the methods be
implemented?

No, you need programmers to instantiate actual car types such as BMWBoxster
and subaruoutback. We'll bet the Boxster owner will tell you his car does things
the Subaru can do "only in its dreams." Take a look at the following abstract class:

abstract class Car {
private double price;
private String model;
private String year;
public abstract void goFast () ;
public abstract void goUpHill () ;
public abstract void impressNeighbors() ;
// Additional, important, and serious code goes here

The preceding code will compile fine. However, if you try to instantiate a Car in
another body of code, you'll get a compiler error something like this:

AnotherClass.java:7: class Car is an abstract
class. It can't be instantiated.

Car x = new Car () ;
1l error

Notice that the methods marked abstract end in a semicolon rather than
curly braces.

Look for questions with a method declaration that ends with a semicolon, rather
than curly braces. If the method is in a class—as opposed to an interface—then both
the method and the class must be marked abstract. You might get a question that
asks how you could fix a code sample that includes a method ending in a semicolon,
but without an abstract modifier on the class or method. In that case, you could
either mark the method and class abstract, or change the semicolon to code (like a
curly brace pair). Remember, if you change a method from abstract to nonabstract,
don't forget to change the semicolon at the end of the method declaration into a
curly brace pair!

I 8 Chapter I: Declarations and Access Control

We'll look at abstract methods in more detail later in this objective, but always
remember that if even a single method is abstract, the whole class must be
declared abstract. One abstract method spoils the whole bunch. You can, however,
put nonabstract methods in an abstract class. For example, you might have
methods with implementations that shouldn't change from Car type to Car type,
such as getColor () or setPrice (). By putting nonabstract methods in an abstract
class, you give all concrete subclasses (concrete just means not abstract) inherited
method implementations. The good news there is that concrete subclasses get to
inherit functionality, and need to implement only the methods that define subclass-
specific behavior.

(By the way, if you think we misused raison d'étre earlier, don't send an e-mail.
We'd like to see you work it into a programmer certification book.)

Coding with abstract class types (including interfaces, discussed later in this
chapter) lets you take advantage of polymorphism, and gives you the greatest degree
of flexibility and extensibility. You'll learn more about polymorphism in Chapter 2.

You can't mark a class as both abstract and final. They have nearly opposite
meanings. An abstract class must be subclassed, whereas a f£inal class must not be
subclassed. If you see this combination of abstract and final modifiers, used for a
class or method declaration, the code will not compile.

EXERCISE I-1

Creating an Abstract Superclass and Concrete Subclass

The following exercise will test your knowledge of public, default, final, and
abstract classes. Create an abstract superclass named Fruit and a concrete
subclass named apple. The superclass should belong to a package called food and
the subclass can belong to the default package (meaning it isn't put into a package
explicitly). Make the superclass public and give the subclass default access.

1. Create the superclass as follows:

package food;
public abstract class Fruit{ /* any code you want */}

2. Create the subclass in a separate file as follows:

import food.Fruit;
class Apple extends Fruit{ /* any code you want */}

Declaring an Interface (Exam Objectives I.1 and 1.2) | Q@

3. Create a directory called food off the directory in your class path setting.

4. Attempt to compile the two files. If you want to use the Apple class, make
sure you place the Fruit.class file in the food subdirectory.

CERTIFICATION OBJECTIVE

Declare Interfaces (Exam Objectives |.1 and 1.2)

1.1 Dewvelop code that declares classes (including abstract and all forms of nested classes),
interfaces, and enums, and includes the appropriate use of package and import statements
(including static imports).

1.2 Dewelop code that declares an interface. Develop code that implements or extends one
or more interfaces. Dewvelop code that declares an abstract class. Develop code that extends
an abstract class.

Declaring an Interface

When you create an interface, you're defining a contract for what a class can do,
without saying anything about how the class will do it. An interface is a contract.
You could write an interface Bounceable, for example, that says in effect, "This is
the Bounceable interface. Any class type that implements this interface must agree
to write the code for the bounce () and setBounceFactor () methods."

By defining an interface for Bounceable, any class that wants to be treated as a
Bounceable thing can simply implement the Bounceable interface and provide
code for the interface's two methods.

Interfaces can be implemented by any class, from any inheritance tree. This
lets you take radically different classes and give them a common characteristic.
For example, you might want both a Ball and a Tire to have bounce behavior, but
Ball and Tire don't share any inheritance relationship; Ball extends Toy while Tire
extends only java.lang.Object. But by making both Ball and Tire implement
Bounceable, you're saying that Ball and Tire can be treated as, "Things that
can bounce," which in Java translates to "Things on which you can invoke the

20 Chapter I: Declarations and Access Control

bounce () and setBounceFactor () methods." Figure 1-1 illustrates the relationship
between interfaces and classes.

m interface Bounceable

The Relationship
between interfaces
and classes

void bounce() ; What you
void setBounceFactor (int bf) ; declare.

interface Bounceable

. What th
public abstract void bounce() ; a.l N
public abstract void setBounceFactor (int bf) ; compiier
sees.
A
1
1
H
What the

implementing

Class Tire implements Bounceable class must do.

public void bounce(){...}
public void setBounceFactor (int bf){ } (All interface
methods must
be implemented,
and must be
marked public.)

Think of an interface as a 100-percent abstract class. Like an abstract class,
an interface defines abstract methods that take the following form:

abstract void bounce(); // Ends with a semicolon rather than
// curly braces

But while an abstract class can define both abstract and non-abstract
methods, an interface can have only abstract methods. Another way interfaces
differ from abstract classes is that interfaces have very little flexibility in how the
methods and variables defined in the interface are declared. These rules are strict:

B All interface methods are implicitly public and abstract. In other words,
you do not need to actually type the public or abstract modifiers in the
method declaration, but the method is still always public and abstract.

B All variables defined in an interface must be public, static, and final—
in other words, interfaces can declare only constants, not instance variables.

Declaring an Interface (Exam Objectives I.1 and 1.2) 2 ||

Interface methods must not be static.

Because interface methods are abstract, they cannot be marked final,
strictfp, or native. (More on these modifiers later.)

An interface can extend one or more other interfaces.
An interface cannot extend anything but another interface.
An interface cannot implement another interface or class.

An interface must be declared with the keyword interface.

Interface types can be used polymorphically (see Chapter 2 for more details).
The following is a legal interface declaration:
public abstract interface Rollable { }

Typing in the abstract modifier is considered redundant; interfaces are
implicitly abstract whether you type abstract or not. You just need to know that
both of these declarations are legal, and functionally identical:

public abstract interface Rollable { }
public interface Rollable { }

The public modifier is required if you want the interface to have public rather
than default access.

We've looked at the interface declaration but now we'll look closely at the
methods within an interface:

public interface Bounceable
public abstract void bounce() ;
public abstract void setBounceFactor (int bf) ;

Typing in the public and abstract modifiers on the methods is redundant,
though, since all interface methods are implicitly public and abstract. Given
that rule, you can see that the following code is exactly equivalent to the
preceding interface:

public interface Bounceable
void bounce () ; // No modifiers
void setBounceFactor (int bf); // No modifiers

272 Chapter I: Declarations and Access Control

You must remember that all interface methods are public and abstract regardless
of what you see in the interface definition.

Look for interface methods declared with any combination of public, abstract,
or no modifiers. For example, the following five method declarations, if declared
within their own interfaces, are legal and identical!

void bounce() ;

public void bounce() ;

abstract void bounce() ;

public abstract void bounce() ;
abstract public void bounce() ;

The following interface method declarations won't compile:

final void bounce () ; // final and abstract can never be used

// together, and abstract is implied
static void bounce() ; // interfaces define instance methods
private void bounce(); // interface methods are always public
protected void bounce () ; // (same as above)

Declaring Interface Constants

You're allowed to put constants in an interface. By doing so, you guarantee that any
class implementing the interface will have access to the same constant.
By placing the constants right in the interface, any class that implements the
interface has direct access to the constants, just as if the class had inherited them.
You need to remember one key rule for interface constants. They must always be

public static final

So that sounds simple, right? After all, interface constants are no different from
any other publicly accessible constants, so they obviously must be declared public,
static, and final. But before you breeze past the rest of this discussion, think
about the implications: Because interface constants are defined in an interface,
they don't have to be declared as public, static, or final. They must be
public, static, and final, but you don't have to actually declare them that way. Just
as interface methods are always public and abstract whether you say so in the code
or not, any variable defined in an interface must be—and implicitly is—a public

Datch

explicitly using the required modifiers. For example, the following are all identical:

using no modifiers at all! On the exam, you can expect to see questions you won’t be
able to answer correctly unless you know, for example, that an interface variable is final
and can never be given a value by the implementing (or any other) class.

Declaring Interface Constants (Exam Objectives I.1 and 1.2) 2.3

constant. See if you can spot the problem with the following code (assume two
separate files):

interface Foo ({
int BAR = 42;
void go();

}

class Zap implements Foo {
public void go() {
BAR = 27;
}

}

You can't change the value of a constant! Once the value has been assigned, the
value can never be modified. The assignment happens in the interface itself (where
the constant is declared), so the implementing class can access it and use it, but as a
read-only value. So the BAR = 27 assignment will not compile.

Look for interface definitions that define constants, but without

public int x = 1; // Looks non-static and non-final,
// but isn't!
int x = 1; // Looks default, non-final,
// non-static, but isn't!
static int x = 1; // Doesn't show final or public
final int x = 1; // Doesn't show static or public
public static int x = 1; // Doesn't show final
public final int x = 1; // Doesn't show static
static final int x = 1 // Doesn't show public

public static final int x = 1; // what you get implicitly

Any combination of the required (but implicit) modifiers is legal, as is

24 Chapter I: Declarations and Access Control

CERTIFICATION OBJECTIVE

Declare Class Members (Objectives 1.3 and 1.4)

1.3 Develop code that declares, initializes, and uses primitives, arrays, enums, and
objects as static, instance, and local variables. Also, use legal identifiers for variable
names.

1.4 Dewelop code that declares both static and non-static methods, and—if
appropriate—use method names that adhere to the JavaBeans naming standards. Also
develop code that declares and uses a variable-length argument list.

We've looked at what it means to use a modifier in a class declaration, and now
we'll look at what it means to modify a method or variable declaration.

Methods and instance (nonlocal) variables are collectively known as members.
You can modify a member with both access and nonaccess modifiers, and you have
more modifiers to choose from (and combine) than when you're declaring a class.

Access Modifiers

Because method and variable members are usually given access control in exactly
the same way, we'll cover both in this section.

Whereas a class can use just two of the four access control levels (default or
public), members can use all four:

B public
B protected

B default
B private

Default protection is what you get when you don't type an access modifier in the
member declaration. The default and protected access control types have almost
identical behavior, except for one difference that will be mentioned later.

[t's crucial that you know access control inside and out for the exam. There will
be quite a few questions with access control playing a role. Some questions test

Access Modifiers (Exam Objectives 1.3and 1.4) 2§

several concepts of access control at the same time, so not knowing one small part of
access control could blow an entire question.

What does it mean for code in one class to have access to a member of another
class? For now, ignore any differences between methods and variables. If class A has
access to a member of class B, it means that class B's member is visible to class A.
When a class does not have access to another member, the compiler will slap you for
trying to access something that you're not even supposed to know exists!

You need to understand two different access issues:

B Whether method code in one class can access a member of another class

B Whether a subclass can inherit a member of its superclass

The first type of access is when a method in one class tries to access a method or a
variable of another class, using the dot operator (.) to invoke a method or retrieve a
variable. For example:

class Zoo {
public String coolMethod() {
return "Wow baby";
}

}

class Moo {
public void useAZoo ()
Zo00 z = new Zoo () ;

// If the preceding line compiles Moo has access

// to the Zoo class

// But... does it have access to the coolMethod () ?
System.out.println("A Zoo says, " + z.coolMethod()) ;

// The preceding line works because Moo can access the
// public method

The second type of access revolves around which, if any, members of a superclass
a subclass can access through inheritance. We're not looking at whether the subclass
can, say, invoke a method on an instance of the superclass (which would just be an
example of the first type of access). Instead, we're looking at whether the subclass
inherits a member of its superclass. Remember, if a subclass inherits a member, it's
exactly as if the subclass actually declared the member itself. In other words, if a
subclass inherits a member, the subclass has the member.

26 Chapter I:

Declarations and Access Control

class Zoo {
public String coolMethod ()
return "Wow baby";
}

}

class Moo extends Zoo {
public void useMyCoolMethod () {

// Does an instance of Moo inherit the coolMethod()?
System.out.println ("Moo says, " + this.coolMethod()) ;
// The preceding line works because Moo can inherit the
// public method
// Can an instance of Moo invoke coolMethod() on an
// instance of Zoo?
Zoo z = new Zoo() ;

System.out.println("Zoo says, " + z.coolMethod()) ;
// coolMethod () is public, so Moo can invoke it on a Zoo
//reference

Figure 1-2 compares a class inheriting a member of another class, and accessing a
member of another class using a reference of an instance of that class.

Much of access control (both types) centers on whether the two classes involved
are in the same or different packages. Don't forget, though, if class A itself can't be
accessed by class B, then no members within class A can be accessed by class B.

You need to know the effect of different combinations of class and member access
(such as a default class with a public variable). To figure this out, first look at the
access level of the class. If the class itself will not be visible to another class, then
none of the members will be either, even if the member is declared public. Once
you've confirmed that the class is visible, then it makes sense to look at access levels
on individual members.

Public Members

When a method or variable member is declared public, it means all other classes,
regardless of the package they belong to, can access the member (assuming the class
itself is visible).

Access Modifiers (Exam Objectives 1.3 and |.4)

m Comparison of inheritance vs. dot operator for member access.

SportsCar

goFast () { }
<:> doStuff (){ superclass
goFast () ;

}

Convertible

doThings () {
<:> SportsCar sc = new SportsCar();
sc.goFast () ; subclass

}

doMore () {

<:> goFast () ;

}

Driver

doDriverStuff () {
<:> SportsCar car = new SportsCar();
car.goFast ();

Convertible con = new Convertible();

<:> con.goFast () ;

}

Three ways to access a method:
@ Invoking a method declared in the same class
@ Invoking a method using a reference of the class

@ Invoking an inherited method

28 Chapter I: Declarations and Access Control

Look at the following source file:

package book;
import cert.*; // Import all classes in the cert package
class Goo ({
public static void main(String[] args) {
Sludge o = new Sludge() ;
o.testIt();
}
}

Now look at the second file:

package cert;
public class Sludge ({
public void testIt() { System.out.println("sludge"); }

}

As you can see, Goo and Sludge are in different packages. However, Goo can
invoke the method in Sludge without problems because both the Sludge class and its
testIt () method are marked public.

For a subclass, if a member of its superclass is declared public, the subclass
inherits that member regardless of whether both classes are in the same package:

package cert;
public class Roo {
public String doRooThings () {
// imagine the fun code that goes here
return "fun";

}
}

The Roo class declares the doRooThings() member as public. So if we make
a subclass of Roo, any code in that Roo subclass can call its own inherited

doRooThings() method.

package notcert; //Not the package Roo is in
import cert.Roo;
class Cloo extends Roo {
public void testCloo()
System.out.println (doRooThings()) ;

}
}

Access Modifiers (Exam Objectives 1.3 and 1.4) 29

Notice in the preceding code that the doRooThings () method is invoked
without having to preface it with a reference. Remember, if you see a method
invoked (or a variable accessed) without the dot operator (.), it means the method
or variable belongs to the class where you see that code. It also means that the
method or variable is implicitly being accessed using the this reference. So in the
preceding code, the call to doRooThings () in the Cloo class could also have been
written as this.doRooThings (). The reference this always refers to the currently
executing object—in other words, the object running the code where you see the
this reference. Because the this reference is implicit, you don't need to preface your
member access code with it, but it won't hurt. Some programmers include it to make
the code easier to read for new (or non) Java programmers.

Besides being able to invoke the doRooThings () method on itself, code from
some other class can call doRooThings () on a Cloo instance, as in the following:

class Toon ({
public static void main(String[] args) {
Cloo ¢ = new Cloo() ;
System.out.println(c.doRooThings()); //No problem; method
// is public

Private Members

Members marked private can't be accessed by code in any class other than the
class in which the private member was declared. Let's make a small change to the
Roo class from an earlier example.

package cert;
public class Roo {
private String doRooThings() {
// imagine the fun code that goes here, but only the Roo
// class knows
return "fun";

}
}

The doRooThings () method is now private, so no other class can use it. If we
try to invoke the method from any other class, we'll run into trouble:

30 Chapter I:

Declarations and Access Control

package notcert;
import cert.Roo;
class UseARoo ({
public void testIt()
Roo r = new Roo(); //So far so good; class Roo is public
System.out.println(r.doRooThings()); //Compiler error!

}
}

If we try to compile UseARoo, we get a compiler error something like this:

cannot find symbol
symbol : method doRooThings ()

[t's as if the method doRooThings () doesn't exist, and as far as any code outside
of the Roo class is concerned, it's true. A private member is invisible to any code
outside the member's own class.

What about a subclass that tries to inherit a private member of its superclass?
When a member is declared private, a subclass can't inherit it. For the exam, you
need to recognize that a subclass can't see, use, or even think about the private
members of its superclass. You can, however, declare a matching method in the
subclass. But regardless of how it looks, it is not an overriding method! It is simply a
method that happens to have the same name as a private method (which you're not
supposed to know about) in the superclass. The rules of overriding do not apply, so
you can make this newly-declared-but-just-happens-to-match method declare new
exceptions, or change the return type, or anything else you want to do with it.

package cert;
public class Roo {
private String doRooThings () {
// imagine the fun code that goes here, but no other class
// will know
return "fun";

}

The doRooThings () method is now off limits to all subclasses, even those in the
same package as the superclass:

on the

Qob

Access Modifiers (Exam Objectives 1.3 and 1.4) 3 |

package cert; //Cloo and Roo are in the same package
class Cloo extends Roo { //Still OK, superclass Roo is public
public void testCloo() {
System.out .println (doRooThings()); //Compiler error!
}

}

If we try to compile the subclass Cloo, the compiler is delighted to spit out an
error something like this:

$javac Cloo.java

Cloo.java:4: Undefined method: doRooThings ()
System.out.println (doRooThings ()) ;

1 error

Although you're allowed to mark instance variables as public, in practice it's
nearly always best to keep all variables private or protected. If variables
need to be changed, set, or read, programmers should use public accessor
methods, so that code in any other class has to ask to get or set a variable (by
going through a method), rather than access it directly. JavaBean-compliant
accessor methods take the form get<propertyName> or, for booleans,
is<propertyName> and set<propertyName>, and provide a place to check
andlor validate before returning or modifying a value.

Without this protection, the weight variable of a Cat object, for example,
could be set to a negative number if the offending code goes straight to
the public variable as in someCat .weight = -20.But an accessor method,
setWeight (int wt), could check for an inappropriate number. (OK, wild
speculation, but we're guessing a negative weight might be inappropriate for
a cat. Or not.) Chapter 2 will discuss this data protection (encapsulation) in
more detail.

Can a private method be overridden by a subclass? That's an interesting
question, but the answer is technically no. Since the subclass, as we've seen, cannot
inherit a private method, it therefore cannot override the method—overriding
depends on inheritance. We'll cover the implications of this in more detail a little
later in this section as well as in Chapter 2, but for now just remember that a
method marked private cannot be overridden. Figure 1-3 illustrates the effects of
the public and private modifiers on classes from the same or different packages.

32 Chapter I: Declarations and Access Control

m The effect of private access control

Effe.cts of public and Sportscar
private access
private
goFast () {..}
<:> dostuff (){ superclass
goFast () ;
}
2
Convertible

2

doThingg() {

Spor ar sc = new SportsCar();

sc. st(); subclass

}

doMoxe/”)
();

Driver

doDxive£Stuff ()
zzii SporxsCar car = new SportsCar();
f ast();
}

—Q
o
o
©

w o

c g)
C eytible con = new Convertible();
con,goFast () ;

Three ways to access a method:

@ Invoking a method declared in the same class

@ Invoking a method using a reference of the class

@ Invoking an inherited method

Protected and Default Members

The protected and default access control levels are almost identical, but with one
critical difference. A default member may be accessed only if the class accessing the
member belongs to the same package, whereas a protected member can be accessed
(through inheritance) by a subclass even if the subclass is in a different package.

Access Modifiers (Exam Objectives 1.3and 1.4) 3 3

Take a look at the following two classes:

package certification;
public class OtherClass
void testIt() // No modifier means method has default
// access
System.out.println ("OtherClass") ;

}
}

In another source code file you have the following:

package somethingElse;
import certification.OtherClass;
class AccessClass {
static public void main(String[] args) {
OtherClass o = new OtherClass() ;
o.testIt();

}
}

As you can see, the testIt () method in the first file has default (think: package-
level) access. Notice also that class OtherClass is in a different package from the
AccessClass. Will AccessClass be able to use the method test1t ()? Will it cause a
compiler error? Will Daniel ever marry Francesca? Stay tuned.

No method matching testIt() found in class
certification.OtherClass. o.testIt();

From the preceding results, you can see that AccessClass can't use the OtherClass
method testIt () because testIt () has default access, and AccessClass is not
in the same package as OtherClass. So AccessClass can't see it, the compiler
complains, and we have no idea who Daniel and Francesca are.

Default and protected behavior differ only when we talk about subclasses. If the
protected keyword is used to define a member, any subclass of the class declaring
the member can access it through inheritance. It doesn't matter if the superclass and
subclass are in different packages, the protected superclass member is still visible to
the subclass (although visible only in a very specific way as we'll see a little later).
This is in contrast to the default behavior, which doesn't allow a subclass to access a
superclass member unless the subclass is in the same package as the superclass.

34 Chapter I:

Declarations and Access Control

Whereas default access doesn't extend any special consideration to subclasses
(you're either in the package or you're not), the protected modifier respects the
parent-child relationship, even when the child class moves away (and joins a
new package). So, when you think of default access, think package restriction. No
exceptions. But when you think protected, think package + kids. A class with a
protected member is marking that member as having package-level access for all
classes, but with a special exception for subclasses outside the package.

But what does it mean for a subclass-outside-the-package to have access to a
superclass (parent) member? It means the subclass inherits the member. It does not,
however, mean the subclass-outside-the-package can access the member using a
reference to an instance of the superclass. In other words, protected = inheritance.
Protected does not mean that the subclass can treat the protected superclass member
as though it were public. So if the subclass-outside-the-package gets a reference to
the superclass (by, for example, creating an instance of the superclass somewhere
in the subclass' code), the subclass cannot use the dot operator on the superclass
reference to access the protected member. To a subclass-outside-the-package, a
protected member might as well be default (or even private), when the subclass is
using a reference to the superclass. The subclass can see the protected member
only through inheritance.

Are you confused? So are we. Hang in there and it will all become clear with the
next batch of code examples. (And don't worry; we're not actually confused. We're
just trying to make you feel better if you are. You know, like it's OK for you to feel as
though nothing makes sense, and that it isn't your fault. Or is it? <insert evil laugh>)

Protected Details
Let's take a look at a protected instance variable (remember, an instance variable
is a member) of a superclass.

package certification;
public class Parent {

protected int x = 9; // protected access
}

The preceding code declares the variable x as protected. This makes the
variable accessible to all other classes inside the certification package, as well as
inheritable by any subclasses outside the package. Now let's create a subclass in a
different package, and attempt to use the variable x (that the subclass inherits):

Access Modifiers (Objectives [.3and 1.4) 3 §

package other; // Different package
import certification.Parent;
class Child extends Parent {
public void testIt()
System.out.println("x is " + x); // No problem; Child
// inherits x

The preceding code compiles fine. Notice, though, that the Child class is
accessing the protected variable through inheritance. Remember, any time we talk
about a subclass having access to a superclass member, we could be talking about
the subclass inheriting the member, not simply accessing the member through a
reference to an instance of the superclass (the way any other nonsubclass would
access it). Watch what happens if the subclass Child (outside the superclass'
package) tries to access a protected variable using a Parent class reference.

package other;
import certification.Parent;
class Child extends Parent ({

public void testIt()
System.out.println("x is " + x); // No problem; Child
// inherits x

Parent p = new Parent(); // Can we access x using the
// p reference?

System.out.println("X in parent is " + p.x); // Compiler
// error!

The compiler is more than happy to show us the problem:

%javac -d . other/Child.java
other/Child.java:9: x has protected access in certification.Par-

ent
System.out.println ("X in parent is " + p.x);

A

1l error

So far we've established that a protected member has essentially package-level or
default access to all classes except for subclasses. We've seen that subclasses outside
the package can inherit a protected member. Finally, we've seen that subclasses

36 Chapter I:

Declarations and Access Control

outside the package can't use a superclass reference to access a protected member.
For a subclass outside the package, the protected member can be accessed only
through inheritance.

But there's still one more issue we haven't looked at...what does a protected
member look like to other classes trying to use the subclass-outside-the-package to
get to the subclass' inherited protected superclass member? For example, using our
previous Parent/Child classes, what happens if some other class—Neighbor, say—in
the same package as the Child (subclass), has a reference to a Child instance and
wants to access the member variable x ? In other words, how does that protected
member behave once the subclass has inherited it? Does it maintain its protected
status, such that classes in the Child's package can see it?

No! Once the subclass-outside-the-package inherits the protected member,
that member (as inherited by the subclass) becomes private to any code outside
the subclass, with the exception of subclasses of the subclass. So if class Neighbor
instantiates a Child object, then even if class Neighbor is in the same package as
class Child, class Neighbor won't have access to the Child's inherited (but protected)
variable x. Figure 1-4 illustrates the effect of protected access on classes and subclasses
in the same or different packages.

Whew! That wraps up protected, the most misunderstood modifier in Java.
Again, it's used only in very special cases, but you can count on it showing up on
the exam. Now that we've covered the protected modifier, we'll switch to default
member access, a piece of cake compared to protected.

Default Details
Let's start with the default behavior of a member in a superclass. We'll modify the
Parent's member x to make it default.

package certification;
public class Parent {
int x = 9; // No access modifier, means default
// (package) access

Notice we didn't place an access modifier in front of the variable x. Remember
that if you don't type an access modifier before a class or member declaration, the
access control is default, which means package level. We'll now attempt to access
the default member from the Child class that we saw earlier.

Access Modifiers (Exam Objectives 1.3 and 1.4)

37

If goFast() is default ||If goFast ()is protected|
Eff f
ects o Package A Package A Package A Package A
protected SportsCar SportsCar SportsCar SportsCar
access

goFast () { }

©)

goFast (){ }

goFast () { }

©

protected goFast(){ }

O

T

T

Convertible Convertible
Driver

® ®

A

A

Key:

Package B Package B Package B
Driver Convertible Convertible
Driver Driver

S

S

goFast (){ }
(D) | dostue () {
)i

goFast (

doThings() {

@ SportsCar sc
sc.goFast();

= new SportsCar(

doMore () {
@ goFast () ;
}

Where goFast
is Declared in the
same class.

Invoking goFast () using a Reference to the

class in which goFast () was declared.

Invoking the
goFast ()

method
Inherited from
a superclass.

When we compile the child file, we get an error something like this:

Child.java:4: Undefined variable: x

System.out.println("Variable x is " + x);

1l error

38 Chapter I: Declarations and Access Control

The compiler gives the same error as when a member is declared as private. The
subclass Child (in a different package from the superclass Parent) can't see or use the
default superclass member x | Now, what about default access for two classes in the
same package!

package certification;
public class Parent(

int x = 9; // default access
}

And in the second class you have the following:

package certification;
class Child extends Parent({
static public void main(Stringl[] args)
Child sc = new Child() ;
sc.testIt () ;

}

public void testIt()
System.out.println("Variable x is " + x); // No problem;

}
}

The preceding source file compiles fine, and the class Child runs and displays the
value of x. Just remember that default members are visible to subclasses only if those
subclasses are in the same package as the superclass.

Local Variables and Access Modifiers

Can access modifiers be applied to local variables? NO!
There is never a case where an access modifier can be applied to a local variable,
so watch out for code like the following:

class Foo ({
void doStuff ()
private int x = 7;
this.doMore (x) ;
}
}

Nonaccess Member Modifiers (Exam Objectives 1.3and 1.4) 3 ©Q

You can be certain that any local variable declared with an access modifier will
not compile. In fact, there is only one modifier that can ever be applied to local
variables—final.

That about does it for our discussion on member access modifiers. Table 1-2
shows all the combinations of access and visibility; you really should spend some
time with it. Next, we're going to dig into the other (nonaccess) modifiers that you
can apply to member declarations.

TABLE 1-2 Determining Access to Class Members

Visibility Public Protected Default Private
From the same class Yes Yes Yes Yes
From any class in the same Yes Yes Yes No
package

From a subclass in the same Yes Yes Yes No
package

From a subclass outside the Yes Yes, through No No
same package inheritance

From any non-subclass class Yes No No No
outside the package

Nonaccess Member Modifiers

We've discussed member access, which refers to whether code from one class can
invoke a method (or access an instance variable) from another class. That still
leaves a boatload of other modifiers you can use on member declarations. Two
you're already familiar with—final and abstract—because we applied them to
class declarations earlier in this chapter. But we still have to take a quick look at
transient, synchronized, native, strictfp, and then a long look at the Big
One—static.

We'll look first at modifiers applied to methods, followed by a look at modifiers
applied to instance variables. We'll wrap up this section with a look at how static
works when applied to variables and methods.

40 Chapter I:

Declarations and Access Control

Final Methods

The final keyword prevents a method from being overridden in a subclass, and is
often used to enforce the API functionality of a method. For example, the Thread
class has a method called isalive () that checks whether a thread is still active. If
you extend the Thread class, though, there is really no way that you can correctly
implement this method yourself (it uses native code, for one thing), so the designers
have made it final. Just as you can't subclass the String class (because we need to
be able to trust in the behavior of a String object), you can't override many of the
methods in the core class libraries. This can't-be-overridden restriction provides for
safety and security, but you should use it with great caution. Preventing a subclass
from overriding a method stifles many of the benefits of OO including extensibility
through polymorphism. A typical final method declaration looks like this:

class SuperClass{
public final void showSample () {
System.out.println("One thing.");
}

}

It's legal to extend SuperClass, since the class isn't marked £inal, but we can't
override the final method showSample (), as the following code attempts to do:

class SubClass extends SuperClass{
public void showSample() { // Try to override the final
// superclass method
System.out.println ("Another thing.");

}
}

Attempting to compile the preceding code gives us something like this:

%javac FinalTest.java
FinalTest.java:5: The method void showSample () declared in class
SubClass cannot override the final method of the same signature
declared in class SuperClass.
Final methods cannot be overridden.

public void showSample() { }
1 error

Nonaccess Member Modifiers (Exam Objectives 1.3 and 1.4) 4 ||

Final Arguments

Method arguments are the variable declarations that appear in between the paren-
theses in a method declaration. A typical method declaration with multiple argu-
ments looks like this:

public Record getRecord(int fileNumber, int recNumber) {}

Method arguments are essentially the same as local variables. In the preceding
example, the variables fileNumber and recNumber will both follow all the rules
applied to local variables. This means they can also have the modifier final:

public Record getRecord(int fileNumber, final int recordNumber) {}

In this example, the variable recNumber is declared as £inal, which of course
means it can't be modified within the method. In this case, "modified" means
reassigning a new value to the variable. In other words, a final argument must keep
the same value that the parameter had when it was passed into the method.

Abstract Methods

An abstract method is a method that's been declared (as abstract) but not
implemented. In other words, the method contains no functional code. And if you
recall from the earlier section "Abstract Classes," an abstract method declaration
doesn't even have curly braces for where the implementation code goes, but instead
closes with a semicolon. In other words, it has no method body. You mark a method
abstract when you want to force subclasses to provide the implementation. For
example, if you write an abstract class Car with a method goupHi11 (), you might
want to force each subtype of Car to define its own goUpHi 11 () behavior, specific to
that particular type of car.

public abstract void showSample () ;

Notice that the abstract method ends with a semicolon instead of curly braces.
It is illegal to have even a single abstract method in a class that is not explicitly
declared abstract! Look at the following illegal class:

public class IllegalClass{
public abstract void doIt () ;

}

472 Chapter |I: Declarations and Access Control

The preceding class will produce the following error if you try to compile it:

IllegalClass.java:1l: class IllegalClass must be declared
abstract.

It does not define void doIt() from class IllegalClass.
public class IllegalClass({

1l error

You can, however, have an abstract class with no abstract methods. The following
example will compile fine:

public abstract class LegalClass{
void goodMethod ()
// lots of real implementation code here
}

}

In the preceding example, goodMethod () is not abstract. Three different clues
tell you it's not an abstract method:

B The method is not marked abstract.

B The method declaration includes curly braces, as opposed to ending in a
semicolon. In other words, the method has a method body.

B The method provides actual implementation code.

Any class that extends an abstract class must implement all abstract methods
of the superclass, unless the subclass is also abstract. The rule is this:

The first concrete subclass of an abstract class must implement all abstract
methods of the superclass.

Concrete just means nonabstract, so if you have an abstract class extending
another abstract class, the abstract subclass doesn't need to provide implementations
for the inherited abstract methods. Sooner or later, though, somebody's going to
make a nonabstract subclass (in other words, a class that can be instantiated),
and that subclass will have to implement all the abstract methods from up the
inheritance tree. The following example demonstrates an inheritance tree with two
abstract classes and one concrete class:

Nonaccess Member Modifiers (Exam Objectives 1.3 and 1.4) 4.3

public abstract class Vehicle
private String type;
public abstract void goUpHill(); // Abstract method

public String getType() { // Non-abstract method
return type;

}
}

public abstract class Car extends Vehicle {
public abstract void goUpHill(); // Still abstract
public void doCarThings ()
// special car code goes here

}
}

public class Mini extends Car {
public void goUpHill() {
// Mini-specific going uphill code
}
}

So how many methods does class Mini have? Three. It inherits both the
getType () and doCarThings () methods, because they're public and concrete
(nonabstract). But because goUpHi11 () is abstract in the superclass Vehicle,
and is never implemented in the Car class (so it remains abstract), it means
class Mini—as the first concrete class below Vehicle—must implement the
goUpHill () method. In other words, class Mini can't pass the buck (of abstract
method implementation) to the next class down the inheritance tree, but class Car
can, since Car, like Vehicle, is abstract. Figure 1-5 illustrates the effects of the
abstract modifier on concrete and abstract subclasses.

44 Chapter I:

Declarations and Access Control

abstract Car

startEngine()
abstract goForward()
abstract reverse()
stop ()
abstract turn(int whichWay)

A

SportsCar

m The effects of the abstract modifier on concrete and abstract subclasses

startEngine()//optional
goForward() //Required
reverse ()//Required

turn (int whichWay)//Required

abstract SUV

Abstract methods must be implemented by a
non-abstract subclass. If the subclass is abstract,

it is not required to implement the abstract
methods, but it is allowed to implement any

or all of the superclass abstract methods. The

AcmeRover class is non-abstract, so it must

implement the abstract method declared in its

superclass, SUV, and it must also implement

turn (), which was not implemented by SUV.

enable4wd ()
goForward ()
reverse ()

abstract goOffRoad()

//turn()not implemented

A

AcmeRover

enable4wd()//optional
goOffRoad()//Required
turn (int whichWay)//Required

Look for concrete classes that don't provide method implementations for
abstract methods of the superclass. The following code won't compile:

public abstract class A {
abstract void fool() ;
}

class B extends A
void foo(int I) { }

}

Class B won't compile because it doesn't implement the inherited abstract
method foo (). Although the foo (int I) method in class B might appear to be

Nonaccess Member Modifiers (Exam Objectives 1.3 and 1.4) 4.8

an implementation of the superclass' abstract method, it is simply an overloaded
method (a method using the same identifier, but different arguments), so it doesn't
fulfill the requirements for implementing the superclass' abstract method. We'll
look at the differences between overloading and overriding in detail in Chapter 2.

A method can never, ever, ever be marked as both abstract and £inal, or both
abstract and private. Think about it—abstract methods must be implemented
(which essentially means overridden by a subclass) whereas final and private
methods cannot ever be overridden by a subclass. Or to phrase it another way, an
abstract designation means the superclass doesn't know anything about how
the subclasses should behave in that method, whereas a final designation means
the superclass knows everything about how all subclasses (however far down the
inheritance tree they may be) should behave in that method. The abstract and
final modifiers are virtually opposites. Because private methods cannot even be
seen by a subclass (let alone inherited), they too cannot be overridden, so they too
cannot be marked abstract.

Finally, you need to know that the abstract modifier can never be combined
with the static modifier. We'll cover static methods later in this objective, but
for now just remember that the following would be illegal:

abstract static void doStuff();

And it would give you an error that should be familiar by now:

MyClass.java:2: illegal combination of modifiers: abstract and
static
abstract static void doStuff () ;

Synchronized Methods

The synchronized keyword indicates that a method can be accessed by only one
thread at a time. We'll discuss this nearly to death in Chapter 9, but for now all
we're concerned with is knowing that the synchronized modifier can be applied
only to methods—not variables, not classes, just methods. A typical synchronized
declaration looks like this:

public synchronized Record retrieveUserInfo(int id) { }

You should also know that the synchronized modifier can be matched with any
of the four access control levels (which means it can be paired with any of the three
access modifier keywords).

46 Chapter I:

Declarations and Access Control

Native Methods

The native modifier indicates that a method is implemented in platform-depen-
dent code, often in C. You don't need to know how to use native methods for the
exam, other than knowing that native is a modifier (thus a reserved keyword) and
that native can be applied only to methods—not classes, not variables, just methods.
Note that a native method's body must be a semicolon (;) (like abstract methods),
indicating that the implementation is omitted.

Strictfp Methods

We looked earlier at using strictfp as a class modifier, but even if you don't de-
clare a class as strictfp, you can still declare an individual method as strictfp.
Remember, strictfp forces floating points (and any floating-point operations) to
adhere to the [EEE 754 standard. With strictfp, you can predict how your floating
points will behave regardless of the underlying platform the JVM is running on. The
downside is that if the underlying platform is capable of supporting greater precision, a
strictfp method won't be able to take advantage of it.

You'll want to study the IEEE 754 if you need something to help you fall asleep.
For the exam, however, you don't need to know anything about strictfp other
than what it's used for, that it can modify a class or method declaration, and that a
variable can never be declared strictfp.

Methods with Variable Argument Lists (var-args)
As of 5.0, Java allows you to create methods that can take a variable number of
arguments. Depending on where you look, you might hear this capability referred to
as "variable-length argument lists," "variable arguments," "var-args," "varargs," or our
personal favorite (from the department of obfuscation), "variable arity parameter."
They're all the same thing, and we'll use the term "var-args" from here on out.

As a bit of background, we'd like to clarify how we're going to use the terms
"argument" and "parameter" throughout this book.

B arguments The things you specify between the parentheses when you're
invoking a method:

dosStuff("a", 2); // invoking doStuff, so a & 2 are arguments

B parameters The things in the method's signature that indicate what the
method must receive when it's invoked:

Constructor Declarations (Exam Objectives 1.3 and 1.4) 47

void doStuff (String s, int a) { } // we're expecting two
// parameters: String and int

We'll cover using var-arg methods more in the next few chapters, for now let's
review the declaration rules for var-args:

B Var-arg type When you declare a var-arg parameter, you must specify the
type of the argument(s) this parameter of your method can receive. (This can
be a primitive type or an object type.)

B Basic syntax To declare a method using a var-arg parameter, you follow the
type with an ellipsis (...), a space, and then the name of the array that will
hold the parameters received.

B Other parameters It's legal to have other parameters in a method that uses
a var-arg.

B Var-args limits The var-arg must be the last parameter in the method's
signature, and you can have only one var-arg in a method.

Let's look at some legal and illegal var-arg declarations:

Legal:
void doStuff (int... x) { } // expects from 0 to many ints
// as parameters

void doStuff2(char ¢, int... x) { } // expects first a char,

// then 0 to many ints
void doStuff3 (Animal... animal) { } // 0 to many Animals
[llegal:
void doStuff4 (int x...) { } // bad syntax
void doStuffs(int... x, char... y) { } // too many var-args
void doStuffé6 (String... s, byte b) { } // var-arg must be last

Constructor Declarations

In Java, objects are constructed. Every time you make a new object, at least one
constructor is invoked. Every class has a constructor, although if you don't create
one explicitly, the compiler will build one for you. There are tons of rules concerning

48 Chapter I: Declarations and Access Control

constructors, and we're saving our detailed discussion for Chapter 2. For now, let's
focus on the basic declaration rules. Here's a simple example:

class Foo {
protected Foo() { } // this is Foo's constructor

protected void Foo() { } // this is a badly named,
// but legal, method

The first thing to notice is that constructors look an awful lot like methods. A
key difference is that a constructor can't ever, ever, ever, have a return type...ever!
Constructor declarations can however have all of the normal access modifiers, and
they can take arguments (including var-args), just like methods. The other BIG
RULE, to understand about constructors is that they must have the same name as
the class in which they are declared. Constructors can't be marked static (they
are after all associated with object instantiation), they can't be marked final
or abstract (because they can't be overridden). Here are some legal and illegal
constructor declarations:

class Foo2 f{
// legal constructors
Foo2 () { }
private Foo2 (byte b) { }
Foo2 (int x) { }

Foo2 (int x, int... y) { }

// illegal constructors

void Foo2 () { } // it's a method, not a constructor
Foo() { } // not a method or a constructor
Foo2 (short s) ; // looks like an abstract method
static Foo2 (float £) { } // can't be static

final Foo2(long x) { } // can't be final

abstract Foo2(char c) { } // can't be abstract
Foo2 (int... x, int t) { } // bad var-arg syntax

Variable Declarations (Exam Objectives [.3 and 1.4) 49

Variable Declarations

There are two types of variables in Java:

B Primitives A primitive can be one of eight types: char, boolean, byte,
short, int, long, double, or float. Once a primitive has been declared, its
primitive type can never change, although in most cases its value can change.

B Reference variables A reference variable is used to refer to (or access) an
object. A reference variable is declared to be of a specific type and that type
can never be changed. A reference variable can be used to refer to any object
of the declared type, or of a subtype of the declared type (a compatible type).
We'll talk a lot more about using a reference variable to refer to a subtype in
Chapter 2, when we discuss polymorphism.

Declaring Primitives and Primitive Ranges

Primitive variables can be declared as class variables (statics), instance variables,
method parameters, or local variables. You can declare one or more primitives, of the
same primitive type, in a single line. In Chapter 3 we will discuss the various ways

in which they can be initialized, but for now we'll leave you with a few examples of
primitive variable declarations:

byte b;
boolean myBooleanPrimitive;
int x, y, z; // declare three int primitives

On previous versions of the exam you needed to know how to calculate ranges
for all the Java primitives. For the current exam, you can skip some of that detail,
but it's still important to understand that for the integer types the sequence from
small to big is byte, short, int, long, and that doubles are bigger than floats.

You will also need to know that the number types (both integer and floating-
point types) are all signed, and how that affects their ranges. First, let's review the
concepts.

All six number types in Java are made up of a certain number of 8-bit bytes, and
are signed, meaning they can be negative or positive. The leftmost bit (the most
significant digit) is used to represent the sign, where a 1 means negative and O means
positive, as shown in Figure 1-6. The rest of the bits represent the value, using two's
complement notation.

B0O Chapter I: Declarations and Access Control

m The Sign bit for a byte

sign bit: 0 = positive
| = negative

byte 0 0010011 value bits:
byte: 7 bits can represent 27 or
sign bit value bits 128 different values:

0 thru 127 -or- —128 thru -1

/—/%
short 1 111110100000011 short: |5 bits can represent
2'5 or 32768 values:
0 thru 32767 -or- —32768 thru —|

Table 1-3 shows the primitive types with their sizes and ranges. Figure 1-6 shows
that with a byte, for example, there are 256 possible numbers (or 28). Half of these
are negative, and half -1 are positive. The positive range is one less than the
negative range because the number zero is stored as a positive binary number. We
use the formula -2~ to calculate the negative range, and we use 2*~V—1 for the
positive range. Again, if you know the first two columns of this table, you'll be in
good shape for the exam.

TABLE 1-3 Ranges of Numeric Primitives

Bytes Minimum Range = Maximum Range
byte 8 1 -21 271
short 16 2 S 201
int 32 4 -2 2'-1
long 64 8) 261
float 32 4 n/a n/a
double 64 8 n/a n/a

Variable Declarations (Exam Objectives |.3and [.4) § ||

The range for floating-point numbers is complicated to determine, but luckily you
don't need to know these for the exam (although you are expected to know that a
double holds 64 bits and a float 32).

For boolean types there is not a range; a boolean can be only true or false. If
someone asks you for the bit depth of a boolean, look them straight in the eye and
say, "That's virtual-machine dependent." They'll be impressed.

The char type (a character) contains a single, 16-bit Unicode character.
Although the extended ASCII set known as ISO Latin-1 needs only 8 bits (256
different characters), a larger range is needed to represent characters found in
languages other than English. Unicode characters are actually represented by
unsigned 16-bit integers, which means 2'° possible values, ranging from 0 to 65535
(21¢)-1. You'll learn in Chapter 3 that because a char is really an integer type, it
can be assigned to any number type large enough to hold 65535 (which means
anything larger than a short. Although both chars and shorts are 16-bit types,
remember that a short uses 1 bit to represent the sign, so fewer positive numbers are
acceptable in a short).

Declaring Reference Variables

Reference variables can be declared as static variables, instance variables, method
parameters, or local variables. You can declare one or more reference variables,

of the same type, in a single line. In Chapter 3 we will discuss the various ways in
which they can be initialized, but for now we'll leave you with a few examples of

reference variable declarations:

Object o;
Dog myNewDogReferenceVariable;
String sl, s2, s3; // declare three String vars.

Instance Variables

Instance variables are defined inside the class, but outside of any method, and
are only initialized when the class is instantiated. Instance variables are the fields
that belong to each unique object. For example, the following code defines fields
(instance variables) for the name, title, and manager for employee objects:

class Employee {
// define fields (instance variables) for employee instances
private String name;
private String title,

B2 Chapter I: Declarations and Access Control

private String manager;
// other code goes here including access methods for private
// fields

}

The preceding Employee class says that each employee instance will know its
own name, title, and manager. In other words, each instance can have its own
unique values for those three fields. If you see the term "field," "instance variable,"
"property," or "attribute,”" they mean virtually the same thing. (There actually
are subtle but occasionally important distinctions between the terms, but those
distinctions aren't used on the exam.)

For the exam, you need to know that instance variables

B Can use any of the four access levels (which means they can be marked with
any of the three access modifiers)

Can be marked final

Can be marked transient
Cannot be marked abstract
Cannot be marked synchronized
Cannot be marked strictfp

Cannot be marked native

Cannot be marked static, because then they'd become class variables.

We've already covered the effects of applying access control to instance variables
(it works the same way as it does for member methods). A little later in this chapter
we'll look at what it means to apply the final or transient modifier to an
instance variable. First, though, we'll take a quick look at the difference between
instance and local variables. Figure 1-7 compares the way in which modifiers can be
applied to methods vs. variables.

Variable Declarations (Exam Objectives [.3and 1.4) §3

FIGURE 1-7 Comparison of modifiers on variables vs. methods

Local Variables
Variables (non-local) Methods
final final final
public public
protected protected
private private
static static
transient
volatile
abstract
synchronized
strictfp
native

Local (Automatic/Stack/Method) Variables

Local variables are variables declared within a method. That means the variable is
not just initialized within the method, but also declared within the method. Just

as the local variable starts its life inside the method, it's also destroyed when the
method has completed. Local variables are always on the stack, not the heap. (We'll
talk more about the stack and the heap in Chapter 3). Although the value of the
variable might be passed into, say, another method that then stores the value in an
instance variable, the variable itself lives only within the scope of the method.

Just don't forget that while the local variable is on the stack, if the variable is an
object reference, the object itself will still be created on the heap. There is no such
thing as a stack object, only a stack variable. You'll often hear programmers use
the phrase, "local object," but what they really mean is, "locally declared reference
variable." So if you hear a programmer use that expression, you'll know that he's just
too lazy to phrase it in a technically precise way. You can tell him we said that—
unless he knows where we live.

Local variable declarations can't use most of the modifiers that can be applied
to instance variables, such as public (or the other access modifiers), transient,
volatile, abstract, or static, but as we saw earlier, local variables can be
marked final. And as you'll learn in Chapter 3 (but here's a preview), before a
local variable can be used, it must be initialized with a value. For instance:

B4 Chapter I:

Declarations and Access Control

class TestServer ({
public void logIn() {
int count = 10;
}

}

Typically, you'll initialize a local variable in the same line in which you declare
it, although you might still need to reinitialize it later in the method. The key is
to remember that a local variable must be initialized before you try to use it. The
compiler will reject any code that tries to use a local variable that hasn't been
assigned a value, because—unlike instance variables—Ilocal variables don't get
default values.

A local variable can't be referenced in any code outside the method in which
it's declared. In the preceding code example, it would be impossible to refer to the
variable count anywhere else in the class except within the scope of the method
logIn (). Again, that's not to say that the value of count can't be passed out of the
method to take on a new life. But the variable holding that value, count, can't be
accessed once the method is complete, as the following illegal code demonstrates:

class TestServer ({
public void logIn() {
int count = 10;
}

public void doSomething(int i)
count = i; // Won't compile! Can't access count outside
// method logIn/()

[t is possible to declare a local variable with the same name as an instance
variable. It's known as shadowing, as the following code demonstrates:

class TestServer ({
int count = 9; // Declare an instance variable named count
public void logIn()
int count = 10; // Declare a local variable named count
System.out.println("local variable count is " + count) ;
}
public void count ()
System.out.println("instance variable count is " + count) ;
}

public static void main(String[] args) {

Variable Declarations (Exam Objectives |.3and [.4) £ §

new TestServer () .logIn() ;
new TestServer () .count () ;

}

The preceding code produces the following output:

local variable count is 10
instance variable count is 9

Why on earth (or the planet of your choice) would you want to do that?
Normally, you won't. But one of the more common reasons is to name a parameter
with the same name as the instance variable to which the parameter will be
assigned.

The following (wrong) code is trying to set an instance variable's value using a
parameter:

class Foo f{

int size = 27;
public void setSize(int size) {
size = size; // ??? which size equals which size???

}

So you've decided that—for overall readability—you want to give the parameter
the same name as the instance variable its value is destined for, but how do you
resolve the naming collision? Use the keyword this. The keyword this always,
always, always refers to the object currently running. The following code shows this
in action:

class Foo f{
int size = 27;
public void setSize(int size) {
this.size = size; // this.size means the current object's
// instance variable, size. The size
// on the right is the parameter

Array Declarations
In Java, arrays are objects that store multiple variables of the same type, or variables
that are all subclasses of the same type. Arrays can hold either primitives or object

B 6 Chapter I: Declarations and Access Control

on the

Qob

on the

Qob

references, but the array itself will always be an object on the heap, even if the array
is declared to hold primitive elements. In other words, there is no such thing as a
primitive array, but you can make an array of primitives.

For the exam, you need to know three things:

B How to make an array reference variable (declare)
B How to make an array object (construct)

B How to populate the array with elements (initialize)

For this objective, you only need to know how to declare an array, we'll cover
constructing and initializing arrays in Chapter 3.

Arrays are efficient, but many times you'll want to use one of the Collection
types from java.util (including HashMap, ArrayList, and TreeSet). Collection
classes offer more flexible ways to access an object (for insertion, deletion,
reading, and so on) and unlike arrays, can expand or contract dynamically
as you add or remove elements.There's a Collection type for a wide range of
needs. Do you need a fast sort? A group of objects with no duplicates? A way
to access a name-value pair? Chapter 7 covers them in more detail.

Arrays are declared by stating the type of elements the array will hold (an
object or a primitive), followed by square brackets to either side of the identifier.

Declaring an Array of Primitives

int [] key; // Square brackets before name (recommended)
int key []1; // Square brackets after name (legal but less
// readable)

Declaring an Array of Object References

Thread[] threads; // Recommended
Thread threads []; // Legal but less readable

When declaring an array reference, you should always put the array brackets
immediately after the declared type, rather than after the identifier (variable
name). That way, anyone reading the code can easily tell that, for example,
key is a reference to an int array object, and not an int primitive.

Variable Declarations (Exam Objectives [.3and 1.4) §7

We can also declare multidimensional arrays, which are in fact arrays of arrays.
This can be done in the following manner:

String[] [] [] occupantName;
String[] managerName [];

The first example is a three-dimensional array (an array of arrays of arrays) and
the second is a two-dimensional array. Notice in the second example we have one
square bracket before the variable name and one after. This is perfectly legal to the
compiler, proving once again that just because it's legal doesn't mean it's right.

Match
It is never legal to include the size of the array in your declaration.

Yes, we know you can do that in some other languages, which is why you might see a
question or two that include code similar to the following:

int [5] scores;

The preceding code won’t compile. Remember, the JVM doesn’t allocate space until
you actually instantiate the array object. That’s when size matters.

In Chapter 3, we'll spend a lot of time discussing arrays, how to initialize and use
them, and how to deal with multi-dimensional arrays...stay tuned!

Final Variables

Declaring a variable with the final keyword makes it impossible to reinitialize that
variable once it has been initialized with an explicit value (notice we said explicit
rather than default). For primitives, this means that once the variable is assigned a
value, the value can't be altered. For example, if you assign 10 to the int variable

x, then x is going to stay 10, forever. So that's straightforward for primitives, but
what does it mean to have a final object reference variable? A reference variable
marked final can't ever be reassigned to refer to a different object. The data within
the object can be modified, but the reference variable cannot be changed. In other
words, a final reference still allows you to modify the state of the object it refers

B8 Chapter I: Declarations and Access Control

to, but you can't modify the reference variable to make it refer to a different object.
Burn this in: there are no final objects, only final references. We'll explain this in
more detail in Chapter 3.

We've now covered how the final modifier can be applied to classes, methods,
and variables. Figure 1-8 highlights the key points and differences of the various
applications of final.

m Effect of final on variables, methods, and classes

final final class Foo
class final class
cannot be
subclassed
class Eﬁ{f extghds Foo
final class Baz
method final void go() final method
cannot be
overridden by
? a subclass
class Bat extends Baz
£ inw go()
final class Roo
variable))) final variable cannot be
final int size = 42; assigned a new value, once

the initial method is made

void changeSize() { (the initial assignment of a

§<e = 16; value must happen before
} the constructor completes).

on the

Oob

Variable Declarations (Exam Objectives |.3and [.4) §9Q

Transient Variables

If you mark an instance variable as transient, you're telling the JVM to skip
(ignore) this variable when you attempt to serialize the object containing it.
Serialization is one of the coolest features of Java; it lets you save (sometimes called
"flatten") an object by writing its state (in other words, the value of its instance
variables) to a special type of I/O stream. With serialization you can save an object
to a file, or even ship it over a wire for reinflating (deserializing) at the other end, in
another JVM. Serialization has been added to the exam as of Java 5, and we'll cover
it in great detail in Chapter 6.

Volatile Variables

The volatile modifier tells the JVM that a thread accessing the variable must
always reconcile its own private copy of the variable with the master copy in
memory. Say what? Don't worry about it. For the exam, all you need to know about
volatile is that, as with transient, it can be applied only to instance variables.
Make no mistake, the idea of multiple threads accessing an instance variable is scary
stuff, and very important for any Java programmer to understand. But as you'll see in
Chapter 9, you'll probably use synchronization, rather than the volatile modifier,
to make your data thread-safe.

The volatile modifier may also be applied to project managers :)

Static Variables and Methods

The static modifier is used to create variables and methods that will exist
independently of any instances created for the class. All static members exist
before you ever make a new instance of a class, and there will be only one copy of
a static member regardless of the number of instances of that class. In other words,
all instances of a given class share the same value for any given static variable.
We'll cover static members in great detail in the next chapter.

Things you can mark as static:

B Methods
B Variables

B A class nested within another class, but not within a method (more on this in

Chapter 8).

B Initialization blocks

60 Chapter I: Declarations and Access Control

Things you can't mark as static:

B Constructors (makes no sense; a constructor is used only to create instances)
Classes (unless they are nested)

Interfaces

Method local inner classes (we'll explore this in Chapter 8)

Inner class methods and instance variables

Local variables

Declaring Enums

As of 5.0, Java lets you restrict a variable to having one of only a few pre-defined
values—in other words, one value from an enumerated list. (The items in the
enumerated list are called, surprisingly, enums.)

Using enums can help reduce the bugs in your code. For instance, in your coffee
shop application you might want to restrict your size selections to BIG, HUGE,
and OVERWHELMING. If you let an order for a LARGE or a GRANDE slip in, it
might cause an error. Enums to the rescue. With the following simple declaration,
you can guarantee that the compiler will stop you from assigning anything to a
CoffeeSize except BIG, HUGE, or OVERWHELMING:

enum CoffeeSize { BIG, HUGE, OVERWHELMING };

From then on, the only way to get a Cof feeSize will be with a statement something

like this:

CoffeeSize cs = CoffeeSize.BIG;

[t's not required that enum constants be in all caps, but borrowing from the Sun
code convention that constants are named in caps, it's a good idea.

The basic components of an enum are its constants (i.e., BIG, HUGE, and
OVERWHELMING), although in a minute you'll see that there can be a lot more
to an enum. Enums can be declared as their own separate class, or as a class member,
however they must not be declared within a method!

Declaring Enums (Exam Objectives 1.3and 1.4) @ |

Declaring an enum outside a class:

enum CoffeeSize { BIG, HUGE, OVERWHELMING } // this cannot be
// private or protected

class Coffee ({
CoffeeSize size;

}

public class CoffeeTestl {
public static void main(String[] args) {
Coffee drink = new Coffee();
drink.size = CoffeeSize.BIG; // enum outside class

The preceding code can be part of a single file. (Remember, the file must be named
CoffeeTestl.java because that's the name of the public class in the file.) The
key point to remember is that an enum that isn't enclosed in a class can be declared
with only the public or default modifier, just like a non-inner class. Here's an
example of declaring an enum inside a class:

class Coffee2 f{
enum CoffeeSize {BIG, HUGE, OVERWHELMING }

CoffeeSize size;

public class CoffeeTest2 {
public static void main(String[] args) {
Coffee2 drink = new Coffee2();
drink.size = Coffee2.CoffeeSize.BIG; // enclosing class
// name required

The key points to take away from these examples are that enums can be declared
as their own class, or enclosed in another class, and that the syntax for accessing
an enum's members depends on where the enum was declared.

62 Chapter I: Declarations and Access Control

The following is NOT legal:

public class CoffeeTestl ({
public static void main(Stringl[] args)
enum CoffeeSize { BIG, HUGE, OVERWHELMING } // WRONG! Cannot
// declare enums
// in methods
Coffee drink = new Coffee();
drink.size = CoffeeSize.BIG;

To make it more confusing for you, the Java language designers made it optional to
put a semicolon at the end of the enum declaration (when no other declarations for
this enum follow):

public class CoffeeTestl

enum CoffeeSize { BIG, HUGE, OVERWHELMING }; // <--semicolon
// i1s optional here
public static void main(Stringl[] args)
Coffee drink = new Coffee();
drink.size = CoffeeSize.BIG;

So what gets created when you make an enum? The most important thing to
remember is that enums are not Strings or ints! Each of the enumerated CoffeeSize
types are actually instances of CoffeeSize. In other words, BIG is of type CoffeeSize.
Think of an enum as a kind of class, that looks something (but not exactly) like this:

// conceptual example of how you can think
// about enums

class CoffeeSize ({
public static final CoffeeSize BIG =
new CoffeeSize ("BIG", 0);
public static final CoffeeSize HUGE =
new CoffeeSize ("HUGE", 1);
public static final CoffeeSize OVERWHELMING =
new CoffeeSize ("OVERWHELMING", 2);

Declaring Enums (Exam Objectives 1.3and 1.4) @3

public CoffeeSize (String enumName, int index) {
// stuff here

}

public static void main(String[] args) {
System.out.println (CoffeeSize.BIG) ;

}

Notice how each of the enumerated values, BIG, HUGE, and OVERWHELMING,
are instances of type CoffeeSize. They're represented as static and final, which in
the Java world, is thought of as a constant. Also notice that each enum value knows
its index or position...in other words, the order in which enum values are declared
matters. You can think of the CoffeeSize enums as existing in an array of type
CoffeeSize, and as you'll see in a later chapter, you can iterate through the values of
an enum by invoking the values () method on any enum type. (Don't worry about
that in this chapter.)

Declaring Constructors, Methods, and Variables in an enum

Because an enum really is a special kind of class, you can do more than just list the
enumerated constant values. You can add constructors, instance variables, methods,
and something really strange known as a constant specific class body. To understand
why you might need more in your enum, think about this scenario: imagine you
want to know the actual size, in ounces, that map to each of the three CoffeeSize
constants. For example, you want to know that BIG is 8 ounces, HUGE is 10
ounces, and OVERWHELMING is a whopping 16 ounces.

You could make some kind of a lookup table, using some other data structure,
but that would be a poor design and hard to maintain. The simplest way is to treat
your enum values (BIG, HUGE, and OVERWHELMING), as objects that can each
have their own instance variables. Then you can assign those values at the time the
enums are initialized, by passing a value to the enum constructor. This takes a little
explaining, but first look at the following code:

enum CoffeeSize (
// 8, 10 & 16 are passed to the constructor
BIG(8), HUGE(10), OVERWHELMING (16) ;
CoffeeSize (int ounces) { // constructor
this.ounces = ounces;

private int ounces; // an instance variable
public int getOunces() {

64 Chapter I:

Declarations and Access Control

return ounces;

}

class Coffee ({
CoffeeSize size; // each instance of Coffee has an enum

public static void main(String[] args) {
Coffee drinkl = new Coffeel();
drinkl.size = CoffeeSize.BIG;

Coffee drink2 = new Coffee();
drink2.size = CoffeeSize.OVERWHELMING;

System.out .println(drinkl.size.getOunces()); // prints 8
for (CoffeeSize cs: CoffeeSize.values())
System.out.println(cs + " " + cs.getOunces()) ;
}
}
Which produces:

8

BIG 8

HUGE 10

OVERWHELMING 16

Note: Every enum has a static method, values(), that returns an array of the enum's
values in the order they're declared.

The key points to remember about enum constructors are

B You can NEVER invoke an enum constructor directly. The enum constructor
is invoked automatically, with the arguments you define after the constant
value. For example, B1G (8) invokes the CoffeeSize constructor that takes
an int, passing the int literal 8 to the constructor. (Behind the scenes, of
course, you can imagine that BIG is also passed to the constructor, but we
don't have to know—or care—about the details.)

B You can define more than one argument to the constructor, and you can
overload the enum constructors, just as you can overload a normal class
constructor. We discuss constructors in much more detail in Chapter 2. To
initialize a Coffee Type with both the number of ounces and, say, a lid type,
you'd pass two arguments to the constructor as BIG (8, "A"), which means
you have a constructor in CoffeeSize that takes both an int and a String.

Declaring Enums (Exam Objectives 1.3and 1.4) G5

And finally, you can define something really strange in an enum that looks like an
anonymous inner class (which we talk about in Chapter 8). It's known as a constant
specific class body, and you use it when you need a particular constant to override a
method defined in the enum.

Imagine this scenario: you want enums to have two methods—one for ounces
and one for lid code (a String). Now imagine that most coffee sizes use the same
lid code, "B", but the OVERWHELMING size uses type "A". You can define a
getLidCode () method in the CoffeeSize enum that returns "B", but then you need
a way to override it for OVERWHELMING. You don't want to do some hard-to-
maintain if/then code in the getLidcode () method, so the best approach might
be to somehow have the OVERWHELMING constant override the getLidcode ()
method.

This looks strange, but you need to understand the basic declaration rules:

enum CoffeeSize {
BIG(8),
HUGE (10) ,
OVERWHELMING (16) // start a code block that defines
// the "body" for this constant

public String getLidCode () // override the method
// defined in CoffeeSize
return "A";

}

}i // the semicolon is REQUIRED when more code follows

CoffeeSize (int ounces) {
this.ounces = ounces;

private int ounces;

public int getOunces()
return ounces;
}
public String getLidCode() { // this method is overridden
// by the OVERWHELMING constant

return "B"; // the default value we want to return for
// CoffeeSize constants

66 Chapter I: Declarations and Access Control

CERTIFICATION SUMMARY

After absorbing the material in this chapter, you should be familiar with some of the
nuances of the Java language. You may also be experiencing confusion around why
you ever wanted to take this exam in the first place. That's normal at this point. If
you hear yourself saying, "What was I thinking?" just lie down until it passes. We
would like to tell you that it gets easier...that this was the toughest chapter and it's
all downhill from here...

Let's briefly review what you'll need to know for the exam.

There will be many questions dealing with keywords indirectly, so be sure you can
identify which are keywords and which aren't.

Although naming conventions like the use of camelCase won't be on the exam
directly, you will need to understand the basics of JavaBeans naming, which uses
camelCase.

You need to understand the rules associated with creating legal identifiers, and
the rules associated with source code declarations, including the use of package and
import statements.

You now have a good understanding of access control as it relates to classes,
methods, and variables. You've looked at how access modifiers (public, protected,
and private) define the access control of a class or member.

You learned that abstract classes can contain both abstract and nonabstract
methods, but that if even a single method is marked abstract, the class must
be marked abstract. Don't forget that a concrete (nonabstract) subclass of an
abstract class must provide implementations for all the abstract methods of the
superclass, but that an abstract class does not have to implement the abstract
methods from its superclass. An abstract subclass can "pass the buck” to the first
concrete subclass.

We covered interface implementation. Remember that interfaces can extend
another interface (even multiple interfaces), and that any class that implements an
interface must implement all methods from all the interfaces in the inheritance tree
of the interface the class is implementing.

You've also looked at the other modifiers including static, final, abstract,
synchronized, and so on. You've learned how some modifiers can never be
combined in a declaration, such as mixing abstract with either final or private.

Keep in mind that there are no final objects in Java. A reference variable
marked final can never be changed, but the object it refers to can be modified.

Certification Summary @7

You've seen that final applied to methods means a subclass can't override them,
and when applied to a class, the final class can't be subclassed.

Remember that as of Java 5, methods can be declared with a var-arg parameter
(which can take from zero to many arguments of the declared type), but that you can
have only one var-arg per method, and it must be the method's last parameter.

Make sure you're familiar with the relative sizes of the numeric primitives.
Remember that while the values of non-final variables can change, a reference
variable's type can never change.

You also learned that arrays are objects that contain many variables of the same
type. Arrays can also contain other arrays.

Remember what you've learned about static variables and methods, especially
that static members are per-class as opposed to per-instance. Don't forget that
a static method can't directly access an instance variable from the class it's in,
because it doesn't have an explicit reference to any particular instance of the class.

Finally, we covered a feature new to Java 5, enums. An enum is a much safer and
more flexible way to implement constants than was possible in earlier versions of
Java. Because they are a special kind of class, enums can be declared very simply,
or they can be quite complex—including such attributes as methods, variables,
constructors, and a special type of inner class called a constant specific class body.

Before you hurl yourself at the practice test, spend some time with the following
optimistically named "Two-Minute Drill." Come back to this particular drill often,
as you work through this book and especially when you're doing that last-minute
cramming. Because—and here's the advice you wished your mother had given you
before you left for college—it's not what you know, it's when you know it.

For the exam, knowing what you can't do with the Java language is just as
important as knowing what you can do. Give the sample questions a try! They're
very similar to the difficulty and structure of the real exam questions, and should
be an eye opener for how difficult the exam can be. Don't worry if you get a lot of
them wrong. If you find a topic that you are weak in, spend more time reviewing and
studying. Many programmers need two or three serious passes through a chapter (or
an individual objective) before they can answer the questions confidently.

68 Chapter I: Declarations and Access Control

TWO-MINUTE DRILL

Remember that in this chapter, when we talk about classes, we're referring to
non-inner classes, or top-level classes. We'll devote all of Chapter 8 to inner classes.

Identifiers (Objective 1.3)

Q Identifiers can begin with a letter, an underscore, or a currency character.
Q After the first character, identifiers can also include digits.

Q Identifiers can be of any length.
a

JavaBeans methods must be named using camelCase, and depending on the
method's purpose, must start with set, get, is, add, or remove.

Declaration Rules (Objective 1.1)

O A source code file can have only one public class.

O If the source file contains a public class, the filename must match the
public class name.

Q A file can have only one package statement, but multiple imports.

Q The package statement (if any) must be the first (non-comment) line in a
source file.

Q The import statements (if any) must come after the package and before
the class declaration.

Q If there is no package statement, import statements must be the first (non-
comment) statements in the source file.

O package and import statements apply to all classes in the file.
Q A file can have more than one nonpublic class.

Q Files with no public classes have no naming restrictions.

Class Access Modifiers (Objective I.1)

Q There are three access modifiers: public, protected, and private.
There are four access levels: public, protected, default, and private.
Classes can have only public or default access.

A class with default access can be seen only by classes within the same package.

0O 000

A class with public access can be seen by all classes from all packages.

Q

Two-Minute Drill @9

Class visibility revolves around whether code in one class can
Q Create an instance of another class
O Extend (or subclass), another class

O Access methods and variables of another class

Class Modifiers (Nonaccess) (Objective 1.2)

Q

I N N N N

Classes can also be modified with final, abstract, or strictfp.

A class cannot be both final and abstract.

A final class cannot be subclassed.

An abstract class cannot be instantiated.

A single abstract method in a class means the whole class must be abstract.
An abstract class can have both abstract and nonabstract methods.

The first concrete class to extend an abstract class must implement all of its

abstract methods.

Interface Implementation (Objective 1.2)

a

Qa

Interfaces are contracts for what a class can do, but they say nothing about
the way in which the class must do it.

Interfaces can be implemented by any class, from any inheritance tree.

An interface is like a 100-percent abstract class, and is implicitly abstract
whether you type the abstract modifier in the declaration or not.

An interface can have only abstract methods, no concrete methods allowed.

Interface methods are by default public and abstract—explicit declaration
of these modifiers is optional.

Interfaces can have constants, which are always implicitly public,
static, and final.

Interface constant declarations of public, static, and final are optional
in any combination.

A legal nonabstract implementing class has the following properties:
Q It provides concrete implementations for the interface's methods.
Q It must follow all legal override rules for the methods it implements.

Q It must not declare any new checked exceptions for an
implementation method.

70 Chapter I:

Declarations and Access Control

Q It must not declare any checked exceptions that are broader than
the exceptions declared in the interface method.

Q It may declare runtime exceptions on any interface method
implementation regardless of the interface declaration.

Q It must maintain the exact signature (allowing for covariant returns)
and return type of the methods it implements (but does not have to
declare the exceptions of the interface).

A class implementing an interface can itself be abstract.

An abstract implementing class does not have to implement the interface
methods (but the first concrete subclass must).

A class can extend only one class (no multiple inheritance), but it can
implement many interfaces.

Interfaces can extend one or more other interfaces.
Interfaces cannot extend a class, or implement a class or interface.

When taking the exam, verify that interface and class declarations are legal
before verifying other code logic.

Member Access Modifiers (Objectives 1.3 and 1.4)

a
a
a

O0000U00 00

Methods and instance (nonlocal) variables are known as "members."
Members can use all four access levels: public, protected, default, private.
Member access comes in two forms:

Q Code in one class can access a member of another class.

Q A subclass can inherit a member of its superclass.

If a class cannot be accessed, its members cannot be accessed.

Determine class visibility before determining member visibility.

public members can be accessed by all other classes, even in other packages.
If a superclass member is public, the subclass inherits it—regardless of package.
Members accessed without the dot operator (.) must belong to the same class.
this. always refers to the currently executing object.

this.aMethod () is the same as just invoking aMethod () .

private members can be accessed only by code in the same class.

private members are not visible to subclasses, so private members can-
not be inherited.

Two-Minute Drill 7 ||

Q Default and protected members differ only when subclasses are involved:
Q Default members can be accessed only by classes in the same package.

O protected members can be accessed by other classes in the same
package, plus subclasses regardless of package.

U

protected = package plus kids (kids meaning subclasses).

Q For subclasses outside the package, the protected member can be
accessed only through inheritance; a subclass outside the package cannot
access a protected member by using a reference to a superclass instance
(in other words, inheritance is the only mechanism for a subclass
outside the package to access a protected member of its superclass).

Q A protected member inherited by a subclass from another package is
not accessible to any other class in the subclass package, except for the
subclass' own subclasses.

Local Variables (Objective 1.3)
QO Local (method, automatic, or stack) variable declarations cannot have
access modifiers.
Q final is the only modifier available to local variables.

Q Local variables don't get default values, so they must be initialized before use.

Other Modifiers—Members (Objective 1.3)

Q final methods cannot be overridden in a subclass.

Q abstract methods are declared, with a signature, a return type, and
an optional throws clause, but are not implemented.

Q abstract methods end in a semicolon—no curly braces.
Q Three ways to spot a non-abstract method:

Q The method is not marked abstract.

Q The method has curly braces.

Q The method has code between the curly braces.

Q The first nonabstract (concrete) class to extend an abstract class must
implement all of the abstract class' abstract methods.

O The synchronized modifier applies only to methods and code blocks.

Q synchronized methods can have any access control and can also be
marked final.

72 Chapter I: Declarations and Access Control

O abstract methods must be implemented by a subclass, so they must be
inheritable. For that reason:

Q abstract methods cannot be private.
QO abstract methods cannot be final.
QO The native modifier applies only to methods.

Q The strictfp modifier applies only to classes and methods.

Methods with var-args (Objective 1.4)
O Asof Java 5, methods can declare a parameter that accepts from zero to
many arguments, a so-called var-arg method.

QO A var-arg parameter is declared with the syntax type. .. name; for instance:
doStuff (int... x) { }

Q A var-arg method can have only one var-arg parameter.

Q In methods with normal parameters and a var-arg, the var-arg must come last.

Variable Declarations (Objective 1.3)

Q Instance variables can
QO Have any access control
O Be marked final or transient
Q Instance variables can't be abstract, synchronized, native, or strictfp.

QO It is legal to declare a local variable with the same name as an instance
variable; this is called "shadowing."

QO final variables have the following properties:
Q final variables cannot be reinitialized once assigned a value.

QO final reference variables cannot refer to a different object once the
object has been assigned to the final variable.

Q final reference variables must be initialized before the constructor
completes.

O There is no such thing as a £inal object. An object reference marked final
does not mean the object itself is immutable.

QO The transient modifier applies only to instance variables.

Q The volatile modifier applies only to instance variables.

Two-Minute Drill 73

Array Declarations (Objective 1.3)

a
a

Arrays can hold primitives or objects, but the array itself is always an object.
When you declare an array, the brackets can be to the left or right of the
variable name.

It is never legal to include the size of an array in the declaration.

An array of objects can hold any object that passes the IS-A (or instanceof)

test for the declared type of the array. For example, if Horse extends Animal,
then a Horse object can go into an Animal array.

Static Variables and Methods (Objective |.4)

a

a
a
a

They are not tied to any particular instance of a class.
No classes instances are needed in order to use static members of the class.
There is only one copy of a static variable / class and all instances share it.

static methods do not have direct access to non-static members.

Enums (Objective 1.3)

a
a

An enum specifies a list of constant values assigned to a type.

An enum is NOT a String or an int; an enum constant's type is the enum
type. For example, SUMMER and FALL are of the enum type Season.

An enum can be declared outside or inside a class, but NOT in a method.

An enum declared outside a class must NOT be marked static, final,
abstract, protected, or private.

Enums can contain constructors, methods, variables, and constant class bodies.

enum constants can send arguments to the enum constructor, using the
syntax BIG(8), where the int literal 8 is passed to the enum constructor.

enum constructors can have arguments, and can be overloaded.

enum constructors can NEVER be invoked directly in code. They are always
called automatically when an enum is initialized.

The semicolon at the end of an enum declaration is optional. These are legal:

enum Foo { ONE, TWO, THREE}
enum Foo { ONE, TWO, THREE};

MyEnum.values () returns an array of MyEnum's values.

74 Chapter I: Declarations and Access Control

SELFTEST

The following questions will help you measure your understanding of the material presented in this
chapter. Read all of the choices carefully, as there may be more than one correct answer. Choose all
correct answers for each question. Stay focused.

If you have a rough time with these at first, don't beat yourself up. Be positive. Repeat nice
affirmations to yourself like, "I am smart enough to understand enums" and "OK, so that other guy
knows enums better than [do, but I bet he can't <insert something you are good at> like me."

I. Which is true? (Choose all that apply.)
A. "Xextends Y" is correct if and only if X is a class and Y is an interface
B. "X extends Y"is correct if and only if X is an interface and Y is a class
C. "Xextends Y" is correct if X and Y are either both classes or both interfaces

D. "X extends Y" is correct for all combinations of X and Y being classes and/or interfaces

2. Which method names follow the JavaBeans standard? (Choose all that apply.)
A. addsize
getCust

B

C. deleteRep
D. isColorado
E

putDimensions

1. class Voop ({

2 public static void main(String [] args)
3. dosStuff (1) ;

4 dostuff (1,2);

5 }

6. // insert code here

7.}

Which, inserted independently at line 6, will compile? (Choose all that apply.)

A. static void doStuff (int... doArgs) { }
B. static void doStuff (int[] doArgs) { }
C. static void doStuff (int doArgs...) { }
D. static void doStuff (int... doArgs, int y) { }
E. static void doStuff (int x, int... doArgs) { }

Self Test 78§

4. Given:

1. enum Animals {

2. DOG ("woof"), CAT("meow"), FISH("burble");
3. String sound;

4. Animals(String s) { sound = s; }

5.}

6. class TestEnum {

7. static Animals a;

8. public static void main(String[] args) {
9. System.out.println(a.DOG.sound + " " + a.FISH.sound) ;
10. }
11. }

What is the result?

woof burble

Multiple compilation errors

Compilation fails due to an error on line 2
Compilation fails due to an error on line 3

Compilation fails due to an error on line 4

mmoOo®»

Compilation fails due to an error on line 9

5. Given two files:
1. package pkgA;

2. public class Foo {

3. int a = 5;

4. protected int b = 6;

5. public int ¢ = 7;

6. }

3. package pkgB;

4. import pkgA.*;

5. public class Baz {

6. public static void main(String[] args) {
7. Foo f = new Foo() ;

8. System.out.print (" " + f.a);
9. System.out.print (" " + f£.b);
10. System.out.println(" " + f£.c);

11. }

12. }

76 Chapter I: Declarations and Access Control

What is the result? (Choose all that apply.)
567

5 followed by an exception

Compilation fails with an error on line 7
Compilation fails with an error on line 8

Compilation fails with an error on line 9

mmonNw®y»

Compilation fails with an error on line 10

6. Given:
1. public class Electronic implements Device
{ public void doit() { } }

2.
3. abstract class Phonel extends Electronic { }
4.
5. abstract class Phone2 extends Electronic
{ public void doIt(int x) { } }
6.

7. class Phone3 extends Electronic implements Device
{ public void doStuff() { } }
8.

9. interface Device { public void doIt(); }
What is the result? (Choose all that apply.)
Compilation succeeds
Compilation fails with an error on line 1
Compilation fails with an error on line 3
Compilation fails with an error on line 5

Compilation fails with an error on line 7

Mmoo QN®»

Compilation fails with an error on line 9

7. Given:
class Announce {
public static void main(String[] args) {
for(int x = 0; X < 3; _ X++)
int #lb = 7;

’

<N o Ul

Self Test 77

8. long [] x [5];

9. Boolean [lball;

10. enum Traffic { RED, YELLOW, GREEN };
11. }

12. }

What is the result? (Choose all that apply.)
Compilation succeeds

Compilation fails with an error on line 6
Compilation fails with an error on line 7
Compilation fails with an error on line 8

Compilation fails with an error on line 9

mmoOo®»

Compilation fails with an error on line 10

3. public class TestDays

4 public enum Days { MON, TUE, WED };

5 public static void main(String[] args) {
6 for (Days d : Days.values())

7. ;

8 Days [] d2 = Days.values() ;

9 System.out.println(d2[2]) ;

0

1

}
}

What is the result? (Choose all that apply.)
TUE

WED

The output is unpredictable

Compilation fails due to an error on line 4
Compilation fails due to an error on line 6

Compilation fails due to an error on line 8

Om Mmoo ®»

Compilation fails due to an error on line 9

78 Chapter I: Declarations and Access Control

9. Given:

. public class Frodo extends Hobbit {

public static void main(String[] args) {
Short myGold = 7;
System.out.println (countGold (myGold, 6));

!
9. }
10. class Hobbit
11. int countGold(int x, int y) { return x + y; }
12. }

What is the result?
A 13

Compilation fails due to multiple errors

W J o U

Compilation fails due to an error on line 6

Compilation fails due to an error on line 7

moQow

Compilation fails due to an error on line 11

Self Test Answers 79

SELF TEST ANSWERS

1. Which is true? (Choose all that apply.)
A. "Xextends Y" is correct if and only if X is a class and Y is an interface
B. "Xextends Y"is correct if and only if X is an interface and Y is a class
C. "Xextends Y" is correct if X and Y are either both classes or both interfaces
D

"X extends Y" is correct for all combinations of X and Y being classes and/or interfaces

Answer:
M C is correct.

Xl A is incorrect because classes implement interfaces, they don't extend them. B is incorrect
because interfaces only "inherit from" other interfaces. D is incorrect based on the
preceding rules. (Objective 1.2)

2. Which method names follow the JavaBeans standard? (Choose all that apply.)

A. addsize

B. getcust

C. deleteRep

D. isColorado

E. putDimensions
Answer:

4 B and D use the valid prefixes 'get' and 'is'.

X A is incorrect because 'add' can be used only with Listener methods. C and E are
incorrect because 'delete' and 'put' are not standard JavaBeans name prefixes.

(Objective 1.4)

3. Given:
class Voop {
public static void main(Stringl[] args)
doStuff (1) ;
dostuff (1,2);

}

// insert code here

B R B O e N

}

80 Chapter I: Declarations and Access Control

Which, inserted independently at line 6, will compile? (Choose all that apply.)

A. static void doStuff (int... doArgs) { }

B. static void doStuff (int[] doArgs) { }

C. static void doStuff (int doArgs...) { }

D. static void doStuff (int... doArgs, int y) { }
E. static void doStuff (int x, int... doArgs) { }
Answer:

A and E use valid var-args syntax.

X B and C are invalid var-arg syntax, and D is invalid because the var-arg must be the last
of a method's arguments. (Objective 1.4)

4. Given:
1. enum Animals
2 DOG ("woof"), CAT("meow"), FISH("burble");
3 String sound;
4 Animals (String s) { sound = s; }
5.}

6. class TestEnum {

7 static Animals a;

8 public static void main(String [] args) {

9 System.out.println(a.DOG.sound + " " + a.FISH.sound) ;

0

1

1 }
1.}

What is the result?

woof burble

Multiple compilation errors

Compilation fails due to an error on line 2
Compilation fails due to an error on line 3

Compilation fails due to an error on line 4

mMmogNwy»

Compilation fails due to an error on line 9

Answer:
M A is correct; enums can have constructors and variables.

& B, C, D, E, and F are incorrect; these lines all use correct syntax. (Objective 1.3)

Self Test Answers 8 ||

5. Given two files:
1. package pkgh;
2. public class Foo ({
3 int a = 5;
4. protected int b = 6;
5 public int ¢ = 7;
6

}

3. package pkgB;

4. import pkgA.*;

5. public class Baz {

6 public static void main(String[] args) {
7 Foo £ = new Fool() ;

8

System.out.print (" " + f.a);
9. System.out.print (" " + f£.Db);
10. System.out.print (" " + f.c);
11. }
12. }

What is the result? (Choose all that apply.)
567

5 followed by an exception

Compilation fails with an error on line 7
Compilation fails with an error on line 8

Compilation fails with an error on line 9

mMmoN® >

Compilation fails with an error on line 10

Answer:

D and E are correct. Variable a has default access, so it cannot be accessed from outside the
package. Variable b has protected access in pkgA.

X A, B, C, and F are incorrect based on the above information. (Objective 1.1)

6. Given:

1. public class Electronic implements Device
{ public void doit() { } }

abstract class Phonel extends Electronic { }

Uk W N

abstract class Phone2 extends Electronic
{ public void doIt(int x) { } }

82 Chapter I: Declarations and Access Control

7. class Phone3 extends Electronic implements Device
{ public void doStuff() { } }

8.

9. interface Device { public void doIt(); }

What is the result? (Choose all that apply.)
Compilation succeeds

Compilation fails with an error on line 1
Compilation fails with an error on line 3
Compilation fails with an error on line 5

Compilation fails with an error on line 7

mMmoN® >

Compilation fails with an error on line 9

Answer:
4 A is correct; all of these are legal declarations.

& B, C, D, E, and F are incorrect based on the above information. (Objective 1.2)

7. Given:
4. class Announce
5 public static void main(Stringl[] args)
6. for(int x = 0; _ x < 3; _ X++) ;
7 int #1b = 7;
8. long [l x [5];
9. Boolean []ball;

10. enum Traffic { RED, YELLOW, GREEN };
11. }
12. }

What is the result? (Choose all that apply.)
Compilation succeeds

Compilation fails with an error on line 6
Compilation fails with an error on line 7
Compilation fails with an error on line 8

Compilation fails with an error on line 9

mTmoOow®»

Compilation fails with an error on line 10

Self Test Answers 83

Answer:

M C, D, and F are correct. Variable names cannot begin with a #, an array declaration can’t
include a size without an instantiation, and enums can’t be declared within a method.

A, B, and E are incorrect based on the above information. (Objective 1.3)

8. Given:

3. public class TestDays ({

4 public enum Days { MON, TUE, WED };

5 public static void main(String[] args) {
6 for (Days d : Days.values())

7. ;

8 Days [] d2 = Days.values() ;

9 System.out.println(d2[2]) ;

0

1

1 }

1.}

What is the result? (Choose all that apply.)
TUE

WED

The output is unpredictable

Compilation fails due to an error on line 4
Compilation fails due to an error on line 6

Compilation fails due to an error on line 8

OmMmU N ®»

Compilation fails due to an error on line 9

Answer:

[B is correct. Every enum comes with a static values () method that returns an array
of the enum's values, in the order in which they are declared in the enum.

X A, C,D,E,F and G are incorrect based on the above information. (Objective 1.3)

9. Given:
4. public class Frodo extends Hobbit {
5. public static void main(Stringl[] args)
6. Short myGold = 7;
7. System.out .println (countGold (myGold, 6)) ;
8. }
9.}
10. class Hobbit
11. int countGold(int x, int y) { return x + y; }

12. }

84 Chapter I: Declarations and Access Control

What is the result?
A. 13

B. Compilation fails due to multiple errors

C. Compilation fails due to an error on line 6
D. Compilation fails due to an error on line 7
E. Compilation fails due to an error on line 11
Answer:

4 D is correct. The Short myGold is autoboxed correctly, but the countGold () method
cannot be invoked from a static context.

X A, B, C, and E are incorrect based on the above information. (Objective 1.4)

