CERTIFICATION OBJECTIVES

Assignments

e Use Class Members

e Develop Wrapper Code &
Autoboxing Code

e Determine the Effects of Passing
Variables into Methods

Q&A

Recognize when Objects Become
Eligible for Garbage Collection

Two-Minute Drill

Self Test

I 84 Chapter 3: Assignments

Stack and Heap—Quick Review

For most people, understanding the basics of the stack and the heap makes it

far easier to understand topics like argument passing, polymorphism, threads,
exceptions, and garbage collection. In this section, we'll stick to an overview, but
we'll expand these topics several more times throughout the book.

For the most part, the various pieces (methods, variables, and objects) of Java
programs live in one of two places in memory: the stack or the heap. For now, we're
going to worry about only three types of things: instance variables, local variables,
and objects:

B Instance variables and objects live on the heap.

B Local variables live on the stack.

Let's take a look at a Java program, and how its various pieces are created and
map into the stack and the heap:

1. class Collar { }

2.

3. class Dog ({

4. Collar c; // instance variable

5. String name; // instance variable

6.

7. public static void main(String [] args) {

8.

9. Dog d; // local variable: 4
10. d = new Dog() ;

11. d.go(d) ;

12. }

13. void go(Dog dog) // local variable: dog
14. ¢ = new Collar();

15. dog.setName ("Aiko") ;

16. }

17. void setName (String dogName) { // local var: dogName
18. name = dogName;

19. // do more stuff
20. }
21. }

Figure 3-1 shows the state of the stack and the heap once the program reaches
line 19. Following are some key points:

Overview of the
Stack and the

Stack and Heap—Quick Review | 85§

The Heap

String object

Instance
variables:

Dog object

Heap
setName () dogName
go () dog
main () d
method local
variables
The Stack

Collar object

B Line 7—main () is placed on the stack.

B Line 9—reference variable d is created on the stack, but there's no Dog

object yet.

B Line 10—a new Dog object is created and is assigned to the d reference

variable.

B Line 11—a copy of the reference variable d is passed to the go () method.

B Line 13—the go () method is placed on the stack, with the dog parameter as

a local variable.

B Line 14—anew Ccollar object is created on the heap, and assigned to Dog's

instance variable.

B Line 17—setName () is added to the stack, with the dogName parameter as

its local variable.

B Line 18—the name instance variable now also refers to the String object.

B Notice that two different local variables refer to the same Dog object.

B Notice that one local variable and one instance variable both refer to the

same String Aiko.

B After Line 19 completes, setName () completes and is removed from the
stack. At this point the local variable dogName disappears too, although the
String object it referred to is still on the heap.

I 86 Chapter 3: Assignments

CERTIFICATION OBJECTIVE

Literals, Assignments, and Variables
(Exam Objectives 1.3 and 7.6)

1.3 Develop code that declares, initializes, and uses primitives, arrays, enums, and
objects as static, instance, and local variables. Also, use legal identifiers for variable names.

7.6 Whrite code that correctly applies the appropriate operators including assignment
operators (limited to: =, +=, -=)...

Literal Values for All Primitive Types

A primitive literal is merely a source code representation of the primitive data
types—in other words, an integer, floating-point number, boolean, or character that
you type in while writing code. The following are examples of primitive literals:

'b! // char literal
42 // int literal
false // boolean literal

2546789.343 // double literal

Integer Literals

There are three ways to represent integer numbers in the Java language: decimal
(base 10), octal (base 8), and hexadecimal (base 16). Most exam questions

with integer literals use decimal representations, but the few that use octal or
hexadecimal are worth studying for. Even though the odds that you'll ever actually
use octal in the real world are astronomically tiny, they were included in the exam
just for fun.

Decimal Literals Decimal integers need no explanation; you've been using
them since grade one or earlier. Chances are you don't keep your checkbook in
hex. (If you do, there's a Geeks Anonymous [GA] group ready to help.) In the Java
language, they are represented as is, with no prefix of any kind, as follows:

int length = 343;

Literal Values for All Primitive Types (Exam Objectives 1.3and 7.6) | 87

Octal Literals Octal integers use only the digits O to 7. In Java, you represent
an integer in octal form by placing a zero in front of the number, as follows:

class Octal f{

public static void main(String [] args) {
int six = 06; // Equal to decimal 6
int seven = 07; // Equal to decimal 7
int eight = 010; // Equal to decimal 8
int nine = 011; // Equal to decimal 9
System.out.println("Octal 010 = " + eight);

Notice that when we get past seven and are out of digits to use (we are allowed
only the digits 0 through 7 for octal numbers), we revert back to zero, and one is
added to the beginning of the number. You can have up to 21 digits in an octal
number, not including the leading zero. If we run the preceding program, it displays
the following:

Octal 010 = 8

Hexadecimal Literals Hexadecimal (hex for short) numbers are constructed
using 16 distinct symbols. Because we never invented single digit symbols for the
numbers 10 through 15, we use alphabetic characters to represent these digits.
Counting from O through 15 in hex looks like this:

0123456789 abcdeft

Java will accept capital or lowercase letters for the extra digits (one of the few
places Java is not case-sensitive!). You are allowed up to 16 digits in a hexadecimal
number, not including the prefix Ox or the optional suffix extension L, which will be
explained later. All of the following hexadecimal assignments are legal:

class HexTest {
public static void main (String [] args) {
int x = 0X0001;
int y Ox7EfffEfff;
int z = OxDeadCafe;
System.out.println("x = " + x + "y =" +y + "z =" + z);

}
}

I 88 Chapter 3: Assignments

Running HexTest produces the following output:
x =1y = 2147483647 z = -559035650

Don't be misled by changes in case for a hexadecimal digit or the 'x' preceding it.
0XCAFE and Oxcafe are both legal and have the same value.

All three integer literals (octal, decimal, and hexadecimal) are defined as int by
default, but they may also be specified as 1ong by placing a suffix of L or 1 after the
number:

long jo = 110599L;
long so = OxXFFFFl; // Note the lowercase 'l'

Floating-Point Literals

Floating-point numbers are defined as a number, a decimal symbol, and more
numbers representing the fraction.

double d = 11301874.9881024;

In the preceding example, the number 11301874.9881024 is the literal value.
Floating-point literals are defined as double (64 bits) by default, so if you want to
assign a floating-point literal to a variable of type float (32 bits), you must attach the
suffix F or f to the number. If you don't, the compiler will complain about a possible
loss of precision, because you're trying to fit a number into a (potentially) less precise
"container." The F suffix gives you a way to tell the compiler, "Hey, I know what I'm
doing, and I'll take the risk, thank you very much."

float £ = 23.467890; // Compiler error, possible loss
// of precision
float g = 49837849.029847F; // OK; has the suffix "F"

You may also optionally attach a D or d to double literals, but it is not necessary
because this is the default behavior.

double d = 110599.995011D; // Optional, not required
double g = 987.897; // No 'D' suffix, but OK because the
// literal is a double by default

Literal Values for All Primitive Types (Exam Objectives [.3and 7.6) | 89

Look for numeric literals that include a comma, for example,

int x = 25,343; // Won't compile because of the comma

Boolean Literals

Boolean literals are the source code representation for boolean values. A boolean
value can only be defined as true or false. Although in C (and some other
languages) it is common to use numbers to represent true or false, this will not
work in Java. Again, repeat after me, "Java is not C++."

boolean t = true; // Legal
boolean f = 0; // Compiler error!

Be on the lookout for questions that use numbers where booleans are required.
You might see an if test that uses a number, as in the following:

int x = 1; if (x) { } // Compiler error!

Character Literals

A char literal is represented by a single character in single quotes.

char a
char b

Ial.
’
'@';

You can also type in the Unicode value of the character, using the Unicode
notation of prefixing the value with \u as follows:

char letterN = '\u0O04E'; // The letter 'N'

Remember, characters are just 16-bit unsigned integers under the hood. That
means you can assign a number literal, assuming it will fit into the unsigned 16-bit
range (65535 or less). For example, the following are all legal:

char a = 0x892; // hexadecimal literal

char b 982; // int literal

char ¢ = (char)70000; // The cast is required; 70000 is
// out of char range

1 90 Chapter 3: Assignments

char d = (char) -98; // Ridiculous, but legal

And the following are not legal and produce compiler errors:

char e = -29; // Possible loss of precision; needs a cast
char £ = 70000 // Possible loss of precision; needs a cast

You can also use an escape code if you want to represent a character that can't be
typed in as a literal, including the characters for linefeed, newline, horizontal tab,
backspace, and single quotes.

char ¢ = "\"'; // A double quote
char d = '\n'; // A newline

Literal Values for Strings

A string literal is a source code representation of a value of a String object. For
example, the following is an example of two ways to represent a string literal:

String s = "Bill Joy";
System.out.println("Bill" + " Joy");

Although strings are not primitives, they're included in this section because they
can be represented as literals—in other words, typed directly into code. The only
other nonprimitive type that has a literal representation is an array, which we'll look
at later in the chapter.

Thread t = ??? // what literal value could possibly go here?

Assignment Operators

Assigning a value to a variable seems straightforward enough; you simply assign
the stuff on the right side of the = to the variable on the left. Well, sure, but don't
expect to be tested on something like this:

X = 6;

No, you won't be tested on the no-brainer (technical term) assignments.
You will, however, be tested on the trickier assignments involving complex

Assignment Operators (Exam Objectives 1.3and 7.6) | 9 |l

expressions and casting. We'll look at both primitive and reference variable
assignments. But before we begin, let's back up and peek inside a variable. What is a
variable? How are the variable and its value related?

Variables are just bit holders, with a designated type. You can have an int holder,
a double holder, a Button holder, and even a String[] holder. Within that holder is
a bunch of bits representing the value. For primitives, the bits represent a numeric
value (although we don't know what that bit pattern looks like for boolean, luckily,
we don't care). A byte with a value of 6, for example, means that the bit pattern in
the variable (the byte holder) is 00000110, representing the 8 bits.

So the value of a primitive variable is clear, but what's inside an object holder?
If you say,

Button b = new Button() ;

what's inside the Button holder b? Is it the Button object? No! A variable referring
to an object is just that—a reference variable. A reference variable bit holder
contains bits representing a way to get to the object. We don't know what the format
is. The way in which object references are stored is virtual-machine specific (it's

a pointer to something, we just don't know what that something really is). All

we can say for sure is that the variable's value is not the object, but rather a value
representing a specific object on the heap. Or nu11. If the reference variable has not
been assigned a value, or has been explicitly assigned a value of nul1, the variable
holds bits representing—you guessed it—null. You can read

Button b = null;

as "The Button variable b is not referring to any object."

So now that we know a variable is just a little box o' bits, we can get on with the
work of changing those bits. We'll look first at assigning values to primitives, and
finish with assignments to reference variables.

Primitive Assignments
The equal (=) sign is used for assigning a value to a variable, and it's cleverly named
the assignment operator. There are actually 12 assignment operators, but only the
five most commonly used are on the exam, and they are covered in Chapter 4.

You can assign a primitive variable using a literal or the result of an expression.

1 92 Chapter 3: Assignments

Take a look at the following:

int x
int y

7; // literal assignment

X + 2; // assignment with an expression
// (including a literal)

int z = x * y; // assignment with an expression

The most important point to remember is that a literal integer (such as 7) is
always implicitly an int. Thinking back to Chapter 1, you'll recall that an int is
a 32-bit value. No big deal if you're assigning a value to an int or a long variable,
but what if you're assigning to a byte variable? After all, a byte-sized holder can't
hold as many bits as an int-sized holder. Here's where it gets weird. The following is
legal,

byte b = 27;

but only because the compiler automatically narrows the literal value to a byte. In
other words, the compiler puts in the cast. The preceding code is identical to the
following:

byte b = (byte) 27; // Explicitly cast the int literal to a byte

[t looks as though the compiler gives you a break, and lets you take a shortcut with
assignments to integer variables smaller than an int. (Everything we're saying about
byte applies equally to char and short, both of which are smaller than an int.)
We're not actually at the weird part yet, by the way.

We know that a literal integer is always an int, but more importantly, the result
of an expression involving anything int-sized or smaller is always an int. In other
words, add two bytes together and you'll get an int—even if those two bytes are
tiny. Multiply an int and a short and you'll get an int. Divide a short by a byte
and you'll get...an int. OK, now we're at the weird part. Check this out:

byte a = 3; // No problem, 3 fits in a byte
byte b = 8; // No problem, 8 fits in a byte
byte ¢ = b + ¢; // Should be no problem, sum of the two bytes

// fits in a byte

The last line won't compile! You'll get an error something like this:

Assignment Operators (Exam Objectives 1.3and7.6) |93

TestBytes.java:5: possible loss of precision
found : int
required: byte

byte ¢ = a + b;

A

We tried to assign the sum of two bytes to a byte variable, the result of which
(11) was definitely small enough to fit into a byte, but the compiler didn't care. It
knew the rule about int-or-smaller expressions always resulting in an int. It would
have compiled if we'd done the explicit cast:

byte ¢ = (byte) (a + b);

Primitive Casting
Casting lets you convert primitive values from one type to another. We mentioned
primitive casting in the previous section, but now we're going to take a deeper look.
(Object casting was covered in Chapter 2.)

Casts can be implicit or explicit. An implicit cast means you don't have to write
code for the cast; the conversion happens automatically. Typically, an implicit
cast happens when you're doing a widening conversion. In other words, putting a
smaller thing (say, a byte) into a bigger container (like an int). Remember those
"possible loss of precision' compiler errors we saw in the assignments
section? Those happened when we tried to put a larger thing (say, a 1ong) into a
smaller container (like a short). The large-value-into-small-container conversion
is referred to as narrowing and requires an explicit cast, where you tell the compiler
that you're aware of the danger and accept full responsibility. First we'll look at an
implicit cast:

int a = 100;
long b = a; // Implicit cast, an int value always fits in a long

An explicit casts looks like this:

float a = 100.001f;
int b = (int)a; // Explicit cast, the float could lose info

Integer values may be assigned to a double variable without explicit casting,
because any integer value can fit in a 64-bit double. The following line
demonstrates this:

1 94 Chapter 3: Assignments

double d = 100L; // Implicit cast

In the preceding statement, a double is initialized with a 1ong value (as denoted by
the L after the numeric value). No cast is needed in this case because a double can
hold every piece of information that a 1ong can store. If, however, we want to assign
a double value to an integer type, we're attempting a narrowing conversion and the
compiler knows it:

class Casting {
public static void main(String [] args) {
int x = 3957.229; // illegal
1

}
If we try to compile the preceding code, we get an error something like:

%$javac Casting.java
Casting.java:3: Incompatible type for declaration. Explicit cast
needed to convert double to int.
int x = 3957.229; // illegal
1l error

In the preceding code, a floating-point value is being assigned to an integer variable.
Because an integer is not capable of storing decimal places, an error occurs. To make
this work, we'll cast the floating-point number into an int:

class Casting {
public static void main(String [] args) {
int x = (int)3957.229; // legal cast
System.out.println("int x = " + x);

}
}

When you cast a floating-point number to an integer type, the value loses all the
digits after the decimal. The preceding code will produce the following output:

int x = 3957

We can also cast a larger number type, such as a 1ong, into a smaller number type,
such as a byte. Look at the following:

Assignment Operators (Exam Objectives 1.3and 7.6) | 98§

class Casting {
public static void main(String [] args)
long 1 = 56L;
byte b (byte)1;
System.out.println ("The byte is " + b);

}
}

The preceding code will compile and run fine. But what happens if the 1ong value is
larger than 127 (the largest number a byte can store)? Let's modify the code:

class Casting f{
public static void main(String [] args)
long 1 = 130L;
byte b = (byte)l;
System.out.println ("The byte is " + b);

}
}

The code compiles fine, and when we run it we get the following:

%$java Casting
The byte is -126

You don't get a runtime error, even when the value being narrowed is too large
for the type. The bits to the left of the lower 8 just...go away. If the leftmost bit (the

sign bit) in the byte (or any integer primitive) now happens to be a 1, the primitive
will have a negative value.

EXERCISE 3-1

Casting Primitives

Create a float number type of any value, and assign it to a short using casting.
I. Declare a float variable: float £ = 234.56F;

2. Assign the float to a short: short s = (short)f;

I 96 Chapter 3: Assignments

Assigning Floating-Point Numbers Floating-point numbers have
slightly different assignment behavior than integer types. First, you must know that
every floating-point literal is implicitly a double (64 bits), not a float. So the
literal 32. 3, for example, is considered a double. If you try to assign a double to a
float, the compiler knows you don't have enough room in a 32-bit f1oat container
to hold the precision of a 64-bit double, and it lets you know. The following code
looks good, but won't compile:

float £ = 32.3;

You can see that 32. 3 should fit just fine into a float-sized variable, but the
compiler won't allow it. In order to assign a floating-point literal to a float
variable, you must either cast the value or append an £ to the end of the literal. The
following assignments will compile:

float £ (float) 32.3;
float g 32.3f;
float h = 32.3F;

Assigning a Literal That Is Too Large for the Variable We'll also get
a compiler error if we try to assign a literal value that the compiler knows is too big
to fit into the variable.

byte a = 128; // byte can only hold up to 127

The preceding code gives us an error something like
TestBytes.java:5: possible loss of precision
found : int

required: byte
byte a = 128;

We can fix it with a cast:

byte a = (byte) 128;

Assignment Operators (Exam Objectives 1.3and 7.6) | Q7

But then what's the result? When you narrow a primitive, Java simply truncates
the higher-order bits that won't fit. In other words, it loses all the bits to the left of
the bits you're narrowing to.

Let's take a look at what happens in the preceding code. There, 128 is the bit
pattern 10000000. It takes a full 8 bits to represent 128. But because the literal 128
is an int, we actually get 32 bits, with the 128 living in the right-most (lower-order)
8 bits. So a literal 128 is actually

00000000000000000000000010000000

Take our word for it; there are 32 bits there.

To narrow the 32 bits representing 128, Java simply lops off the leftmost (higher-
order) 24 bits. We're left with just the 10000000. But remember that a byte is
signed, with the leftmost bit representing the sign (and not part of the value of the
variable). So we end up with a negative number (the 1 that used to represent 128
now represents the negative sign bit). Remember, to find out the value of a negative
number using two's complement notation, you flip all of the bits and then add 1.
Flipping the 8 bits gives us 01111111, and adding 1 to that gives us 10000000, or
back to 128! And when we apply the sign bit, we end up with -128.

You must use an explicit cast to assign 128 to a byte, and the assignment leaves
you with the value -128. A cast is nothing more than your way of saying to the
compiler, "Trust me. I'm a professional. I take full responsibility for anything weird
that happens when those top bits are chopped off."

That brings us to the compound assignment operators. The following will compile,

byte b = 3;
b += 7; // No problem - adds 7 to b (result is 10)

and is equivalent to

byte b = 3;
b = (byte) (b + 7); // Won't compile without the
// cast, since b + 7 results in an int

The compound assignment operator += lets you add to the value of b, without
putting in an explicit cast. In fact, +=, -=, *= and /= will all put in an implicit cast.

I 98 Chapter 3: Assignments

Assigning One Primitive Variable to Another Primitive Variable

When you assign one primitive variable to another, the contents of the right-hand
variable are copied. For example,

int a 6;
int b a;

This code can be read as, "Assign the bit pattern for the number 6 to the int
variable a. Then copy the bit pattern in a, and place the copy into variable b."

So, both variables now hold a bit pattern for 6, but the two variables have no
other relationship. We used the variable a only to copy its contents. At this point,
a and b have identical contents (in other words, identical values), but if we change
the contents of either a or b, the other variable won't be affected.

Take a look at the following example:

class ValueTest {
public static void main (String [] args) {

int a = 10; // Assign a value to a
System.out.println("a = " + a);

int b = a;

b = 30;

System.out.println("a = " + a + " after change to b");

The output from this program is

%$java ValueTest
a = 10
a = 10 after change to b

Notice the value of a stayed at 10. The key point to remember is that even after
you assign a to b, a and b are not referring to the same place in memory. The a and b
variables do not share a single value; they have identical copies.

Reference Variable Assignments

You can assign a newly created object to an object reference variable as follows:

Button b = new Button() ;

Assignment Operators (Exam Objectives 1.3and 7.6) | 99

The preceding line does three key things:

B Makes a reference variable named b, of type Button
B Creates a new Button object on the heap

B Assigns the newly created Button object to the reference variable b

You can also assign nul11 to an object reference variable, which simply means the
variable is not referring to any object:

Button ¢ = null;

The preceding line creates space for the Button reference variable (the bit holder
for a reference value), but doesn't create an actual Button object.

As we discussed in the last chapter, you can also use a reference variable to refer
to any object that is a subclass of the declared reference variable type, as follows:

public class Foo {
public void doFooStuff () { }
}

public class Bar extends Foo {
public void doBarStuff () { }
}

class Test ({
public static void main (String [] args)
Foo reallyABar = new Bar(); // Legal because Bar is a
// subclass of Foo
Bar reallyAFoo = new Foo(); // Illegal! Foo is not a
// subclass of Bar

The rule is that you can assign a subclass of the declared type, but not a superclass
of the declared type. Remember, a Bar object is guaranteed to be able to do anything
a Foo can do, so anyone with a Foo reference can invoke Foo methods even though
the object is actually a Bar.

In the preceding code, we see that Foo has a method doFoostuff () that
someone with a Foo reference might try to invoke. If the object referenced by
the Foo variable is really a Foo, no problem. But it's also no problem if the object
is a Bar, since Bar inherited the doFoostuff () method. You can't make it work

200 Chapter 3: Assignments

in reverse, however. If somebody has a Bar reference, they're going to invoke
doBarsStuff (), but if the object is a Foo, it won't know how to respond.

Variable Scope

Once you've declared and initialized a variable, a natural question is "How long will
this variable be around?" This is a question regarding the scope of variables. And not
only is scope an important thing to understand in general, it also plays a big part in
the exam. Let's start by looking at a class file:

class Layout { // class

static int s = 343; // static variable

int x; // instance variable

{ x =7; int x2 = 5; } // initialization block

Layout () { x += 8; int x3 = 6;} // constructor

void doStuff () // method
int v = 0; // local variable
for(int z = 0; z < 4; z++) { // 'for' code block

Y += 2z + X;
}
}
}

As with variables in all Java programs, the variables in this program (s, x, x2, x3,
v, and z) all have a scope:

B s is a static variable.

x is an instance variable.

v is a local variable (sometimes called a "method local" variable).
z is a block variable.

x2 is an init block variable, a flavor of local variable.

%3 is a constructor variable, a flavor of local variable.

For the purposes of discussing the scope of variables, we can say that there are four
basic scopes:

Assignment Operators (Exam Objectives 1.3and 7.6) 20 |

Static variables have the longest scope; they are created when the class is
loaded, and they survive as long as the class stays loaded in the Java Virtual
Machine (JVM).

Instance variables are the next most long-lived; they are created when a new
instance is created, and they live until the instance is removed.

Local variables are next; they live as long as their method remains on the
stack. As we'll soon see, however, local variables can be alive, and still be

"out of scope".

Block variables live only as long as the code block is executing.

Scoping errors come in many sizes and shapes. One common mistake happens

when a variable is shadowed and two scopes overlap. We'll take a detailed look at
shadowing in a few pages. The most common reason for scoping errors is when
you attempt to access a variable that is not in scope. Let's look at three common
examples of this type of error:

Attempting to access an instance variable from a static context (typically
ﬁonlmain()).

class ScopeErrors {
int x = 5;
public static void main(String[] args)
X++; // won't compile, x is an 'instance' variable

}
}

Attempting to access a local variable from a nested method.

When a method, say go (), invokes another method, say go2 (), go2 () won't
have access to go () 's local variables. While go2 () is executing, go () 's local
variables are still alive, but they are out of scope. When go2 () completes, it

is removed from the stack, and go () resumes execution. At this point, all of
go () 's previously declared variables are back in scope. For example:

class ScopeErrors
public static void main(String [] args) {
ScopeErrors s = new ScopeErrors() ;
s.go () ;
}
void go() {
int y = 5

7

2072 Chapter 3: Assignments

go2 () ;
V++; // once go2() completes, y is back in scope

void go2 () {
V++; // won't compile, y is local to go()

B Attempting to use a block variable after the code block has completed.

[t's very common to declare and use a variable within a code block, but be
careful not to try to use the variable once the block has completed:

void go3 () {
for(int z = 0; z < 5; z++) {
boolean test = false;
if(z == 3) {
test = true;
break;

}
}

System.out.print (test) ; // 'test' is an ex-variable,
// it has ceased to be...

In the last two examples, the compiler will say something like this:

cannot find symbol

This is the compiler's way of saying, "That variable you just tried to use? Well, it
might have been valid in the distant past (like one line of code ago), but this is
Internet time baby, I have no memory of such a variable."

Jatch
Pay extra attention to code block scoping errors. You might see them in
switches, try-catches, for, do, and while loops.

Using a Variable or Array Element That Is Uninitialized and Unassigned (Exam Objectives 1.3&7.6) 203

Using aVariable or Array Element That Is Uninitialized
and Unassigned

Java gives us the option of initializing a declared variable or leaving it
uninitialized. When we attempt to use the uninitialized variable, we can get
different behavior depending on what type of variable or array we are dealing
with (primitives or objects). The behavior also depends on the level (scope) at
which we are declaring our variable. An instance variable is declared within the
class but outside any method or constructor, whereas a local variable is declared
within a method (or in the argument list of the method).

Local variables are sometimes called stack, temporary, automatic, or method
variables, but the rules for these variables are the same regardless of what you
call them. Although you can leave a local variable uninitialized, the compiler
complains if you try to use a local variable before initializing it with a value, as
we shall see.

Primitive and Object Type Instance Variables

Instance variables (also called member variables) are variables defined at the
class level. That means the variable declaration is not made within a method,
constructor, or any other initializer block. Instance variables are initialized to a
default value each time a new instance is created, although they may be given
an explicit value after the object's super-constructors have completed. Table 3-1
lists the default values for primitive and object types.

Default Values for Primitives and Reference Types

Variable Type Default Value

Object reference null (not referencing any object)
byte, short, int, long 0

float, double 0.0

boolean false

char "\u0000"

204 Chapter 3: Assignments

Primitive Instance Variables

In the following example, the integer year is defined as a class member because it is
within the initial curly braces of the class and not within a method's curly braces:

public class BirthDate ({
int year; // Instance variable
public static void main(String [] args) {
BirthDate bd = new BirthDate() ;
bd.showYear () ;

}

public void showYear ()
System.out.println ("The year is " + year);

}
}

When the program is started, it gives the variable year a value of zero, the default
value for primitive number instance variables.

It's a good idea to initialize all your variables, even if you're assigning them

on thE with the default value.Your code will be easier to read; programmers who
() ob have to maintain your code (after you win the lottery and move to Tahiti) will
be grateful.

Object Reference Instance Variables

When compared with uninitialized primitive variables, object references that aren't
initialized are a completely different story. Let's look at the following code:

public class Book {
private String title; // instance reference variable
public String getTitle()
return title;
}
public static void main(String [] args) {
Book b = new Book () ;
System.out.println("The title is " + b.getTitle()) ;

}
}

Using a Variable or Array Element That Is Uninitialized and Unassigned (Exam Objectives 1.3 & 7.6) 2058

This code will compile fine. When we run it, the output is

The title is null

The title variable has not been explicitly initialized with a String assignment,
so the instance variable value is nul1. Remember that null is not the same as an
empty String (""). A null value means the reference variable is not referring to any
object on the heap. The following modification to the Book code runs into trouble:

public class Book {
private String title; // instance reference variable
public String getTitle() {
return title;
}
public static void main(String [] args) {
Book b = new Book () ;
String s = b.getTitle() ; // Compiles and runs
String t = s.toLowerCase(); // Runtime Exception!

}
}

When we try to run the Book class, the JVM will produce something like this:

Exception in thread "main" java.lang.NullPointerException
at Book.main (Book.java:9)

We get this error because the reference variable title does not point (refer) to
an object. We can check to see whether an object has been instantiated by using the
keyword nul1, as the following revised code shows:

public class Book {
private String title; // instance reference variable
public String getTitle() {
return title;
}
public static void main(String [] args) {
Book b = new Book() ;
String s = b.getTitle(); // Compiles and runs
if (s != null) {
String t = s.toLowerCase() ;

}

206 Chapter 3: Assignments

The preceding code checks to make sure the object referenced by the variable s is
not null before trying to use it. Watch out for scenarios on the exam where you
might have to trace back through the code to find out whether an object reference
will have a value of nul1. In the preceding code, for example, you look at the
instance variable declaration for title, see that there's no explicit initialization,
recognize that the title variable will be given the default value of nul1, and then
realize that the variable s will also have a value of nu11. Remember, the value of s is
a copy of the value of title (as returned by the getTitle () method), so if title is a
null reference, s will be too.

Array Instance Variables

Later in this chapter we'll be taking a very detailed look at declaring, constructing,
and initializing arrays and multidimensional arrays. For now, we're just going to look
at the rule for an array element's default values.

An array is an object; thus, an array instance variable that's declared but not
explicitly initialized will have a value of nu11, just as any other object reference
instance variable. But...if the array is initialized, what happens to the elements
contained in the array? All array elements are given their default values—the same
default values that elements of that type get when they're instance variables.

The bottom line: Array elements are always, always, always given default values,
regardless of where the array itself is declared or instantiated.

If we initialize an array, object reference elements will equal null if they are not
initialized individually with values. If primitives are contained in an array, they will
be given their respective default values. For example, in the following code, the
array year will contain 100 integers that all equal zero by default:

public class BirthDays {
static int [] year = new int[100];
public static void main(String [] args) {
for(int 1=0;1<100;1i++)
System.out.println("year[" + 1 + "] = " + year[i]);

When the preceding code runs, the output indicates that all 100 integers in the
array equal zero.

Local (Stack, Automatic) Primitives and Objects (Exam Objectives 1.3and 7.6) 207

Local (Stack, Automatic) Primitives and Objects

Local variables are defined within a method, and they include a method's parameters.

W
Uatch
“Automatic” is just another term for “local variable.” It does not mean

the automatic variable is automatically assigned a value! The opposite is true. An
automatic variable must be assigned a value in the code, or the compiler will complain.

Local Primitives
In the following time travel simulator, the integer year is defined as an automatic
variable because it is within the curly braces of a method.

public class TimeTravel ({
public static void main(String [] args)
int year = 2050;
System.out.println("The year is " + year);
}
}

Local variables, including primitives, always, always, always must be initialized
before you attempt to use them (though not necessarily on the same line of code).
Java does not give local variables a default value; you must explicitly initialize them
with a value, as in the preceding example. If you try to use an uninitialized primitive
in your code, you'll get a compiler error:

public class TimeTravel {
public static void main(String [] args) {
int year; // Local variable (declared but not initialized)
System.out.println("The year is " + year); // Compiler error

}
}

208 Chapter 3: Assignments

on the

Qob

Compiling produces output something like this:

$javac TimeTravel.java

TimeTravel.java:4: Variable year may not have been initialized.
System.out.println("The year is " + year);

1 error

To correct our code, we must give the integer year a value. In this updated
example, we declare it on a separate line, which is perfectly valid:

public class TimeTravel {
public static void main(String [] args) {
int year; // Declared but not initialized
int day; // Declared but not initialized
System.out.println("You step into the portal.");
year = 2050; // Initialize (assign an explicit value)
System.out.println("Welcome to the year " + year);

Notice in the preceding example we declared an integer called day that never
gets initialized, yet the code compiles and runs fine. Legally, you can declare a local
variable without initializing it as long as you don't use the variable, but let's face it, if
you declared it, you probably had a reason (although we have heard of programmers
declaring random local variables just for sport, to see if they can figure out how and
why they're being used).

The compiler can't always tell whether a local variable has been initialized
before use. For example, if you initialize within a logically conditional block
(in other words, a code block that may not run, such as an if block or for
loop without a literal value of true or false in the test), the compiler knows
that the initialization might not happen, and can produce an error. The
following code upsets the compiler:

public class TestLocal
public static void main(String [] args) {
int x;
if (args[0] != null) { // assume you know this will
// always be true

Local (Stack,Automatic) Primitives and Objects (Exam Objectives 1.3 & 7.6) 209

X = 7; // compiler can't tell that this
// statement will run

int y = x; // the compiler will choke here

The compiler will produce an error something like this:

TestLocal.java:9: variable x might not have been initialized

Because of the compiler-can't-tell-for-certain problem, you will sometimes
need to initialize your variable outside the conditional block, just to make the
compiler happy. You know why that's important if you've seen the bumper
sticker, "When the compiler's not happy, ain't nobody happy."

Local Object References

Objects references, too, behave differently when declared within a method rather
than as instance variables. With instance variable object references, you can get
away with leaving an object reference uninitialized, as long as the code checks to
make sure the reference isn't null before using it. Remember, to the compiler, nu11
is a value. You can't use the dot operator on a nul1 reference, because there is no
object at the other end of it, but a nul1 reference is not the same as an uninitialized
reference. Locally declared references can't get away with checking for nu11 before
use, unless you explicitly initialize the local variable to nu11. The compiler will
complain about the following code:

import java.util.Date;
public class TimeTravel ({
public static void main(String [] args)
Date date;
if (date == null)
System.out.println("date is null");

Compiling the code results in an error similar to the following:

2 10 Chapter3: Assignments

%$javac TimeTravel.java

TimeTravel.java:5: Variable date may not have been initialized.
if (date == null)

1 error

Instance variable references are always given a default value of null, until
explicitly initialized to something else. But local references are not given a default
value; in other words, they aren’t null. If you don't initialize a local reference variable,
then by default, its value is...well that's the whole point—it doesn't have any value
at all! So we'll make this simple: Just set the darn thing to nul1 explicitly, until
you're ready to initialize it to something else. The following local variable will
compile properly:

Date date = null; // Explicitly set the local reference
// variable to null

Local Arrays

Just like any other object reference, array references declared within a method must
be assigned a value before use. That just means you must declare and construct the
array. You do not, however, need to explicitly initialize the elements of an array.
We've said it before, but it's important enough to repeat: array elements are given
their default values (0, false, null, '\u0000', etc.) regardless of whether the array
is declared as an instance or local variable. The array object itself, however, will not
be initialized if it's declared locally. In other words, you must explicitly initialize an
array reference if it's declared and used within a method, but at the moment you
construct an array object, all of its elements are assigned their default values.

Assigning One Reference Variable to Another

With primitive variables, an assighment of one variable to another means the
contents (bit pattern) of one variable are copied into another. Object reference
variables work exactly the same way. The contents of a reference variable are a bit
pattern, so if you assign reference variable a to reference variable b, the bit pattern
in a is copied and the new copy is placed into b. (Some people have created a game
around counting how many times we use the word copy in this chapter...this copy
concept is a biggie!) If we assign an existing instance of an object to a new reference
variable, then two reference variables will hold the same bit pattern—a bit pattern
referring to a specific object on the heap. Look at the following code:

Local (Stack,Automatic) Primitives and Objects (Exam Objectives 1.3and 7.6) 21 |

import java.awt.Dimension;
class ReferenceTest {
public static void main (String [] args) {
Dimension a = new Dimension(5,10) ;
System.out.println("a.height = " + a.height);
Dimension b = a;
b.height = 30;
System.out.println("a.height = " + a.height +
" after change to b");

In the preceding example, a Dimension object a is declared and initialized with
a width of 5 and a height of 10. Next, Dimension b is declared, and assigned the
value of a. At this point, both variables (a and b) hold identical values, because
the contents of a were copied into b. There is still only one Dimension object—the
one that both a and b refer to. Finally, the height property is changed using the b
reference. Now think for a minute: is this going to change the height property of a as
well? Let's see what the output will be:

$java ReferenceTest
a.height = 10
a.height = 30 after change to b

From this output, we can conclude that both variables refer to the same instance
of the Dimension object. When we made a change to b, the height property was also
changed for a.

One exception to the way object references are assigned is String. In Java, String
objects are given special treatment. For one thing, String objects are immutable; you
can't change the value of a String object (lots more on this concept in Chapter 6).
But it sure looks as though you can. Examine the following code:

class StringTest ({
public static void main(String [] args)
String x = "Java"; // Assign a value to x
String v = x; // Now y and x refer to the same
// String object

System.out.println("y string = " + y);
X = X + " Bean"; // Now modify the object using
// the x reference

212 Chapter 3: Assignments

System.out.println("y string = " + y);

}
}

You might think String v will contain the characters Java Bean after the
variable x is changed, because Strings are objects. Let's see what the output is:

%$java StringTest
y string = Java
y string = Java

As you can see, even though vy is a reference variable to the same object that x
refers to, when we change x, it doesn't change y! For any other object type, where
two references refer to the same object, if either reference is used to modify the
object, both references will see the change because there is still only a single object.
But any time we make any changes at dall to a String, the VM will update the reference
variable to refer to a different object. The different object might be a new object, or it
might not, but it will definitely be a different object. The reason we can't say for sure
whether a new object is created is because of the String constant pool, which we'll
cover in Chapter 6.

You need to understand what happens when you use a String reference variable to
modify a string:

B A new string is created (or a matching String is found in the String pool),
leaving the original String object untouched.

B The reference used to modify the String (or rather, make a new String by
modifying a copy of the original) is then assigned the brand new String object.

So when you say

1. String s = "Fred";
2. String t = s; // Now t and s refer to the same
// String object
3. t.toUpperCase(); // Invoke a String method that changes

// the String

you haven't changed the original String object created on line 1. When line 2
completes, both t and s reference the same String object. But when line 3 runs,
rather than modifying the object referred to by t (which is the one and only String

Passing Object Reference Variables (Exam Objective 7.3) 2.1 3

object up to this point), a brand new String object is created. And then abandoned.
Because the new String isn't assigned to a String variable, the newly created String
(which holds the string "FRED") is toast. So while two String objects were created
in the preceding code, only one is actually referenced, and both t and s refer to

it. The behavior of Strings is extremely important in the exam, so we'll cover it in
much more detail in Chapter 6.

CERTIFICATION OBJECTIVE

Passing Variables into Methods (Objective 7.3)

7.3 Determine the effect upon object references and primitive values when they are passed
into methods that perform assignments or other modifying operations on the parameters.

Methods can be declared to take primitives and/or object references. You need to
know how (or if) the caller's variable can be affected by the called method. The
difference between object reference and primitive variables, when passed into
methods, is huge and important. To understand this section, you'll need to be
comfortable with the assignments section covered in the first part of this chapter.

Passing Object Reference Variables

When you pass an object variable into a method, you must keep in mind that you're
passing the object reference, and not the actual object itself. Remember that a
reference variable holds bits that represent (to the underlying VM) a way to get to
a specific object in memory (on the heap). More importantly, you must remember
that you aren't even passing the actual reference variable, but rather a copy of the
reference variable. A copy of a variable means you get a copy of the bits in that
variable, so when you pass a reference variable, you're passing a copy of the bits
representing how to get to a specific object. In other words, both the caller and the
called method will now have identical copies of the reference, and thus both will
refer to the same exact (not a copy) object on the heap.

For this example, we'll use the Dimension class from the java.awt package:

1. import java.awt.Dimension;
2. class ReferenceTest ({

2 14 Chapter 3: Assignments

3. public static void main (String [] args)
4. Dimension d = new Dimension(5,10) ;
5. ReferenceTest rt = new ReferenceTest () ;
6. System.out.println("Before modify () d.height = "
+ d.height) ;
7. rt.modify (d) ;
8. System.out.println ("After modify () d.height = "
+ d.height) ;
9. }
10. void modify (Dimension dim) {
11. dim.height = dim.height + 1;
12. System.out.println("dim = " + dim.height) ;
13. }
14. }

When we run this class, we can see that the modify () method was indeed able to
modify the original (and only) Dimension object created on line 4.

C:\Java Projects\Reference>java ReferenceTest
Before modify () d.height = 10

dim = 11

After modify () d.height = 11

Notice when the Dimension object on line 4 is passed to the modify () method,
any changes to the object that occur inside the method are being made to the object
whose reference was passed. In the preceding example, reference variables d and dim
both point to the same object.

Does Java Use Pass-By-Value Semantics?

If Java passes objects by passing the reference variable instead, does that mean Java
uses pass-by-reference for objects? Not exactly, although you'll often hear and read
that it does. Java is actually pass-by-value for all variables running within a single
VM. Pass-by-value means pass-by-variable-value. And that means, pass-by-copy-of-
the-variable! (There's that word copy again!)

[t makes no difference if you're passing primitive or reference variables, you are
always passing a copy of the bits in the variable. So for a primitive variable, you're
passing a copy of the bits representing the value. For example, if you pass an int
variable with the value of 3, you're passing a copy of the bits representing 3. The
called method then gets its own copy of the value, to do with it what it likes.

Passing Primitive Variables (Exam Objective 7.3) 21 §

And if you're passing an object reference variable, you're passing a copy of the
bits representing the reference to an object. The called method then gets its own
copy of the reference variable, to do with it what it likes. But because two identical
reference variables refer to the exact same object, if the called method modifies the
object (by invoking setter methods, for example), the caller will see that the object
the caller's original variable refers to has also been changed. In the next section,
we'll look at how the picture changes when we're talking about primitives.

The bottom line on pass-by-value: the called method can't change the caller's
variable, although for object reference variables, the called method can change the
object the variable referred to. What's the difference between changing the variable
and changing the object? For object references, it means the called method can't
reassign the caller's original reference variable and make it refer to a different object,
or null. For example, in the following code fragment,

void bar() {
Foo f = new Foo() ;
doStuff (f) ;

}

void doStuff (Foo g)
g.setName ("Boo") ;
g = new Foo();

reassigning g does not reassign £! At the end of the bar () method, two Foo objects
have been created, one referenced by the local variable £ and one referenced by

the local (argument) variable g. Because the dostuff () method has a copy of the
reference variable, it has a way to get to the original Foo object, for instance to call
the setName () method. But, the dostuff () method does not have a way to get to
the f reference variable. So dostuff () can change values within the object £ refers
to, but dostuff () can't change the actual contents (bit pattern) of £. In other
words, doStuff () can change the state of the object that £ refers to, but it can't
make £ refer to a different object!

Passing Primitive Variables

Let's look at what happens when a primitive variable is passed to a method:

class ReferenceTest ({
public static void main (String [] args) {

2 1 6 Chapter 3: Assignments

int a = 1;

ReferenceTest rt = new ReferenceTest () ;
System.out.println("Before modify () a = " + a);
rt.modify (a) ;

System.out.println("After modify() a = " + a);

}

void modify (int number) {
number = number + 1;
System.out.println ("number = " + number) ;

}
}

In this simple program, the variable a is passed to a method called modify (),
which increments the variable by 1. The resulting output looks like this:

Before modify() a =1
number = 2
After modify() a =1

Notice that a did not change after it was passed to the method. Remember, it was
a copy of a that was passed to the method. When a primitive variable is passed to a
method, it is passed by value, which means pass-by-copy-of-the-bits-in-the-variable.

FROM THE CLASSROOM

The Shadowy World of Variables

Just when you think you’ve got it all figured The effect of shadowing is to hide the

out, you see a piece of code with variables previously declared variable in such a way

not behaving the way you think they should. that it may look as though you’re using the
You might have stumbled into code with a hidden variable, but you're actually using the
shadowed variable. You can shadow a variable shadowing variable. You might find reasons to
in several ways. We'll look at the one most shadow a variable intentionally, but typically
likely to trip you up: hiding an instance it happens by accident and causes hard-to-
variable by shadowing it with a local variable. find bugs. On the exam, you can expect to see
Shadowing involves redeclaring a variable questions where shadowing plays a role.

that’s already been declared somewhere else.

Passing Primitive Variables (Exam Objective 7.3) 2 | 7

FROM THE CLASSROOM

You can shadow an instance variable by declaring a local variable of the same name, either
directly or as part of an argument:

class Foo ({
static int size = 7;
static void changeIt (int size) ({
size = gize + 200;
System.out.println("size in changeIt is " + size);
}
public static void main (String [] args) {
Foo £ = new Foo() ;
System.out.println("size = " + gize);
changeIt (size) ;
System.out.println("size after changelIt is " + size);

The preceding code appears to change the size instance variable in the changeIt () method,
but because changeIt () has a parameter named size, the local size variable is modified while
the instance variable size is untouched. Running class Foo prints

%$java Foo

size = 7

size in changeIt is 207
size after changelt is 7

Things become more interesting when the shadowed variable is an object reference, rather than

a primitive:

class Bar
int barNum = 28;

2 18 Chapter3: Assignments

FROM THE CLASSROOM

class Foo
Bar myBar = new Bar() ;
void changelt (Bar myBar) {
myBar.barNum = 99;
System.out.println ("myBar.barNum in changelIt is " + myBar.barNum) ;
myBar = new Bar () ;
myBar.barNum = 420;
System.out.println ("myBar.barNum in changelIt is now " + myBar.barNum) ;
}
public static void main (String [] args) {
Foo £ = new Foo() ;
System.out.println ("f.myBar.barNum is " + f.myBar.barNum) ;
f.changeIt (f.myBar) ;
System.out.println ("f.myBar.barNum after changeIt is "
+ f.myBar.barNum) ;

The preceding code prints out this:

f .myBar.barNum is 28
myBar.barNum in changeIt is 99
myBar.barNum in changeIt is now 420

f.myBar.barNum after changeIt is 99

You can see that the shadowing variable (the local parameter myBar in changeIt ()) can still
affect the myBar instance variable, because the myBar parameter receives a reference to the same
Bar object. But when the local myBar is reassigned a new Bar object, which we then modify by
changing its barNum value, Foo’s original myBar instance variable is untouched.

Declaring an Array (Exam Objective 1.3) 2 | 9

CERTIFICATION OBJECTIVE

Array Declaration, Construction, and Initialization
(Exam Objective 1.3)

on the

Qob

1.3 Develop code that declares, initializes, and uses primitives, arrays, enums, and
objects as static, instance, and local variables. Also, use legal identifiers for variable names.

Arrays are objects in Java that store multiple variables of the same type. Arrays can
hold either primitives or object references, but the array itself will always be an
object on the heap, even if the array is declared to hold primitive elements. In other
words, there is no such thing as a primitive array, but you can make an array
of primitives. For this objective, you need to know three things:

B How to make an array reference variable (declare)
B How to make an array object (construct)

B How to populate the array with elements (initialize)

There are several different ways to do each of those, and you need to know about
all of them for the exam.

Arrays are efficient, but most of the time you'll want to use one of the
Collection types from java.util (including HashMap, ArrayList, TreeSet).
Collection classes offer more flexible ways to access an object (for insertion,
deletion, and so on) and unlike arrays, can expand or contract dynamically
as you add or remove elements (they're really managed arrays, since they use
arrays behind the scenes).There's a Collection type for a wide range of needs.
Do you need a fast sort? A group of objects with no duplicates? A way to
access a namelvalue pair? A linked list? Chapter 7 covers them in more detail.

Declaring an Array

Arrays are declared by stating the type of element the array will hold, which can
be an object or a primitive, followed by square brackets to the left or right of
the identifier.

220 Chapter3: Assignments

Declaring an array of primitives:

int [] key; // brackets before name (recommended)
int key []; // brackets after name (legal but less readable)
// spaces between the name and [] legal, but bad

Declaring an array of object references:

Thread[] threads; // Recommended
Thread threads[]; // Legal but less readable

When declaring an array reference, you should always put the array brackets
immediately after the declared type, rather than after the identifier (variable
name). That way, anyone reading the code can easily tell that, for example, key is a
reference to an int array object, and not an int primitive.

We can also declare multidimensional arrays, which are in fact arrays of arrays.
This can be done in the following manner:

Stringl[] [] [] occupantName; // recommended
String[] ManagerName []; // yucky, but legal

The first example is a three-dimensional array (an array of arrays of arrays) and
the second is a two-dimensional array. Notice in the second example we have one
square bracket before the variable name and one after. This is perfectly legal to the
compiler, proving once again that just because it's legal doesn't mean it's right.

[t is never legal to include the size of the array in your declaration. Yes, we know
you can do that in some other languages, which is why you might see a question or
two that include code similar to the following:

int [5] scores;

The preceding code won't make it past the compiler. Remember, the JVM
doesn't allocate space until you actually instantiate the array object. That's when size
matters.

Constructing an Array

Constructing an array means creating the array object on the heap (where all objects
live)—i.e., doing a new on the array type. To create an array object, Java must know

Constructing an Array (Exam Objective 1.3) 221

how much space to allocate on the heap, so you must specify the size of the array at
creation time. The size of the array is the number of elements the array will hold.

Constructing One-Dimensional Arrays

The most straightforward way to construct an array is to use the keyword new
followed by the array type, with a bracket specifying how many elements of that type
the array will hold. The following is an example of constructing an array of type int:

int [] testScores; // Declares the array of ints
testScores = new int([4]; // constructs an array and assigns it
// to the testScores variable

The preceding code puts one new object on the heap—an array object holding four
elements—with each element containing an int with a default value of 0. Think of
this code as saying to the compiler, "Create an array object that will hold four ints,
and assign it to the reference variable named testScores. Also, go ahead and set
each int element to zero. Thanks." (The compiler appreciates good manners.)
Figure 3-2 shows the testScores array on the heap, after construction.

Cricune 2 [

A one-dimensional
array on the Heap

The heap

int [Jarray
reference
variable

Values

int []array object
Indices

You can also declare and construct an array in one statement as follows:

int [] testScores = new int[4];

This single statement produces the same result as the two previous statements.
Arrays of object types can be constructed in the same way:

Thread[] threads = new Threadl[5];

2272 Chapter 3: Assignments

Remember that—despite how the code appears—the Thread constructor is not
being invoked. We're not creating a Thread instance, but rather a single Thread
array object. After the preceding statement, there are still no actual Thread objects!

Uatch
Think carefully about how many objects are on the heap after a code

statement or block executes.The exam will expect you to know, for example, that the
preceding code produces just one object (the array assigned to the reference variable
named threads). The single object referenced by threads holds five Thread reference
variables, but no Thread objects have been created or assigned to those references.

Remember, arrays must always be given a size at the time they are constructed.
The JVM needs the size to allocate the appropriate space on the heap for the new
array object. It is never legal, for example, to do the following:

int[] carList = new int[]; // Will not compile; needs a size

So don't do it, and if you see it on the test, run screaming toward the nearest
answer marked "Compilation fails."

Datch

You may see the words "construct", "'create", and "instantiate" used
interchangeably. They all mean, “An object is built on the heap.” This also implies that
the object’s constructor runs, as a result of the construct/createlinstantiate code.You can
say with certainty, for example, that any code that uses the keyword new, will (if it runs
successfully) cause the class constructor and all superclass constructors to run.

In addition to being constructed with new, arrays can also be created using a kind
of syntax shorthand that creates the array while simultaneously initializing the array
elements to values supplied in code (as opposed to default values). We'll look at
that in the next section. For now, understand that because of these syntax shortcuts,
objects can still be created even without you ever using or seeing the keyword new.

Constructing an Array (Exam Objective [.3) 223

Constructing Multidimensional Arrays

Multidimensional arrays, remember, are simply arrays of arrays. So a two-
dimensional array of type int is really an object of type int array (int [1), with
each element in that array holding a reference to another int array. The second
dimension holds the actual int primitives. The following code declares and
constructs a two-dimensional array of type int:

int [] [] myArray = new int[3][];

Notice that only the first brackets are given a size. That's acceptable in Java, since
the JVM needs to know only the size of the object assigned to the variable myaArray.
Figure 3-3 shows how a two-dimensional int array works on the heap.

| FIGURE 33 | The hesp

int []array object

A two-dimensional
array on the Heap

int []array object

2-D int [][larray object

int[1[1 (2-D array)
reference variable

Picture demonstrates the result of the following code:
int[1 [] myArray = new int[3][1;
myArray [0] = new int[2];
myArray [0] [0] = 6;
myArray[0] [1] = 7;
myArray[1l] = new int [3];
myArray[1] [0] = 9;
myArray[1] [1] = 8;
myArray[1] [2] = 5;

224 Chapter 3: Assignments

Initializing an Array

Initializing an array means putting things into it. The "things" in the array are the
array's elements, and they're either primitive values (2, x, false, and so on), or
objects referred to by the reference variables in the array. If you have an array of
objects (as opposed to primitives), the array doesn't actually hold the objects, just as
any other nonprimitive variable never actually holds the object, but instead holds
a reference to the object. But we talk about arrays as, for example, "an array of five
strings," even though what we really mean is, "an array of five references to String
objects." Then the big question becomes whether or not those references are actually
pointing (oops, this is Java, we mean referring) to real String objects, or are simply
null. Remember, a reference that has not had an object assigned to it is a null
reference. And if you try to actually use that nul1 reference by, say, applying the dot
operator to invoke a method on it, you'll get the infamous NullPointerException.
The individual elements in the array can be accessed with an index number. The
index number always begins with zero, so for an array of ten objects the index numbers
will run from O through 9. Suppose we create an array of three Animals as follows:

Animal [] pets = new Animal[3];

We have one array object on the heap, with three nu11 references of type Animal,
but we don't have any Animal objects. The next step is to create some Animal
objects and assign them to index positions in the array referenced by pets:

pets[0] = new Animal () ;
pets[1]
pets[2]

new Animal () ;
new Animal () ;

This code puts three new Animal objects on the heap and assigns them to the
three index positions (elements) in the pets array.

$atch
Look for code that tries to access an out-of-range array index. For

example, if an array has three elements, trying to access the [3] element will raise an
ArrayIndexOutOfBoundsException, because in an array of three elements, the
legal index values are 0, I, and 2.You also might see an attempt to use a negative number
as an array index. The following are examples of legal and illegal array access attempts.
Be sure to recognize that these cause runtime exceptions and not compiler errors!

Initializing an Array (Exam Objective 1.3) 225§

”
Watch
Nearly all of the exam questions list both runtime exception and compiler

error as possible answers.

int[] x = new int[5];

x[4] = 2; // OK, the last element is at index 4
x[5] = 3; // Runtime exception. There is no element at index
51!

int[] z = new int[2];
int y = -3;
z[yl = 4; // Runtime exception. y is a negative number

These can be hard to spot in a complex loop, but that’s where you’re
most likely to see array index problems in exam questions.

A two-dimensional array (an array of arrays) can be initialized as follows:

int []1 [] scores = new int[3][];
// Declare and create an array holding three references
// to int arrays

scores [0] = new int[4];
// the first element in the scores array is an int array
// of four int elements

scores[1l] = new int[6];
// the second element in the scores array is an int array
// of six int elements

scores[2] = new int[1];
// the third element in the scores array is an int array
// of one int element

Initializing Elements in a Loop

Array objects have a single public variable, 1ength that gives you the number of
elements in the array. The last index value, then, is always one less than the 1ength.
For example, if the 1ength of an array is 4, the index values are from O through 3.
Often, you'll see array elements initialized in a loop as follows:

226 Chapter 3: Assignments

Dog[] myDogs = new Dogl[é6]; // creates an array of 6
// Dog references
for(int x = 0; x < myDogs.length; x++) {
myDogs [x] = new Dog(); // assign a new Dog to the
// index position x

The 1ength variable tells us how many elements the array holds, but it does not
tell us whether those elements have been initialized.

Declaring, Constructing, and Initializing on One Line

You can use two different array-specific syntax shortcuts to both initialize (put
explicit values into an array's elements) and construct (instantiate the array object
itself) in a single statement. The first is used to declare, create, and initialize in one
statement as follows:

1. int x = 9;
2. int[] dots = {6,x,8};

Line 2 in the preceding code does four things:

Declares an int array reference variable named dots.

[|

B Creates an int array with a length of three (three elements).
B DPopulates the array's elements with the values 6, 9, and 8.

[|

Assigns the new array object to the reference variable dots.

The size (length of the array) is determined by the number of comma-separated
items between the curly braces. The code is functionally equivalent to the following
longer code:

int [] dots;
dots = new int[3];
int x = 9;
dots [0]
dots[1]
dots[2]

6;
X;
8;

Declaring,
constructing, and
initializing an array
of objects

Initializing an Array (Exam Objective 1.3) 227

This begs the question, "Why would anyone use the longer way?" One reason
come to mind. You might not know—at the time you create the array—the values
that will be assigned to the array's elements. This array shortcut alone (combined
with the stimulating prose) is worth the price of this book.

With object references rather than primitives, it works exactly the same way:

Dog puppy = new Dog("Frodo") ;
Dog[] myDogs = {puppy, new Dog("Clover"), new Dog("Aiko")};

The preceding code creates one Dog array, referenced by the variable myDogs,
with a length of three elements. It assigns a previously created Dog object (as-
signed to the reference variable puppy) to the first element in the array. It also
creates two new Dog objects (Clover and Aiko), and adds them to the last two
Dog reference variable elements in the myDogs array. Figure 3-4 shows the result.

The heap

D bject
Dog object ©g objec

Dog object
Dog reference

variable

myDogs

Dog [larray
reference variable
Dog []array object

Picture demonstrates the result of the following code:

Dog puppy = new Dog (”Frodo”) ;
Dog[] myDogs = {puppy, new Dog(”Clover”), new Dog(”Aiko”) };

Four objects are created:

| Dog object referenced by puppy and by myDogs [0]
| Dog [] array referenced by myDogs

2 Dog object referenced by myDogs [1] and myDogs [2]

228 Chapter 3: Assignments

You can also use the shortcut syntax with multidimensional arrays, as follows:
int [][] scores = {{5,2,4,7}, {9,2}, {3,4}};

The preceding code creates a total of four objects on the heap. First, an array
of int arrays is constructed (the object that will be assigned to the scores
reference variable). The scores array has a length of three, derived from the
number of items (comma-separated) between the outer curly braces. Each of the
three elements in the scores array is a reference variable to an int array, so the
three int arrays are constructed and assigned to the three elements in the
scores array.

The size of each of the three int arrays is derived from the number of items
within the corresponding inner curly braces. For example, the first array has a
length of four, the second array has a length of two, and the third array has a
length of two. So far, we have four objects: one array of int arrays (each element
is a reference to an int array), and three int arrays (each element in the three
int arrays is an int value). Finally, the three int arrays are initialized with
the actual int values within the inner curly braces. Thus, the first int array
contains the values 5, 2, 4, and 7. The following code shows the values of some
of the elements in this two-dimensional array:

scores[0] // an array of four ints
scores[1l] // an array of 2 ints
scores[2] // an array of 2 ints
scores[0] [1] // the int value 2
scores[2] [1] // the int value 4

Figure 3-5 shows the result of declaring, constructing, and initializing a two-
dimensional array in one statement.

Constructing and Initializing an Anonymous Array

The second shortcut is called "anonymous array creation" and can be used
to construct and initialize an array, and then assign the array to a previously
declared array reference variable:

int [] testScores;
testScores = new int[] {4,7,2};

Initializing an Array (Exam Objective 1.3) 229

Declaring,

The heap

constructing, and

initializing a two- .
& Cat object Cat object

Cat object

dimensional array

Cat object

Cat object

Cat [Jarray
object

Cat [Jarray
object

myCats

Cat[][]array

reference variable
2-D Cat[][1 array object

Picture demonstrates the result of the following code:

Cat[1[] myCats = {{new Cat (”"Fluffy”), new Cat (”Zeus”)},
{new Cat (”"Bilbo”), new Cat (”"Legolas”), new Cat (”“Bert”)}}

Eight objects are created:

I 2-D Cat[][1] array object
2 Cat [] array object

5 Cat object

The preceding code creates a new int array with three elements, initializes the
three elements with the values 4, 7, and 2, and then assigns the new array to

the previously declared int array reference variable testScores. We call this
anonymous array creation because with this syntax you don't even need to assign
the new array to anything. Maybe you're wondering, "What good is an array if you
don't assign it to a reference variable?" You can use it to create a just-in-time array
to use, for example, as an argument to a method that takes an array parameter.
The following code demonstrates a just-in-time array argument:

230 Chapter3: Assignments

public class Foof {

void takesAnArray (int [] someArray)
// use the array parameter

}

public static void main (String [] args) {
Foof £ = new Foof () ;
f.takesAnArray (new int[] {7,7,8,2,5}); // we need an array

// argument

Datch . . .
Remember that you do not specify a size when using anonymous array

creation syntax. The size is derived from the number of items (comma-separated)
between the curly braces. Pay very close attention to the array syntax used in exam
questions (and there will be a lot of them). You might see syntax such as

new Object[3] {null, new Object(), new Object () };
// not legal;size must not be specified

Legal Array Element Assignments

What can you put in a particular array? For the exam, you need to know that arrays
can have only one declared type (int [], Dog[], String [1, and so on), but that
doesn't necessarily mean that only objects or primitives of the declared type can

be assigned to the array elements. And what about the array reference itself? What
kind of array object can be assigned to a particular array reference? For the exam,
you'll need to know the answers to all of these questions. And, as if by magic, we're
actually covering those very same topics in the following sections. Pay attention.

Arrays of Primitives

Primitive arrays can accept any value that can be promoted implicitly to the
declared type of the array. For example, an int array can hold any value that can fit
into a 32-bit int variable. Thus, the following code is legal:

Initializing an Array (Exam Objective 1.3) 2.3 ||

int [] weightList = new int [5];

byte b = 4;

char ¢ = '¢';

short s = 7;

weightList [0] = b; // OK, byte is smaller than int
weightList [1] = ¢; // OK, char is smaller than int
weightList [2] = s; // OK, short is smaller than int

Arrays of Object References

If the declared array type is a class, you can put objects of any subclass of the
declared type into the array. For example, if Subaru is a subclass of Car, you can put
both Subaru objects and Car objects into an array of type Car as follows:

class Car {}
class Subaru extends Car {}
class Ferrari extends Car {}

Car [] myCars = {new Subaru(), new Car(), new Ferrari()};

It helps to remember that the elements in a Car array are nothing more than Car
reference variables. So anything that can be assigned to a Car reference variable can
be legally assigned to a Car array element.

If the array is declared as an interface type, the array elements can refer to any
instance of any class that implements the declared interface. The following code
demonstrates the use of an interface as an array type:

interface Sporty ({
void beSporty () ;

}

class Ferrari extends Car implements Sporty {
public void beSporty() {
// implement cool sporty method in a Ferrari-specific way

}
}

class RacingFlats extends AthleticShoe implements Sporty {
public void beSporty()
// implement cool sporty method in a RacingShoe-specific way

}

232 Chapter 3: Assignments

}

class GolfClub { }
class TestSportyThings {

public static void main (String [] args)
Sporty[] sportyThings = new Sporty [3];
sportyThings [0] = new Ferrari(); // OK, Ferrari
// implements Sporty
sportyThings[1] = new RacingFlats(); // OK, RacingFlats

// implements Sporty
new GolfClub () ;

sportyThings [2]

// Not OK; GolfClub does not implement Sporty
// I don't care what anyone says

The bottom line is this: any object that passes the "[S-A" test for the declared
array type can be assigned to an element of that array.

Array Reference Assignments for One-Dimensional Arrays

For the exam, you need to recognize legal and illegal assignments for array reference
variables. We're not talking about references in the array (in other words, array
elements), but rather references to the array object. For example, if you declare an
int array, the reference variable you declared can be reassigned to any int array (of
any size), but cannot be reassigned to anything that is not an int array, including an
int value. Remember, all arrays are objects, so an int array reference cannot refer to
an int primitive. The following code demonstrates legal and illegal assignments for
primitive arrays:

int [] splats;

int [] dats = new int[4];

char[] letters = new char[5];

splats = dats; // OK, dats refers to an int array

splats = letters; // NOT OK, letters refers to a char array

[t's tempting to assume that because a variable of type byte, short, or char
can be explicitly promoted and assigned to an int, an array of any of those types
could be assigned to an int array. You can't do that in Java, but it would be just like
those cruel, heartless (but otherwise attractive) exam developers to put tricky array
assighment questions in the exam.

Jatch

to a Honda array. A Car is not necessarily a Honda, so if you’ve declared a Honda array,
it might blow up if you assigned a Car array to the Honda reference variable. Think
about it: a Car array could hold a reference to a Ferrari, so someone who thinks they
have an array of Hondas could suddenly find themselves with a Ferrari. Remember that
the IS-A test can be checked in code using the instanceof operator.

Initializing an Array (Exam Objective 1.3) 2.3 3

Arrays that hold object references, as opposed to primitives, aren't as restrictive.
Just as you can put a Honda object in a Car array (because Honda extends Car), you
can assign an array of type Honda to a Car array reference variable as follows:

Car[] cars;

Honda[] cuteCars = new Hondal5];

cars = cuteCars; // OK because Honda is a type of Car
Beer[] beers = new Beer [99];

cars = beers; // NOT OK, Beer is not a type of Car

Apply the IS-A test to help sort the legal from the illegal. Honda IS-A Car, so a
Honda array can be assigned to a Car array. Beer IS-A Car is not true; Beer does not
extend Car (plus it doesn't make sense, unless you've already had too much of it).

You cannot reverse the legal assignments.A Car array cannot be assigned

The rules for array assignment apply to interfaces as well as classes. An array
declared as an interface type can reference an array of any type that implements the
interface. Remember, any object from a class implementing a particular interface will
pass the IS-A (instanceof) test for that interface. For example, if Box implements
Foldable, the following is legal:

Foldable[] foldingThings;

Box [] boxThings = new Box[3];

foldingThings = boxThings;

// OK, Box implements Foldable, so Box IS-A Foldable

Array Reference Assignments for Multidimensional Arrays

When you assign an array to a previously declared array reference, the array you're
assigning must be the same dimension as the reference you're assigning it to. For

234 Chapter 3: Assignments

example, a two-dimensional array of int arrays cannot be assigned to a regular int
array reference, as follows:

int[] blots;
int [] [] squeegees = new int [3] [];
blots = squeegees; // NOT OK, squeegees is a
// two-d array of int arrays

int [] blocks = new int[6];
blots = blocks; // OK, blocks is an int array

Pay particular attention to array assignments using different dimensions. You
might, for example, be asked if it's legal to assign an int array to the first element in
an array of int arrays, as follows:

int[] [] books = new int[3][];

int [] numbers = new int[6];

int aNumber = 7;

books [0] = aNumber; // NO, expecting an int array not an int
books [0] = numbers; // OK, numbers is an int array

Figure 3-6 shows an example of legal and illegal assignments for references to
an array.

Initialization Blocks

We've talked about two places in a class where you can put code that performs
operations: methods and constructors. Initialization blocks are the third place in a
Java program where operations can be performed. Initialization blocks run when the
class is first loaded (a static initialization block) or when an instance is created (an
instance initialization block). Let's look at an example:

class SmallInit {
static int x;

int y;
static { x = 7 ; } // static init block
{ v =28;1} // instance init block

}

Initialization Blocks (Exam Objective 1.3) 23 §

m Legal and illegal array assignments

moreCats

The heap

Cat [larray
reference variable

Array reference variable can
ONLY refer toa 1-D Cat array

Cat [Jarray
object

ﬂ
—
(V|

4

Cat [Jarray
object

myCats

Cat[1[12-D array
reference variable

2-D reference variable can
ONLY refer toa 2-D Cat array

2-D cat [][]array object
Element in a 2-D Cat array can ONLY
refer toa 1-D Cat array

lllegal Array Reference Assignments KEY

A myCats = myCats[0];
// Can’t assign a 1-D array to a 2-D array reference

B myCats = myCats[0] [0];
// Can’t assign a nonarray object to a 2-D array reference Legal
C myCats[1] = myCats[1] [2];

// Can’t assign a nonarray object to a 1-D array reference =

lllegal

D myCats[0] [1] = moreCats;
// Can’t assign an array object to a nonarray reference
//myCats[0] [1] can only refer to a Cat object

As you can see, the syntax for initialization blocks is pretty terse. They don't
have names, they can't take arguments, and they don't return anything. A static
initialization block runs once, when the class is first loaded. An instance initialization
block runs once every time a new instance is created. Remember when we talked about
the order in which constructor code executed? Instance init block code runs right

236 Chapter 3: Assignments

after the call to super () in a constructor, in other words, after all
super-constructors have run.

You can have

many initialization blocks in a class. It is important to note that

unlike methods or constructors, the order in which initialization blocks appear in a class

matters. When it

's time for initialization blocks to run, if a class has more than one,

they will run in the order in which they appear in the class file...in other words,
from the top down. Based on the rules we just discussed, can you determine the
output of the following program?

class Init
Init (int
Init () {
static {
{ system.
{ system.
static {

public st
new Ini
new Ini

{

x) { System.out.println("l-arg const"); }
System.out.println("no-arg const"); }
System.out.println("lst static init"); }
out.println("lst instance init"); }
out.println("2nd instance init"); }
System.out.println("2nd static init"); }
atic void main(String [] args) {

t();

t(7);

To figure this out, remember these rules:

B |nit blocks execute in the order they appear.

B Static init blocks run once, when the class is first loaded.
B Instance init blocks run every time a class instance is created.
[|

Instance init blocks run after the constructor's call to super ().

With those rules in mind, the following output should make sense:

1lst static init
2nd static init
1lst instance init
2nd instance init
no-arg const

1lst instance init
2nd instance init
l-arg const

Using Wrapper Classes and Boxing (Exam Objective 3.1) 237

As you can see, the instance init blocks each ran twice. Instance init blocks are
often used as a place to put code that all the constructors in a class should share.
That way, the code doesn't have to be duplicated across constructors.

Finally, if you make a mistake in your static init block, the JVM can throw an
ExceptionInInitializationError.Leﬂslookatanexanqﬂ&

class InitError {
static int [] x = new int[4];
static { x[4] = 5; }
public static void main (String []

}

// bad array index!
args) { }

which produces something like:

Exception in thread "main" java.lang.ExceptionInInitializerError
Caused by: java.lang.ArrayIndexOutOfBoundsException: 4
at InitError.<clinits>(InitError.java:3)

Match
By convention, init blocks usually appear near the top of the class file,
somewhere around the constructors. However, this is the SCJP exam we’re talking about.
Don’t be surprised if you find an init block tucked in between a couple of methods,
looking for all the world like a compiler error waiting to happen!

CERTIFICATION OBJECTIVE

Using Wrapper Classes and Boxing
(Exam Objective 3.1)

3.1 Dewelop code that uses the primitive wrapper classes (such as Boolean,
Character, Double, Integer, etc.), and/or autoboxing & unboxing. Discuss the
differences between the String, StringBuilder, and StringBuffer classes.

238 Chapter 3: Assignments

The wrapper classes in the Java API serve two primary purposes:

B To provide a mechanism to "wrap" primitive values in an object so that
the primitives can be included in activities reserved for objects, like
being added to Collections, or returned from a method with an object
return value. Note: With Java 5's addition of autoboxing (and unboxing),
which we'll get to in a few pages, many of the wrapping operations that
programmers used to do manually are now handled automatically.

B To provide an assortment of utility functions for primitives. Most of
these functions are related to various conversions: converting primitives
to and from String objects, and converting primitives and String
objects to and from different bases (or radix), such as binary, octal,
and hexadecimal.

An Overview of the Wrapper Classes

There is a wrapper class for every primitive in Java. For instance, the wrapper
class for int is Integer, the class for £1oat is Float, and so on. Remember that
the primitive name is simply the lowercase name of the wrapper except for char,
which maps to Character, and int, which maps to Integer. Table 3-2 lists the
wrapper classes in the Java API.

TABLE 3-2 Wrapper Classes and Their Constructor Arguments

Primitive Wrapper Class Constructor Arguments
boolean Boolean boolean or String

byte Byte byte or String

char Character char

double Double double or String

float Float float, double, or String
int Integer int or String

long Long long or String

short Short short or String

Creating Wrapper Objects (Exam Objective 3.1) 239

Creating Wrapper Objects

For the exam you need to understand the three most common approaches for
creating wrapper objects. Some approaches take a String representation of a
primitive as an argument. Those that take a String throw NumberFormatException
if the String provided cannot be parsed into the appropriate primitive. For example
" " ! . non . b

two" can't be parsed into "2". Wrapper objects are immutable. Once they have
been given a value, that value cannot be changed. We'll talk more about wrapper
immutability when we discuss boxing in a few pages.

The Wrapper Constructors

All of the wrapper classes except Character provide two constructors: one that takes
a primitive of the type being constructed, and one that takes a String representation
of the type being constructed—for example,

Integer il = new Integer (42);
Integer 12 new Integer ("42");

or

Float f1
Float f2

new Float (3.14f);
new Float ("3.14f");

The Character class provides only one constructor, which takes a char as an
argument—for example,

Character cl = new Character('c');

The constructors for the Boolean wrapper take either a boolean value true or
false, or a String. If the String's case-insensitive value is "true" the Boolean will
be true—any other value will equate to false. Until Java 5, a Boolean object
couldn't be used as an expression in a boolean test—for instance,

Boolean b = new Boolean("false") ;
if (b) // won't compile, using Java 1.4 or earlier

As of Java 5, a Boolean object can be used in a boolean test, because the compiler
will automatically "unbox" the Boolean to a boolean. We'll be focusing on Java 5's
autoboxing capabilities in the very next section—so stay tuned!

240 Chapter 3: Assignments

The valueOf() Methods

The two (well, usually two) static valueof () methods provided in most of the
wrapper classes give you another approach to creating wrapper objects. Both
methods take a String representation of the appropriate type of primitive as

their first argument, the second method (when provided) takes an additional
argument, int radix, which indicates in what base (for example binary, octal, or
hexadecimal) the first argument is represented—for example,

Integer i2 = Integer.valueOf ("101011", 2); // converts 101011
// to 43 and
// assigns the value
// 43 to the
// Integer object i2

or

Float f2 = Float.valueOf ("3.14f"); // assigns 3.14 to the
// Float object f2

Using Wrapper Conversion Utilities

As we said earlier, a wrapper's second big function is converting stuff. The following
methods are the most commonly used, and are the ones you're most likely to see on
the test.

xxxValue()

When you need to convert the value of a wrapped numeric to a primitive, use
one of the many xxxvValue () methods. All of the methods in this family are no-
arg methods. As you can see by referring to Table 3-3, there are 36 xxxvalue ()
methods. Each of the six numeric wrapper classes has six methods, so that any
numeric wrapper can be converted to any primitive numeric type—for example,

Integer 12 = new Integer(42); // make a new wrapper object

byte b = i2.byteValue() ; // convert i2's value to a byte
// primitive

short s = i2.shortValue() ; // another of Integer's xxxValue
// methods

double d = i2.doublevValue() ; // vyet another of Integer's

// xxxValue methods

Using Wrapper Conversion Utilities (Exam Objective 3.1) 24 |

or
Float f2 = new Float (3.14f); // make a new wrapper object
short s = f2.shortValue() ; // convert f2's value to a short
// primitive
System.out.println(s) ; // result is 3 (truncated, not
// rounded)

parseXxx() and valueOf()

The six parsexxx () methods (one for each numeric wrapper type) are closely
related to the valueof () method that exists in all of the numeric wrapper

classes. Both parsexxx () and valueoOf () take a String as an argument, throw a
NumberFormatException (a.k.a. NFE) if the String argument is not properly formed,
and can convert String objects from different bases (radix), when the underlying
primitive type is any of the four integer types. (See Table 3-3.) The difference
between the two methods is

B parsexxx () returns the named primitive.

B valueOf () returns a newly created wrapped object of the type that invoked
the method.

Here are some examples of these methods in action:

double d4 = Double.parseDouble("3.14"); // convert a String

// to a primitive
System.out.println("d4 = " + d4); // result is d4 = 3.14
Double d5 = Double.valueOf ("3.14") ; // create a Double obj

System.out.println(d5 instanceof Double); // result is "true"

The next examples involve using the radix argument (in this case binary):

long L2 = Long.parselLong("101010", 2); // binary String to a
// primitive
System.out.println("L2 = " + L2); // result is: L2 = 42
Long L3 = Long.valueOf ("101010", 2); // binary String to
// Long object
System.out.println("L3 value = " + L3); // result is:

// L3 value = 42

2472 Chapter 3: Assignments

toString()

Class Object, the alpha class, has a tostring () method. Since we know that all
other Java classes inherit from class Object, we also know that all other Java classes
have a tostring () method. The idea of the toString () method is to allow you

to get some meaningful representation of a given object. For instance, if you have a
Collection of various types of objects, you can loop through the Collection and print
out some sort of meaningful representation of each object using the tostring ()
method, which is guaranteed to be in every class. We'll talk more about tostring ()
in the Collections chapter, but for now let's focus on how toString () relates to
the wrapper classes which, as we know, are marked final. All of the wrapper classes
have a no-arg, nonstatic, instance version of toString (). This method returns a
String with the value of the primitive wrapped in the object—for instance,

Double d = new Double("3.14");
System.out.println("d = "+ d.toString()); // result is d = 3.14

All of the numeric wrapper classes provide an overloaded, static toString()
method that takes a primitive numeric of the appropriate type (Double.
toString () takes a double, Long.toString () takes a long, and so on) and, of
course, returns a String:

String d = Double.toString(3.14) ; // d = "3.14"

Finally, Integer and Long provide a third toString() method. It's static, its first
argument is the primitive, and its second argument is a radix. The radix tells the
method to take the first argument, which is radix 10 (base 10) by default, and
convert it to the radix provided, then return the result as a String—for instance,

String s = "hex = "+ Long.toString(254,16); // s = "hex = fe"

toXxxString() (Binary, Hexadecimal, Octal)

The Integer and Long wrapper classes let you convert numbers in base 10 to other
bases. These conversion methods, toxxxString (), take an int or long, and return
a String representation of the converted number, for example,

String s3 = Integer.toHexString(254); // convert 254 to hex
System.out.println("254 is " + s3); // result: "254 is fe"

String s4 = Long.toOctalString(254); // convert 254 to octal
System.out.print ("254 (oct) ="+ s4); // result: "254(oct) =376"

Using Wrapper Conversion Utilities (Exam Objective 3.1) 243

Studying Table 3-3 is the single best way to prepare for this section of the test.
If you can keep the differences between xxxvalue (), parsexxx (), and
valueOf () straight, you should do well on this part of the exam.

TABLE 3-3 Common Wrapper Conversion Methods

Method
s = static
n = NFE exception Boolean Byte Character Double Float Integer Short
byteValue X X X X X X
doubleValue x x x x x x
floatValue X X X X X X
intValue X x x b'e x x
longValue x x x x x x
shortValue x x x x x x
parseXxx s,n X b4 X X b'e x
parseXxx s,n X b'e X x
(with radix)
valueOf s,n s b'e X x x x x
valueOf s,n X x x x
(with radix)
toString b'e X X X X x b'e x
toString s b'e X b'e X x x x x
(primitive)
toString s x x
(primitive, radix)
In summary, the essential method signatures for Wrapper conversion methods are

primitive xxxValue() - to convert a Wrapper to a primitive

primitive parseXxx(String) - to convert a String to a primitive

Wrapper valueOf(String) - to convert a String to a Wrapper

244 Chapter 3: Assignments

Autoboxing

New to Java 5 is a feature known variously as: autoboxing, auto-unboxing, boxing,
and unboxing. We'll stick with the terms boxing and unboxing. Boxing and
unboxing make using wrapper classes more convenient. In the old, pre-Java 5 days,
if you wanted to make a wrapper, unwrap it, use it, and then rewrap it, you might do
something like this:

Integer y = new Integer (567); // make it
int x = y.intValue() ; // unwrap it
X++; // use it

y = new Integer (x); // re-wrap it
System.out.println("y = " + y); // print it

Now, with new and improved Java 5 you can say

Integer y = new Integer (567) ; // make it

V++; // unwrap it, increment it,
// rewrap it

System.out.println("y = " + y); // print it

Both examples produce the output:
y = 568

And yes, you read that correctly. The code appears to be using the postincrement
operator on an object reference variable! But it's simply a convenience. Behind
the scenes, the compiler does the unboxing and reassignment for you. Earlier we
mentioned that wrapper objects are immutable... this example appears to contradict
that statement. It sure looks like y's value changed from 567 to 568. What actually
happened, is that a second wrapper object was created and its value was set to 568. If
only we could access that first wrapper object, we could prove it...

Let's try this:

Integer y

567; // make a wrapper
Yi // assign a second ref
// var to THE wrapper

Integer X

System.out.println (y==x) ; // verify that they refer
// to the same object

Autoboxing (Exam Objective 3.1) 248

Y++i // unwrap, use, "rewrap"
System.out.println(x + " " + y); // print values
System.out.println (y==x) ; // verify that they refer

// to different objects
Which produces the output:

true
567 568
false

So, under the covers, when the compiler got to the line y++; it had to substitute
something like this:

int x2 = y.intValue() ; // unwrap it
X2++; // use it
y = new Integer (x2); // re-wrap it

Just as we suspected, there's gotta be a call to new in there somewhere.

Boxing, ==, and equals()

We just used == to do a little exploration of wrappers. Let's take a more thorough
look at how wrappers work with ==, I=, and equals (). We'll talk a lot more about
the equals () method in later chapters. For now all we have to know is that the
intention of the equals () method is to determine whether two instances of a given
class are "meaningfully equivalent." This definition is intentionally subjective; it's
up to the creator of the class to determine what "equivalent” means for objects of the
class in question. The API developers decided that for all the wrapper classes, two
objects are equal if they are of the same type and have the same value. It shouldn't
be surprising that

Integer il = 1000;

Integer i2 = 1000;

if (i1 != i2) System.out.println("different objects");
if(il.equals(i2)) System.out.println("meaningfully equal");

Produces the output:

different objects
meaningfully equal

246 Chapter 3: Assignments

[t's just two wrapper objects that happen to have the same value. Because they
have the same int value, the equals () method considers them to be "meaningfully
equivalent", and therefore returns true. How about this one:

Integer i3 = 10;

Integer i4 = 10;

if (i3 == i4) System.out.println("same object");
if(i3.equals(i4)) System.out.println("meaningfully equal") ;

This example produces the output:

same object
meaningfully equal

Yikes! The equals () method seems to be working, but what happened with ==
and !=? Why is != telling us that i1 and 12 are different objects, when == is saying
that i3 and i4 are the same object? In order to save memory, two instances of the
following wrapper objects (created through boxing), will always be == when their
primitive values are the same:

B Boolean

B Byte

B character from \u0000 to \uOO7f (7fis 127 in decimal)
B short and Integer from -128 to 127

Note: When == is used to compare a primitive to a wrapper, the wrapper will be
unwrapped and the comparison will be primitive to primitive.

Where Boxing Can Be Used

As we discussed earlier, it's very common to use wrappers in conjunction with
collections. Any time you want your collection to hold objects and primitives, you'll
want to use wrappers to make those primitives collection-compatible. The general
rule is that boxing and unboxing work wherever you can normally use a primitive or
a wrapped object. The following code demonstrates some legal ways to use boxing:

class UseBoxing {
public static void main(String [] args) {
UseBoxing u = new UseBoxing() ;

u.go(5);

}

boolean go(Integer i) { // boxes the int it was passed
Boolean ifSo = true; // boxes the literal

Short s = 300; // boxes the primitive

Overloading (Exam Objectives 1.5and 5.4) 247

if (ifSo) // unboxing
System.out.println(++s); // unboxes, increments, reboxes

}

return !ifSo; // unboxes, returns the inverse

}

Jatch
Remember, wrapper reference variables can be null. That means that you

have to watch out for code that appears to be doing safe primitive operations, but that
could throw a NullPointerException:

class Boxing2 {
static Integer x;
public static void main(String [] args) {

doStuff (x) ;

}

static void doStuff (int z) {
int z2 = 5;
System.out.println(z2 + z);

I

This code compiles fine, but the JVM throws a NullPointerException
when it attempts to invoke dostuff (x), because x doesn’t refer to an Integer object, so

there’s no value to unbox.

CERTIFICATION OBJECTIVE

Overloading (Exam Obijectives 1.5 and 5.4)

1.5 Given a code example, determine if a method is correctly overriding or overloading
another method, and identify legal return values (including covariant returns) , for the

method.

5.4 Given a scenario, develop code that declares and/or invokes overridden or

overloaded methods. ..

248 Chapter 3: Assignments

Overloading Made Hard—Method Matching

Although we covered some rules for overloading methods in Chapter 2, in this
chapter we've added some new tools to our Java toolkit. In this section we're going
to take a look at three factors that can make overloading a little tricky:

B Widening
B Autoboxing
B Var-args

When a class has overloaded methods, one of the compiler's jobs is to determine
which method to use whenever it finds an invocation for the overloaded method.
Let's look at an example that doesn't use any new Java 5 features:

class EasyOver ({

static void go(int x) { System.out.print("int "); }
static void go(long x) { System.out.print("long "); }
static void go(double x) { System.out.print ("double "); }

public static void main(String [] args) {

byte b = 5;
short s = 5;
long 1 = 5

float £ = 5.0f;
go (b) ;
go(s);
).
)

7

go (1l
go (£

7

Which produces the output:

int int long double

This probably isn't much of a surprise; the calls that use byte and the short
arguments are implicitly widened to match the version of the go () method that
takes an int. Of course, the call with the 1ong uses the long version of go (), and
finally, the call that uses a float is matched to the method that takes a double.

Overloading (Exam Objectives 1.5and 5.4) 249

In every case, when an exact match isn't found, the JVM uses the method with the
smallest argument that is wider than the parameter.

You can verify for yourself that if there is only one version of the go () method,
and it takes a double, it will be used to match all four invocations of go ().

Overloading with Boxing and Var-args

Now let's take our last example, and add boxing into the mix:

class AddBoxing {
static void go(Integer x) { System.out.println("Integer"); }
static void go(long x) { System.out.println("long"); }

public static void main(String [] args)
int 1 = 5;
go (i) ; // which go() will be invoked?

}

As we've seen earlier, if the only version of the go () method was one that took
an Integer, then Java 5's boxing capability would allow the invocation of go () to
succeed. Likewise, if only the 1ong version existed, the compiler would use it to
handle the go () invocation. The question is, given that both methods exist, which
one will be used? In other words, does the compiler think that widening a primitive
parameter is more desirable than performing an autoboxing operation? The answer is
that the compiler will choose widening over boxing, so the output will be

long

Java 5's designers decided that the most important rule should be that preexisting
code should function the way it used to, so since widening capability already existed,
a method that is invoked via widening shouldn't lose out to a newly created method
that relies on boxing. Based on that rule, try to predict the output of the following:

class Addvarargs {
static void go(int x, int y) { System.out.println("int,int")

i }

static void go(byte... x) { System.out.println("byte... "); }
public static void main(String[] args) {
byte b = 5;

go(b,b) ; // which go() will be invoked?

}

2850 Chapter3: Assignments

As you probably guessed, the output is
int, int

Because, once again, even though each invocation will require some sort of
conversion, the compiler will choose the older style before it chooses the newer
style, keeping existing code more robust. So far we've seen that

B Widening beats boxing
B Widening beats var-args

At this point, inquiring minds want to know, does boxing beat var-args?

class BoxOrVararg
static void go(Byte x, Byte V)
{ system.out.println("Byte, Byte"); }
static void go(byte... x) { System.out.println("byte... "); }

public static void main(String [] args) {
byte b = 5;
go(b,b); // which go() will be invoked?
}
}

As it turns out, the output is

Byte, Byte

A good way to remember this rule is to notice that the var-args method is "looser"
than the other method, in that it could handle invocations with any number of
byte parameters. A var-args method is more like a catch-all method, in terms of
what invocations it can handle, and as we'll see in Chapter 5, it makes most sense
for catch-all capabilities to be used as a last resort.

Widening Reference Variables

We've seen that it's legal to widen a primitive. Can you widen a reference variable,
and if so, what would it mean? Let's think back to our favorite polymorphic
assignment:

Animal a = new Dog() ;

Overloading (Exam Objectives 1.5and 5.4) 2.5 ||

Along the same lines, an invocation might be:
class Animal {static void eat() { } }

class Dog3 extends Animal
public static void main(String[] args) {
Dog3 d = new Dog3 () ;
d.go(4) ; // is this legal ?

}

void go(Animal a) { }

}

No problem! The go () method needs an Animal, and Dog3 IS-A Animal.
(Remember, the go () method thinks it's getting an Animal object, so it will only
ask it to do Animal things, which of course anything that inherits from Animal can
do.) So, in this case, the compiler widens the Dog3 reference to an Animal, and
the invocation succeeds. The key point here is that reference widening depends on
inheritance, in other words the IS-A test. Because of this, it's not legal to widen
from one wrapper class to another, because the wrapper classes are peers to one
another. For instance, it's NOT valid to say that Short [S-A Integer.

Jatch
It’s tempting to think that you might be able to widen an Integer

wrapper to a Long wrapper, but the following will NOT compile:

class Dog4 {
public static void main(String [] args) {
Dog4 d = new Dog4 () ;
d.test (new Integer(5)); // can't widen an Integer
// to a Long

}

void test (Long x) { }

}

Remember, none of the wrapper classes will widen from one to another!
Bytes won’t widen to Shorts, Shorts won’t widen to Longs, etc.

25872 Chapter 3: Assignments

Overloading When Combining Widening and Boxing

We've looked at the rules that apply when the compiler can match an invocation to
a method by performing a single conversion. Now let's take a look at what happens
when more than one conversion is required. In this case the compiler will have to
widen and then autobox the parameter for a match to be made:

class WidenAndBox {
static void go(Long x) { System.out.println("Long"); }

public static void main(String [] args) {
byte b = 5;
go (b) ; // must widen then box - illegal

}
}

This is just too much for the compiler:

WidenAndBox.java:6: go(java.lang.Long) in WidenAndBox cannot be
applied to (byte)

Strangely enough, it IS possible for the compiler to perform a boxing operation
followed by a widening operation in order to match an invocation to a method. This
one might blow your mind:

class BoxAndWiden ({
static void go(Object o)
Byte b2 = (Byte) o; // ok - it's a Byte object
System.out.println (b2) ;

}

public static void main(String [] args) {
byte b = 5;
go(b) ; // can this byte turn into an Object ?

}
}

This compiles (!), and produces the output:

Overloading (Exam Objectives 1.5and 54) 283

Wow! Here's what happened under the covers when the compiler, then the JVM,
got to the line that invokes the go () method:

I. The byte b was boxed to a Byte.
2. The Byte reference was widened to an Object (since Byte extends Object).

3. The go () method got an Object reference that actually refers to a Byte
object.

4. The go () method cast the Object reference back to a Byte reference (re
member, there was never an object of type Object in this scenario, only an
object of type Byte!).

5. The go () method printed the Byte's value.

Why didn't the compiler try to use the box-then-widen logic when it tried to deal
with the WidenAndBox class? Think about it...if it tried to box first, the byte would
have been converted to a Byte. Now we're back to trying to widen a Byte to a Long,
and of course, the IS-A test fails.

Overloading in Combination with Var-args

What happens when we attempt to combine var-args with either widening or boxing
in a method-matching scenario? Let's take a look:

class Vararg {
static void wide vararg(long... x)
{ system.out.println("long..."); }
static void box vararg(Integer... x)
{ System.out.println("Integer..."); }
public static void main(String [] args) {
int i = 5;
wide vararg(i,i); // needs to widen and use var-args
box vararg(i,i); // needs to box and use var-args
}
}

This compiles and produces:

long. ..
Integer. ..

284 Chapter 3: Assignments

As we can see, you can successfully combine var-args with either widening or
boxing. Here's a review of the rules for overloading methods using widening, boxing,
and var-args:

Primitive widening uses the "smallest" method argument possible.

Used individually, boxing and var-args are compatible with overloading.
You CANNOT widen from one wrapper type to another. (IS-A fails.)
You CANNOT widen and then box. (An int can't become a Long.)

You can box and then widen. (An int can become an Object, via Integer.)

You can combine var-args with either widening or boxing.

There are more tricky aspects to overloading, but other than a few rules
concerning generics (which we'll cover in Chapter 7), this is all you'll need to know
for the exam. Phew!

CERTIFICATION OBJECTIVE

Garbage Collection (Exam Objective 7.4)

7.4 Given a code example, recognize the point at which an object becomes eligible for
garbage collection, and determine what is and is not guaranteed by the garbage collection
system, and recognize the behaviors of the Object finalize() method.

Overview of Memory Management and Garbage Collection

This is the section you've been waiting for! It's finally time to dig into the wonderful
world of memory management and garbage collection.

Memory management is a crucial element in many types of applications.
Consider a program that reads in large amounts of data, say from somewhere else
on a network, and then writes that data into a database on a hard drive. A typical
design would be to read the data into some sort of collection in memory, perform
some operations on the data, and then write the data into the database. After the
data is written into the database, the collection that stored the data temporarily
must be emptied of old data or deleted and recreated before processing the next

Overview of Java’s Garbage Collector (Exam Objective 7.4) 285

batch. This operation might be performed thousands of times, and in languages

like C or C++ that do not offer automatic garbage collection, a small flaw in the
logic that manually empties or deletes the collection data structures can allow small
amounts of memory to be improperly reclaimed or lost. Forever. These small losses
are called memory leaks, and over many thousands of iterations they can make
enough memory inaccessible that programs will eventually crash. Creating code
that performs manual memory management cleanly and thoroughly is a nontrivial
and complex task, and while estimates vary, it is arguable that manual memory
management can double the development effort for a complex program.

Java's garbage collector provides an automatic solution to memory management.
In most cases it frees you from having to add any memory management logic to
your application. The downside to automatic garbage collection is that you can't
completely control when it runs and when it doesn't.

Overview of Java's Garbage Collector

Let's look at what we mean when we talk about garbage collection in the land of
Java. From the 30,000 ft. level, garbage collection is the phrase used to describe
automatic memory management in Java. Whenever a software program executes (in
Java, C, C++, Lisp, Ruby, and so on), it uses memory in several different ways. We're
not going to get into Computer Science 101 here, but it's typical for memory to be
used to create a stack, a heap, in Java's case constant pools, and method areas. The
heap is that part of memory where Java objects live, and it's the one and only part of
memory that is in any way involved in the garbage collection process.

A heap is a heap is a heap. For the exam it's important to know that you can call it the
heap, you can call it the garbage collectible heap, or you can call it Johnson, but there is
one and only one heap.

So, all of garbage collection revolves around making sure that the heap has as
much free space as possible. For the purpose of the exam, what this boils down to
is deleting any objects that are no longer reachable by the Java program running.
We'll talk more about what reachable means, but let's drill this point in. When
the garbage collector runs, its purpose is to find and delete objects that cannot be
reached. If you think of a Java program as being in a constant cycle of creating the
objects it needs (which occupy space on the heap), and then discarding them when
they're no longer needed, creating new objects, discarding them, and so on, the
missing piece of the puzzle is the garbage collector. When it runs, it looks for those

286 Chapter3: Assignments

discarded objects and deletes them from memory so that the cycle of using memory
and releasing it can continue. Ah, the great circle of life.

When Does the Garbage Collector Run?

The garbage collector is under the control of the JVM. The JVM decides when to
run the garbage collector. From within your Java program you can ask the JVM to
run the garbage collector, but there are no guarantees, under any circumstances, that
the JVM will comply. Left to its own devices, the JVM will typically run the garbage
collector when it senses that memory is running low. Experience indicates that when
your Java program makes a request for garbage collection, the JVM will usually grant
your request in short order, but there are no guarantees. Just when you think you can
count on it, the JVM will decide to ignore your request.

How Does the Garbage Collector Work?

You just can't be sure. You might hear that the garbage collector uses a mark and
sweep algorithm, and for any given Java implementation that might be true, but the
Java specification doesn't guarantee any particular implementation. You might hear
that the garbage collector uses reference counting; once again maybe yes maybe no.
The important concept to understand for the exam is when does an object become
eligible for garbage collection? To answer this question fully, we have to jump ahead
a little bit and talk about threads. (See Chapter 9 for the real scoop on threads.) In a
nutshell, every Java program has from one to many threads. Each thread has its own
little execution stack. Normally, you (the programmer) cause at least one thread to
run in a Java program, the one with the main () method at the bottom of the stack.
However, as you'll learn in excruciating detail in Chapter 9, there are many really
cool reasons to launch additional threads from your initial thread. In addition to
having its own little execution stack, each thread has its own lifecycle. For now,

all we need to know is that threads can be alive or dead. With this background
information, we can now say with stunning clarity and resolve that an object is eligible
for garbage collection when no live thread can access it. (Note: Due to the vagaries of
the String constant pool, the exam focuses its garbage collection questions on non-
String objects, and so our garbage collection discussions apply to only non-String
objects too.)

Based on that definition, the garbage collector does some magical, unknown
operations, and when it discovers an object that can't be reached by any live thread,
it will consider that object as eligible for deletion, and it might even delete it at
some point. (You guessed it; it also might not ever delete it.) When we talk about
reaching an object, we're really talking about having a reachable reference variable

Writing Code That Explicitly Makes Objects Eligible for Collection (Exam Objective 7.4) 287

that refers to the object in question. If our Java program has a reference variable
that refers to an object, and that reference variable is available to a live thread, then
that object is considered reachable. We'll talk more about how objects can become
unreachable in the following section.

Can a Java application run out of memory? Yes. The garbage collection system
attempts to remove objects from memory when they are not used. However, if
you maintain too many live objects (objects referenced from other live objects),
the system can run out of memory. Garbage collection cannot ensure that there
is enough memory, only that the memory that is available will be managed as
efficiently as possible.

Writing Code That Explicitly Makes Objects Eligible for Collection

In the preceding section, we learned the theories behind Java garbage collection.
In this section, we show how to make objects eligible for garbage collection using
actual code. We also discuss how to attempt to force garbage collection if it is
necessary, and how you can perform additional cleanup on objects before they are
removed from memory.

Nulling a Reference

As we discussed earlier, an object becomes eligible for garbage collection when
there are no more reachable references to it. Obviously, if there are no reachable
references, it doesn't matter what happens to the object. For our purposes it is just
floating in space, unused, inaccessible, and no longer needed.

The first way to remove a reference to an object is to set the reference variable
that refers to the object to nul1. Examine the following code:

1. public class GarbageTruck {

2. public static void main(String [] args) {

3. StringBuffer sb = new StringBuffer ("hello");

4. System.out.println(sb) ;

5. // The StringBuffer object is not eligible for collection
6. sb = null;

7. // Now the StringBuffer object is eligible for collection
8.

9.

The StringBuffer object with the value hello is assigned to the reference
variable sb in the third line. To make the object eligible (for GC), we set the
reference variable sb to null, which removes the single reference that existed to the

2588 Chapter 3: Assignments

StringBuffer object. Once line 6 has run, our happy little hel11o StringBuffer object
is doomed, eligible for garbage collection.

Reassigning a Reference Variable

We can also decouple a reference variable from an object by setting the reference
variable to refer to another object. Examine the following code:

class GarbageTruck {
public static void main(String [] args)

StringBuffer sl = new StringBuffer ("hello");
StringBuffer s2 = new StringBuffer ("goodbye") ;
System.out.println(sl) ;
// At this point the StringBuffer "hello" is not eligible
sl = s2; // Redirects sl to refer to the "goodbye" object
// Now the StringBuffer "hello" is eligible for collection

Objects that are created in a method also need to be considered. When a method
is invoked, any local variables created exist only for the duration of the method.
Once the method has returned, the objects created in the method are eligible for
garbage collection. There is an obvious exception, however. If an object is returned
from the method, its reference might be assigned to a reference variable in the
method that called it; hence, it will not be eligible for collection. Examine the
following code:

import java.util.Date;
public class GarbageFactory ({
public static void main(String [] args) {
Date d = getDate();
doComplicatedStuff () ;
System.out.println("d = " + d);

public static Date getDate() {
Date d2 = new Date() ;
StringBuffer now = new StringBuffer (d2.toString()) ;
System.out.println (now) ;
return d2;

Writing Code That Explicitly Makes Objects Eligible for Collection (Exam Objective 7.4) 259

In the preceding example, we created a method called getDate () that returns a
Date object. This method creates two objects: a Date and a StringBuffer containing
the date information. Since the method returns the Date object, it will not be
eligible for collection even after the method has completed. The StringBuffer object,
though, will be eligible, even though we didn't explicitly set the now variable to nu11.

Isolating a Reference
There is another way in which objects can become eligible for garbage collection,
even if they still have valid references! We call this scenario "islands of isolation."
A simple example is a class that has an instance variable that is a reference
variable to another instance of the same class. Now imagine that two such instances
exist and that they refer to each other. If all other references to these two objects
are removed, then even though each object still has a valid reference, there will be
no way for any live thread to access either object. When the garbage collector runs,
it can usually discover any such islands of objects and remove them. As you can
imagine, such islands can become quite large, theoretically containing hundreds of
objects. Examine the following code:

public class Island {
Island 1i;
public static void main(String [] args) {

Island 12 = new Island() ;
Island i3 = new Island();
Island i4 = new Island();

i2.1 = 1i3; // 12 refers to i3
i3.1 = 1i4; // 13 refers to i4
i4.1 = i2; // 14 refers to 1i2
i2 = null;
i3 = null;
i4 = null;

// do complicated, memory intensive stuff

When the code reaches // do complicated, the three Island objects
(previously known as i2, 13, and 14) have instance variables so that they refer to

260 Chapter 3: Assignments

FIGURE 3-7

each other, but their links to the outside world (12, i3, and 14) have been nulled.
These three objects are eligible for garbage collection.

This covers everything you will need to know about making objects eligible for
garbage collection. Study Figure 3-7 to reinforce the concepts of objects without
references and islands of isolation.

Forcing Garbage Collection

The first thing that should be mentioned here is that, contrary to this section's
title, garbage collection cannot be forced. However, Java provides some methods
that allow you to request that the JVM perform garbage collection.

Note: As of the Java 6 exam, the topic of using System.gc () has been removed
from the exam. The garbage collector has evolved to such an advanced state that
it’s recommended that you never invoke System.gc () in your code - leave it to the
JVM. We are leaving this section in the book in case you’re studying for a version
of the exam prior to SCJP 6.

"Island" objects eligible for garbage collection

public class Island (
Island n;

public static void main(String [] args) {
Island i2
Island i3
Island i4
.n
i3.
i4.

i2

i2
i3
i4

doComplexStuff (); [/2"
T @

[| (= B

new Island() ;
new Island() ;
new Island() ;

null;

10

Three island Objects

The heap
Lost Object

% . .
Indicated an public class Lost {
active reference public static void main(String [1 args) {
Lost x = new Lost ();
x = null;
- doComplexStuff () ;

Indicates a }
deleted reference }

Writing Code That Explicitly Makes Objects Eligible for Collection (Exam Objective 7.4) 2.6 |l

In reality, it is possible only to suggest to the JVM that it perform garbage
collection. However, there are no guarantees the JVM will actually remove all of the
unused objects from memory (even if garbage collection is run). It is essential that
you understand this concept for the exam.

The garbage collection routines that Java provides are members of the Runtime
class. The Runtime class is a special class that has a single object (a Singleton) for
each main program. The Runtime object provides a mechanism for communicating
directly with the virtual machine. To get the Runtime instance, you can use the
method Runtime.getRuntime(), which returns the Singleton. Once you have
the Singleton you can invoke the garbage collector using the gc () method.
Alternatively, you can call the same method on the System class, which has static
methods that can do the work of obtaining the Singleton for you. The simplest way
to ask for garbage collection (remember—just a request) is

System.gc () ;

Theoretically, after calling System.gc (), you will have as much free memory as
possible. We say theoretically because this routine does not always work that way.
First, your JVM may not have implemented this routine; the language specification
allows this routine to do nothing at all. Second, another thread (again, see the
Chapter 9) might grab lots of memory right after you run the garbage collector.

This is not to say that System.gc () is a useless method—it's much better than
nothing. You just can't rely on System.gc () to free up enough memory so that
you don't have to worry about running out of memory. The Certification Exam is
interested in guaranteed behavior, not probable behavior.

Now that we are somewhat familiar with how this works, let's do a little
experiment to see if we can see the effects of garbage collection. The following
program lets us know how much total memory the JVM has available to it and how
much free memory it has. It then creates 10,000 Date objects. After this, it tells us
how much memory is left and then calls the garbage collector (which, if it decides
to run, should halt the program until all unused objects are removed). The final free
memory result should indicate whether it has run. Let's look at the program:

import java.util.Date;
public class CheckGC ({
public static void main(String [] args)
Runtime rt = Runtime.getRuntime () ;
System.out.println("Total JVM memory: "
+ rt.totalMemory()) ;

Uk w N

2672 Chapter 3: Assignments

7.
8.
9.
10.
11.
12.

13.
14.

15. }
16. }

System.out.println("Before Memory = "

+ rt.freeMemory ()) ;
Date d = null;
for(int i = 0;1<10000;i++) {

d = new Date() ;
d = null;
}
System.out.println ("After Memory = "

+ rt.freeMemory()) ;
rt.gc(); // an alternate to System.gc()
System.out.println("After GC Memory = "

+ rt.freeMemory ()) ;

Now, let's run the program and check the results:

Total JVM memory: 1048568
Before Memory = 703008
After Memory = 458048
After GC Memory = 818272

As we can see, the JVM actually did decide to garbage collect (i.e., delete) the
eligible objects. In the preceding example, we suggested to the JVM to perform
garbage collection with 458,048 bytes of memory remaining, and it honored our
request. This program has only one user thread running, so there was nothing else
going on when we called rt .gc (). Keep in mind that the behavior when gc () is
called may be different for different JVMs, so there is no guarantee that the unused
objects will be removed from memory. About the only thing you can guarantee is
that if you are running very low on memory, the garbage collector will run before it
throws an OutOfMemoryException.

EXERCISE 3-2

Try changing the CheckGC program by putting lines 13 and 14 inside a loop.
You might see that not all memory is released on any given run of the GC.

Certification Summary 263

Cleaning Up Before Garbage Collection—the finalize() Method

Java provides you a mechanism to run some code just before your object is deleted
by the garbage collector. This code is located in a method named finalize () that
all classes inherit from class Object. On the surface this sounds like a great idea;
maybe your object opened up some resources, and you'd like to close them before
your object is deleted. The problem is that, as you may have gathered by now, you
can't count on the garbage collector to ever delete an object. So, any code that you
put into your class's overridden finalize () method is not guaranteed to run. The
finalize () method for any given object might run, but you can't count on it, so
don't put any essential code into your finalize () method. In fact, we recommend
that in general you don't override finalize () at all.

Tricky Little finalize() Gotcha's

There are a couple of concepts concerning finalize () that you need to remember.

B For any given object, finalize () will be called only once (at most) by the
garbage collector.

B Calling finalize () can actually result in saving an object from deletion.

Let's look into these statements a little further. First of all, remember that any
code that you can put into a normal method you can put into finalize (). For
example, in the finalize () method you could write code that passes a reference
to the object in question back to another object, effectively uneligiblizing the object
for garbage collection. If at some point later on this same object becomes eligible for
garbage collection again, the garbage collector can still process this object and delete
it. The garbage collector, however, will remember that, for this object, finalize ()
already ran, and it will not run finalize () again.

CERTIFICATION SUMMARY

This was a monster chapter! Don't worry if you find that you have to review some of
these topics as you get into later chapters. This chapter has a lot of foundation stuff
that will come into play later.

We started the chapter by reviewing the stack and the heap; remember local
variables live on the stack, and instance variables live with their objects on the heap.

264 Chapter 3: Assignments

We reviewed legal literals for primitives and Strings, then we discussed the
basics of assigning values to primitives and reference variables, and the rules for
casting primitives.

Next we discussed the concept of scope, or "How long will this variable live?"
Remember the four basic scopes, in order of lessening life span: static, instance,
local, block.

We covered the implications of using uninitialized variables, and the importance
of the fact that local variables MUST be assigned a value explicitly. We talked
about some of the tricky aspects of assigning one reference variable to another, and
some of the finer points of passing variables into methods, including a discussion of
"shadowing."

The next topic was creating arrays, where we talked about declaring,
constructing, and initializing one-, and multi-dimensional arrays. We talked about
anonymous arrays, and arrays of references.

Next we reviewed static and instance initialization blocks, what they look like,
and when they are called.

Phew!

We continued the chapter with a discussion of the wrapper classes; used to
create immutable objects that hold a primitive, and also used to provide conversion
capabilities for primitives: remember valueOf(), xxxValue(), and parseXxx().

Closely related to wrappers, we talked about a big new feature in Java 5,
autoboxing. Boxing is a way to automate the use of wrappers, and we covered some
of its trickier aspects such as how wrappers work with == and the equals() method.

Having added boxing to our toolbox, it was time to take a closer look at
method overloading and how boxing and var-args, in conjunction with widening
conversions, make overloading more complicated.

Finally, we dove into garbage collection, Java's automatic memory management
feature. We learned that the heap is where objects live and where all the cool
garbage collection activity takes place. We learned that in the end, the JVM will
perform garbage collection whenever it wants to. You (the programmer) can request
a garbage collection run, but you can't force it. We talked about garbage collection
only applying to objects that are eligible, and that eligible means "inaccessible from
any live thread." Finally, we discussed the rarely useful finalize() method, and what
you'll have to know about it for the exam. All in all, one fascinating chapter.

Two-Minute Drill 265§

TWO-MINUTE DRILL

Here are some of the key points from this chapter.

Stack and Heap

M|
a

Local variables (method variables) live on the stack.

Objects and their instance variables live on the heap.

Literals and Primitive Casting (Objective 1.3)

Q

UOo0ouUo

Integer literals can be decimal, octal (e.g. 013), or hexadecimal (e.g. 0x34d).
Literals for 1ongs end in L or 1.

Float literals end in F or £, double literals end in a digit or D or 4.

The boolean literals are true and false.

Literals for chars are a single character inside single quotes: 'd'.

Scope (Objectives 1.3 and 7.6)

a
a

Scope refers to the lifetime of a variable.

There are four basic scopes:

Q Static variables live basically as long as their class lives.
Q Instance variables live as long as their object lives.

Q Local variables live as long as their method is on the stack; however, if
their method invokes another method, they are temporarily unavailable.

Q Block variables (e.g., in a for or an if) live until the block completes.

Basic Assignments (Objectives 1.3 and 7.6)

Qa

I I I I B

Literal integers are implicitly ints.

Integer expressions always result in an int-sized result, never smaller.
Floating-point numbers are implicitly doubles (64 bits).

Narrowing a primitive truncates the high order bits.

Compound assignments (e.g. +=), perform an automatic cast.

A reference variable holds the bits that are used to refer to an object.

Reference variables can refer to subclasses of the declared type but not to
superclasses.

266 Chapter 3: Assignments

a

When creating a new object, e.g., Button b = new Button/() ;, three
things happen:

QO Make a reference variable named b, of type Button
Q Create a new Button object

O Assign the Button object to the reference variable b

Using a Variable or Array Element That Is Uninitialized and
Unassigned (Objectives 1.3 and 7.6)

Qa

When an array of objects is instantiated, objects within the array are not
instantiated automatically, but all the references get the default value of null.

When an array of primitives is instantiated, elements get default values.
Instance variables are always initialized with a default value.

Local/automatic/method variables are never given a default value. If you
attempt to use one before initializing it, you'll get a compiler error.

Passing Variables into Methods (Objective 7.3)

a

O0000

Methods can take primitives and/or object references as arguments.

Method arguments are always copies.

Method arguments are never actual objects (they can be references to objects).
A primitive argument is an unattached copy of the original primitive.

A reference argument is another copy of a reference to the original object.

Shadowing occurs when two variables with different scopes share the same
name. This leads to hard-to-find bugs, and hard-to-answer exam questions.

Array Declaration, Construction, and Initialization (Obj. 1.3)

a

a
a
a

(]

Arrays can hold primitives or objects, but the array itself is always an object.
When you declare an array, the brackets can be left or right of the name.
[t is never legal to include the size of an array in the declaration.

You must include the size of an array when you construct it (using new)
unless you are creating an anonymous array.

Elements in an array of objects are not automatically created, although
primitive array elements are given default values.

You'll get a NullPointerException if you try to use an array element in an
object array, if that element does not refer to a real object.

Two-Minute Drill 267

Arrays are indexed beginning with zero.

An ArraylndexOutOfBoundsException occurs if you use a bad index value.
Arrays have a 1ength variable whose value is the number of array elements.
The last index you can access is always one less than the length of the array.
Multidimensional arrays are just arrays of arrays.

The dimensions in a multidimensional array can have different lengths.

I I N R S S

An array of primitives can accept any value that can be promoted implicitly
to the array's declared type;. e.g., a byte variable can go in an int array.

U

An array of objects can hold any object that passes the IS-A (or instanceof)
test for the declared type of the array. For example, if Horse extends Animal,
then a Horse object can go into an Animal array.

Q If you assign an array to a previously declared array reference, the array you're
assigning must be the same dimension as the reference you're assigning it to.

QO You can assign an array of one type to a previously declared array reference of
one of its supertypes. For example, a Honda array can be assigned to an array
declared as type Car (assuming Honda extends Car).

Initialization Blocks (Objectives 1.3 and 7.6)

Q Static initialization blocks run once, when the class is first loaded.

Q Instance initialization blocks run every time a new instance is created. They
run after all super-constructors and before the constructor's code has run.

Q If multiple init blocks exist in a class, they follow the rules stated above,
AND they run in the order in which they appear in the source file.

Using Wrappers (Objective 3.1)

Q The wrapper classes correlate to the primitive types.
Q Worappers have two main functions:
Q To wrap primitives so that they can be handled like objects
Q To provide utility methods for primitives (usually conversions)
Q The three most important method families are
O xxxvalue() Takes no arguments, returns a primitive
QO parsexxx() Takesa String, returns a primitive, throws NFE

Q valueOf () Takes a String, returns a wrapped object, throws NFE

268 Chapter 3: Assignments

Q

a

Wrapper constructors can take a String or a primitive, except for Character,
which can only take a char.

Radix refers to bases (typically) other than 10; octal is radix = 8, hex = 16.

Boxing (Objective 3.1)

Q

a

As of Java 5, boxing allows you to convert primitives to wrappers or to
convert wrappers to primitives automatically.

Using == with wrappers created through boxing is tricky; those with the same
small values (typically lower than 127), will be ==, larger values will not be ==.

Advanced Overloading (Objectives 1.5 and 5.4)

a

O00D0 0

Primitive widening uses the "smallest" method argument possible.

Used individually, boxing and var-args are compatible with overloading.
You CANNOT widen from one wrapper type to another. (IS-A fails.)

You CANNOT widen and then box. (An int can't become a Long.)

You can box and then widen. (An int can become an Object, via an Integer.)

You can combine var-args with either widening or boxing.

Garbage Collection (Objective 7.4)

Q

OO0 000000000

O U

In Java, garbage collection (GC) provides automated memory management.
The purpose of GC is to delete objects that can't be reached.

Only the JVM decides when to run the GC, you can only suggest it.

You can't know the GC algorithm for sure.

Objects must be considered eligible before they can be garbage collected.
An object is eligible when no live thread can reach it.

To reach an object, you must have a live, reachable reference to that object.
Java applications can run out of memory.

Islands of objects can be GCed, even though they refer to each other.
Request garbage collection with System.gc () ; (only before the SCJP 6).
Class Object has a finalize () method.

The finalize () method is guaranteed to run once and only once before the
garbage collector deletes an object.

The garbage collector makes no guarantees, finalize () may never run.

You can uneligibilize an object for GC from within finalize () .

SELFTEST

Given:
class CardBoard ({

Short story = 200;

CardBoard go(CardBoard cb) {
cb = null;
return cb;

}

public static void main(String[] args) ({
CardBoard cl = new CardBoard() ;
CardBoard c2 = new CardBoard() ;
CardBoard c3 = cl.go(c2);
cl = null;
// do Stuff

b
When // dostuff is reached, how many objects are eligible for GC?
0
1
2
Compilation fails

[t is not possible to know

mTmoON®»

An exception is thrown at runtime

Given:
class Alien f{
String invade (short ships) { return "a few"; }

String invade (short... ships) { return "many"; }
}
class Defender ({

public static void main(String [] args)

System.out.println(new Alien() .invade (7)) ;

}
}

What is the result?

A. many

B. a few

C. Compilation fails

D. The output is not predictable

E. An exception is thrown at runtime

Self Test

269

270 Chapter 3: Assignments

3. Given:
1. class Dims
2. public static void main(String[] args)
3. int (111 a = {{1,2,}, {3,4}};
4. int[] b = (int[]l) alll;
5. Object ol = a;
6. int[] [l a2 = (int[][]) ol;
7. int[] b2 = (int[]) ol;
8. System.out.println(b[1]) ;
9. }}

What is the result?

A 2
B. 4
C. An exception is thrown at runtime
D. Compilation fails due to an error on line 4
E. Compilation fails due to an error on line 5
F. Compilation fails due to an error on line 6
G. Compilation fails due to an error on line 7
4. Given:
class Mixer
Mixer () { }
Mixer (Mixer m) { ml = m; }
Mixer ml;
public static void main(Stringl[] args)
Mixer m2 = new Mixer () ;
Mixer m3 = new Mixer (m2); m3.go();
Mixer m4 = m3.ml; m4.go () ;
Mixer m5 = m2.ml; m5.go () ;
void go() { System.out.print("hi "); }
}
What is the result?
A. hi
B. hi hi

C. hi hi hi

D. Compilation fails
E. ni, followed by an exception
F hi nhi, followed by an exception

Given:
class Fizz {

int x = 5;

public static void main(String[] args) {
final Fizz f1 = new Fizz();
Fizz f2 = new Fizz();
Fizz f3 = FizzSwitch(fl,£2);
System.out.println((fl1 == £3) + " " + (f1l.x == £3.x));

}

static Fizz FizzSwitch(Fizz x, Fizz y) {
final Fizz z = X;
Z.X = 6;
return z;

I

What is the result?
true true
false true
true false
false false

Compilation fails

mmgQow>

An exception is thrown at runtime

Given:
class Bird {
{ system.out.print("bl "); }
public Bird() { System.out.print("b2 "); }
}
class Raptor extends Bird ({
static { System.out.print("ri "); }
public Raptor() { System.out.print("r2 "); }
{ system.out.print("r3 "); }
static { System.out.print("r4 "); }
}
class Hawk extends Raptor ({
public static void main(String[] args) {
System.out .print ("pre ") ;
new Hawk () ;
System.out.println ("hawk ") ;

}
}

Self Test

271

272 Chapter 3: Assignments

What is the result?

A. pre bl b2 r3 r2 hawk
B. pre b2 bl r2 r3 hawk
C. pre b2 bl r2 r3 hawk rl r4
D. r1 r4 pre bl b2 r3 r2 hawk
E. r1 r4 pre b2 bl r2 r3 hawk
F. pre rl1 r4 bl b2 r3 r2 hawk
G. pre rl r4 b2 bl r2 r3 hawk
H. The order of output cannot be predicted
I. Compilation fails
7. Given:
3. public class Bridge ({
4. public enum Suits {
5. CLUBS (20) , DIAMONDS (20), HEARTS(30), SPADES(30),
6. NOTRUMP (40) { public int getValue (int bid) {
return ((bid-1)*30)+40; } };
7. Suits (int points) { this.points = points; }
8. private int points;
9. public int getValue (int bid) { return points * bid; }
10. }
11. public static void main(Stringl[] args)
12. System.out.println (Suits.NOTRUMP.getValue (3)) ;
13. System.out.println(Suits.SPADES + " " + Suits.SPADES.points) ;
14. System.out.println(Suits.values()) ;
15. }
16. }

Which are true? (Choose all that apply.)

The output could contain 30

The output could contain ebf73fa

The output could contain DTAMONDS
Compilation fails due to an error on line 6

Compilation fails due to an error on line 7

mmoNw®»

Compilation fails due to an error on line 8

Self Test 273

G. Compilation fails due to an error on line 9

H. Compilation fails due to an error within lines 12 to 14

8. Given:
3. public class Ouch {
4. static int ouch = 7;
5. public static void main(String[] args) {
6. new Ouch () .go (ouch) ;
7. System.out.print (" " + ouch);
8. }
9. void go(int ouch)
10. ouch++;
11. for (int ouch = 3; ouch < 6; ouch++)
12. ;
13. System.out.print (" " + ouch);
14. }
15. }

What is the result?

A 57
B. 58
C. 87
D. 88

E. Compilation fails

F An exception is thrown at runtime

9. Given:

3. public class Bertha

4. static String s = "";

5. public static void main(Stringl[] args) {

6. int x = 4; Boolean y = true; short[] sa = {1,2,3};
7. doStuff (x, y);

8. doStuff (x) ;

9. doStuff (sa, sa);
10. System.out.println(s) ;
11. }
12. static void doStuff (Object o) { s += "1v; }
13. static void doStuff (Object... o) { s += m2n"; }
14. static void doStuff (Integer... i) { s += "3"; }
15. static void doStuff (Long L) { s += manr; }

16. }

274 Chapter 3: Assignments

What is the result?

A 212

B. 232

C. 234

D. 312

E. 332

F 334

G. Compilation fails

10. Given:

3. class Dozens {
4. int[] dz = {1,2,3,4,5,6,7,8,9,10,11,12};
5.}
6. public class Eggs {
7. public static void main(Stringl[] args)
8. Dozens [] da = new Dozens|[3];
9. da[0] = new Dozens() ;
10. Dozens d = new Dozens() ;
11. da[l] = d;
12. d = null;
13. da[l] = null;
14. // do stuff
15. }
16. }

Which two are true about the objects created within main (), and eligible for garbage collection
when line 14 is reached?

Three objects were created

Four objects were created

Five objects were created

Zero objects are eligible for GC
One object is eligible for GC
Two objects are eligible for GC
Three objects are eligible for GC

Ommoun® >

Self Test 2758

Il. Given:
3. class Beta { }
4. class Alpha {
5. static Beta bil;
6. Beta b2;
7.}
8. public class Tester (
9. public static void main(String[] args) {
10. Beta bl = new Betal(); Beta b2 = new Betal();
11. Alpha al = new Alpha(); Alpha a2 = new Alpha();
12. al.bl = bl;
13. al.b2 = bl;
14. az2.b2 = b2;
15. al = null; bl = null; b2 = null;
16. // do stuff
17. }
18. }

When line 16 is reached, how many objects will be eligible for garbage collection?

A 0
B. 1
C. 2
D. 3
E. 4
FE 5
12. Given:
3. class Box {
4. int size;
5. Box (int s) { size = s; }
6. }
7. public class Laser ({
8. public static void main(String[] args) {
9. Box bl = new Box(5) ;
10. Box[] ba = go(bl, new Box(6));
11. ba[0] = bl;
12. for(Box b : ba) System.out.print(b.size + " ");
13. }
14. static Box[] go(Box bl, Box b2) ({
15. bl.size = 4;
16. Box[] ma = {b2, bl};
17. return ma;
18. }

19. }

276 Chapter 3: Assignments

What is the result?

A a4

B. 54

C. 64

D. 45

E. 55

F. Compilation fails

13. Given:

3. public class Dark ({
4. int x = 3;
5. public static void main(String[] args) {
6. new Dark () .gol() ;
7.}
8. void gol () {
9. int x;
10. go2 (++x) ;
11. }
12. void go2(int y) {
13. int x = ++y;
14. System.out.println (x) ;
15. }
16. }

What is the result?

A 2

B. 3

C. 4

D. 5

E. Compilation fails

F. An exception is thrown at runtime

Self Test Answers 277

SELF TEST ANSWERS

I. Given:
class CardBoard {

Short story = 200;

CardBoard go (CardBoard cb) {
cb = null;
return cb;

!

public static void main(String[] args) {
CardBoard cl = new CardBoard() ;

CardBoard c2 = new CardBoard() ;
CardBoard c3 = cl.go(c2);
cl = null;

// do Stuff

I

When // dostuff is reached, how many objects are eligible for GC?
0

1

2

Compilation fails

[t is not possible to know

MmO Oo® >

An exception is thrown at runtime

Answer:

M Cis correct. Only one cardBoard object (ci1) is eligible, but it has an associated Short
wrapper object that is also eligible.

A, B, D, E, and F are incorrect based on the above. (Objective 7.4)

2. Given:

class Alien f{
String invade (short ships) { return "a few"; }
String invade (short... ships) { return "many"; }

}

class Defender ({
public static void main(String [] args)

System.out.println(new Alien() .invade (7)) ;
} o}

278 Chapter 3: Assignments

What is the result?

A. many

B. a few

C. Compilation fails

D. The output is not predictable

E. An exception is thrown at runtime

Answer:

M C is correct, compilation fails. The var-args declaration is fine, but invade takes a short,
so the argument 7 needs to be cast to a short. With the cast, the answer is B, 'a few'.

& A, B, D, and E are incorrect based on the above. (Objective 1.3)

3. Given:

1. class Dims
2. public static void main(Stringl[] args)
3. int[1[] a = {{1,2,}, {3.,4}};
4. int[] b = (int[]) all];
5. Object ol = a;
6. int[1[] a2 = (int[][]) ol;
7. int[] b2 = (int[]) ol;
8. System.out.println(b[1]);
9. } }

What is the result?

A 2

B. 4

C. An exception is thrown at runtime

D. Compilation fails due to an error on line 4

E. Compilation fails due to an error on line 5

F. Compilation fails due to an error on line 6

Compilation fails due to an error on line 7

Answer:

C is correct. A ClassCastException is thrown at line 7 because o1 refers to an int [] []
not an int []. If line 7 was removed, the output would be 4.

& A, B,D,E,FE and G are incorrect based on the above. (Objective 1.3)

4. Given:
class Mixer {
Mixer () { }
Mixer (Mixer m) { ml = m; }

Mixer ml;
public static void main(String[] args) {
Mixer m2 = new Mixer();
Mixer m3 = new Mixer (m2); m3.go();
Mixer m4 = m3.ml; m4.go () ;
Mixer m5 = m2.ml; m5.go () ;
!
void go() { System.out.print("hi "); }
}
What is the result?
A. hi
B. hi hi
C. hi hi hi
D. Compilation fails
E. ni, followed by an exception
F hi hi, followed by an exception
Answer:

Self Test Answers

279

F is correct. The m2 object’s m1 instance variable is never initialized, so when m5 tries to

use it a NullPointerException is thrown.

X A, B, C, D, and E are incorrect based on the above. (Objective 7.3)

5. Given:
class Fizz {

int x = 5;

public static void main(String[] args)
final Fizz f1 = new Fizz();
Fizz £2 = new Fizz();
Fizz f£3 = FizzSwitch(fl,£f2);
System.out.println((f1 == £3) + " " +

}

static Fizz FizzSwitch(Fizz x, Fizz y)
final Fizz z = X;
Z.X = 6;
return z;

I

(f1l.x == £3.x));

280 Chapter 3: Assignments

What is the result?
true true
false true
true false

false false

Compilation fails

mmogow®»

An exception is thrown at runtime

Answer:

A is correct. The references £1, z, and £3 all refer to the same instance of Fizz. The final
modifier assures that a reference variable cannot be referred to a different object, but final
doesn’t keep the object’s state from changing.

& B, C, D, E, and F are incorrect based on the above. (Objective 7.3)

6. Given:
class Bird f{
{ System.out.print ("bl "); }
public Bird() { System.out.print("b2 "); }
}
class Raptor extends Bird {
static { System.out.print("rl "); }
public Raptor () { System.out.print("r2 "); }
{ System.out.print("r3 "); }
static { System.out.print("r4 "); }
}
class Hawk extends Raptor {
public static void main(Stringl[] args)
System.out.print ("pre ") ;
new Hawk () ;
System.out.println ("hawk ") ;
}
}

What is the result?
A. pre bl b2 r3 r2 hawk

pre b2 bl r2 r3 hawk

B

C. pre b2 bl r2 r3 hawk rl r4
D. r1 r4 pre bl b2 r3 r2 hawk
E.

rl r4 pre b2 bl r2 r3 hawk

r o™

Answer:

Self Test Answers 28 |l

pre rl r4 bl b2 r3 r2 hawk
pre rl r4 b2 bl r2 r3 hawk
The order of output cannot be predicted

Compilation fails

4 D is correct. Static init blocks are executed at class loading time, instance init blocks run
right after the call to super () in a constructor. When multiple init blocks of a single type
occur in a class, they run in order, from the top down.

X A, B,C,E, E G, H, and I are incorrect based on the above. Note: you'll probably never
see this many choices on the real exam! (Objective 1.3)

Given:

o Ul b W

7.

8.

9.
10.
11.
12.
13.
14.
15.
1l6.

public class Bridge {

}

public enum Suits
CLUBS (20) , DIAMONDS (20), HEARTS(30), SPADES(30),
NOTRUMP (40) { public int getValue (int bid) {
return ((bid-1)*30)+40; } };
Suits(int points) { this.points = points; }
private int points;
public int getValue(int bid) { return points * bid; }
}
public static void main(Stringl[] args) {
System.out.println(Suits.NOTRUMP.getBidvalue (3)) ;
System.out.println(Suits.SPADES + " " + Suits.SPADES.points) ;
System.out.println(Suits.values()) ;

}

Which are true? (Choose all that apply.)

mmoOo®»

The output could contain 30

The output could contain ebf73fa

The output could contain DIAMONDS
Compilation fails due to an error on line 6
Compilation fails due to an error on line 7

Compilation fails due to an error on line 8

2872 Chapter 3: Assignments

G. Compilation fails due to an error on line 9

H. Compilation fails due to an error within lines 12 to 14

Answer:

4 A and B are correct. The code compiles and runs without exception. The values ()
method returns an array reference, not the contents of the enum, so DIAMONDS is never
printed.

& C, D, E, E G, and H are incorrect based on the above. (Objective 1.3)

Given:
3. public class Ouch ({
4., static int ouch = 7;
5. public static void main(Stringl[] args)
6. new Ouch () .go (ouch) ;
7. System.out.print (" " + ouch);
8. }
9. void go(int ouch) {
10. ouch++;
11. for (int ouch = 3; ouch < 6; ouch++)
12. ;
13. System.out.print (" " + ouch);
14. }
15. }

What is the result?

A 57

B. 58

C. 87

D. 88

E. Compilation fails

F. An exception is thrown at runtime
Answer:

E is correct. The parameter declared on line 9 is valid (although ugly), but the variable
name ouch cannot be declared again on line 11 in the same scope as the declaration on
line 9.

X A, B, C, D, and F are incorrect based on the above. (Objective 1.3)

Self Test Answers 283

9. Given:
3. public class Bertha
4. static String s = "";
5. public static void main(Stringl[] args) {
6. int x = 4; Boolean y = true; short[] sa = {1,2,3};
7. doStuff (x, y);
8. doStuff (x) ;
9. doStuff (sa, sa);
10. System.out.println(s) ;
11. }
12. static void doStuff (Object o) { s += "1"; }
13. static void doStuff (Object... o) { s += m2n"; }
14. static void doStuff (Integer... i) { s += "3"; }
15. static void doStuff (Long L) { s += manm; }
16. }
What is the result?
A. 212
B. 232
C. 234
D. 312
E. 332
F 334
G. Compilation fails

Answer:

@ A is correct. It's legal to autobox and then widen. The first call to dostuff () boxes
the int to an Integer then passes two objects. The second call cannot widen and then
box (making the Long method unusable), so it boxes the int to an Integer. As always, a
var-args method will be chosen only if no non-var-arg method is possible. The third call is
passing two objects—they are of type 'short array.'

B, C, D, E, E and G are incorrect based on the above. (Objective 3.1)

10. Given:
3. class Dozens ({
4. int[] dz = {1,2,3,4,5,6,7,8,9,10,11,12};
5.}
6. public class Eggs {
7. public static void main(String[] args) {

284 Chapter 3: Assignments

8. Dozens [] da = new Dozens[3];
9. da[0] = new Dozens() ;

10. Dozens d = new Dozens() ;

11. da[1l] = d;

12. d = null;

13. dal[l] = null;

14. // do stuff

15. }

16. }

Which two are true about the objects created within main (), and eligible for garbage collection
when line 14 is reached?

A. Three objects were created

B. Four objects were created

C. Five objects were created

D. Zero objects are eligible for GC
E. One object is eligible for GC

F. Two objects are eligible for GC
G. Three objects are eligible for GC
Answer:

C and F are correct. da refers to an object of type "Dozens array," and each Dozens object
that is created comes with its own "int array" object. When line 14 is reached, only the
second Dozens object (and its "int array" object) are not reachable.

X A, B, D, E, and G are incorrect based on the above. (Objective 7.4)

Il. Given:
3. class Beta { }
4. class Alpha {
5. static Beta Dbil;
6. Beta b2;
7.}
8. public class Tester {
9. public static void main(String[] args) {
10. Beta bl = new Betal() ; Beta b2 = new Betal() ;
11. Alpha al = new Alpha(); Alpha a2 = new Alpha();
12. al.bl = bl;
13. al.b2 = bl;
14. az2.b2 = b2;

15. al = null; bl = null; b2 = null;

Self Test Answers 288

16. // do stuff
17. }
18. }

When line 16 is reached, how many objects will be eligible for garbage collection?

A 0
B. 1
C. 2
D. 3
E 4
F 5
Answer:

B is correct. It should be clear that there is still a reference to the object referred to by
a2, and that there is still a reference to the object referred to by a2 .b2. What might be
less clear is that you can still access the other Beta object through the static variable
a2.bl—because it's static.

A, C, D, E, and F are incorrect based on the above. (Objective 7.4)

12. Given:

3. class Box ({
4 int size;
5. Box (int s) { size = s; }
6. }
7. public class Laser ({
8 public static void main(String[] args) {
9. Box bl = new Box(5) ;
10. Box[] ba = go(bl, new Box(6));
11. bal0] = bil;
12. for(Box b : ba) System.out.print(b.size + " ");
13. }
14. static Box[] go(Box bl, Box b2) ({
15. bl.size = 4;
16. Box[] ma = {b2, bl};
17. return ma;
18. }
19. }

What is the result?

A 4 a

B. 514

286 Chapter 3: Assignments

C. 6 4
D. 45
E. 55

F. Compilation fails

Answer:

4 A is correct. Although main ()'s b1 is a different reference variable than go () 's b1, they
refer to the same Box object.

X B, C, D, E, and F are incorrect based on the above. (Objective 7.3)

13. Given:

3. public class Dark
4 int x = 3;
5. public static void main(String[] args) {
6. new Dark () .gol() ;
7 }
8 void gol() {
9. int x;
10. go2 (++x) ;
11. }
12. void go2 (int y)
13. int x = ++y;
14. System.out.println (x) ;
15. }
16. }

What is the result?

A 2

B. 3

C. 4

D. 5

E. Compilation fails

F. An exception is thrown at runtime

Answer:
1 Eis correct. In go1 () the local variable x is not initialized.

A, B, C, D, and F are incorrect based on the above. (Objective 1.3)

