Operators

CERTIFICATION OBJECTIVES

° Using Operators

\/ Two-Minute Drill

Q&A Self Test

288 Chapter 40 Operators

f you've got variables, you're going to modify them.You'll increment them, add them together,

and compare one to another (in about a dozen different ways). In this chapter, you'll learn

how to do all that in Java. For an added bonus, you'll learn how to do things that you'll
probably never use in the real world, but that will almost certainly be on the exam.

CERTIFICATION OBJECTIVE

Java Operators (Exam Objective 7.6)

7.6 Whrite code that correctly applies the appropriate operators including assignment
operators (limited to: =, +=, -=), arithmetic operators (limited to: +, -, *, [, %, ++, --),
relational operators (limited to: <, <=, >, >=, ==, I=), the instanceof operator, logical
operators (limited to: &, |, N, I, &&, |'|), and the conditional operator (? :), to produce
a desired result. Write code that determines the equality of two objects or two primitives.

Java operators produce new values from one or more operands (just so we're all clear,
remember the operands are the things on the right or left side of the operator). The
result of most operations is either a boolean or numeric value. Because you know by
now that Java is not C++, you won't be surprised that Java operators aren't typically
overloaded. There are, however, a few exceptional operators that come overloaded:

B The + operator can be used to add two numeric primitives together, or to
perform a concatenation operation if either operand is a String.

B The &, |, and A operators can all be used in two different ways, although as
of this version of the exam, their bit-twiddling capabilities won't be tested.

Stay awake. Operators are often the section of the exam where candidates see
their lowest scores. Additionally, operators and assignhments are a part of many
questions in other topics...it would be a shame to nail a really tricky threads
question, only to blow it on a pre-increment statement.

Assignment Operators

We covered most of the functionality of the assignment operator, "=", in Chapter 3.
To summarize:

Assignment Operators (Exam Objective 7.6) 289

B When assigning a value to a primitive, size matters. Be sure you know when
implicit casting will occur, when explicit casting is necessary, and when trun-
cation might occur.

B Remember that a reference variable isn't an object; it's a way to get to an
object. (We know all you C++ programmers are just dying for us to say "it's a
pointer", but we're not going to.)

B When assigning a value to a reference variable, type matters. Remember the
rules for supertypes, subtypes, and arrays.

Next we'll cover a few more details about the assignment operators that are on
the exam, and when we get to Chapter 7, we'll take a look at how the assignment
operator "=" works with Strings (which are immutable).

Jatch
Don’t spend time preparing for topics that are no longer on the exam!

In a nutshell, the Java 5 exam differs from the 1.4 exam by moving away from bits, and
towards the API. Many .4 topics related to operators have been removed from the exam,
so in this chapter you WON’T see

m bit shifting operators
m bitwise operators
B two’s complement

m divide by zero stuff

It’s not that these aren’t important topics, it’s just that they’re not on the
exam anymore, and we’re really focused on the exam.

Compound Assignment Operators

There are actually 11 or so compound assignment operators, but only the four
most commonly used (+=, -=, *=, and /=), are on the exam (despite what the
objectives say). The compound assignment operators let lazy typists shave a few
keystrokes off their workload. Here are several example assignments, first without
using a compound operator,

290 Chapter4: Operators

y =Y - 6;
X =X + 2 * 5;

Now, with compound operators:

Yy -= 6;
X 2

+= * 55

The last two assignments give the same result as the first two.

Datch
Earlier versions of the exam put big emphasis on operator precedence
(like: What’s the result of: x = y++ + ++x/z;). Other than a very basic knowledge
of precedence (such as: * and | are higher precedence than + and -), you won’t need to
study operator precedence, except that when using a compound operator, the expression
on the right side of the = will always be evaluated first. For example, you might expect

X *= 2 + 5;
to be evaluated like this:
X = (x * 2) + 5; // incorrect precedence

since multiplication has higher precedence than addition. But instead, the
expression on the right is always placed inside parentheses. it is evaluated like this:

X =x * (2 + 5);

Relational Operators

The exam covers six relational operators (<, <=, > >=, == and !=). Relational

operators always result in a boolean (true or false) value. This boolean value is
most often used in an if test, as follows,

int x = 8;
if (x < 9) {
// do something

}

Relational Operators (Exam Objective 7.6) 29 ||

but the resulting value can also be assigned directly to a boolean primitive:

class CompareTest {
public static void main(String [] args)
boolean b = 100 > 99;
System.out.println ("The value of b is " + b);

}
}

Java has four relational operators that can be used to compare any combination of
integers, floating-point numbers, or characters:

B > greater than
B >= greater than or equal to
B < lessthan

B <= lessthan or equal to

Let's look at some legal comparisons:

class GuessAnimal {
public static void main(String[] args) {

String animal = "unknown";
int weight = 700;
char sex = 'm';
double colorWaveLength = 1.630;
if (weight >= 500) { animal = "elephant"; }
if (colorWaveLength > 1.621) { animal = "gray " + animal; }
if (sex <= 'f£') { animal = "female " + animal; }
System.out .println ("The animal is a " + animal);

In the preceding code, we are using a comparison between characters. It's also
legal to compare a character primitive with any number (though it isn't great
programming style). Running the preceding class will output the following:

The animal is a gray elephant

We mentioned that characters can be used in comparison operators. When
comparing a character with a character, or a character with a number, Java will use
the Unicode value of the character as the numerical value, for comparison.

2972 Chapter 40 Operators

"Equality" Operators

Java also has two relational operators (sometimes called "equality operators") that
compare two similar "things" and return a boolean the represents what's true about
the two "things" being equal. These operators are

B == equals (also known as "equal to")

B !=not equals (also known as "not equal to")

Each individual comparison can involve two numbers (including char), two
boolean values, or two object reference variables. You can't compare incompatible
types, however. What would it mean to ask if a boolean is equal to a char? Or if a
Button is equal to a String array? (Exactly, nonsense, which is why you can't do
it.) There are four different types of things that can be tested:

B numbers

B characters

B boolean primitives
[|

Object reference variables
So what does == look at? The value in the variable—in other words, the bit pattern.
Equality for Primitives

Most programmers are familiar with comparing primitive values. The following code
shows some equality tests on primitive variables:

class ComparePrimitives {
public static void main(Stringl[] args)

System.out.println("char 'a' == 'a'? " + ('a' == 'a'));
System.out.println("char 'a' == 'b'? " + ('a' == 'b'));
System.out.println ("5 != 6?2 " + (5 != 6));
System.out.println("5.0 == 5L? " + (5.0 == 5L));
System.out.println("true == false? " + (true == false));

}
}

This program produces the following output:

char 'a' == 'a'? true
char 'a' == 'b'? false
5 I= 6?7 true

5.0 == 5L? true

true == false? false

Relational Operators (Exam Objective 7.6) 293

As we can see, usually if a floating-point number is compared with an integer and
the values are the same, the == operator returns true as expected.

Equality for Reference Variables

As we saw earlier, two reference variables can refer to the same object, as the
following code snippet demonstrates:

JButton a = new JButton ("Exit") ;
JButton b = a;

After running this code, both variable a and variable b will refer to the same object
(a JButton with the label Exit). Reference variables can be tested to see if they
refer to the same object by using the == operator. Remember, the == operator is
looking at the bits in the variable, so for reference variables this means that if the

Jatch
Don't mistake = for == in a boolean expression.The following is legal:

11. boolean b = false;
12. if (b = true) { System.out.println("b is true");
13. } else { System.out.println("b is false"); }

Look carefully! You might be tempted to think the outputis b is false
but look at the boolean test in line 12.The boolean variable b is not being compared to
true, it's being set to true, so the print1ln executes and we get b is true .The result
of any assignment expression is the value of the variable following the assignment. This
substitution of = for == works only with boolean variables, since the it test can be done
only on boolean expressions. Thus, this does not compile:

7. int x
8. if (x = 0) { }

Il
[y

Because x is an integer (and not a boolean), the result of (x = 0) is 0
(the result of the assignment). Primitive ints cannot be used where a boolean value is
expected, so the code in line 8 won't work unless changed from an assignment (=) to an
equality test (==) as follows:

294 Chapter 41 Operators

bits in both reference variables are identical, then both refer to the same object.
Look at the following code:

import javax.swing.JButton;
class CompareReference {
public static void main(Stringl[] args)
JButton a = new JButton ("Exit");
JButton b = new JButton("Exit");

JButton ¢ = a;
System.out.println("Is reference a == b? " + (a == b)) ;
System.out.println("Is reference a == c? " + (a == c));

This code creates three reference variables. The first two, a and b, are separate
JButton objects that happen to have the same label. The third reference variable, c,
is initialized to refer to the same object that a refers to. When this program runs, the
following output is produced:

Is reference a == b? false
Is reference a == c? true

This shows us that a and ¢ reference the same instance of a JButton. The ==
operator will not test whether two objects are "meaningfully equivalent," a concept

! . 1 .
we'll cover in much more detail in Chapter 7, when we look at the equals () method
(as opposed to the equals operator we're looking at here).

Equality for Enums

Once you've declared an enum, it's not expandable. At runtime, there's no way to
make additional enum constants. Of course, you can have as many variables as you'd
like refer to a given enum constant, so it's important to be able to compare two
enum reference variables to see if they're "equal", i.e. do they refer to the same enum
constant. You can use either the == operator or the equals () method to determine
if two variables are referring to the same enum constant:

class EnumEqual {
enum Color {RED, BLUE} // ; is optional
public static void main(String[] args) {
Color ¢l = Color.RED; Color c2 = Color.RED;
if(cl == c2) { System.out.println("=="); }
if(cl.equals(c2)) { System.out.println("dot equals"); }

bl

instanceof Comparison (Exam Objective 7.6) 295§

(We know } } is ugly, we're prepping you). This produces the output:

dot equals

instanceof Comparison

The instanceof operator is used for object reference variables only, and you can
use it to check whether an object is of a particular type. By type, we mean class or
interface type—in other words, if the object referred to by the variable on the left
side of the operator passes the IS-A test for the class or interface type on the right
side (Chapter 2 covered IS-A relationships in detail). The following simple example

public static void main(String[] args) {
String s = new String("foo");
if (s instanceof String) ({
System.out.print ("s is a String");
}

}

prints this: s is a String

Even if the object being tested is not an actual instantiation of the class type on
the right side of the operator, instanceof will still return true if the object being
compared is assignment compatible with the type on the right.

The following example demonstrates a common use for instanceof: testing an
object to see if it's an instance of one of its subtypes, before attempting a "downcast":

class A { }
class B extends A {
public static void main (String [] args) {
A myA = new B();
m2 (myA) ;
}
public static void m2 (A a) {
if (a instanceof B)
((B)a) .doBstuff () ; // downcasting an A reference
// to a B reference
}
public static void doBstuff ()
System.out.println("'a' refers to a B");
}

}

296 Chapter 40 Operators

The preceding code compiles and produces the output:
'a' refers to a B

In examples like this, the use of the instanceof operator protects the program from
attempting an illegal downcast.

You can test an object reference against its own class type, or any of its
superclasses. This means that any object reference will evaluate to true if you use
the instanceof operator against type Object, as follows,

B b = new B();
if (b instanceof Object)
System.out.print ("b is definitely an Object");

which prints this: b is definitely an Object

Datch
Look for instanceof questions that test whether an object is an instance
of an interface, when the object's class implements the interface indirectly. An indirect
implementation occurs when one of an object's superclasses implements an interface,
but the actual class of the instance does not—for example,

interface Foo { }
class A implements Foo { }
class B extends A { }

new A() ;
new B() ;

A a
B b
the following are true:

a instanceof Foo
b instanceof A
b instanceof Foo // implemented indirectly

An object is said to be of a particular interface type (meaning it will pass
the instanceof test) if any of the object's superclasses implement the interface.

instanceof Comparison (Exam Objective 7.6) 297

In addition, it is legal to test whether the null reference is an instance of a class.
This will always result in false, of course. For example:

class InstanceTest ({
public static void main(String [] args) {
String a = null;
boolean b = null instanceof String;
boolean ¢ = a instanceof String;
System.out.println(b + " " + c);

prints this: false false

instanceof Compiler Error
You can't use the instanceof operator to test across two different class hierarchies.
For instance, the following will NOT compile:

class Cat { }
class Dog {
public static void main(String [] args) ({
Dog d = new Dog() ;
System.out.println(d instanceof Cat) ;

}
}

Compilation fails—there's no way d could ever refer to a cat or a subtype of cat.

Jatch
Remember that arrays are objects, even if the array is an array of

primitives. Watch for questions that look something like this:

int [] nums = new int [3];
if (nums instanceof Object) { } // result is true

An array is always an instance of Object. Any array.

298 Chapter 40 Operators

Table 4-1 summarizes the use of the instanceof operator given the following:

interface Face { }
class Bar implements Face{ }
class Foo extends Bar { }

TABLE 4-1 Operands and Results Using instanceof Operator.

instanceof Operand

First Operand (Type We’re Comparing

(Reference Being Tested) the Reference Against)

null Any class or interface type false
Foo instance Foo, Bar, Face, Object true
Bar instance Bar, Face, Object true
Bar instance Foo false
Foo [] Foo, Bar, Face false
Foo [] Object true
Foo[1] Foo, Bar, Face, Object true

Arithmetic Operators

We're sure you're familiar with the basic arithmetic operators.

B + addition
B - subtraction
B * multiplication
B ,/ division
These can be used in the standard way:
int x = 5 * 3;

int y = x - 4;
System.out.println("x - 4 is " + vy); // Prints 11

Arithmetic Operators (Exam Objective 7.6) 299

The Remainder (%) Operator

One operator you might not be as familiar with is the remainder operator, %. The
remainder operator divides the left operand by the right operand, and the result is
the remainder, as the following code demonstrates:

class MathTest ({
public static void main (String [] args) {
int x = 15;
int y = x % 4;
System.out.println("The result of 15 % 4 is the "
+ "remainder of 15 divided by 4. The remainder is " + y);

}
}

Running class MathTest prints the following:

The result of 15 % 4 is the remainder of 15 divided by 4. The
remainder is 3

(Remember: Expressions are evaluated from left to right by default. You can change
this sequence, or precedence, by adding parentheses. Also remember that the * , /,
and % operators have a higher precedence than the + and - operators.)

String Concatenation Operator

The plus sign can also be used to concatenate two strings together, as we saw earlier
(and as we'll definitely see again):

String animal = "Grey " + "elephant";

String concatenation gets interesting when you combine numbers with Strings.
Check out the following:

String a = "String";
int b = 3;
int ¢ = 7;

System.out.println(a + b + c);

Will the + operator act as a plus sign when adding the int variablesb + <? Or will
the + operator treat 3 and 7 as characters, and concatenate them individually? Will
the result be string10 or string37? OK, you've had long enough to think about it.
The int values were simply treated as characters and glued on to the right side of
the String, giving the result:

300 Chapter4: Operators

String37
So we could read the previous code as

"Start with String a, String, and add the character 3 (the value of b) to it,
to produce a new string String3, and then add the character 7 (the value of c)
to that, to produce a new string String37, then print it out."

However, if you put parentheses around the two int variables, as follows,
System.out.println(a + (b + c));
you'll get this: stringio

Using parentheses causes the (b + c) to evaluate first, so the rightmost + operator
functions as the addition operator, given that both operands are int values. The key
point here is that within the parentheses, the left-hand operand is not a String. If it
were, then the + operator would perform String concatenation. The previous code
can be read as

"Add the values of b + c together, then take the sum and convert it to a String
and concatenate it with the String from variable a."

The rule to remember is this:

If either operand is a String, the + operator becomes a String concatenation
operator. If both operands are numbers, the + operator is the addition operator.

You'll find that sometimes you might have trouble deciding whether, say, the left-
hand operator is a String or not. On the exam, don't expect it to always be obvious.
(Actually, now that we think about it, don't expect it ever to be obvious.) Look at
the following code:

System.out.println(x.foo() + 7);

You can't know how the + operator is being used until you find out what the foo ()
method returns! If foo () returns a String, then 7 is concatenated to the returned

Arithmetic Operators (Exam Objective 7.6) 30 |l

String. But if foo () returns a number, then the + operator is used to add 7 to the
return value of foo ().

Finally, you need to know that it's legal to mush together the compound additive
operator (+=) and Strings, like so:

String s = "123";
S += "45";
S += 67;

System.out.println(s) ;

Since both times the += operator was used and the left operand was a String,
both operations were concatenations, resulting in

1234567

Jatch
If you don't understand how String concatenation works, especially

within a print statement, you could actually fail the exam even if you know the rest of
the answer to the questions! Because so many questions ask, "What is the result?", you
need to know not only the result of the code running, but also how that result is printed.
Although there will be at least a few questions directly testing your String knowledge,
String concatenation shows up in other questions on virtually every objective.
Experiment! For example, you might see a line such as

int b = 2;
System.out.println("" + b + 3);

which prints 23
but if the print statement changes to
System.out.println(b + 3);

then the result becomes 5

302 Chapter 4: Operators

Increment and Decrement Operators

Java has two operators that will increment or decrement a variable by exactly one.
These operators are composed of either two plus signs (++) or two minus signs (--):

B ++ increment (prefix and postfix)

B -- decrement (prefix and postfix)

The operator is placed either before (prefix) or after (postfix) a variable to change
its value. Whether the operator comes before or after the operand can change the
outcome of an expression. Examine the following:

1. class MathTest ({

2 static int players = 0;

3. public static void main (String [] args) {

4 System.out.println("players online: " + players++) ;
5 System.out.println ("The value of players is "

+ players) ;
6. System.out.println ("The value of players is now "
+ ++players) ;

Notice that in the fourth line of the program the increment operator is after the
variable players. That means we're using the postfix increment operator, which
causes players to be incremented by one but only after the value of players is used
in the expression. When we run this program, it outputs the following:

%$java MathTest

players online: 0

The value of players is 1

The value of players is now 2

Notice that when the variable is written to the screen, at first it says the value is
0. Because we used the postfix increment operator, the increment doesn't happen
until after the players variable is used in the print statement. Get it? The "post"
in postfix means after. Line 5 doesn't increment players; it just outputs its value to
the screen, so the newly incremented value displayed is 1. Line 6 applies the prefix
increment operator to players, which means the increment happens before the
value of the variable is used, so the output is 2.

Expect to see questions mixing the increment and decrement operators with
other operators, as in the following example:

Arithmetic Operators (Exam Objective 7.6) 303

int x = 2; int y = 3;
if ((y == x++) | (x < ++y)) |
System.out.println("x = " + x + "y = " + y);

}
The preceding code prints: x = 3 y = 4
You can read the code as follows: "If 3 is equal to 2 OR 3 < 4"

The first expression compares x and y, and the result is false, because the
increment on x doesn't happen until after the == test is made. Next, we increment
%, so now x is 3. Then we check to see if x is less than y, but we increment y before
comparing it with x! So the second logical test is (3 < 4). The result is true, so the
print statement runs.

As with String concatenation, the increment and decrement operators are used
throughout the exam, even on questions that aren't trying to test your knowledge
of how those operators work. You might see them in questions on for loops,
exceptions, even threads. Be ready.

Jatch . .
W Look out for questions that use the increment or decrement operators on

a final variable. Because final variables can't be changed, the increment and decrement
operators can't be used with them, and any attempt to do so will result in a compiler
error.The following code won't compile:

final int x = 5;
int y = X++;

and produces the error:

Test.java:4: cannot assign a value to final variable x
int y = X++;

You can expect a violation like this to be buried deep in a complex piece
of code. If you spot it, you know the code won't compile and you can move on without
working through the rest of the code.

This question might seem to be testing you on some complex arithmetic
operator trivia, when in fact it’s testing you on your knowledge of the final modifier.

304 Chapter 4: Operators

Conditional Operator

The conditional operator is a ternary operator (it has three operands) and is used

to evaluate boolean expressions, much like an 1f statement except instead of
executing a block of code if the test is true, a conditional operator will assign a
value to a variable. In other words, the goal of the conditional operator is to decide
which of two values to assign to a variable. This operator is constructed using a ?
(question mark) and a : (colon). The parentheses are optional. Its structure is:

x = (boolean expression) ? value to assign if true : value to assign if false
Let's take a look at a conditional operator in code:

class Salary {
public static void main(String [] args) {
int numOfPets = 3;

String status = (numOfPets<4) ? "Pet limit not exceeded"
"too many pets";
System.out.println("This pet status is " + status);

}
}

You can read the preceding code as

Set numofPets equal to 3. Next we're going to assign a String to the status
variable. If numofPets is less than 4, assign "Pet limit not exceeded" to the
status variable; otherwise, assign "too many pets" to the status variable.

A conditional operator starts with a boolean operation, followed by two possible
values for the variable to the left of the assignment (=) operator. The first value (the
one to the left of the colon) is assigned if the conditional (boolean) test is true,
and the second value is assigned if the conditional test is false. You can even nest
conditional operators into one statement:

class AssignmentOps {
public static void main(String [] args) {
int sizeOfYard = 10;
int numOfPets = 3;
String status = (numOfPetsg<4)?"Pet count OK"
: (sizeOfYard > 8)? "Pet limit on the edge"
:"too many pets";
System.out.println("Pet status is " + status);

Logical Operators (Exam Objective 7.6) 305

Don't expect many questions using conditional operators, but remember that
conditional operators are sometimes confused with assertion statements, so be
certain you can tell the difference. Chapter 5 covers assertions in detail.

Logical Operators

The exam objectives specify six "logical" operators (&, |, A, !, &&, and |). Some
Sun documentation uses other terminology for these operators, but for our purposes
the "logical operators" are the six listed above, and in the exam objectives.

Bitwise Operators (Not on the Exam!)

Okay, this is going to be confusing. Of the six logical operators listed above, three of
them (&, I, and /) can also be used as "bitwise" operators. Bitwise operators were
included in previous versions of the exam, but they're not on the Java 5 exam. Here
are several legal statements that use bitwise operators:

byte bl = 6 & 8;
byte b2 = 7 | 9;
byte b3 = 5 * 4;
System.out.println(bl + " " + b2 + " " + Db3);

Bitwise operators compare two variables bit by bit, and return a variable
whose bits have been set based on whether the two variables being compared had
respective bits that were either both "on" (&), one or the other "on" (1), or exactly
one "on" (). By the way, when we run the preceding code, we get

015 1
Having said all this about bitwise operators, the key thing to remember is this:

BITWISE OPERATORS ARE NOT ON THE EXAM!

So why did we bring them up? If you get hold of an old exam preparation book, or if
you find some mock exams that haven't been properly updated, you're bound to find
questions that perform bitwise operations. Unless you're a glutton for punishment,
you can skip this kind of mock question.

306 Chapter 4: Operators

Short-Circuit Logical Operators

There are five logical operators on the exam that are used to evaluate statements
that contain more than one boolean expression. The most commonly used of the
five are the two short-circuit logical operators. They are

B &s& short-circuit AND
B || short-circuit OR

They are used to link little boolean expressions together to form bigger boolean
expressions. The && and | | operators evaluate only boolean values. For an AND
(&&) expression to be true, both operands must be t rue—for example,

if ((2 < 3) && (3 < 4)) { }

The preceding expression evaluates to true because both operand one (2 < 3) and
operand two (3 < 4) evaluate to true.

The short-circuit feature of the && operator is so named because it doesn't waste
its time on pointless evaluations. A short-circuit && evaluates the left side of the
operation first (operand one), and if it resolves to false, the && operator doesn't
bother looking at the right side of the expression (operand two) since the &&
operator already knows that the complete expression can't possibly be true.

class Logical {
public static void main(String [] args) {
boolean b = true && false;
System.out.println("boolean b = " + b);

}
}

When we run the preceding code, we get

%$java Logical
boolean b = false

The | | operator is similar to the && operator, except that it evaluates to true if
EITHER of the operands is true. If the first operand in an OR operation is true, the
result will be true, so the short-circuit | | doesn't waste time looking at the right
side of the equation. If the first operand is false, however, the short-circuit | |

has to evaluate the second operand to see if the result of the OR operation will be

Logical Operators (Exam Objective 7.6) 307

true or false. Pay close attention to the following example; you'll see quite a few
questions like this on the exam:

1. class TestOR ({

2. public static void main(String[] args) {
3. if ((isItSmall(3)) || (isItSmall(7))) {
4. System.out.println("Result is true");
5. }
6. if ((isItSmall(6)) || (isItSmall(9)))
7. System.out.println("Result is true");
8. }
9. }

10.

11. public static boolean isItSmall (int i) {
12. if (i < 5) {

13. System.out.println("i < 5");

14. return true;

15. } else {

16. System.out.println("i >= 5");

17. return false;

18. }

19. }

20. }

What is the result?

% java TestOR

i< 5

Result is true

i >=5

i >=5

Here's what happened when the main () method ran:

I. When we hit line 3, the first operand in the | | expression (in other words,
the left side of the | | operation) is evaluated.

2. The isTtSmall (3) method is invoked, prints "1 < 5", and returns true.

3. Because the first operand in the | | expression on line 3 is true, the | |
operator doesn't bother evaluating the second operand. So we never see the
"i >= 5" that would have printed had the second operand been evaluated
(which would have invoked isItSmall (7)).

308 Chapter 4: Operators

4. Line 6 is evaluated, beginning with the first operand in the | | expression.
5. The isTtSmall (6) method is called, prints "i >= 5", and returns false.

6. Because the first operand in the | | expression on line 6 is false, the | |
operator can't skip the second operand; there's still a chance the expression
can be true, if the second operand evaluates to true.

7. The isTtSmall (9) method is invoked and prints "1 >= 5".

8. The isTtsSmall (9) method returns false, so the expression on line 6 is
false, and thus line 7 never executes.

Datch
The || and && operators work only with boolean operands.The exam

may try to fool you by using integers with these operators:
if (5 && 6) { }

It looks as though we're trying to do a bitwise AND on the bits
representing the integers 5 and 6, but the code won't even compile.

Logical Operators (Not Short-Circuit)

There are two non-short-circuit logical operators.

B s non-short-circuit AND
B | non-short-circuit OR

These operators are used in logical expressions just like the && and | | operators
are used, but because they aren't the short-circuit operators, they evaluate both sides
of the expression, always! They're inefficient. For example, even if the first operand
(left side) in an & expression is false, the second operand will still be evaluated—
even though it's now impossible for the result to be true! And the | is just as
inefficient: if the first operand is true, the Java Virtual Machine (JVM) still plows
ahead and evaluates the second operand even when it knows the expression will be
true regardless.

Logical Operators (Exam Objective 7.6) 309

You'll find a lot of questions on the exam that use both the short-circuit and
non-short-circuit logical operators. You'll have to know exactly which operands are
evaluated and which are not, since the result will vary depending on whether the
second operand in the expression is evaluated:

int z = 5;

if(++2 > 5 || ++2 > 6) z++; // z = 7 after this code
versus:

int z = 5;

if(++2 > 5 | ++2 > 6) z++; // z = 8 after this code

Logical Operators A and!

The last two logical operators on the exam are

B ~ exclusive-OR (XOR)

B : boolean invert

The /A (exclusive-OR) operator evaluates only boolean values. The /A operator

is related to the non-short-circuit operators we just reviewed, in that it always
evaluates both the left and right operands in an expression. For an exclusive-OR (")
expression to be true, EXACTLY one operand must be true—for example,

System.out.println("xor " + ((2<3) ~ (4>3)));
produces the output: xor false

The preceding expression evaluates to false because BOTH operand one (2 < 3)
and operand two (4 > 3) evaluate to true.
The ! (boolean invert) operator returns the opposite of a boolean's current value:

if (1 (7 == 5)) { System.out.println("not equal"); }
can be read "if it's not true that 7 == 5," and the statement produces this output:
not equal

Here's another example using booleans:

3 10 Chapter 4: Operators

boolean t = true;
boolean f = false;
System.out.println("! " + (t & !f) + " " + f);

produces the output:
! true false

In the preceding example, notice that the & test succeeded (printing true), and
that the value of the boolean variable £ did not change, so it printed false.

CERTIFICATION SUMMARY

If you've studied this chapter diligently, you should have a firm grasp on Java
operators, and you should understand what equality means when tested with the ==
operator. Let's review the highlights of what you've learned in this chapter.

The logical operators (&& , ||, &, |, and /) can be used only to evaluate two
boolean expressions. The difference between && and & is that the && operator
won't bother testing the right operand if the left evaluates to false, because the
result of the && expression can never be true. The difference between | | and | is
that the | | operator won't bother testing the right operand if the left evaluates to
true, because the result is already known to be true at that point.

The == operator can be used to compare values of primitives, but it can also
be used to determine whether two reference variables refer to the same object.

The instanceof operator is used to determine if the object referred to by a
reference variable passes the IS-A test for a specified type.

The + operator is overloaded to perform String concatenation tasks, and can
also concatenate Strings and primitives, but be careful—concatenation can be
tricky.

The conditional operator (a.k.a. the "ternary operator") has an unusual, three-
operand syntax—don't mistake it for a complex assert statement.

The ++ and - - operators will be used throughout the exam, and you must pay
attention to whether they are prefixed or postfixed to the variable being updated.

Be prepared for a lot of exam questions involving the topics from this chapter.
Even within questions testing your knowledge of another objective, the code will
frequently use operators, assignments, object and primitive passing, and so on.

Two-Minute Drill 3 | |l

TWO-MINUTE DRILL

Here are some of the key points from each section in this chapter.

Relational Operators (Objective 7.6)

a
a

Relational operators always result in a boolean value (true or false).

There are six relational operators: >, >=, <, <=, == and !=. The last two (==
and !=) are sometimes referred to as equality operators.

When comparing characters, Java uses the Unicode value of the character as
the numerical value.

Equality operators
Q There are two equality operators: == and !=.

Q Four types of things can be tested: numbers, characters, booleans, and
reference variables.

When comparing reference variables, == returns true only if both references

refer to the same object.

instanceof Operator (Objective 7.6)

Q

a

Qa

instanceof is for reference variables only, and checks for whether the object
is of a particular type.

The instanceof operator can be used only to test objects (or null) against
class types that are in the same class hierarchy.

For interfaces, an object passes the instanceof test if any of its superclasses
implement the interface on the right side of the instanceof operator.

Arithmetic Operators (Objective 7.6)

a
a
a

There are four primary math operators: add, subtract, multiply, and divide.
The remainder operator (%), returns the remainder of a division.

Expressions are evaluated from left to right, unless you add parentheses, or
unless some operators in the expression have higher precedence than others.

The *, /, and % operators have higher precedence than + and -.

3 12 Chapter4:

Operators

String Concatenation Operator (Objective 7.6)

a
a

If either operand is a String, the + operator concatenates the operands.

If both operands are numeric, the + operator adds the operands.

Increment/Decrement Operators (Objective 7.6)

a
a
a

Q

Prefix operators (++ and --) run before the value is used in the expression.
Postfix operators (++ and --) run after the value is used in the expression.

In any expression, both operands are fully evaluated before the operator
is applied.

Variables marked £inal cannot be incremented or decremented.

Ternary (Conditional Operator) (Objective 7.6)

Q

Returns one of two values based on whether a boolean expression is true
or false.

Q Returns the value after the ? if the expression is true.

Q Returns the value after the : if the expression is false.

Logical Operators (Objective 7.6)

a
a

U000

(I]

The exam covers six "logical" operators: &, |, A, !, &&, and | |.

Logical operators work with two expressions (except for !) that must resolve
to boolean values.

The && and & operators return true only if both operands are true.
The | | and | operators return true if either or both operands are true.
The && and | | operators are known as short-circuit operators.

The && operator does not evaluate the right operand if the left operand
is false.

The | | does not evaluate the right operand if the left operand is true.
The & and | operators always evaluate both operands.

The A operator (called the "logical XOR"), returns true if exactly one oper-
and is true.

The ! operator (called the "inversion" operator), returns the opposite value of
the boolean operand it precedes.

SELFTEST

I. Given:

class Hexy {
public static void main(Stringl[] args) {
Integer i = 42;

Self Test 3|3

String s = (i<40)?"life": (i>50)?"universe":"everything";
System.out.println(s) ;
}
}
What is the result?
A. null
B. 1life
C. universe
D. everything
E. Compilation fails
F. An exception is thrown at runtime
2. Given:

1. class Comp2 f{

2 public static void main(String[] args) {

3 float f1 = 2.3f;

4 float[1[] f2 = {{42.0f}, {1.7£, 2.3f}, {2.6f,
5. float[] £3 = {2.7f};

6. Long x = 42L;

7 // insert code here

8 System.out.println("true") ;

9

0

And the following five code fragments:

Fl1. if(fl1 == £2)

F2. if(f1 == f2[2][1])
F3. if(x == f2[0][0])
F4. if(f1 == £2[1,1])
F5. 1f(f£3 == f2[2])

2.7€}};

3 14 Chapter 4. Operators

What is true?

One of them will compile, only one will be true
Two of them will compile, only one will be true
Two of them will compile, two will be true

Three of them will compile, only one will be true

Three of them will compile, exactly two will be true

mTmonNw»

Three of them will compile, exactly three will be true

3. Given:

class Fork {
public static void main(String[] args) {

if (args.length == | args[1].equals("test")) {
System.out.println("test case");
} else {
System.out.println ("production " + args[0]);
}

}
}

And the command-line invocation:
java Fork live2

What is the result?

A. test case

B. production live2

C. test case live2

D. Compilation fails

E. An exception is thrown at runtime
4. Given:

class Feline ({
public static void main(String[] args) {
Long x = 42L;
Long y = 44L;

System.out.print (" " + 7 + 2 + " ");
System.out.print (foo() + x + 5 + " ");
System.out.println(x + y + fool());

}

static String foo() { return "foo"; }

}

Self Test 31§

What is the result?

9 foo47 86foo

9 foo47 4244foo
9 foo425 86foo
foo425 4244foo
72 foo47 86foo
72 foo47 4244foo

72 foo425 86foo

I0mTmoN®»
(Vo]

72 foo425 4244foo

Compilation fails

Place the fragments into the code to produce the output 33. Note, you must use each fragment
exactly once.

CODE:
class Incr f{
public static void main(String[] args) {
Integer x = 7;
int y = 2;

X i

System.out.println (x) ;

}
}

FRAGMENTS:

LY
I8
LY

<
><
e

3 16 Chapter 4. Operators

6. Given:

11.
12.
13.

W J O Ul b W

public class Twisty {

}

{ index = 1; }

int index;

public static void main(String[] args) {
new Twisty () .go();

}

void go() {
int [1[] dd = {{9.,8,7}, {6,5,4}, {3,2,1,0}};
System.out.println (dd[index++] [index++]) ;

}

What is the result? (Choose all that apply.)

A 1
B. 2
C 4
D. 6
E. 8
F
G.
7. Given:
10
11.
12.
13.
14.

Compilation fails

An exception is thrown at runtime

W J O Ul b W

public class McGee {

}

public static void main(String[] args) {
Days dl = Days.TH;
Days d2 = Days.M;
for (Days d: Days.values()) {
if (d.equals (Days.F)) break;
d2 = d;
}

System.out.println((dl == d2)?"same old"

}

enum Days {M, T, W, TH, F, SA, SU};

What is the result?

A

B.

same old

newly new

"newly new") ;

Self Test 317

Compilation fails due to multiple errors
Compilation fails due only to an error on line 7
Compilation fails due only to an error on line 8

Compilation fails due only to an error on line 11

O™ mo N

Compilation fails due only to an error on line 13

8. Given:

4. public class SpecialOps

5 public static void main(String[] args) {
6. String s = "";
7
8

Boolean bl = true;
. boolean b2 = false;

9. if ((b2 = false) | (21%5) > 2) s += "x";
10. if (bl || (b2 == true)) s += "y";
11. if (b2 == true) s 4= "z";
12. System.out.println(s) ;

13. }
14. }

Which are true? (Choose all that apply.)

A. Compilation fails

B. x will be included in the output
C. vy will be included in the output
D. zwill be included in the output
E. An exception is thrown at runtime
9. Given:
3. public class Spock {
4. public static void main(String[] args) {
5. int mask = 0;
6. int count = 0;
7. if (((5<7) || (++count < 10)) | mask++ < 10) mask = mask + 1;
8. if((6 > 8) ~ false) mask = mask + 10;
9. if(!(mask > 1) && ++count > 1) mask = mask + 100;
10. System.out.println(mask + " " + count);
11. }

12. }

3 18 Chapter4: Operators

Which two are true about the value of mask and the value of count at line 10?
(Choose two.)

A. maskisO

B. maskisl

C. maskis?2

D. maskis 10

E. mask is greater than 10
F countisO

G

count is greater than O

10. Given:
3. interface Vessel { }
4. interface Toy { }
5. class Boat implements Vessel { }
6. class Speedboat extends Boat implements Toy { }
7. public class Tree {
8. public static void main(String[] args) {
9. String s = "0";
10. Boat b = new Boat () ;
11. Boat b2 = new Speedboat () ;
12. Speedboat s2 = new Speedboat () ;
13. if ((b instanceof Vessel) && (b2 instanceof Toy)) s += "1";
14. if ((s2 instanceof Vessel) && (s2 instanceof Toy)) s += "2";
15. System.out.println(s) ;
16. }
17. }

What is the result?
0

01

02

012

Compilation fails

mmoNwy»

An exception is thrown at runtime

Self Test Answers 3 | ©

SELF TEST ANSWERS

I. Given:

class Hexy ({
public static void main(String[] args) {
Integer 1 = 42;
String s = (i<40)?"life": (i>50)?"universe":"everything";
System.out.println(s) ;
}
}

What is the result?
null

life
universe
everything

Compilation fails

TmoOo® >

An exception is thrown at runtime

Answer:

D is correct. This is a ternary nested in a ternary with a little unboxing thrown in.
Both of the ternary expressions are false.

B A, B, C, E, and F are incorrect based on the above.

(Objective 7.6)
2. Given:
1. class Comp2
2. public static void main(Stringl[] args) {
3. float f1 = 2.3f;
4. float[1[] £2 = {{42.0f}, {1.7£, 2.3f}, {2.6f, 2.7£}};
5. float[] £3 = {2.7f};
6. Long x = 42L;
7. // insert code here
8. System.out.println("true") ;
9. }
10. }

320 Chapter4: Operators

And the following five code fragments:

Fl. if(f1 == £2)

F2. if(f1 == f2[2]1[1])
F3. if(x == £2[0][0])
F4. if(f1 == £f2[1,1])
F5. 1if(f3 == f2[2])

What is true?

One of them will compile, only one will be true
Two of them will compile, only one will be true
Two of them will compile, two will be true

Three of them will compile, only one will be true

Three of them will compile, exactly two will be true

mmoNw»

Three of them will compile, exactly three will be true

Answer:

D is correct. Fragments F2, F3, and 5 will compile, and only F3 is true.

X A, B, C, E, and F are incorrect. F1 is incorrect because you can’t compare a primitive to
an array. F4 is incorrect syntax to access an element of a two-dimensional array.

(Objective 7.6)

3. Given:

class Fork {
public static void main(String[] args) {

if (args.length == | args[1].equals("test")) {
System.out.println("test case");
} else {

System.out.println("production " + args[0]);

}
}
}

And the command-line invocation:

java Fork live2

What is the result?

A. test case

B. production live2

Self Test Answers 32 |

C. test case live2
D. Compilation fails

E. An exception is thrown at runtime

Answer:

E is correct. Because the short circuit (| |) is not used, both operands are evaluated. Since
args [1] is past the args array bounds, an ArrayIndexoutOfBoundsException is thrown.

X A, B, C, and D are incorrect based on the above. (Objective 7.6)
Given:

class Feline ({
public static void main(String[] args) {
Long x = 42L;
Long y = 44L;
System.out.print (" " + 7 + 2 + " ");
System.out.print (foo() + x + 5 + " ");
System.out.println(x + y + fool());

}

static String foo() { return "foo"; }

}

What is the result?

9 foo47 86foo

9 foo47 4244foo
9 foo425 86foo
9 foo425 4244foo
72 foo47 86foo
72 foo47 4244foo
72 foo425 86foo

IomMmoOw®»

72 foo425 4244foo

Compilation fails

Answer:

M G is correct. Concatenation runs from left to right, and if either operand is a String,
the operands are concatenated. If both operands are numbers they are added together.
Unboxing works in conjunction with concatenation.

X A, B,C,D,E, E H, and I are incorrect based on the above. (Objective 7.6)

3272 Chapter 4. Operators

5. Place the fragments into the code to produce the output 33. Note, you must use each fragment

exactly once.

CODE:

class Incr {
public static void main(Stringl[] args) {
Integer x = 7;
int y = 2;

X i

System.out.println (x) ;

}
}
FRAGMENTS:
Y Y Y Y
vy X X

Answer:

class Incr {
public static void main (String[] args) {
Integer x = 7;

int vy = 2;
X *= X;
y *=Yyi
Yy *=Yi
X -=Y;

System.out .println (x) ;

Yeah, we know it’s kind of puzzle-y, but you might encounter something like it on the real exam.

(Objective 7.6)

Self Test Answers 323

6. Given:
3. public class Twisty {
4. { index = 1; }
5. int index;
6. public static void main(String[] args) {
7. new Twisty () .go();
8. }
9. wvoid go() {
10. int [1[] dd = {{9,8,7}, {6,5,4}, {3,2,1,0}};
11. System.out.println (dd[index++] [index++]) ;
12. }
13. }

What is the result? (Choose all that apply.)

A 1

B. 2

C. 4

D. 6

E. 8

F. Compilation fails

G. An exception is thrown at runtime
Answer:

M Cis correct. Multidimensional arrays' dimensions can be inconsistent, the code uses an
initialization block, and the increment operators are both post-increment operators.

X A, B, D, E, E and G are incorrect based on the above. (Objective 1.3)

7. Given:

3. public class McGee ({

4, public static void main(String[] args) {

5. Days dl = Days.TH;

6. Days d2 = Days.M;

7. for (Days d: Days.values()) {

8. if (d.equals (Days.F)) break;

9. d2 = d;
10. }
11. System.out.println((dl == d2)?"same old" : "newly new");

324 Chapter 4. Operators

12. }
13. enum Days {M, T, W, TH, F, SA, SU};
14. }

What is the result?
same old
newly new

Compilation fails due to multiple errors

A

B

C

D. Compilation fails due only to an error on line 7
E. Compilation fails due only to an error on line 8
F. Compilation fails due only to an error on line 11
G

Compilation fails due only to an error on line 13

Answer:

A is correct. All of this syntax is correct. The for-each iterates through the enum using
the values () method to return an array. Enums can be compared using either equals ()
or ==. Enums can be used in a ternary operator's Boolean test.

& B, C, D, E, E and G are incorrect based on the above. (Objective 7.6)

8. Given:

4. public class SpecialOps {

5 public static void main(Stringl[] args)
6. String s = "";
7
8

Boolean bl = true;
. Boolean b2 = false;

9. if ((b2 = false) | (21%5) > 2) s += "x";
10. if (bl || (b2 = true)) s += "y";
11. if (b2 == true) S 4= "z";
12. System.out.println(s) ;

13. }
14. }

Which are true? (Choose all that apply.)
A. Compilation fails
B. x will be included in the output

C. y will be included in the output

Self Test Answers 328

D. zwill be included in the output

E. An exception is thrown at runtime

Answer:

C is correct. First of all, boxing takes care of the Boolean. Line 9 uses the modulus operator,
which returns the remainder of the division, which in this case is 1. Also, line 9 sets b2 to
false, and it doesn't test b2's value. Line 10 sets b2 to true, and it doesn’t test its value;
however, the short circuit operator keeps the expression b2 = true from being executed.

X A, B, D, and E are incorrect based on the above. (Objective 7.6)

Given:

3. public class Spock

4 public static void main(String[] args) {

5. int mask = 0;

6 int count = 0;

7 if(((5<7) || (++count < 10)) | mask++ < 10) mask =
8 if((6 > 8) * false) mask =
9. if(!'(mask > 1) && ++count > 1) mask =
10. System.out.println(mask + " " + count) ;
11. }
12. }

mask + 1;
mask + 10;
mask + 100;

Which two answers are true about the value of mask and the value of count at line 10?

(Choose two.)
A. maskisO

B. maskisl

C. maskis?2

D. maskis 10

E. mask is greater than 10
F countisO

G.

count is greater than O

Answer:

M C andF are correct. At line 7 the | | keeps count from being incremented, but the
| allows mask to be incremented. At line 8 the A returns true only if exactly one operand

is true. At line 9 mask is 2 and the && keeps count from being incremented.

X A, B, D, E, and G are incorrect based on the above. (Objective 7.6)

326 Chapter 4. Operators

10. Given:

3. interface Vessel { }

4. interface Toy { }

5. class Boat implements Vessel { }

6. class Speedboat extends Boat implements Toy { }

7. public class Tree {

8 public static void main(Stringl[] args)

9. String s = "O";

10. Boat b = new Boat() ;

11. Boat b2 = new Speedboat () ;

12. Speedboat s2 = new Speedboat () ;

13. if ((b instanceof Vessel) && (b2 instanceof Toy)) s += "1";
14. if ((s2 instanceof Vessel) && (s2 instanceof Toy)) s += "2";
15. System.out .println(s) ;
16. }
17. }

What is the result?
0

01

02

012

Compilation fails

mMm g Nw®»

An exception is thrown at runtime

Answer:

D is correct. First, remember that instanceof can look up through multiple levels of an
inheritance tree. Also remember that instanceof is commonly used before attempting
a downcast, so in this case, after line 15, it would be possible to say Speedboat s3 =
(Speedboat) b2;.

X A, B, C, E, and F are incorrect based on the above. (Objective 7.6)

