Flow Control,
Exceptions, and
Assertions

CERTIFICATION OBJECTIVES

e Use if and switch Statements e State the Effects of Exceptions

e Develop for, do, and while Loops e Recognize Common Exceptions

Use break and continue Statements
/ Two-Minute Drill

Q&A SelfTest

o Develop Code with Assertions

e Use try, catch, and finally Statements

328 Chapter 5: Flow Control, Exceptions, and Assertions

an you imagine trying to write code using a language that didn't give you a way to

execute statements conditionally? Flow control is a key part of most any useful

programming language, and Java offers several ways to do it. Some, like if statements
and for loops,are common to most languages. But Java also throws in a couple of flow control
features you might not have used before—exceptions and assertions.

The if statement and the switch statement are types of conditional/decision
controls that allow your program to behave differently at a "fork in the road,"
depending on the result of a logical test. Java also provides three different looping
constructs—for, while, and do—so you can execute the same code over and
over again depending on some condition being true. Exceptions give you a clean,
simple way to organize code that deals with problems that might crop up at runtime.
Finally, the assertion mechanism, added to the language with version 1.4, gives you
a way to do testing and debugging checks on conditions you expect to smoke out
while developing, when you don't necessarily need or want the runtime overhead
associated with exception handling.

With these tools, you can build a robust program that can handle any logical
situation with grace. Expect to see a wide range of questions on the exam that
include flow control as part of the question code, even on questions that aren't
testing your knowledge of flow control.

CERTIFICATION OBJECTIVE

if and switch Statements (Exam Objective 2.1)

2.1 Develop code that implements an if or switch statement; and identify legal argument
types for these statements.

The if and switch statements are commonly referred to as decision statements.
When you use decision statements in your program, you're asking the program to
evaluate a given expression to determine which course of action to take. We'll look
at the if statement first.

if-else Branching (Exam Objective 2.1) 329

if-else Branching

The basic format of an if statement is as follows:

if (booleanExpression) {
System.out.println("Inside if statement");

}

The expression in parentheses must evaluate to (a boolean) true or false.
Typically you're testing something to see if it's true, and then running a code block
(one or more statements) if it is true, and (optionally) another block of code if it
isn't. The following code demonstrates a legal 1 f-else statement:

if (x > 3) {
System.out.println("x is greater than 3");
} else {
System.out.println("x is not greater than 3");

}

The else block is optional, so you can also use the following:

if (x > 3) {
y = 2;

}

z += 8;

a =y + X;

The preceding code will assign 2 to y if the test succeeds (meaning x really is greater
than 3), but the other two lines will execute regardless. Even the curly braces

are optional if you have only one statement to execute within the body of the
conditional block. The following code example is legal (although not recommended
for readability):

if (x > 3) // bad practice, but seen on the exam

y = 2;
z += 8;
a =y + X;

Sun considers it good practice to enclose blocks within curly braces, even if
there's only one statement in the block. Be careful with code like the above, because
you might think it should read as,

330 Chapter 5: Flow Control, Exceptions, and Assertions

"If x is greater than 3, thensetyto2,ztoz+ 8,andatoy + x."

But the last two lines are going to execute no matter what! They aren't part of the
conditional flow. You might find it even more misleading if the code were indented
as follows:

y = 2;
Z += 8;
a =y + X;

You might have a need to nest if-else statements (although, again, it's not
recommended for readability, so nested if tests should be kept to a minimum). You
can set up an if-else statement to test for multiple conditions. The following
example uses two conditions so that if the first test fails, we want to perform a
second test before deciding what to do:

if (price < 300) {
buyProduct () ;
} else {
if (price < 400) {
getApproval () ;
}
else {
dontBuyProduct () ;
}
}

This brings up the other if-else construct, the if, else if, else. The preceding
code could (and should) be rewritten:

if (price < 300) {
buyProduct () ;
} else if (price < 400) {
getApproval () ;
} else {
dontBuyProduct () ;
}

There are a couple of rules for using else and else if:

if-else Branching (Exam Objective 2.1) 3 3 ||

B You can have zero or one else for a given if, and it must come after any

else ifs.

B You can have zero to many else ifs for a given if and they must come
before the (optional) else.

B Once an else if succeeds, none of the remaining else ifs or elses will
be tested.

The following example shows code that is horribly formatted for the real world.
As you've probably guessed, it's fairly likely that you'll encounter formatting like this
on the exam. In any case, the code demonstrates the use of multiple else ifs:

int x = 1;

if (x==3) {}

else if (x < 4) {System.out.println("<4"); }
else if (x < 2) {System.out.println("<2"); }
else { System.out.println("else"); }

[t produces the output:

<4

(Notice that even though the second else if is true, it is never reached.)
Sometimes you can have a problem figuring out which if your else should pair
with, as follows:

if (exam.done ())

if (exam.getScore() < 0.61)
System.out.println("Try again.");

// Which if does this belong to?

else System.out.println("Java master!");

We intentionally left out the indenting in this piece of code so it doesn't give clues
as to which if statement the else belongs to. Did you figure it out? Java law decrees
that an else clause belongs to the innermost if statement to which it might
possibly belong (in other words, the closest preceding if that doesn't have an else).
In the case of the preceding example, the else belongs to the second if statement
in the listing. With proper indenting, it would look like this:

332 Chapter 5: Flow Control, Exceptions, and Assertions

if (exam.done())
if (exam.getScore() < 0.61)
System.out.println("Try again.");
// Which if does this belong to?
else
System.out.println("Java master!") ;

Following our coding conventions by using curly braces, it would be even easier to read:

if (exam.done())
if (exam.getScore() < 0.61) {
System.out.println("Try again.");
// Which if does this belong to?
} else {
System.out.println("Java master!");

}
}

Don't get your hopes up about the exam questions being all nice and indented
properly. Some exam takers even have a slogan for the way questions are presented
on the exam: anything that can be made more confusing, will be.

Be prepared for questions that not only fail to indent nicely, but intentionally
indent in a misleading way: Pay close attention for misdirection like the following:

if (exam.done())
if (exam.getScore() < 0.61)
System.out.println("Try again.");
else
System.out.println("Java master!"); // Hmmmmm.. now where does
// it belong?

Of course, the preceding code is exactly the same as the previous two examples,
except for the way it looks.

Legal Expressions for if Statements

The expression in an if statement must be a boolean expression. Any expression
that resolves to a boolean is fine, and some of the expressions can be complex.
Assume doStuff () returns true,

5;
2;

int y
int x

if-else Branching (Exam Objective 2.1) 33 3

if (((x > 3) && (y < 2)) | dosStuff()) ({
System.out.println("true") ;

which prints
true

You can read the preceding code as, "If both (x > 3) and (y < 2) are true, or if the
result of dostuff () is true, then print true." So basically, if just dostuff () alone
is true, we'll still get true. If dostuff () is false, though, then both (x > 3) and
(y < 2) will have to be true in order to print true. The preceding code is even
more complex if you leave off one set of parentheses as follows,

int y = 5;
int x = 2;
if ((x > 3) && (y < 2) | dosStuff()) {

System.out.println ("true") ;

}

which now prints...nothing! Because the preceding code (with one less set of
parentheses) evaluates as though you were saying, "If (x > 3) is true, and either
(y < 2) or the result of dostuff () is true, then print true." So if (x > 3) is not
true, no point in looking at the rest of the expression." Because of the short-circuit
&&, the expression is evaluated as though there were parentheses around (y < 2) |
dostuff (). In other words, it is evaluated as a single expression before the && and a
single expression after the &&.

Remember that the only legal expression in an if test is a boolean. In some
languages, 0 == false, and 1 == true. Not so in Java! The following code shows if
statements that might look tempting, but are illegal, followed by legal substitutions:

int truelInt = 1;

int falseInt = 0;

if (truelnt) // illegal
if (trueInt == true) // illegal
if (1) // illegal
if (falseInt == false) // illegal
if (trueInt == 1) // legal

if (falseInt == 0) // legal

334 Chapter 5: Flow Control, Exceptions, and Assertions

m
Jatch
One common mistake programmers make (and that can be difficult to

spot), is assigning a boolean variable when you meant to test a boolean variable. Look
out for code like the following:

boolean boo = false;
if (boo = true) { }

You might think one of three things:

I.The code compiles and runs fine, and the if test fails because
boo is false.

2.The code won’t compile because you’re using an assignment (=)
rather than an equality test (==).

3.The code compiles and runs fine and the if test succeeds because
boo is SET to true (rather than TESTED for true) in the if argument!

Well, number 3 is correct. Pointless, but correct. Given that the result of any assignment is
the value of the variable after the assignment, the expression (boo = true) has a result
of true. Hence, the if test succeeds. But the only variables that can be assigned (rather
than tested against something else) are a boolean or a Boolean; all other assignments
will result in something non-boolean, so they’re not legal, as in the following:

int x 3z
if (x = 5) { } // Won't compile because x is not a boolean!

Because if tests require boolean expressions, you need to be really solid
on both logical operators and it test syntax and semantics.

switch Statements

A way to simulate the use of multiple i f statements is with the switch statement.
Take a look at the following if-else code, and notice how confusing it can be to
have nested if tests, even just a few levels deep:

int x = 3;
if(x == 1) {

System.out

}

else if (x ==

}

else if (x

System.

switch Statements (Exam Objective 2.1)

.println("x equals 1");

2) |

out.println("x equals 2");

== 3) {

System.out.println("x equals 3");

}

else {

System.out.println("No idea what x is");

}

Now let's see the same functionality represented in a switch construct:

int x = 3;
switch (x) {
case 1:

System
break;
case 2:

System.

break;
case 3:

System.

break;
default:

System.

.out.println("x is equal to 1");

out.println("x is equal to 2");

out.println("x is equal to 3");

out.println("Still no idea what x is");

335

Note: The reason this switch statement emulates the nested ifs listed earlier is

because of the break statements that were placed inside of the switch. In general,
break statements are optional, and as we will see in a few pages, their inclusion or
exclusion causes huge changes in how a switch statement will execute.

Legal Expressions for switch and case

The general form of the switch statement is:

switch (expression) {
case constantl: code block
case constant2: code block
default: code block

336 Chapter 5: Flow Control, Exceptions, and Assertions

A switch's expression must evaluate to a char, byte, short, int, or, as of]ava
6, an enum. That means if you're not using an enum, only variables and values
that can be automatically promoted (in other words, implicitly cast) to an int are
acceptable. You won't be able to compile if you use anything else, including the
remaining numeric types of long, float, and double.

A case constant must evaluate to the same type as the switch expression can
use, with one additional—and big—constraint: the case constant must be a
compile time constant! Since the case argument has to be resolved at compile
time, that means you can use only a constant or final variable that is assigned a
literal value. It is not enough to be final, it must be a compile time constant. For
example:

final int a = 1;
final int b;

b = 2;
int x = 0;
switch (x)
case a: // ok
case b: // compiler error

Also, the switch can only check for equality. This means that the other relational
operators such as greater than are rendered unusable in a case. The following is an
example of a valid expression using a method invocation in a switch statement.
Note that for this code to be legal, the method being invoked on the object
reference must return a value compatible with an int.

String s = "xyz";
switch (s.length()) {
case 1:
System.out.println("length is one");
break;
case 2:
System.out.println("length is two") ;
break;
case 3:
System.out.println("length is three");
break;
default:
System.out.println("no match") ;

switch Statements (Exam Objective 2.1) 337

One other rule you might not expect involves the question, "What happens if |
switch on a variable smaller than an int?" Look at the following switch:

byte g = 2;
switch(g)
case 23:

case 128:

This code won't compile. Although the switch argument is legal—a byte is
implicitly cast to an int—the second case argument (128) is too large for a byte,
and the compiler knows it! Attempting to compile the preceding example gives
you an error something like

Test.java:6: possible loss of precision

found : int
required: byte
case 128:

A

It's also illegal to have more than one case label using the same value. For example,
the following block of code won't compile because it uses two cases with the same

value of 80:

int temp = 90;
switch (temp) {

case 80 : System.out.println("80");

case 80 : System.out.println("s8o"); // won't compile!
case 90 : System.out.println("90");

default : System.out.println("default");

It is legal to leverage the power of boxing in a switch expression. For instance,
the following is legal:

switch (new Integer(4)) ({
case 4: System.out.println("boxing is OK") ;

}

338 Chapter 5: Flow Control, Exceptions, and Assertions

Jatch
Look for any violation of the rules for switch and case arguments.
For example, you might find illegal examples like the following snippets:

switch(x)
case 0 {
y =7;
}
}

switch(x)
0: { }
1: { }

}

In the first example, the case uses a curly brace and omits the colon.
The second example omits the keyword case.

Break and Fall-Through in switch Blocks

We're finally ready to discuss the break statement, and more details about flow
control within a switch statement. The most important thing to remember about
the flow of execution through a switch statement is this:

case constants are evaluated from the top down, and the first case constant
that matches the switch's expression is the execution entry point.

In other words, once a case constant is matched, the JVM will execute the
associated code block, and ALL subsequent code blocks (barring a break statement)
too! The following example uses an enum in a case statement.

enum Color {red, green, blue}
class SwitchEnum {
public static void main(String [] args) {
Color c¢ = Color.green;
switch(c) {

switch Statements (Exam Objective 2.1) 3 39

case red: System.out.print("red ");
case green: System.out.print ("green ") ;
case blue: System.out.print ("blue ");
default: System.out.println("done") ;

In this example case green: matched, so the JVM executed that code block and
all subsequent code blocks to produce the output:

green blue done

Again, when the program encounters the keyword break during the execution
of a switch statement, execution will immediately move out of the switch block
to the next statement after the switch. If break is omitted, the program just
keeps executing the remaining case blocks until either a break is found or the
switch statement ends. Examine the following code:

int x = 1;
switch(x) {

case 1l: System.out.println("x is one");
case 2: System.out.println("x is two");
case 3: System.out.println("x is three");

}

System.out.println("out of the switch");

The code will print the following:

X 1s one

x 1s two

x 1s three

out of the switch

This combination occurs because the code didn't hit a break statement; execution
just kept dropping down through each case until the end. This dropping down is
actually called "fall-through," because of the way execution falls from one case to
the next. Remember, the matching case is simply your entry point into the switch
block! In other words, you must not think of it as, "Find the matching case, execute
just that code, and get out." That's not how it works. If you do want that "just the
matching code" behavior, you'll insert a break into each case as follows:

340 Chapter5: Flow Control, Exceptions, and Assertions

int x = 1;
switch(x)

case 1: |

System.out.println("x is one"); Dbreak;
}
case 2: |

System.out.println("x is two"); Dbreak;
}
case 3: |

System.out.println("x is two"); break;

}
}

System.out.println("out of the switch");
Running the preceding code, now that we've added the break statements, will print

x 1s one
out of the switch

and that's it. We entered into the switch block at case 1. Because it matched the
switch () argument, we got the println statement, then hit the break and jumped
to the end of the switch.

An interesting example of this fall-through logic is shown in the following code:

int x = someNumberBetweenOneAndTen;

case 10: {
System.out.println("x is an even number"); break;

}

This switch statement will print x is an even number or nothing, depending on
whether the number is between one and ten and is odd or even. For example, if x is
4, execution will begin at case 4, but then fall down through 6, 8, and 10, where
it prints and then breaks. The break at case 10, by the way, is not needed; we're
already at the end of the switch anyway.

Note: Because fall-through is less than intuitive, Sun recommends that you add a
comment like: // fall through when you use fall-through logic.

switch Statements (Exam Objective 2.1) 34 ||

The Default Case

What if, using the preceding code, you wanted to print "x is an odd number"

if none of the cases (the even numbers) matched? You couldn't put it after the
switch statement, or even as the last case in the switch, because in both of those
situations it would always print x is an odd number. To get this behavior, you'll
use the default keyword. (By the way, if you've wondered why there is a default
keyword even though we don't use a modifier for default access control, now you'll
see that the default keyword is used for a completely different purpose.) The only
change we need to make is to add the default case to the preceding code:

int x = someNumberBetweenOneAndTen;

switch (x) {

case 2:

case 4:

case 6:

case 8:

case 10: {
System.out.println("x is an even number") ;
break;

}

default: System.out.println("x is an odd number") ;

Datch
The default case doesn’t have to come at the end of the switch.

Look for it in strange places such as the following:

int x = 2;

switch (x)
case 2: System.out.println("2");
default: System.out.println("default") ;
case 3: System.out.println("3");
case 4: System.out.println("4");

3472 Chapter 5: Flow Control, Exceptions, and Assertions

Datch
Running the preceding code prints

2
default
3
4

And if we modify it so that the only match is the default case:

int x = 7;

switch (x)
case 2: System.out.println("2");
default: System.out.println("default") ;
case 3: System.out.println("3");
case 4: System.out.println("4");

Running the preceding code prints

default
3
4

The rule to remember is that default works just like any other case
for fall-through!

EXERCISE 5-1

Creating a switch-case Statement

Try creating a switch statement using a char value as the case. Include a default
behavior if none of the char values match.

B Make sure a char variable is declared before the switch statement.
B Each case statement should be followed by a break.
B The default case can be located at the end, middle, or top.

Using while Loops (Exam Objective 2.2) 343

CERTIFICATION OBJECTIVE

Loops and Iterators (Exam Objective 2.2)

2.2 Develop code that implements all forms of loops and iterators, including the use of
for, the enhanced for loop (for-each), do, while, labels, break, and continue; and explain
the values taken by loop counter variables during and after loop execution.

Java loops come in three flavors: while, do, and for (and as of Java 6, the for

loop has two variations). All three let you repeat a block of code as long as some
condition is true, or for a specific number of iterations. You're probably familiar with
loops from other languages, so even if you're somewhat new to Java, these won't be a
problem to learn.

Using while Loops

The while loop is good for scenarios where you don't know how many times a
block or statement should repeat, but you want to continue looping as long as some
condition is true. A while statement looks like this:

while (expression) {
// do stuff

}

or

int x = 2;

while(x == 2) {
System.out.println(x) ;
F4X;

}

In this case, as in all loops, the expression (test) must evaluate to a boolean
result. The body of the while loop will only execute if the expression (sometimes
called the "condition") results in a value of true. Once inside the loop, the loop
body will repeat until the condition is no longer met because it evaluates to false.
In the previous example, program control will enter the loop body because x is equal
to 2. However, x is incremented in the loop, so when the condition is checked again
it will evaluate to false and exit the loop.

344 Chapter 5: Flow Control, Exceptions, and Assertions

Any variables used in the expression of a while loop must be declared before the
expression is evaluated. In other words, you can't say

while (int x = 2) { } // not legal

Then again, why would you? Instead of testing the variable, you'd be declaring
and initializing it, so it would always have the exact same value. Not much of a
test condition!

The key point to remember about a while loop is that it might not ever run. If
the test expression is false the first time the while expression is checked, the loop
body will be skipped and the program will begin executing at the first statement after
the while loop. Look at the following example:

int x = 8;

while (x > 8) {
System.out.println("in the loop") ;
x = 10;

}

System.out.println("past the loop");
Running this code produces
past the loop

Because the expression (x > 8) evaluates to false, none of the code within the
while 100p ever executes.

Using do Loops

The do loop is similar to the while loop, except that the expression is not evaluated
until after the do loop's code is executed. Therefore the code in a do loop is
guaranteed to execute at least once. The following shows a do loop in action:

do {
System.out.println("Inside loop") ;
} while (false) ;

The system.out.println() statement will print once, even though the
expression evaluates to false. Remember, the do loop will always run the code
in the loop body at least once. Be sure to note the use of the semicolon at the
end of the while expression.

Using for Loops (Exam Objective 2.2) 345§

Datch Gt £ . . :
As with if tests, look for while loops (and the while test in a do loop)

with an expression that does not resolve to a boolean.Take a look at the following
examples of legal and illegal while expressions:

int x = 1;
while (x) { } // Won't compile; x is not a boolean
while (x = 5) { } // Won't compile; resolves to 5

// (as the result of assignment)
while (x == 5) { } // Legal, equality test
while (true) { } // Legal

Using for Loops

As of Java 6, the for loop took on a second structure. We'll call the old style of for
loop the "basic for loop", and we'll call the new style of for loop the "enhanced
for loop" (even though the Sun objective 2.2 refers to it as the for-each).
Depending on what documentation you use (Sun's included), you'll see both terms,
along with for-in. The terms for-in, for-each, and "enhanced for" all refer to
the same Java construct.

The basic for loop is more flexible than the enhanced for loop, but the
enhanced for loop was designed to make iterating through arrays and collections
easier to code.

The Basic for Loop

The for loop is especially useful for flow control when you already know how
many times you need to execute the statements in the loop's block. The for loop
declaration has three main parts, besides the body of the loop:

B Declaration and initialization of variables
B The boolean expression (conditional test)

B The iteration expression

The three for declaration parts are separated by semicolons. The following two
examples demonstrate the for loop. The first example shows the parts of a for loop
in a pseudocode form, and the second shows a typical example of a for loop.

346 Chapter 5: Flow Control, Exceptions, and Assertions

for (/*Initialization*/ ; /*Condition*/ ; /* Iteration */) {
/* loop body */

}

for (int i = 0; i<10; i++) {
System.out.println("i is " + 1i);

}

The Basic for Loop: Declaration and Initialization

The first part of the for statement lets you declare and initialize zero, one, or
multiple variables of the same type inside the parentheses after the for keyword. If
you declare more than one variable of the same type, then you'll need to separate
them with commas as follows:

for (int x = 10, v = 3; v > 3; y++) { }

The declaration and initialization happens before anything else in a for loop. And
whereas the other two parts—the boolean test and the iteration expression—will
run with each iteration of the loop, the declaration and initialization happens just
once, at the very beginning. You also must know that the scope of variables declared
in the for loop ends with the for loop! The following demonstrates this:

for (int x = 1; x < 2; x++) {
System.out.println(x); // Legal

}

System.out.println(x); // Not Legal! x is now out of scope
// and can't be accessed.

If you try to compile this, you'll get something like this:

Test.java:19: cannot resolve symbol

symbol : variable x

location: class Test
System.out.println (x) ;

Basic for Loop: Conditional (boolean) Expression

The next section that executes is the conditional expression, which (like all
other conditional tests) must evaluate to a boolean value. You can have only one

Using for Loops (Exam Objective 2.2) 347

logical expression, but it can be very complex. Look out for code that uses logical
expressions like this:

for (int x = 0; ((((x < 10) && (y-- > 2)) | x == 3)); x++) { }
The preceding code is legal, but the following is not:

for (int x = 0; (x > 5), (v < 2); x++) { } // too many
//expressions

The compiler will let you know the problem:

TestLong.java:20: ';' expected
for (int x = 0; (x > 5), (v < 2); x++) { }

A

The rule to remember is this: You can have only one test expression.

In other words, you can't use multiple tests separated by commas, even though
the other two parts of a for statement can have multiple parts.

Basic for Loop: Iteration Expression

After each execution of the body of the for loop, the iteration expression is
executed. This is where you get to say what you want to happen with each iteration
of the loop. Remember that it always happens after the loop body runs! Look at the
following:

for (int x = 0; x < 1; x++) {
// body code that doesn't change the value of x

}

The preceding loop executes just once. The first time into the loop x is set to 0,
then x is tested to see if it's less than 1 (which it is), and then the body of the
loop executes. After the body of the loop runs, the iteration expression runs,
incrementing x by 1. Next, the conditional test is checked, and since the result is
now false, execution jumps to below the for loop and continues on.

Keep in mind that barring a forced exit, evaluating the iteration expression and
then evaluating the conditional expression are always the last two things that
happen in a for loop!

348 Chapter 5: Flow Control, Exceptions, and Assertions

Examples of forced exits include a break, a return, a System.exit (), or an
exception, which will all cause a loop to terminate abruptly, without running the
iteration expression. Look at the following code:

static boolean doStuff ()
for (int x = 0; x < 3; x++) {
System.out.println("in for loop") ;
return true;

}

return true;

}
Running this code produces
in for loop

The statement only prints once, because a return causes execution to leave not just
the current iteration of a loop, but the entire method. So the iteration expression
never runs in that case. Table 5-1 lists the causes and results of abrupt loop
termination.

Causes of Early Loop Termination
Code in Loop What Happens

break Execution jumps immediately to the 1st statement after the for loop.

return Execution jumps immediately back to the calling method.

System.exit () All program execution stops; the VM shuts down.

Basic for Loop: for Loop Issues

None of the three sections of the for declaration are required! The following
example is perfectly legal (although not necessarily good practice):

for(; ;) {
System.out.println("Inside an endless loop") ;

}

In the preceding example, all the declaration parts are left out so the for loop will
act like an endless loop. For the exam, it's important to know that with the absence

Match

Using for Loops (Exam Objective 2.2) 349

of the initialization and increment sections, the loop will act like a while loop. The
following example demonstrates how this is accomplished:

int i = 0;

for (;1<10;) {
14+
//do some other work

}

The next example demonstrates a for loop with multiple variables in play. A
comma separates the variables, and they must be of the same type. Remember that
the variables declared in the for statement are all local to the for loop, and can't
be used outside the scope of the loop.

for (int i = 0,7 = 0; (i<10) && (j<10); i++, J++) {
System.out.println("i is " + 1 + " j is " +3j);
}

Variable scope plays a large role in the exam.You need to know that a

variable declared in the for loop can’t be used beyond the for loop. But a variable only
initialized in the for statement (but declared earlier) can be used beyond the loop. For
example, the following is legal,

int x = 3;
for (x = 12; x < 20; x++) { }
System.out.println (x) ;

while this is not

for (int x = 3; x < 20; x++) { } System.out.println(x);

The last thing to note is that all three sections of the for loop are independent of
each other. The three expressions in the for statement don't need to operate on the
same variables, although they typically do. But even the iterator expression, which

350 Chapter5: Flow Control, Exceptions, and Assertions

many mistakenly call the "increment expression," doesn't need to increment or set
anything; you can put in virtually any arbitrary code statements that you want to
happen with each iteration of the loop. Look at the following:

int b = 3;
for (int a = 1; b != 1; System.out.println("iterate")) ({
b =Db - a;

}
The preceding code prints

iterate
iterate

Match
Many questions in the new (Java 6) exam list “Compilation fails”’ and

“An exception occurs at runtime” as possible answers. This makes it more difficult
because you can’t simply work through the behavior of the code.You must first make
sure the code isn’t violating any fundamental rules that will lead to compiler error,
and then look for possible exceptions. Only after you’ve satisfied those two, should
you dig into the logic and flow of the code in the question.

The Enhanced for Loop (for Arrays)

The enhanced for loop, new to Java 6, is a specialized for loop that simplifies
looping through an array or a collection. In this chapter we're going to focus on
using the enhanced for to loop through arrays. In Chapter 7 we'll revisit the
enhanced for as we discuss collections—where the enhanced for really comes into
its own.

Instead of having three components, the enhanced for has two. Let's loop
through an array the basic (old) way, and then using the enhanced for:

int [] a = {1,2,3,4};

for(int x = 0; X < a.length; x++) // basic for loop
System.out.print (a[x]) ;

for(int n : a) // enhanced for loop

System.out.print (n) ;

Using for Loops (Exam Objective 2.2) 3 § ||

Which produces this output:

12341234

More formally, let's describe the enhanced for as follows:
for(declaration : expression)

The two pieces of the for statement are

B declaration The newly declared block variable, of a type compatible with
the elements of the array you are accessing. This variable will be available
within the for block, and its value will be the same as the current array
element.

B expression This must evaluate to the array you want to loop through.
This could be an array variable or a method call that returns an array. The
array can be any type: primitives, objects, even arrays of arrays.

Using the above definitions, let's look at some legal and illegal enhanced for
declarations:

int x;

long x2;

Long [] La = {4L, 5L, 6L};
long [] la = {7L, 8L, 9L}

int []1[] twoDee = {{1,2,3}, {4,5,6}, {7.8,9}};
String [] sNums = {"one", "two", "three"};
Animal [] animals = {new Dog(), new Cat()};

// legal 'for' declarations

for(long y : la) ; // loop thru an array of longs
for(long 1lp : La) ; // autoboxing the Long objects

// into longs
for(int[] n : twoDee) ; // loop thru the array of arrays
for (int n2 : twoDeel[2]) ; // loop thru the 3rd sub-array
for (String s : sNums) ; // loop thru the array of Strings
for (Object o : sNums) ; // set an Object reference to

// each String
for (Animal a : animals) ; // set an Animal reference to each

// element

352 Chapter 5: Flow Control, Exceptions, and Assertions

// ILLEGAL 'for' declarations

for(x2 : la) ; // x2 is already declared

for (int x2 : twoDee) ; // can't stuff an array into an int
for (int x3 : la) ; // can't stuff a long into an int
for(Dog d : animals) ; // you might get a Cat!

The enhanced for loop assumes that, barring an early exit from the loop, you'll
always loop through every element of the array. The following discussions of break
and continue apply to both the basic and enhanced for loops.

Using break and continue

The break and continue keywords are used to stop either the entire loop
(break) or just the current iteration (continue). Typically if you're using break
or continue, you'll do an if test within the loop, and if some condition becomes
true (or false depending on the program), you want to get out immediately. The
difference between them is whether or not you continue with a new iteration or
jump to the first statement below the loop and continue from there.

Datch
Remember, continue statements must be inside a loop; otherwise,

you’ll get a compiler error. break statements must be used inside either a loop or
switch statement. (Note: this does not apply to labeled break statements.).

The break statement causes the program to stop execution of the innermost loop
and start processing the next line of code after the block.

The continue statement causes only the current iteration of the innermost loop
to cease and the next iteration of the same loop to start if the condition of the loop
is met. When using a cont inue statement with a for loop, you need to consider the
effects that continue has on the loop iteration. Examine the following code:

for (int i = 0; i < 10; i++) {
System.out.println("Inside loop") ;
continue;

}

The question is, is this an endless loop? The answer is no. When the continue
statement is hit, the iteration expression still runs! It runs just as though the current

Unlabeled Statements (Exam Objective 2.2) 3§ 3

iteration ended "in the natural way." So in the preceding example, i will still
increment before the condition (i < 10) is checked again. Most of the time, a
continue is used within an if test as follows:

for (int i = 0; i < 10; i++) {
System.out.println("Inside loop") ;
if (foo.doStuff () == 5) {
continue;

}

// more loop code, that won't be reached when the above if
// test is true

Unlabeled Statements

Both the break statement and the continue statement can be unlabeled or
labeled. Although it's far more common to use break and continue unlabeled, the
exam expects you to know how labeled break and continue statements work. As
stated before, a break statement (unlabeled) will exit out of the innermost looping
construct and proceed with the next line of code beyond the loop block. The
following example demonstrates a break statement:

boolean problem = true;
while (true) {
if (problem) ({
System.out.println ("There was a problem") ;
break;
}
}

// next line of code

In the previous example, the break statement is unlabeled. The following is an
example of an unlabeled continue statement:

while (!EOF) {
//read a field from a file
if (wrongField)
continue; // move to the next field in the file
!

// otherwise do other stuff with the field

}

354 Chapter 5: Flow Control, Exceptions, and Assertions

In this example, a file is being read one field at a time. When an error is
encountered, the program moves to the next field in the file and uses the cont inue
statement to go back into the loop (if it is not at the end of the file) and keeps
reading the various fields. If the break command were used instead, the code would
stop reading the file once the error occurred and move on to the next line of code
after the loop. The continue statement gives you a way to say, "This particular
iteration of the loop needs to stop, but not the whole loop itself. I just don't want the
rest of the code in this iteration to finish, so do the iteration expression and then start
over with the test, and don't worry about what was below the continue statement."

Labeled Statements

Although many statements in a Java program can be labeled, it's most common to
use labels with loop statements like for or while, in conjunction with break and
continue statements. A label statement must be placed just before the statement
being labeled, and it consists of a valid identifier that ends with a colon (:).

You need to understand the difference between labeled and unlabeled break and
continue. The labeled varieties are needed only in situations where you have a
nested loop, and need to indicate which of the nested loops you want to break from,
or from which of the nested loops you want to continue with the next iteration. A
break statement will exit out of the labeled loop, as opposed to the innermost loop,
if the break keyword is combined with a label. An example of what a label looks
like is in the following code:

foo:
for (int x = 3; x < 20; x++) {
while(y > 7) {
Y--i
}
}

The label must adhere to the rules for a valid variable name and should adhere to the
Java naming convention. The syntax for the use of a label name in conjunction with a
break statement is the break keyword, then the label name, followed by a semicolon.
A more complete example of the use of a labeled break statement is as follows:

boolean isTrue = true;
outer:
for (int i=0; i<5; i++)
while (isTrue)

Labeled Statements (Exam Objective 2.2) 3§ §

System.out.println("Hello") ;
break outer;
} // end of inner while loop
System.out.println("Outer loop."); // Won't print
} // end of outer for loop
System.out.println ("Good-Bye") ;

Running this code produces

Hello
Good-Bye

In this example the word #Hel1lo will be printed one time. Then, the labeled
break statement will be executed, and the flow will exit out of the loop labeled
outer. The next line of code will then print out Good-Bye. Let's see what will
happen if the continue statement is used instead of the break statement. The
following code example is similar to the preceding one, with the exception of
substituting cont inue for break:

outer:
for (int i=0; i<5; i++)
for (int j=0; j<5; j++) {
System.out.println("Hello") ;
continue outer;
} // end of inner loop
System.out.println("outer"); // Never prints

}

System.out.println ("Good-Bye") ;
Running this code produces

Hello
Hello
Hello
Hello
Hello
Good-Bye

In this example, Hello will be printed five times. After the continue statement is
executed, the flow continues with the next iteration of the loop identified with the
label. Finally, when the condition in the outer loop evaluates to false, this loop
will finish and Good-Bye will be printed.

3856 Chapter5: Flow Control, Exceptions, and Assertions

EXERCISE 5-2

Creating a Labeled while Loop

Try creating a labeled while loop. Make the label outer and provide a condition to
check whether a variable age is less than or equal to 21. Within the loop, increment
age by one. Every time the program goes through the loop, check whether age is 16.
If it is, print the message "get your driver's license" and continue to the outer loop. If
not, print "Another year."

B The outer label should appear just before the while loop begins.
B Make sure age is declared outside of the while loop.

Datch
Labeled continue and break statements must be inside the loop that

has the same label name; otherwise, the code will not compile.

CERTIFICATION OBJECTIVE

Handling Exceptions (Exam Objectives 2.4 and 2.5)

2.4 Develop code that makes use of exceptions and exception handling clauses (try, catch,
finally), and declares methods and overriding methods that throw exceptions.

2.5 Recognize the effect of an exception arising at a specific point in a code fragment.
Note that the exception may be a runtime exception, a checked exception, or an error.

An old maxim in software development says that 80 percent of the work is used
20 percent of the time. The 80 percent refers to the effort required to check and
handle errors. In many languages, writing program code that checks for and deals
with errors is tedious and bloats the application source into confusing spaghetti.

Catching an Exception Using try and catch (Exam Objectives 2.4 and 2.5) 3 §7

Still, error detection and handling may be the most important ingredient of any
robust application. Java arms developers with an elegant mechanism for handling
errors that produces efficient and organized error-handling code: exception handling.

Exception handling allows developers to detect errors easily without writing
special code to test return values. Even better, it lets us keep exception-handling code
cleanly separated from the exception-generating code. It also lets us use the same
exception-handling code to deal with a range of possible exceptions.

The exam has three objectives covering exception handling. We'll cover the first
two in this section, and in the next section we'll cover those aspects of exception
handling that are new to the exam as of Java 6.

Catching an Exception Using try and catch

Before we begin, let's introduce some terminology. The term "exception" means
"exceptional condition" and is an occurrence that alters the normal program flow.
A bunch of things can lead to exceptions, including hardware failures, resource
exhaustion, and good old bugs. When an exceptional event occurs in Java, an
exception is said to be "thrown." The code that's responsible for doing something
about the exception is called an "exception handler," and it "catches" the thrown
exception.

Exception handling works by transferring the execution of a program to an
appropriate exception handler when an exception occurs. For example, if you call
a method that opens a file but the file cannot be opened, execution of that method
will stop, and code that you wrote to deal with this situation will be run. Therefore,
we need a way to tell the JVM what code to execute when a certain exception
happens. To do this, we use the try and catch keywords. The try is used to define a
block of code in which exceptions may occur. This block of code is called a guarded
region (which really means "risky code goes here"). One or more catch clauses
match a specific exception (or group of exceptions—more on that later) to a block
of code that handles it. Here's how it looks in pseudocode:

try {
// This is the first line of the "guarded region"
// that is governed by the try keyword.
// Put code here that might cause some kind of exception.
// We may have many code lines here or just one.
}
catch (MyFirstException) {
// Put code here that handles this exception.

W J o0 U WwN

358 Chapter 5: Flow Control, Exceptions, and Assertions

9. // This is the next line of the exception handler.
10. // This is the last line of the exception handler.
11. }

12. catch(MySecondException) {

13. // Put code here that handles this exception

14. }

15.

16. // Some other unguarded (normal, non-risky) code begins here

In this pseudocode example, lines 2 through 5 constitute the guarded region that
is governed by the try clause. Line 7 is an exception handler for an exception of
type MyFirstException. Line 12 is an exception handler for an exception of type
MySecondException. Notice that the catch blocks immediately follow the try
block. This is a requirement; if you have one or more catch blocks, they must
immediately follow the try block. Additionally, the catch blocks must all follow
each other, without any other statements or blocks in between. Also, the order in
which the catch blocks appear matters, as we'll see a little later.

Execution of the guarded region starts at line 2. If the program executes all the
way past line 5 with no exceptions being thrown, execution will transfer to line
15 and continue downward. However, if at any time in lines 2 through 5 (the try
block) an exception is thrown of type MyFirstException, execution will immediately
transfer to line 7. Lines 8 through 10 will then be executed so that the entire catch
block runs, and then execution will transfer to line 15 and continue.

Note that if an exception occurred on, say, line 3 of the try block, the rest of
the lines in the try block (4 and 5) would never be executed. Once control jumps
to the catch block, it never returns to complete the balance of the try block.
This is exactly what you want, though. Imagine your code looks something like
this pseudocode:

try {
getTheFileFromOverNetwork

readFromTheFileAndPopulateTable

}

catch (CantGetFileFromNetwork) {
displayNetworkErrorMessage

}

The preceding pseudocode demonstrates how you typically work with exceptions.
Code that's dependent on a risky operation (as populating a table with file data is
dependent on getting the file from the network) is grouped into a try block in such

Using finally (Exam Objectives 2.4and 2.5) 3 §9

a way that if, say, the first operation fails, you won't continue trying to run other
code that's also guaranteed to fail. In the pseudocode example, you won't be able to
read from the file if you can't get the file off the network in the first place.

One of the benefits of using exception handling is that code to handle any
particular exception that may occur in the governed region needs to be written only
once. Returning to our earlier code example, there may be three different places
in our try block that can generate a MyFirstException, but wherever it occurs it
will be handled by the same catch block (on line 7). We'll discuss more benefits of
exception handling near the end of this chapter.

Using finally

Although try and catch provide a terrific mechanism for trapping and handling
exceptions, we are left with the problem of how to clean up after ourselves if an
exception occurs. Because execution transfers out of the try block as soon as an
exception is thrown, we can't put our cleanup code at the bottom of the try block
and expect it to be executed if an exception occurs. Almost as bad an idea would be
placing our cleanup code in each of the catch blocks—Iet's see why.

Exception handlers are a poor place to clean up after the code in the try block
because each handler then requires its own copy of the cleanup code. If, for example,
you allocated a network socket or opened a file somewhere in the guarded region,
each exception handler would have to close the file or release the socket. That
would make it too easy to forget to do cleanup, and also lead to a lot of redundant
code. To address this problem, Java offers the finally block.

A finally block encloses code that is always executed at some point after the
try block, whether an exception was thrown or not. Even if there is a return
statement in the try block, the finally block executes right after the return
statement is encountered, and before the return executes!

This is the right place to close your files, release your network sockets, and
perform any other cleanup your code requires. If the try block executes with
no exceptions, the finally block is executed immediately after the try block
completes. If there was an exception thrown, the finally block executes
immediately after the proper catch block completes. Let's look at another
pseudocode example:

1: try {

2: // This is the first line of the "guarded region".
3: }

4: catch(MyFirstException)

360 Chapter 5: Flow Control, Exceptions, and Assertions

5: // Put code here that handles this exception
6: }

7: catch (MySecondException) {

8: // Put code here that handles this exception
9: }

10: finally {

11: // Put code here to release any resource we
12: // allocated in the try clause.

13: }

14 :

15: // More code here

As before, execution starts at the first line of the try block, line 2. If there are no
exceptions thrown in the try block, execution transfers to line 11, the first line of
the £inally block. On the other hand, if a MySecondException is thrown while
the code in the try block is executing, execution transfers to the first line of that
exception handler, line 8 in the catch clause. After all the code in the catch clause
is executed, the program moves to line 11, the first line of the finally clause.
Repeat after me: finally always runs! OK, we'll have to refine that a little, but for
now, start burning in the idea that final1ly always runs. If an exception is thrown,
finally runs. If an exception is not thrown, finally runs. If the exception is
caught, finally runs. If the exception is not caught, finally runs. Later we'll look
at the few scenarios in which finally might not run or complete.

Remember, finally clauses are not required. If you don't write one, your code
will compile and run just fine. In fact, if you have no resources to clean up after your
try block completes, you probably don't need a finally clause. Also, because the
compiler doesn't even require catch clauses, sometimes you'll run across code that
has a try block immediately followed by a finally block. Such code is useful when
the exception is going to be passed back to the calling method, as explained in the
next section. Using a finally block allows the cleanup code to execute even when
there isn't a catch clause.

The following legal code demonstrates a try with a finally but no catch:

try {
// do stuff
} finally {
//clean up
1

Match

Using finally (Exam Objectives 2.4and 2.5) 36 |

The following legal code demonstrates a try, catch, and finally:

try {
// do stuff

} catch (SomeException ex) {
// do exception handling

} finally {
// clean up

}

The following ILLEGAL code demonstrates a try without a catch or finally:

try {
// do stuff
!

// need a catch or finally here
System.out.println ("out of try block");

The following ILLEGAL code demonstrates a misplaced catch block:

try {
// do stuff
}

// can't have code between try/catch
System.out.println("out of try block");
catch (Exception ex) { }

It is illegal to use a try clause without either a catch clause or a finally

clause.A try clause by itself will result in a compiler error. Any catch clauses must
immediately follow the try block.Any finally clause must immediately follow the last
catch clause (or it must immediately follow the try block if there is no catch). It is legal
to omit either the catch clause or the finally clause, but not both.

3672 Chapter 5: Flow Control, Exceptions, and Assertions

Datch
You can’t sneak any code in between the try, catch, or finally blocks.

The following won’t compile:

try {
// do stuff
}
System.out.print ("below the try"); //Illegal!

catch (Exception ex) { }

Propagating Uncaught Exceptions

Why aren't catch clauses required? What happens to an exception that's thrown
in a try block when there is no catch clause waiting for it? Actually, there's no
requirement that you code a catch clause for every possible exception that could
be thrown from the corresponding try block. In fact, it's doubtful that you could
accomplish such a feat! If a method doesn't provide a catch clause for a particular
exception, that method is said to be "ducking" the exception (or "passing the buck").
So what happens to a ducked exception? Before we discuss that, we need to
briefly review the concept of the call stack. Most languages have the concept of
a method stack or a call stack. Simply put, the call stack is the chain of methods
that your program executes to get to the current method. If your program starts in
method main () and main () calls method a (), which calls method b (), which in
turn calls method c (), the call stack consists of the following:

c
b
a
main

We will represent the stack as growing upward (although it can also be visualized
as growing downward). As you can see, the last method called is at the top of the
stack, while the first calling method is at the bottom. The method at the very top of
the stack trace would be the method you were currently executing. If we move back
down the call stack, we're moving from the current method to the previously called
method. Figure 5-1 illustrates a way to think about how the call stack in Java works.

The Java method
call stack

Propagating Uncaught Exceptions (Exam Objectives 2.4 and 2.5) 363

1) The call stack while method3() is running.

4 method3() method2 invokes method3
3 method2() method| invokes method2
2 method | () main invokes method |

| main() main begins

The order in which methods are put on the call stack

2) The call stack after method3() completes
Execution returns to method2()

| method2() method2() will complete
2 method () method| () will complete
3 main() main() will complete and the JVM will exit

The order in which methods complete

Now let's examine what happens to ducked exceptions. Imagine a building, say,
five stories high, and at each floor there is a deck or balcony. Now imagine that on
each deck, one person is standing holding a baseball mitt. Exceptions are like balls
dropped from person to person, starting from the roof. An exception is first thrown
from the top of the stack (in other words, the person on the roof), and if it isn't
caught by the same person who threw it (the person on the roof), it drops down
the call stack to the previous method, which is the person standing on the deck one
floor down. If not caught there, by the person one floor down, the exception/ball
again drops down to the previous method (person on the next floor down), and
so on until it is caught or until it reaches the very bottom of the call stack. This is
called exception propagation.

If an exception reaches the bottom of the call stack, it's like reaching the bottom
of a very long drop; the ball explodes, and so does your program. An exception that's
never caught will cause your application to stop running. A description (if one is
available) of the exception will be displayed, and the call stack will be "dumped."
This helps you debug your application by telling you what exception was thrown,
from what method it was thrown, and what the stack looked like at the time.

364 Chapter 5: Flow Control, Exceptions, and Assertions

$atch . .
You can keep throwing an exception down through the methods on

the stack. But what about when you get to the main () method at the bottom? You can
throw the exception out of main () as well.This results in the Java Virtual Machine (JVM)
halting, and the stack trace will be printed to the output.

The following code throws an exception,

class TestEx {
public static void main (String [] args) ({
doStuff () ;
}

static void doStuff ()
doMoreStuff () ;
}

static void doMoreStuff () ({
int x = 5/0; // Can't divide by zero!
// ArithmeticException is thrown here

which prints out a stack trace something like,

%$java TestEx
Exception in thread "main" java.lang.ArithmeticException: /
by zero
at TestEx.doMoreStuff (TestEx.java:10)
at TestEx.doStuff (TestEx.java:7)
at TestEx.main (TestEx.java:3)

EXERCISE 5-3

Propagating and Catching an Exception

In this exercise you're going to create two methods that deal with exceptions. One of
the methods is the main () method, which will call another method. If an exception
is thrown in the other method, main () must deal with it. A finally statement will
be included to indicate that the program has completed. The method that main ()

Defining Exceptions (Exam Objectives 2.4and 2.5) 365

will call will be named reverse, and it will reverse the order of the characters in a
String. If the String contains no characters, reverse will propagate an exception up
to the main () method.

M Create a class called Propagate and a main () method, which will remain
empty for now.

B Create a method called reverse. It takes an argument of a String and
returns a String.

B In reverse, check if the string has a length of O by using the
String.length () method. If the length is O, the reverse method will
throw an exception.

B Now include the code to reverse the order of the string. Because this isn't
the main topic of this chapter, the reversal code has been provided, but feel
free to try it on your own.

String reverseStr = "";
for (int i=s.length()-1;i>=0;--1) {
reverseStr += s.charAt(i);

}

return reverseStr;

B Now in the main () method you will attempt to call this method and deal
with any potential exceptions. Additionally, you will include a finally
statement that displays when main () has finished.

Defining Exceptions

We have been discussing exceptions as a concept. We know that they are thrown
when a problem of some type happens, and we know what effect they have on
the flow of our program. In this section we will develop the concepts further and
use exceptions in functional Java code. Earlier we said that an exception is an
occurrence that alters the normal program flow. But because this is Java, anything
that's not a primitive must be...an object. Exceptions are no, well, exception to
this rule. Every exception is an instance of a class that has class Exception in its
inheritance hierarchy. In other words, exceptions are always some subclass of
java.lang.Exception.

366 Chapter 5: Flow Control, Exceptions, and Assertions

When an exception is thrown, an object of a particular Exception subtype is
instantiated and handed to the exception handler as an argument to the catch
clause. An actual catch clause looks like this:

try {
// some code here
1

catch (ArrayIndexOutOfBoundsException e) {
e.printStackTrace () ;

In this example, e is an instance of the ArrayIndexoutOfBoundsException class.
As with any other object, you can call its methods.

Exception Hierarchy

All exception classes are subtypes of class Exception. This class derives from the
class Throwable (which derives from the class object). Figure 5-2 shows the
hierarchy for the exception classes.

[EEUEE Objec

Exception class

hierarchy
Throwable

PN

Error Exception

e

RuntimeException

=

As you can see, there are two subclasses that derive from Throwable: Exception
and Error. Classes that derive from Error represent unusual situations that are
not caused by program errors, and indicate things that would not normally happen

Datch

contained in the Throwable classes, including Exception and Error.You are expected
to know that Exception, Error, RuntimeException, and Throwable types can all be
thrown using the throw keyword, and can all be caught (although you rarely will
catch anything other than Exception subtypes).

Exception Hierarchy (Exam Objectives 2.4 and 2.5) 367

during program execution, such as the JVM running out of memory. Generally, your
application won't be able to recover from an Error, so you're not required to handle
them. If your code does not handle them (and it usually won't), it will still compile
with no trouble. Although often thought of as exceptional conditions, Errors are
technically not exceptions because they do not derive from class Exception.

In general, an exception represents something that happens not as a result of
a programming error, but rather because some resource is not available or some
other condition required for correct execution is not present. For example, if your
application is supposed to communicate with another application or computer that
is not answering, this is an exception that is not caused by a bug. Figure 5-2 also
shows a subtype of Exception called Runt imeException. These exceptions are
a special case because they sometimes do indicate program errors. They can also
represent rare, difficult-to-handle exceptional conditions. Runtime exceptions are
discussed in greater detail later in this chapter.

Java provides many exception classes, most of which have quite descriptive
names. There are two ways to get information about an exception. The first is
from the type of the exception itself. The next is from information that you can
get from the exception object. Class Throwable (at the top of the inheritance
tree for exceptions) provides its descendants with some methods that are useful in
exception handlers. One of these is printStackTrace (). As expected, if you call
an exception object's printStackTrace () method, as in the earlier example, a
stack trace from where the exception occurred will be printed.

We discussed that a call stack builds upward with the most recently called method
at the top. You will notice that the printStackTrace () method prints the most
recently entered method first and continues down, printing the name of each
method as it works its way down the call stack (this is called unwinding the stack)
from the top.

For the exam, it is not necessary to know any of the methods

368 Chapter 5: Flow Control, Exceptions, and Assertions

Handling an Entire Class Hierarchy of Exceptions

on the

Qob

We've discussed that the catch keyword allows you to specify a particular type of
exception to catch. You can actually catch more than one type of exception in a
single catch clause. If the exception class that you specify in the catch clause has
no subclasses, then only the specified class of exception will be caught. However, if
the class specified in the catch clause does have subclasses, any exception object
that subclasses the specified class will be caught as well.

For example, class IndexOutOfBoundsException has two subclasses,
ArrayIndexOutOfBoundsException and StringIndexOutOfBoundsException.
You may want to write one exception handler that deals with exceptions produced
by either type of boundary error, but you might not be concerned with which
exception you actually have. In this case, you could write a catch clause like
the following:

try {
// Some code here that can throw a boundary exception

}

catch (IndexOutOfBoundsException e) {
e.printStackTrace () ;

}

If any code in the try block throws ArrayIndexOutOfBoundsException or
StringIndexOutOfBoundsException, the exception will be caught and handled.
This can be convenient, but it should be used sparingly. By specifying an exception
class's superclass in your catch clause, you're discarding valuable information about
the exception. You can, of course, find out exactly what exception class you have,
but if you're going to do that, you're better off writing a separate catch clause for
each exception type of interest.

Resist the temptation to write a single catchall exception handler such as the
following:

try {
// some code

1

catch (Exception e)
e.printStackTrace () ;

}

Exception Matching (Exam Objectives 2.4 and 2.5) 3 @9

This code will catch every exception generated. Of course, no single exception
handler can properly handle every exception, and programming in this way
defeats the design objective. Exception handlers that trap many errors at once
will probably reduce the reliability of your program because it's likely that an
exception will be caught that the handler does not know how to handle.

Exception Matching

If you have an exception hierarchy composed of a superclass exception and a number
of subtypes, and you're interested in handling one of the subtypes in a special way
but want to handle all the rest together, you need write only two catch clauses.

When an exception is thrown, Java will try to find (by looking at the available
catch clauses from the top down) a catch clause for the exception type. If it doesn't
find one, it will search for a handler for a supertype of the exception. If it does not
find a catch clause that matches a supertype for the exception, then the exception
is propagated down the call stack. This process is called exception matching. Let's
look at an example:

1: import java.io.*;
2: public class ReadData {
3: public static void main(String args[]) {
4: try {
5: RandomAccessFile raf =
6: new RandomAccessFile ("myfile.txt", "xr");
7 byte b[] = new byte[1000];
8: raf.readFully (b, 0, 1000);
9: }
10: catch (FileNotFoundException e) {
11: System.err.println("File not found") ;
12: System.err.println(e.getMessage()) ;
13: e.printStackTrace() ;
14: }
15: catch (IOException e) ({
16: System.err.println("IO Error") ;
17: System.err.println(e.toString()) ;
18: e.printStackTrace() ;
19: }
20 }

N
=

}

370 Chapter 5: Flow Control, Exceptions, and Assertions

This short program attempts to open a file and to read some data from it. Opening
and reading files can generate many exceptions, most of which are some type of
IOException. Imagine that in this program we're interested in knowing only
whether the exact exception is a FileNotFoundException. Otherwise, we don't
care exactly what the problem is.

FileNotFoundException is a subclass of T0Exception. Therefore, we
could handle it in the catch clause that catches all subtypes of T0Exception,
but then we would have to test the exception to determine whether it was a
FileNotFoundException. Instead, we coded a special exception handler for
the FileNotFoundException and a separate exception handler for all other
IOException subtypes.

If this code generates a FileNotFoundException, it will be handled by the
catch clause that begins at line 10. If it generates another T0Except ion—perhaps
EOFException, which is a subclass of T0Exception—it will be handled by the
catch clause that begins at line 15. If some other exception is generated, such as
a runtime exception of some type, neither catch clause will be executed and the
exception will be propagated down the call stack.

Notice that the catch clause for the FileNotFoundException was placed above
the handler for the T10Exception. This is really important! If we do it the opposite
way, the program will not compile. The handlers for the most specific exceptions
must always be placed above those for more general exceptions. The following will
not compile:

try {
// do risky IO things
} catch (IOException e) {
// handle general IOExceptions
} catch (FileNotFoundException ex) {
// handle just FileNotFoundException
}

You'll get a compiler error something like this:

TestEx.java:15: exception java.io.FileNotFoundException has
already been caught
} catch (FileNotFoundException ex) {

A

If you think back to the people with baseball mitts (in the section "Propagating
Uncaught Exceptions"), imagine that the most general mitts are the largest, and
can thus catch many different kinds of balls. An T10Exception mitt is large enough

Exception Declaration and the Public Interface (Exam Objectives 2.4and 2.5) 37|

and flexible enough to catch any type of T0Exception. So if the person on the
fifth floor (say, Fred) has a big ‘ol 10Exception mitt, he can't help but catch a
FileNotFoundException ball with it. And if the guy (say, Jimmy) on the second
floor is holding a FileNot FoundException mitt, that FileNotFoundException
ball will never get to him, since it will always be stopped by Fred on the fifth floor,
standing there with his big-enough-for-any-10Exception mitt.

So what do you do with exceptions that are siblings in the class hierarchy? If one
Exception class is not a subtype or supertype of the other, then the order in which
the catch clauses are placed doesn't matter.

Exception Declaration and the Public Interface

So, how do we know that some method throws an exception that we have to catch?
Just as a method must specify what type and how many arguments it accepts and
what is returned, the exceptions that a method can throw must be declared (unless
the exceptions are subclasses of Runt imeException). The list of thrown exceptions
is part of a method's public interface. The throws keyword is used as follows to list
the exceptions that a method can throw:

void myFunction() throws MyExceptionl, MyException2
// code for the method here

}

This method has a void return type, accepts no arguments, and declares that
it can throw one of two types of exceptions: either type MyExceptionl or type
MyException2. (Just because the method declares that it throws an exception
doesn't mean it always will. It just tells the world that it might.)

Suppose your method doesn't directly throw an exception, but calls a method that
does. You can choose not to handle the exception yourself and instead just declare it,
as though it were your method that actually throws the exception. If you do declare
the exception that your method might get from another method, and you don't
provide a try/catch for it, then the method will propagate back to the method that
called your method, and either be caught there or continue on to be handled by a
method further down the stack.

Any method that might throw an exception (unless it's a subclass of
RuntimeException) must declare the exception. That includes methods that
aren't actually throwing it directly, but are "ducking" and letting the exception pass
down to the next method in the stack. If you "duck" an exception, it is just as if you
were the one actually throwing the exception. Runt imeException subclasses are

3772 Chapter 5: Flow Control, Exceptions, and Assertions

exempt, so the compiler won't check to see if you've declared them. But all non-

RuntimeExceptions are considered "checked" exceptions, because the compiler

checks to be certain you've acknowledged that "bad things could happen here."
Remember this:

Each method must either handle all checked exceptions by supplying a catch clause or
list each unhandled checked exception as a thrown exception.

This rule is referred to as Java's "handle or declare" requirement. (Sometimes
called "catch or declare.")

Match
Look for code that invokes a method declaring an exception, where the

calling method doesn’t handle or declare the checked exception.The following code
(which uses the throw keyword to throw an exception manually—more on this next) has
two big problems that the compiler will prevent:

void doStuff ()
doMore () ;
!

void doMore ()
throw new IOException() ;
}

First, the doMore () method throws a checked exception, but does not
declare it! But suppose we fix the doMore () method as follows:
void doMore () throws IOException { .. }
The dostuff () method is still in trouble because it, too, must declare the

IOException, unless it handles it by providing a try/catch, with a catch clause that can
take an I0Exception.

Exception Declaration and the Public Interface (Exam Objectives 2.4 and 2.5) 373

Again, some exceptions are exempt from this rule. An object of type
Runt imeException may be thrown from any method without being specified as
part of the method's public interface (and a handler need not be present). And
even if a method does declare a Runt imeException, the calling method is under
no obligation to handle or declare it. Runt imeException, Error, and all of their
subtypes are unchecked exceptions and unchecked exceptions do not have to be
specified or handled. Here is an example:

import java.io.*;
class Test ({
public int myMethodl () throws EOFException
return myMethod2 () ;

}

public int myMethod2 () throws EOFException (
// code that actually could throw the exception goes here
return 1;

}
}

Let's look at myMethod1 (). Because EOFException subclasses I0Exception and
I0Exception subclasses Exception, it is a checked exception and must be declared
as an exception that may be thrown by this method. But where will the exception
actually come from? The public interface for method myMethod2 () called here
declares that an exception of this type can be thrown. Whether that method actually
throws the exception itself or calls another method that throws it is unimportant to
us; we simply know that we have to either catch the exception or declare that we
throw it. The method myMethod1 () does not catch the exception, so it declares that
it throws it. Now let's look at another legal example, myMethod3 ().

public void myMethod3 ()
// code that could throw a NullPointerException goes here
}

According to the comment, this method can throw a NullPointerException.
Because Runt imeException is the superclass of Nul1PointerException, it is an
unchecked exception and need not be declared. We can see that myMethod3 () does
not declare any exceptions.

Runtime exceptions are referred to as unchecked exceptions. All other exceptions
are checked exceptions, and they don't derive from java.lang.RuntimeException.
A checked exception must be caught somewhere in your code. If you invoke a
method that throws a checked exception but you don't catch the checked exception

374 Chapter 5: Flow Control, Exceptions, and Assertions

somewhere, your code will not compile. That's why they're called checked
exceptions; the compiler checks to make sure that they're handled or declared.
A number of the methods in the Java 2 Standard Edition libraries throw checked
exceptions, so you will often write exception handlers to cope with exceptions
generated by methods you didn't write.

You can also throw an exception yourself, and that exception can be either
an existing exception from the Java API or one of your own. To create your own
exception, you simply subclass Exception (or one of its subclasses) as follows:

class MyException extends Exception { }

And if you throw the exception, the compiler will guarantee that you declare it
as follows:

class TestEx {
void doStuff ()
throw new MyException(); // Throw a checked exception
}

}
The preceding code upsets the compiler:

TestEx.java:6: unreported exception MyException; must be caught
or
declared to be thrown

throw new MyException/() ;

A

$atch
When an object of a subtype of Exception is thrown, it must be handled

or declared. These objects are called checked exceptions, and include all exceptions
except those that are subtypes of RuntimeException, which are unchecked exceptions.
Be ready to spot methods that don’t follow the “handle or declare” rule, such as

class MyException extends Exception {
void someMethod () {
doStuff () ;

}

Exception Declaration and the Public Interface (Exam Objectives 2.4 and 2.5) 375§

Jatch
void doStuff () throws MyException

try {
throw new MyException () ;
1

catch (MyException me) {
throw me;
}

}
}

You need to recognize that this code won’t compile. If you try, you’ll get

MyException.java:3: unreported exception MyException; must
be caught or declared to be thrown
doStuff () ;

A

Notice that someMethod () fails to either handle or declare the exception
that can be thrown by doStuff ().

You need to know how an Error compares with checked and unchecked
exceptions. Objects of type Error are not Exception objects, although they do
represent exceptional conditions. Both Exception and Error share a common
superclass, Throwable, thus both can be thrown using the throw keyword. When an
Error or a subclass of Error is thrown, it's unchecked. You are not required to catch
Error objects or Error subtypes. You can also throw an Error yourself (although
other than AssertionError you probably won't ever want to), and you can catch
one, but again, you probably won't. What, for example, would you actually do if you
got an OutOfMemoryError! It's not like you can tell the garbage collector to run;
you can bet the JVM fought desperately to save itself (and reclaimed all the memory
it could) by the time you got the error. In other words, don't expect the JVM at that
point to say, "Run the garbage collector? Oh, thanks so much for telling me. That
just never occurred to me. Sure, I'll get right on it." Even better, what would you do
if a virtualMachineError arose! Your program is toast by the time you'd catch the
Error, so there's really no point in trying to catch one of these babies. Just remember,
though, that you can! The following compiles just fine:

376 Chapter 5: Flow Control, Exceptions, and Assertions

class TestEx {

public static void main (String [] args)
badMethod () ;

1

static void badMethod() { // No need to declare an Error
doStuff () ;

1

static void doStuff() { //No need to declare an Error
try {

throw new Error() ;

}

catch (Error me) {
throw me; // We catch it, but then rethrow it

}
}
}

If we were throwing a checked exception rather than Error, then the dostuff ()
method would need to declare the exception. But remember, since Error is not a
subtype of Exception, it doesn't need to be declared. You're free to declare it if you
like, but the compiler just doesn't care one way or another when or how the Error
is thrown, or by whom.

Because Java has checked exceptions, it's commonly said that Java forces
on tnl developers to handle exceptions. Yes, Java forces us to write exception
Qob handlers for each exception that can occur during normal operation, but it's
up to us to make the exception handlers actually do something useful. We
know software managers who melt down when they see a programmer write:

try {
callBadMethod () ;

} catch (Exception ex) { }

Notice anything missing? Don't "eat" the exception by catching it without
actually handling it. You won't even be able to tell that the exception occurred,
because you'll never see the stack trace.

Rethrowing the Same Exception

Just as you can throw a new exception from a catch clause, you can also throw the
same exception you just caught. Here's a catch clause that does this:

Rethrowing the Same Exception (Exam Objectives 2.4 and 2.5) 377

catch (IOException e) ({
// Do things, then if you decide you can't handle it..
throw e;

}

All other catch clauses associated with the same try are ignored, if a finally
block exists, it runs, and the exception is thrown back to the calling method (the
next method down the call stack). If you throw a checked exception from a catch
clause, you must also declare that exception! In other words, you must handle and
declare, as opposed to handle or declare. The following example is illegal:

public void doStuff () {

try {
// risky IO things
} catch(IOException ex) {
// can't handle it
throw ex; // Can't throw it unless you declare it

In the preceding code, the dostuff () method is clearly able to throw a checked
exception—in this case an TOException—so the compiler says, "Well, that's just
peachy that you have a try/catch in there, but it's not good enough. If you might
rethrow the T0Exception you catch, then you must declare it!"

EXERCISE 5-4

Creating an Exception

In this exercise we attempt to create a custom exception. We won't put in any new
methods (it will have only those inherited from Exception), and because it extends
Exception, the compiler considers it a checked exception. The goal of the program
is to determine whether a command-line argument, representing a particular food
(as a string), is considered bad or OK.

B Let's first create our exception. We will call it BadFoodException. This
exception will be thrown when a bad food is encountered.

B Create an enclosing class called MyException and amain () method,
which will remain empty for now.

378 Chapter 5: Flow Control, Exceptions, and Assertions

B Create a method called checkFood (). It takes a String argument and
throws our exception if it doesn't like the food it was given. Otherwise, it
tells us it likes the food. You can add any foods you aren't particularly fond of
to the list.

B Now in the main () method, you'll get the command-line argument out of
the string array, and then pass that String on to the checkFood () meth-
od. Because it's a checked exception, the checkFood () method must declare
it, and the main () method must handle it (using a try/catch). Do not have
main () declare the exception, because if main () ducks the exception, who
else is back there to catch it?

B As nifty as exception handling is, it's still up to the developer to make
proper use of it. Exception handling makes organizing our code and signaling
problems easy, but the exception handlers still have to be written. You'll find
that even the most complex situations can be handled, and your code will be
reusable, readable, and maintainable.

CERTIFICATION OBJECTIVE

Common Exceptions and Errors
(Exam Objective 2.6)

2.6 Recognize situations that will result in any of the following being thrown:
ArrayIndexOutOfBoundsException, ClassCastException, Illegal ArgumentException,
IllegalStateException, NullPointerException, NumberFormatException, AssertionError,
ExceptionInInitializerError, StackOverflowError, or NoClassDefFoundError. Understand
which of these are thrown by the virtual machine and recognize situations in which others
should be thrown programmatically.

Exception handling is another area that the exam creation team decided to expand
for the SCJP 5 exam. This section discusses the aspects of exceptions that were
added for this new version. The intention of Objective 2.6 is to make sure that you
are familiar with some of the most common exceptions and errors you'll encounter
as a Java programmer.

Common Exceptions and Errors (Exam Objective 2.6) 379

Datch
The questions from this section are likely to be along the lines of, "Here’s

some code that just did something bad, which exception will be thrown?"

Throughout the exam, questions will present some code and ask you to
determine whether the code will run, or whether an exception will be thrown. Since these
questions are so common, understanding the causes for these exceptions is critical to
your success.

This is another one of those objectives that will turn up all through the real
exam (does "An exception is thrown at runtime" ring a bell?), so make sure this
section gets a lot of your attention.

Where Exceptions Come From

Jump back a page and take a look at the last sentence of Objective 2.6. It's
important to understand what causes exceptions and errors, and where they come
from. For the purposes of exam preparation, let's define two broad categories of
exceptions and errors:

B JVM exceptions Those exceptions or errors that are either exclusively
or most logically thrown by the JVM.

B Programmatic exceptions Those exceptions that are thrown explicitly
by application and/or API programmers.

JVM Thrown Exceptions

Let's start with a very common exception, the NullPointerException. As we
saw in Chapter 3, this exception occurs when you attempt to access an object
using a reference variable with a current value of nu11. There's no way that
the compiler can hope to find these problems before runtime. Let's look at the
following:

380 Chapter 5: Flow Control, Exceptions, and Assertions

class NPE ({
static String s;
public static void main(String [] args) {
System.out.println(s.length()) ;

}
}

Surely, the compiler can find the problem with that tiny little program! Nope,
you're on your own. The code will compile just fine, and the JVM will throw a
NullPointerException when it tries to invoke the length () method.

Earlier in this chapter we discussed the call stack. As you recall, we used the
convention that main () would be at the bottom of the call stack, and that as
main () invokes another method, and that method invokes another, and so on,
the stack grows upward. Of course the stack resides in memory, and even if your
OS gives you a gigabyte of RAM for your program, it's still a finite amount. It's
possible to grow the stack so large that the OS runs out of space to store the call
stack. When this happens you get (wait for it...), a StackOverflowError. The
most common way for this to occur is to create a recursive method. A recursive
method is one that invokes itself in the method body. While that may sound
weird, it's a very common and useful technique for such things as searching and
sorting algorithms. Take a look at this code:

void go() { // recursion gone bad
go();
}

As you can see, if you ever make the mistake of invoking the go ()
method, your program will fall into a black hole; go () invoking go ()
invoking go (), until, no matter how much memory you have, you'll get a
StackOverflowError. Again, only the JVM knows when this moment occurs,
and the JVM will be the source of this error.

Programmatically Thrown Exceptions

Now let's look at programmatically thrown exceptions. Remember we defined
"programmatically" as meaning something like this:

Created by an application and/or API developer.

Common Exceptions and Errors (Exam Objective 2.6) 38 |l

For instance, many classes in the Java API have methods that take string
arguments, and convert these Strings into numeric primitives. A good example
of these classes are the so-called "wrapper classes" that we studied in Chapter 3.

At some point long ago, some programmer wrote the java.lang.

Integer class, and created methods like parseint () and valueof ().

That programmer wisely decided that if one of these methods was passed a
String that could not be converted into a number, the method should throw
a NumberFormatException. The partially implemented code might look
something like this:

int parselnt (String s) throws NumberFormatException ({
boolean parseSuccess = false;
int result = 0;
// do complicated parsing
if (!parseSuccess) // if the parsing failed
throw new NumberFormatException() ;
return result;

Other examples of programmatic exceptions include an AssertionError (okay,
it's not an exception, but it IS thrown programmatically), and throwing an
IllegalArgumentException. In fact, our mythical API developer could have
used IllegalArgumentException for her parselnt () method. But it turns
out that NumberFormatException extends I1legalArgumentException, and
is a little more precise, so in this case, using NumberFormatException supports
the notion we discussed earlier: that when you have an exception hierarchy, you
should use the most precise exception that you can.

Of course, as we discussed earlier, you can also make up your very own special,
custom exceptions, and throw them whenever you want to. These homemade
exceptions also fall into the category of "programmatically thrown exceptions."

A Summary of the Exam's Exceptions and Errors

Objective 2.6 lists ten specific exceptions and errors. In this section we discussed
the stackoverflowError. The other nine exceptions and errors listed in the
objective are covered elsewhere in this book. Table 5-2 summarizes this list and
provides chapter references to the exceptions and errors we did not discuss here.

382 Chapter 5: Flow Control, Exceptions, and Assertions

TABLE 5-2 Descriptions and Sources of Common Exceptions.

Exception Description Typically
(Chapter Location) Thrown
ArraylndexOutOfBoundsException =~ Thrown when attempting to access an array By the JVM
(Chapter 3, "Assignments") with an invalid index value (either negative

or beyond the length of the array).
ClassCastException Thrown when attempting to cast a reference By the JVM
(Chapter 2, "Object Orientation") variable to a type that fails the IS-A test.
Illegal ArgumentException Thrown when a method receives an argument ~ Programmatically
(This chapter) formatted differently than the method

expects.
IllegalStateException Thrown when the state of the environment Programmatically
(Chapter 6, "Formatting") doesn’t match the operation being attempted,

e.g., using a Scanner that’s been closed.
NullPointerException Thrown when attempting to access an object By the JVM
(Chapter 3, "Assignments") with a reference variable whose current value

is null.
NumberFormatException Thrown when a method that converts a Programmatically
(Chapter 3, "Assignments") String to a number receives a String that it

cannot convert.
AssertionError Thrown when a statement’s boolean test Programmatically
(This chapter) returns false.
ExceptionInlnitializerError Thrown when attempting to initialize a static =~ By the JVM
(Chapter 3, "Assignments") variable or an initialization block.
StackOverflowError Typically thrown when a method recurses By the JVM
(This chapter) too deeply. (Each invocation is added to the

stack.)
NoClassDefFoundError Thrown when the JVM can’t find a class it By the JVM

(Chapter 10, "Development")

needs, because of a command-line error, a
classpath issue, or a missing .class file.

Working with the Assertion Mechanism (Exam Objective 2.3) 383

CERTIFICATION OBJECTIVE

Working with the Assertion Mechanism
(Exam Objective 2.3)

2.3 Develop code that makes use of assertions, and distinguish appropriate from
imappropriate uses of assertions.

You know you're not supposed to make assumptions, but you can't help it when
y pp p y P
you're writing code. You put them in comments:

if (x > 2 && v)
// do something

} else if (x < 2 || v) {
// do something
} else {

// X must be 2
// do something else

}

You write print statements with them:

while (true) ({
if (x > 2) |
break;

}

System.out.print ("If we got here " +

}

"something went horribly wrong") ;

Added to the Java language beginning with version 1.4, assertions let you test your
assumptions during development, without the expense (in both your time and
program overhead) of writing exception handlers for exceptions that you assume
will never happen once the program is out of development and fully deployed.

Starting with exam 310-035 (version 1.4 of the Sun Certified Java Programmer
exam) and continuing through to the current exam 310-065 (SCJP 6), you're
expected to know the basics of how assertions work, including how to enable them,
how to use them, and how not to use them.

384 Chapter 5: Flow Control, Exceptions, and Assertions

Assertions Overview

Suppose you assume that a number passed into a method (say, methoda ())

will never be negative. While testing and debugging, you want to validate your
assumption, but you don't want to have to strip out print statements, runtime
exception handlers, or 1f/else tests when you're done with development. But
leaving any of those in is, at the least, a performance hit. Assertions to the rescue!
Check out the following code:

private void methodA (int num)
if (num >= 0) {
useNum (num + X) ;
} else { // num must be < 0
// This code should never be reached!
System.out.println("Yikes! num is a negative number! "
+ num) ;

Because you're so certain of your assumption, you don't want to take the time (or
program performance hit) to write exception-handling code. And at runtime, you
don't want the if/else either because if you do reach the else condition, it means
your earlier logic (whatever was running prior to this method being called) is flawed.

Assertions let you test your assumptions during development, but the assertion
code basically evaporates when the program is deployed, leaving behind no overhead
or debugging code to track down and remove. Let's rewrite methoda () to validate
that the argument was not negative:

private void methodA (int num)
assert (num>=0) ; // throws an AssertionError
// 1f this test isn't true
useNum (num + X) ;

}

Not only do assertions let your code stay cleaner and tighter, but because assertions
are inactive unless specifically "turned on" (enabled), the code will run as though it
were written like this:

private void methodA (int num)
useNum (num + x); // we've tested this;
// we now know we're good here

on the

Qob

Assertions Overview (Exam Objective 2.3) 385§

Assertions work quite simply. You always assert that something is true. If it is, no
problem. Code keeps running. But if your assertion turns out to be wrong (false),
then a stop-the-world AssertionError is thrown (that you should never, ever
handle!) right then and there, so you can fix whatever logic flaw led to the problem.

Assertions come in two flavors: really simple and simple, as follows:

Really simple:

private void doStuff () {
assert (y > x);
// more code assuming y is greater than x

}
Simple:

private void doStuff () {
assert (y > x): "y is " + y + " x is " + x;
// more code assuming y 1is greater than x

}

The difference between the two is that the simple version adds a second expression,
separated from the first (boolean expression) by a colon, this expression's

string value is added to the stack trace. Both versions throw an immediate
AssertionError, but the simple version gives you a little more debugging help
while the really simple version simply tells you only that your assumption was false.

Assertions are typically enabled when an application is being tested and
debugged, but disabled when the application is deployed.The assertions are
still in the code, although ignored by the JVM, so if you do have a deployed
application that starts misbehaving, you can always choose to enable
assertions in the field for additional testing.

Assertion Expression Rules

Assertions can have either one or two expressions, depending on whether you're
using the "simple" or the "really simple." The first expression must always result in
a boolean value! Follow the same rules you use for if and while tests. The whole
point is to assert aTest, which means you're asserting that aTest is true. If it is
true, no problem. If it's not true, however, then your assumption was wrong and
you get an AssertionError.

386 Chapter5:

$atch

Flow Control, Exceptions, and Assertions

void noReturn() {
int aReturn()
void go() {

int x = 1;

The second expression, used only with the simple version of an assert
statement, can be anything that results in a value. Remember, the second expression
is used to generate a String message that displays in the stack trace to give you a
little more debugging information. It works much like System.out .println() in
that you can pass it a primitive or an object, and it will convert it into a String
representation. It must resolve to a value!

The following code lists legal and illegal expressions for both parts of an assert
statement. Remember, expression2 is used only with the simple assert statement,
where the second expression exists solely to give you a little more debugging detail:

}

{ return 1; }

boolean b = true;

// the following six are legal assert statements

assert(x == 1);
assert (b) ;
assert true;
assert (x == 1)
assert (x == 1)
assert (x == 1)

X
aReturn () ;
new ValidAssert () ;

// the following six are ILLEGAL assert statements

assert(x = 1);

assert (x) ;
assert 0;
assert (x == 1)
assert (x == 1)
assert (x == 1)

If you see the word “expression” in a question about assertions, and the
question doesn’t specify whether it means expression| (the boolean test) or expression2
(the value to print in the stack trace), then always assume the word "expression" refers
to expressionl, the boolean test. For example, consider the following question:

// none of these are booleans

; // none of these return a value
noReturn () ;
ValidAssert va;

so the question statement is correct. If the statement were referring to expression2,
however, the statement would not be correct, since expression2 can have a result of any
value, not just a boolean.

Enabling Assertions (Exam Objective 2.3) 387

Datch

An assert expression must result in a boolean value, true or false?

Assume that the word 'expression’ refers to expressionl of an assert,

Enabling Assertions

on the

Qob

If you want to use assertions, you have to think first about how to compile with
assertions in your code, and then about how to run with assertions enabled. Both
require version 1.4 or greater, and that brings us to the first issue: how to compile
with assertions in your code.

Identifier vs. Keyword

Prior to version 1.4, you might very well have written code like this:

int assert = getInitialValue();
if (assert == getActualResult()) {
// do something

}

Notice that in the preceding code, assert is used as an identifier. That's not a
problem prior to 1.4. But you cannot use a keyword/reserved word as an identifier, and
beginning with version 1.4, assert is a keyword. The bottom line is this:

You can use assert as a keyword or as an identifier, but not both.

If for some reason you're using a Java 1.4 compiler, and if you're using assert
as a keyword (in other words, you're actually trying to assert something in
your code), then you must explicitly enable assertion-awareness at compile
time, as follows:

javac -source 1.4 com/geeksanonymous/TestClass.java

388 Chapter 5: Flow Control, Exceptions, and Assertions

You can read that as "compile the class TestClass, in the directory
com/geeksanonymous, and do it in the 1.4 way, where assert is a keyword."

Use Version 6 of java and javac

As far as the exam is concerned, you'll ALWAYS be using version 6 of the Java
compiler (javac), and version 6 of the Java application launcher (java). You might
see questions about older versions of source code, but those questions will always

be in the context of compiling and launching old code with the current versions of

javac and java.

Compiling Assertion-Aware Code

The Java 6 compiler will use the assert keyword by default. Unless you tell it
otherwise, the compiler will generate an error message if it finds the word assert
used as an identifier. However, you can tell the compiler that you're giving it an old
piece of code to compile, and that it should pretend to be an old compiler! (More
about compiler commands in Chapter 10.) Let's say you've got to make a quick fix to
an old piece of 1.3 code that uses assert as an identifier. At the command line you
can type

javac -source 1.3 0OldCode.java

The compiler will issue warnings when it discovers the word assert used as an
identifier, but the code will compile and execute. Suppose you tell the compiler that
your code is version 1.4 or later, for instance:

javac -source 1.4 NotQuiteSoOldCode.java

In this case, the compiler will issue errors when it discovers the word assert used as
an identifier.

If you want to tell the compiler to use Java 6 rules you can do one of three
things: omit the -source option, which is the default, or add one of two source
options:

-source 1.6 Or -source 6.

Enabling Assertions (Exam Objective 2.3) 389

If you want to use assert as an identifier in your code, you MUST compile using
the -source 1.3 option. Table 5-3 summarizes how the Java 6 compiler will react
to assert as either an identifier or a keyword.

Using Java 6 to Compile Code That Uses assert as an Identifier or a Keyword

Command Line If assert Is an Identifier If assert Is a Keyword
javac -source 1.3 TestAsserts.java (Code compiles with warnings. Compilation fails.

javac -source 1.4 TestAsserts.java Compilation fails. Code compiles.

javac -source 1.5 TestAsserts.java Compilation fails. Code compiles.

javac -source 5 TestAsserts.java Compilation fails. Code compiles.

javac -source 1.6 TestAsserts.java Compilation fails. Code compiles.

javac -source 6 TestAsserts.java Compilation fails. Code compiles.

javac TestAsserts.java Compilation fails. Code compiles.

Running with Assertions

Here's where it gets cool. Once you've written your assertion-aware code (in

other words, code that uses assert as a keyword, to actually perform assertions at
runtime), you can choose to enable or disable your assertions at runtime! Remember,
assertions are disabled by default.

Enabling Assertions at Runtime

You enable assertions at runtime with
java -ea com.geeksanonymous.TestClass
or
java -enableassertions com.geeksanonymous.TestClass

The preceding command-line switches tell the JVM to run with assertions enabled.

390 Chapter 5: Flow Control, Exceptions, and Assertions

Disabling Assertions at Runtime
You must also know the command-line switches for disabling assertions,

java -da com.geeksanonymous.TestClass

or

java -disableassertions com.geeksanonymous.TestClass

Because assertions are disabled by default, using the disable switches might seem
unnecessary. Indeed, using the switches the way we do in the preceding example just
gives you the default behavior (in other words, you get the same result regardless

of whether you use the disabling switches). But...you can also selectively enable
and disable assertions in such a way that they're enabled for some classes and/or
packages, and disabled for others, while a particular program is running.

Selective Enabling and Disabling

The command-line switches for assertions can be used in various ways:

B With no arguments (as in the preceding examples) Enables or disables
assertions in all classes, except for the system classes.

B With a package name Enables or disables assertions in the package speci-
fied, and any packages below this package in the same directory hierarchy
(more on that in a moment).

B With a class name Enables or disables assertions in the class specified.

You can combine switches to, say, disable assertions in a single class, but keep
them enabled for all others, as follows:

java -ea -da:com.geeksanonymous.Foo

The preceding command line tells the JVM to enable assertions in general,
but disable them in the class com.geeksanonymous . Foo. You can do the same
selectivity for a package as follows:

java -ea -da:com.geeksanonymous. ..

The preceding command line tells the JVM to enable assertions in general, but
disable them in the package com.geeksanonymous, and all of its subpackages! You
may not be familiar with the term subpackages, since there wasn't much use of that
term prior to assertions. A subpackage is any package in a subdirectory of the named
package. For example, look at the following directory tree:

Enabling Assertions (Exam Objective 2.3) 39 ||

com
| geeksanonymous
| Foo
| twelvesteps
| StepOne
| StepTwo

This tree lists three directories,

com
geeksanonymous

twelvesteps

and three classes:
com.geeksanonymous . Foo
com.geeksanonymous.twelvesteps.StepOne
com.geeksanonymous . twelvesteps.StepTwo

The subpackage of com. geeksanonymous is the twelvesteps package Remember
that in Java, the com.geeksanonymous . twelvesteps package is treated as a
completely distinct package that has no relationship with the packages above it

(in this example, the com.geeksanonymous package), except they just happen to
share a couple of directories. Table 5-4 lists examples of command-line switches for
enabling and disabling assertions.

TABLE 5-4 Assertion Command-Line Switches

Command-Line Example What It Means

java -ea Enable assertions.
java -enableassertions

java -da Disable assertions (the default behavior of Java 6).
java -disableassertions

java -ea:com.foo.Bar Enable assertions in class com. foo.Bar.

java -ea:com.foo.. . Enable assertions in package com. foo and any of its subpackages.
java -ea -dsa Enable assertions in general, but disable assertions in system classes.
java -ea -da:com.foo... Enable assertions in general, but disable assertions in package

com. foo and any of its subpackages.

392 Chapter 5: Flow Control, Exceptions, and Assertions

Using Assertions Appropriately

Datch

"legal." "Appropriate" always refers to the way in which something is supposed to be
used, according to either the developers of the mechanism or best practices officially
embraced by Sun. If you see the word “correct”in the context of assertions, as in, “Line
3 is a correct use of assertions,” you should also assume that correct is referring to how
assertions SHOULD be used rather than how they legally COULD be used.

Not all legal uses of assertions are considered appropriate. As with so much of Java,
you can abuse the intended use of assertions, despite the best efforts of Sun's Java
engineers to discourage you from doing so. For example, you're never supposed
to handle an assertion failure. That means you shouldn't catch it with a catch
clause and attempt to recover. Legally, however, AssertionError is a subclass
of Throwable, so it can be caught. But just don't do it! If you're going to try to
recover from something, it should be an exception. To discourage you from trying
to substitute an assertion for an exception, the AssertionError doesn't provide
access to the object that generated it. All you get is the String message.

So who gets to decide what's appropriate? Sun. The exam uses Sun's "official"
assertion documentation to define appropriate and inappropriate uses.

Don't Use Assertions to Validate Arguments to a Public Method

The following is an inappropriate use of assertions:

public void doStuff (int x)
assert (x > 0); // inappropriate !
// do things with x

}

If you see the word "appropriate" on the exam, do not mistake that for

A public method might be called from code that you don't control (or from code
you have never seen). Because public methods are part of your interface to the
outside world, you're supposed to guarantee that any constraints on the arguments
will be enforced by the method itself. But since assertions aren't guaranteed to
actually run (they're typically disabled in a deployed application), the enforcement
won't happen if assertions aren't enabled. You don't want publicly accessible code
that works only conditionally, depending on whether assertions are enabled.

Using Assertions Appropriately (Exam Objective 2.3) 393

If you need to validate public method arguments, you'll probably use exceptions
to throw, say, an I1legalArgumentException if the values passed to the public
method are invalid.

Do Use Assertions to Validate Arguments to a Private Method

If you write a private method, you almost certainly wrote (or control) any code
that calls it. When you assume that the logic in code calling your private method
is correct, you can test that assumption with an assertion as follows:

private void doMore (int x) {
assert (x > 0);
// do things with x

}

The only difference that matters between the preceding example and the one before
it is the access modifier. So, do enforce constraints on private methods' arguments,
but do not enforce constraints on public methods. You're certainly free to compile
assertion code with an inappropriate validation of public arguments, but for the
exam (and real life) you need to know that you shouldn't do it.

Don't Use Assertions to Validate Command-Line Arguments

This is really just a special case of the "Do not use assertions to validate arguments to
a public method" rule. If your program requires command-line arguments, you'll
probably use the exception mechanism to enforce them.

Do Use Assertions, Even in Public Methods, to Check for Cases
that You Know Are Never, Ever Supposed to Happen

This can include code blocks that should never be reached, including the default of
a switch statement as follows:

switch(x) {
case 1l: y = 3; break;
case 2: y = 9; break;
case 3: y = 27; break;

default: assert false; // we're never supposed to get here!

}

If you assume that a particular code block won't be reached, as in the preceding
example where you assert that x must be either 1, 2, or 3, then you can use assert
false to cause an AssertionError to be thrown immediately if you ever do reach
that code. So in the switch example, we're not performing a boolean test—we've

394 Chapter 5: Flow Control, Exceptions, and Assertions

on the

Qob

already asserted that we should never be there, so just getting to that point is an
automatic failure of our assertion/assumption.

Don't Use Assert Expressions that Can Cause Side Effects!
The following would be a very bad idea:

public void doStuff () {
assert (modifyThings()) ;
// continues on

}

public boolean modifyThings()
Y = X++;
return true;

}

The rule is, an assert expression should leave the program in the same state it was
in before the expression! Think about it. assert expressions aren't guaranteed to
always run, so you don't want your code to behave differently depending on whether
assertions are enabled. Assertions must not cause any side effects. If assertions are
enabled, the only change to the way your program runs is that an AssertionError
can be thrown if one of your assertions (think: assumptions) turns out to be false.

Using assertions that cause side effects can cause some of the most maddening
and hard-to-find bugs known to man! When a hot tempered Q.A. analyst is
screaming at you that your code doesn't work, trotting out the old "well it

works on MY machine" excuse won't get you very far.

CERTIFICATION SUMMARY

This chapter covered a lot of ground, all of which involves ways of controlling your
program flow, based on a conditional test. First you learned about if and switch
statements. The if statement evaluates one or more expressions to a boolean
result. If the result is true, the program will execute the code in the block that is
encompassed by the if. If an else statement is used and the if expression evaluates
to false, then the code following the else will be performed. If no else block is
defined, then none of the code associated with the if statement will execute.

You also learned that the switch statement can be used to replace multiple i f-
else statements. The switch statement can evaluate integer primitive types that
can be implicitly cast to an int (those types are byte, short, int, and char), or it
can evaluate enums.

Certification Summary 398§

At runtime, the JVM will try to find a match between the expression in the
switch statement and a constant in a corresponding case statement. If a match
is found, execution will begin at the matching case, and continue on from there,
executing code in all the remaining case statements until a break statement is
found or the end of the switch statement occurs. If there is no match, then the
default case will execute, if there is one.

You've learned about the three looping constructs available in the Java language.
These constructs are the for loop (including the basic for and the enhanced
for which is new to Java 6), the while loop, and the do loop. In general, the for
loop is used when you know how many times you need to go through the loop. The
while loop is used when you do not know how many times you want to go through,
whereas the do loop is used when you need to go through at least once. In the for
loop and the while loop, the expression will have to evaluate to true to get inside
the block and will check after every iteration of the loop. The do loop does not
check the condition until after it has gone through the loop once. The major benefit
of the for loop is the ability to initialize one or more variables and increment or
decrement those variables in the for loop definition.

The break and continue statements can be used in either a labeled or unlabeled
fashion. When unlabeled, the break statement will force the program to stop
processing the innermost looping construct and start with the line of code following
the loop. Using an unlabeled continue command will cause the program to stop
execution of the current iteration of the innermost loop and proceed with the next
iteration. When a break or a continue statement is used in a labeled manner, it
will perform in the same way, with one exception: the statement will not apply to
the innermost loop; instead, it will apply to the loop with the label. The break
statement is used most often in conjunction with the switch statement. When
there is a match between the switch expression and the case constant, the code
following the case constant will be performed. To stop execution, a break is needed.

You've seen how Java provides an elegant mechanism in exception handling.
Exception handling allows you to isolate your error-correction code into separate
blocks so that the main code doesn't become cluttered by error-checking code.
Another elegant feature allows you to handle similar errors with a single error-
handling block, without code duplication. Also, the error handling can be deferred
to methods further back on the call stack.

You learned that Java's try keyword is used to specify a guarded region—a block
of code in which problems might be detected. An exception handler is the code that
is executed when an exception occurs. The handler is defined by using Java's catch
keyword. All catch clauses must immediately follow the related try block. Java
also provides the finally keyword. This is used to define a block of code that is
always executed, either immediately after a catch clause completes or immediately

396 Chapter 5: Flow Control, Exceptions, and Assertions

after the associated try block in the case that no exception was thrown (or there
was a try but no catch). Use finally blocks to release system resources and to
perform any cleanup required by the code in the try block. A finally block is not
required, but if there is one it must immediately follow the last catch. (If there is
no catch block, the finally block must immediately follow the try block.) It's
guaranteed to be called except when the try or catch issues a System.exit ().

An exception object is an instance of class Exception or one of its subclasses.
The catch clause takes, as a parameter, an instance of an object of a type derived
from the Exception class. Java requires that each method either catches any
checked exception it can throw or else declares that it throws the exception. The
exception declaration is part of the method's public interface. To declare that an
exception may be thrown, the throws keyword is used in a method definition, along
with a list of all checked exceptions that might be thrown.

Runtime exceptions are of type RuntimeException (or one of its subclasses).
These exceptions are a special case because they do not need to be handled or
declared, and thus are known as "unchecked" exceptions. Errors are of type
java.lang.Error or its subclasses, and like runtime exceptions, they do not need
to be handled or declared. Checked exceptions include any exception types that
are not of type RuntimeException or Error. If your code fails to either handle a
checked exception or declare that it is thrown, your code won't compile. But with
unchecked exceptions or objects of type Error, it doesn't matter to the compiler
whether you declare them or handle them, do nothing about them, or do some
combination of declaring and handling. In other words, you're free to declare them
and handle them, but the compiler won't care one way or the other. It's not good
practice to handle an Error, though, because you can rarely recover from one.

Exceptions can be generated by the JVM, or by a programmer.

Assertions, added to the language in version 1.4, are a useful debugging tool. You
learned how you can use them for testing, by enabling them, but keep them disabled
when the application is deployed. If you have older Java code that uses the
word assert as an identifier, then you won't be able to use assertions, and you
must recompile your older code using the -source 1.3 flag. Remember that as
of Java 6, assertions are compiled as a keyword by default, but must be enabled
explicitly at runtime.

You learned how assert statements always include a boolean expression, and
if the expression is true the code continues on, but if the expression is false,
an AssertionError is thrown. If you use the two-expression assert statement,
then the second expression is evaluated, converted to a String representation and
inserted into the stack trace to give you a little more debugging info. Finally, you
saw why assertions should not be used to enforce arguments to public methods, and
why assert expressions must not contain side effects!

Two-Minute Drill 397

TWO-MINUTE DRILL

Here are some of the key points from each certification objective in this chapter.
You might want to loop through them several times.

Writing Code Using if and switch Statements (Obj. 2.1)

a

a

The only legal expression in an if statement is a boolean expression, in
other words an expression that resolves to a boolean or a Boolean variable.

Watch out for boolean assignments (=) that can be mistaken for boolean
equality (==) tests:

boolean x = false;
if (x = true) { } // an assignment, so x will always be true!

Curly braces are optional for i £ blocks that have only one conditional state-
ment. But watch out for misleading indentations.

switch statements can evaluate only to enums or the byte, short, int, and
char data types. You can't say,

long s = 30;
switch(s) { }

The case constant must be a literal or final variable, or a constant
expression, including an enum. You cannot have a case that includes a non-
final variable, or a range of values.

If the condition in a switch statement matches a case constant, execution
will run through all code in the switch following the matching case
statement until a break statement or the end of the switch statement is
encountered. In other words, the matching case is just the entry point into
the case block, but unless there's a break statement, the matching case is
not the only case code that runs.

The default keyword should be used in a switch statement if you want to
run some code when none of the case values match the conditional value.

The default block can be located anywhere in the switch block, so if no
case matches, the default block will be entered, and if the default does
not contain a break, then code will continue to execute (fall-through) to the
end of the switch or until the break statement is encountered.

398 Chapter 5: Flow Control, Exceptions, and Assertions

Writing Code Using Loops (Objective 2.2)

Qa

Qa

A basic for statement has three parts: declaration and/or initialization, bool-
ean evaluation, and the iteration expression.

If a variable is incremented or evaluated within a basic for loop, it must be
declared before the loop, or within the for loop declaration.

A variable declared (not just initialized) within the basic for loop declara-
tion cannot be accessed outside the for loop (in other words, code below the
for loop won't be able to use the variable).

You can initialize more than one variable of the same type in the first part
of the basic for loop declaration; each initialization must be separated by a
comma.

An enhanced for statement (new as of Java 6), has two parts, the declaration
and the expression. It is used only to loop through arrays or collections.

With an enhanced for, the expression is the array or collection through
which you want to loop.

With an enhanced for, the declaration is the block variable, whose type is
compatible with the elements of the array or collection, and that variable
contains the value of the element for the given iteration.

You cannot use a number (old C-style language construct) or anything that
does not evaluate to a boolean value as a condition for an if statement or
looping construct. You can't, for example, say if (x), unless x is a boolean
variable.

The do loop will enter the body of the loop at least once, even if the test
condition is not met.

Using break and continue (Objective 2.2)

a

a

An unlabeled break statement will cause the current iteration of the inner-
most looping construct to stop and the line of code following the loop to run.
An unlabeled continue statement will cause: the current iteration of the
innermost loop to stop, the condition of that loop to be checked, and if

the condition is met, the loop to run again.

If the break statement or the continue statement is labeled, it will cause
similar action to occur on the labeled loop, not the innermost loop.

Two-Minute Drill 399

Handling Exceptions (Objectives 2.4,2.5,and 2.6)

QO Exceptions come in two flavors: checked and unchecked.

Q Checked exceptions include all subtypes of Exception, excluding classes
that extend Runt imeException.

Q Checked exceptions are subject to the handle or declare rule; any method
that might throw a checked exception (including methods that invoke meth-
ods that can throw a checked exception) must either declare the exception
using throws, or handle the exception with an appropriate try/catch.

QO Subtypes of Error or Runt imeException are unchecked, so the compiler
doesn't enforce the handle or declare rule. You're free to handle them, or to
declare them, but the compiler doesn't care one way or the other.

Q If you use an optional £inally block, it will always be invoked, regardless of
whether an exception in the corresponding try is thrown or not, and regard-
less of whether a thrown exception is caught or not.

Q The only exception to the finally-will-always-be-called rule is that a £i -
nally will not be invoked if the JVM shuts down. That could happen if code
from the try or catch blocks calls System.exit ().

Q Just because finally is invoked does not mean it will complete. Code in the
finally block could itself raise an exception or issue a System.exit ().

O Uncaught exceptions propagate back through the call stack, starting from
the method where the exception is thrown and ending with either the first
method that has a corresponding catch for that exception type or a JVM
shutdown (which happens if the exception gets to main (), and main () is
"ducking" the exception by declaring it).

QO You can create your own exceptions, normally by extending Exception or
one of its subtypes. Your exception will then be considered a checked excep-
tion, and the compiler will enforce the handle or declare rule for that exception.

Q All catch blocks must be ordered from most specific to most general.
If you have a catch clause for both T0Exception and Exception, you must
put the catch for I0Exception first in your code. Otherwise, the T0Excep-
tion would be caught by catch (Exception e), because a catch argument
can catch the specified exception or any of its subtypes! The compiler will
stop you from defining catch clauses that can never be reached.

Q Some exceptions are created by programmers, some by the JVM.

400 Chapter 5: Flow Control, Exceptions, and Assertions

Working with the Assertion Mechanism (Objective 2.3)

Qa

Assertions give you a way to test your assumptions during development and
debugging.
Assertions are typically enabled during testing but disabled during deployment.

You can use assert as a keyword (as of version 1.4) or an identifier, but not
both together. To compile older code that uses assert as an identifier

(for example, a method name), use the -source 1.3 command-line flag

to javac.

Assertions are disabled at runtime by default. To enable them, use a com-
mand-line flag -ea or -enableassertions.

Selectively disable assertions by using the -da or -disableassertions flag.

If you enable or disable assertions using the flag without any arguments,
you're enabling or disabling assertions in general. You can combine enabling
and disabling switches to have assertions enabled for some classes and/or
packages, but not others.

You can enable and disable assertions on a class-by-class basis, using the fol-
lowing syntax:

java -ea -da:MyClass TestClass

You can enable and disable assertions on a package-by-package basis, and any
package you specify also includes any subpackages (packages further down the
directory hierarchy).

Do not use assertions to validate arguments to public methods.

Do not use assert expressions that cause side effects. Assertions aren't guar-
anteed to always run, and you don't want behavior that changes depending
on whether assertions are enabled.

Do use assertions—even in public methods—to validate that a particular
code block will never be reached. You can use assert false; for code that
should never be reached, so that an assertion error is thrown immediately if
the assert statement is executed.

Self Test 40 |

SELFTEST

I. Given two files:

1. class One ({

2 public static void main(Stringl[] args) {
3. int assert = 0;
4

5

}
}

class Two {
public static void main(Stringl[] args) {
assert (false) ;

}

gk W N

}

And the four command-line invocations:

javac -source 1.3 One.java
javac -source 1.4 One.java
javac -source 1.3 Two.java
javac -source 1.4 Two.java

What is the result? (Choose all that apply.)
Only one compilation will succeed
Exactly two compilations will succeed
Exactly three compilations will succeed
All four compilations will succeed

No compiler warnings will be produced

mmoNw»

At least one compiler warning will be produced

2. Given:

class Plane {

static String s = "-";

public static void main(String[] args) {
new Plane() .s1();
System.out.println(s) ;

1

void s1() {
try { s20); }
catch (Exception e) { s += "c"; }

!

void s2() throws Exception

4072 Chapter 5: Flow Control, Exceptions, and Assertions

s3(); s += "2";
s3(); s += "2b";

}

void s3() throws Exception {
throw new Exception() ;

}

}
What is the result?
A -
B. -c
C. -2
D. -2c
E. -c22b
F -2c2b
G. -2c2bc
H. Compilation fails
Given:

try { int x = Integer.parseInt ("two"); }

Which could be used to create an appropriate catch block? (Choose all that apply.)

mmoNw»

ClassCastException
IllegalStateException
NumberFormatException
IllegalArgumentException
ExceptionInInitializerError

ArrayIndexOutOfBoundsException

Which are true? (Choose all that apply.)

A

B
C.
D.

m

[t is appropriate to use assertions to validate arguments to methods marked public
[t is appropriate to catch and handle assertion errors
It is NOT appropriate to use assertions to validate command-line arguments

It is appropriate to use assertions to generate alerts when you reach code that should not

be reachable

It is NOT appropriate for assertions to change a program’s state

Self Test 403

5. Given:
1. class Loopy {
2. public static void main(String[] args) {
3. int[] x = {7,6,5,4,3,2,1};
4. // insert code here
5. System.out.print(y + " ");
6. }
7. }
8. }

Which, inserted independently at line 4, compiles? (Choose all that apply.)

A. for(int y : x) {

B. for(x : int y) {

C. int y = 0; for(y : x) {

D. for(int y=0, z=0; z<x.length; z++) { y = x[z];

E. for(int y=0, int z=0; z<x.length; z++) { v = x[z];

F int y = 0; for(int z=0; z<x.length; z++) { vy = x[z];
6. Given:

class Emu {
static String s = "-";
public static void main(String[] args) {
try {
throw new Exception() ;
} catch (Exception e) {

try {
try { throw new Exception() ;
} catch (Exception ex) { s += "ic "; }
throw new Exception(); }
catch (Exception x) { s += "mc "; }
finally { s += "mf "; }

} finally { s += "of "; }
System.out.println(s) ;

I

What is the result?
A. -ic of
B. -mf of

C. -mc mf

404 Chapter 5: Flow Control, Exceptions, and Assertions

D. -ic mf of

E. -ic mc mf of

F -ic mc of mf

G. Compilation fails

7. Given:

3. class SubException extends Exception { }
4. class SubSubException extends SubException { }
5.
6. public class CC { void doStuff () throws SubException { } }
7.
8. class CC2 extends CC { void doStuff () throws SubSubException { } }
9.
10. class CC3 extends CC { void doStuff () throws Exception { } }
11.
12. class CC4 extends CC { void doStuff (int x) throws Exception { } }
13.

14. class CC5 extends CC { wvoid doStuff() { } }

What is the result? (Choose all that apply.)

A. Compilation succeeds

B. Compilation fails due to an error on line 8
C. Compilation fails due to an error on line 10
D. Compilation fails due to an error on line 12
E. Compilation fails due to an error on line 14
8. Given:
3. public class Ebb {
4. static int x = 7;
5. public static void main(String[] args) {
6. String s = "";
7. for(int y = 0; y < 3; y++) {
8. X++;
9. switch (x) {
10. case 8: s += "8 ";
11. case 9: s += "9 ";
12. case 10: { s+= "10 "; break; }
13. default: s += "d ";

14. case 13: s+= "13 ";

Self Test 4058

15. }

16. }

17. System.out.println(s) ;
18. }

19. static { x++; }

20. }

What is the result?
9 10 d
8 9 10 d

9 10 10 d

8 9 10 10 d 13

A
B
C
D. 9 10 10 4 13
E.
F 89 10 9 10 10 d 13
G.

Compilation fails

9. Given:

3. class Infinity { }

4. public class Beyond extends Infinity ({

5. static Integer i;

6 public static void main(String[] args) {

7 int sw = (int) (Math.random() * 3);

8 switch (sw) {

9. case 0: { for(int x = 10; X > 5; X++)
10. if(x > 10000000) x = 10;
11. break; }

12. case 1: { int y = 7 * i; break; }
13. case 2: { Infinity inf = new Beyond();
14. Beyond b = (Beyond)inf; }
15. }

16. }

17. }

And given that line 7 will assign the value 0, 1, or 2 to sw, which are true? (Choose all that apply.)
A. Compilation fails

B. A ClassCastException might be thrown

C. A StackOverflowError might be thrown
D

A NullPointerException might be thrown

406 Chapter 5: Flow Control, Exceptions, and Assertions

E. An lllegalStateException might be thrown
F. The program might hang without ever completing

G. The program will always complete without exception

10. Given:

3. public class Circles ({
4. public static void main(String[] args) {
5. int[] ia = {1,3,5,7,9};
6. for(int x : ia)
7. for(int j = 0; J < 3; j++) {
8. if(x > 4 && x < 8) continue;
9. System.out.print (" " + x);
10. if(j == 1) break;

11. continue;

12. }

13. continue;

14. }

15. }

16. }

What is the result?
13 9

5577

1133929

A

B

C. 133909
D.

E. 11133390909
F

Compilation fails

Il. Given:

public class OverAndOver {
static String s = "";
public static void main(Stringl[] args)
try {
s += "1n;
throw new Exception() ;
} catch (Exception e) { s += "2";
} finally { s += "3"; doStuff(); s += "4a";

}

P O WV o Jo Ul b W

PR

Self Test 407

12. System.out.println(s) ;

13. }

14. static void doStuff() { int x = 0; int y = 7/x; }
15. }

What is the result?

A 12
B. 13
C. 123
D. 1234
E. Compilation fails
F 123 followed by an exception
G. 1234 followed by an exception
H. An exception is thrown with no other output
Given:
3. public class Wind {
4. public static void main(String[] args) {
5. foreach:
6. for (int j=0; j<5; j++) {
7. for (int k=0; k< 3; k++)
8. System.out.print (" " + j);
9. if (j==3 && k==1) break foreach;
10. if(j==0 || j==2) break;
11. }
12. }
13. }
14. }

What is the result?

11133
233
11133444

0111233444

mm o N ® >
o
=
=
=

Compilation fails

408 Chapter 5: Flow Control, Exceptions, and Assertions

13. Given:
3. public class Gotcha ({
4. public static void main(String[] args) {
5. // insert code here
6.
7. }
8. void go() {
9. go () ;
10. }
11. }

And given the following three code fragments:

I. new Gotcha () .go() ;
II. try { new Gotcha().go(); }
catch (Error e) { System.out.println("ouch"); }

III. try { new Gotcha().go(); }
catch (Exception e) { System.out.println("ouch"); }

When fragments | - III are added, independently, at line 5, which are true? (Choose all that apply.)
Some will not compile

They will all compile

All will complete normally

None will complete normally

Only one will complete normally

mmoOo®»

Two of them will complete normally

14. Given:

assert(j > 10): j=12;
assert (j==12) : doStuff () ;

3. public class Clumsy ({

4. public static void main(Stringl[] args)
5. int j = 7;

6. assert (++j > 7);

7. assert (++j > 8): "hi";

8.

9.

10. assert (j==12) : new Clumsy() ;
11. }

12. static void dostuff() { }

13. }

Which are true? (Choose all that apply.)

Compilation fails due to an error on line 6

Compilation fails due to an error on line 7

Compilation fails due to an error on line 8

Compilation fails due to an error on line 9

Compilation fails due to an error on line 10

A. Compilation succeeds
B.

C.

D.

E

F

Given:

}

o U1k W N

}

public class Frisbee {
// insert code here
int x = 0;
System.out.println(7/x) ;

And given the following four code fragments:

I. public
II. public
III. public
IV. public

static
static
static
static

void
void
void
void

main (Stringl[]
main (String|]
main (String(]
main (String|]

args)
args)
args)
args)

Self Test 409

{

throws Exception {
throws IOException {
throws RuntimeException {

If the four fragments are inserted independently at line 4, which are true? (Choose all that apply.)

A.

mo N ®

All four will compile and execute without exception

All four will compile and execute and throw an exception

Some, but not all, will compile and execute without exception

Some, but not all, will compile and execute and throw an exception

When considering fragments 11, III, and IV, of those that will compile, adding a try/catch

block around line 6 will cause compilation to fail

410 Chapter5: Flow Control, Exceptions, and Assertions

16. Given:

W J O Ul b WN

\\¢]

10.
11.
12.
13.

class MyException extends Exception { }
class Tire {
void doStuff() { }
!
public class Retread extends Tire {
public static void main(Stringl[] args)
new Retread () .doStuff () ;
}
// insert code here
System.out .println(7/0) ;
}
}

And given the following four code fragments:

I.
ITI.
IIT.
IvV.

void doStuff () ({

void doStuff () throws MyException {

void doStuff () throws RuntimeException {
void doStuff() throws ArithmeticException {

When fragments I - [V are added, independently, at line 10, which are true? (Choose all that apply.)

Some,

mmogNw®y»

None will compile

They will all compile

but not all, will compile

All of those that compile will throw an exception at runtime
None of those that compile will throw an exception at runtime

Only some of those that compile will throw an exception at runtime

Self Test Answers 4.] |

SELF TEST ANSWERS

I. Given two files:

1. class One {

2 public static void main(Stringl[] args)
3 int assert = 0;

4. }

5. }

1. class Two {

2 public static void main(String[] args) {
3

4

5

assert (false) ;

}
}

And the four command-line invocations:

javac -source 1.3 One.java
javac -source 1.4 One.java
javac -source 1.3 Two.java
javac -source 1.4 Two.java

What is the result? (Choose all that apply.)
Only one compilation will succeed
Exactly two compilations will succeed
Exactly three compilations will succeed
All four compilations will succeed

No compiler warnings will be produced

mmogOow®»

At least one compiler warning will be produced

Answer:

M B and F are correct. Class One will compile (and issue a warning) using the 1.3 flag, and
class Two will compile using the 1.4 flag.

& A, C, D, and E are incorrect based on the above. (Objective 2.3)

2. Given:
class Plane {
static String s = "-";
public static void main(String[] args) {
new Plane () .sl();

412 Chapter5: Flow Control, Exceptions, and Assertions

System.out.println(s) ;
}
void s1() {
try { s20); }
catch (Exception e) { s += "c"; }
}
void s2() throws Exception
s3(); s += "2";
s3(); s += "2b";
}
void s3() throws Exception {
throw new Exception() ;

b}
What is the result?
A -
B. -c
C. -2
D. -2c
E. -c22b
F -2c2b
G. -2c2bc
H. Compilation fails
Answer:

B is correct. Once s3 () throws the exception to s2 (), s2 () throws it to s1 (), and no
more of s2 ()’s code will be executed.

X A, C,D,E, FE G, and H are incorrect based on the above. (Objective 2.5)

3. Given:

try { int x = Integer.parseInt ("two"); }

Which could be used to create an appropriate catch block? (Choose all that apply.)
A. ClassCastException

B. IllegalStateException

C. NumberFormatException
D.

IllegalArgumentException

Self Test Answers 4] 3

E. ExceptionInInitializerError

F ArrayIndexOutOfBoundsException

Answer:

M CandD are correct. Integer.parselInt can throw a NumberFormatException, and
IllegalArgumentException is its superclass (i.e., a broader exception).

A, B, E, and F are not in NumberFormatException’s class hierarchy. (Objective 2.6)
Yy]

Which are true? (Choose all that apply.)

A. It is appropriate to use assertions to validate arguments to methods marked public
B. It is appropriate to catch and handle assertion errors

C. Itis NOT appropriate to use assertions to validate command-line arguments

D

It is appropriate to use assertions to generate alerts when you reach code that should not
be reachable

m

It is NOT appropriate for assertions to change a program’s state

Answer:
C, D, and E are correct statements.

A is incorrect. It is acceptable to use assertions to test the arguments of private methods.
B is incorrect. While assertion errors can be caught, Sun discourages you from doing so.

(Objective 2.3)

Given:
1. class Loopy {
2 public static void main(String[] args) {
3 int[] x = {7,6,5,4,3,2,1};
4. // insert code here
5 System.out.print(y + " ");
6 1
7.1}

Which, inserted independently at line 4, compiles? (Choose all that apply.)
A. for(int y : x) {
B. for(x : int y) {

C. int y = 0; for(y : x) {

414 Chapter5: Flow Control, Exceptions, and Assertions

D. for(int y=0, z=0; z<x.length; z++) { y = x[z];

E. for(int y=0, int z=0; z<x.length; z++) { y = x[z];

F int y = 0; for(int z=0; z<x.length; z++) { y = x[z];
Answer:

M A, D, and F are correct. A is an example of the enhanced for loop. D and F are examples

of the basic for loop.

X B is incorrect because its operands are swapped. C is incorrect because the enhanced

for must declare its first operand. E is incorrect syntax to declare two variables in a for
statement. (Objective 2.2)

6. Given:

class Emu {
static String s = "-";
public static void main(Stringl[] args)
try {
throw new Exception() ;
} catch (Exception e) ({
try {
try { throw new Exception() ;
} catch (Exception ex) { s += "ic "; }
throw new Exception(); }
catch (Exception x) { s += "mc "; }
finally { s += "mf "; }
} finally { s += "of "; }
System.out.println(s) ;

bl

What is the result?

A

O™ mo O

-ic of

-mf of

-mc mf

-ic mf of
-ic mc mf of
-ic mc of mf

Compilation fails

Self Test Answers 4| §

Answer:

@ E is correct. There is no problem nesting try / catch blocks. As is normal, when an
exception is thrown, the code in the catch block runs, then the code in the finally block
runs.

A, B, C, D, and F are incorrect based on the above. (Objective 2.5)

7. Given:
3. class SubException extends Exception { }
4. class SubSubException extends SubException { }
5.
6. public class CC { void doStuff () throws SubException { } }
7.
8. class CC2 extends CC { void doStuff () throws SubSubException { } }
9.
10. class CC3 extends CC { void doStuff () throws Exception { } }
11.
12. class CC4 extends CC { void doStuff (int x) throws Exception { } }
13.
14. class CC5 extends CC { wvoid doStuff() { } }

What is the result? (Choose all that apply.)

A. Compilation succeeds

B. Compilation fails due to an error on line 8
C. Compilation fails due to an error on line 10
D. Compilation fails due to an error on line 12
E. Compilation fails due to an error on line 14
Answer:

@ Cis correct. An overriding method cannot throw a broader exception than the method it's
overriding. Class CC4's method is an overload, not an override.

X A, B, D, and E are incorrect based on the above. (Objectives 1.5, 2.4)

8. Given:
3. public class Ebb ({
4. static int x = 7;
5. public static void main(Stringl[] args) {
6. String s = "";

416 Chapter5: Flow Control, Exceptions, and Assertions

7. for(int y = 0; v < 3; y++) {
8. X++;
9. switch(x)
10. case 8: s += "8 ";
11. case 9: s += "9 "
12. case 10: { s+= "10 "; break; }
13. default: s += "d ";
14. case 13: s+= "13 ";
15. }
16. }
17. System.out.println(s) ;
18. }
19. static { x++; }
20. }

What is the result?

9 10 d

8 9 10 d

9 10 10 4

10 10 4 13

8 9 10 10 d 13

8 9 10 9 10 10 d 13

O mmou o w»
(e}

Compilation fails

Answer:

D is correct. Did you catch the static initializer block? Remember that switches work on
"fall-thru" logic, and that fall-thru logic also applies to the default case, which is used when
no other case matches.

X A, B, C, E, E and G are incorrect based on the above. (Objective 2.1)

9. Given:
3. class Infinity { }
4. public class Beyond extends Infinity {
5. static Integer i;
6. public static void main(Stringl[] args)
7. int sw = (int) (Math.random() * 3);
8. switch(sw) {
9. case 0: { for(int x = 10; x > 5; x++)

Self Test Answers 4| 7

10. if(x > 10000000) x = 10;
11. break; }

12. case 1: { int y = 7 * i; break; }
13. case 2: { Infinity inf = new Beyond() ;
14. Beyond b = (Beyond)inf; }
15. }

16. }

17. }

And given that line 7 will assign the value O, 1, or 2 to sw, which are true? (Choose all that apply.)

A. Compilation fails

B. A ClassCastException might be thrown

C. A StackOverflowError might be thrown

D. A NullPointerException might be thrown

E. An lllegalStateException might be thrown

F. The program might hang without ever completing
G. The program will always complete without exception
Answer:

1 D and F are correct. Because i was not initialized, case 1 will throw an NPE. Case 0 will
initiate an endless loop, not a stack overflow. Case 2's downcast will not cause an exception.

X A, B, C, E, and G are incorrect based on the above. (Objective 2.6)

10. Given:
3. public class Circles ({
4. public static void main(Stringl[] args) {
5. int[] ia = {1,3,5,7,9};
6. for (int x : ia) {
7. for(int § = 0; J < 3; j++) {
8. if(x > 4 && x < 8) continue;
9. System.out.print (" " + x);
10. if(j == 1) break;
11. continue;
12. }
13. continue;
14. }
15. }

16. }

418 Chapter5: Flow Control, Exceptions, and Assertions

What is the result?
139

55 77
13399
113399

111333999

mmonNw®y»

Compilation fails

Answer:

D is correct. The basic rule for unlabeled continue statements is that the current iteration
stops early and execution jumps to the next iteration. The last two continue statements are
redundant!

X A, B, C, E, and F are incorrect based on the above. (Objective 2.2)

1l. Given:

3. public class OverAndOver {

4. static String s = "";

5. public static void main(Stringl[] args)

6. try {

7. s += "1";

8. throw new Exception() ;

9. } catch (Exception e) { s += "2";

10. } finally { s += "3"; doStuff(); s += "4";
11. }
12. System.out.println(s) ;
13. }
14. static void doStuff() { int x = 0; int y = 7/x; }
15. }

What is the result?
12

13

123

1234

Compilation fails

mmonNw®y»

123 followed by an exception

Self Test Answers 4.] 9

G. 1234 followed by an exception

H. An exception is thrown with no other output

Answer:

H is correct. It's true that the value of String s is 123 at the time that the divide-by-
zero exception is thrown, but £inally () is not guaranteed to complete, and in this case
finally () never completes, so the System.out.println (S.O.P.) never executes.

A, B, C, D, E, E and G are incorrect based on the above. (Objective 2.5)

Given:
3. public class Wind {
4 public static void main(String[] args) {
5. foreach:
6 for(int j=0; j<5; j++) {
7 for (int k=0; k< 3; k++) {
8. System.out.print (" " + j);
9. if (j==3 && k==1) break foreach;
10. if (j==0 || j==2) break;
11. }
12. }
13. }
14. }

What is the result?
0123

11133

A

B
C.o111233
D. 11133444

E. 01112334424
F

Compilation fails

Answer:

C is correct. A break breaks out of the current innermost loop and continues. A labeled
break breaks out of and terminates the current loops.

A, B, D, E, and F are incorrect based on the above. (Objective 2.2)

420 Chapter5: Flow Control, Exceptions, and Assertions

13. Given:
3. public class Gotcha ({
4. public static void main(String([] args) {
5. // insert code here
6.
7.}
8. void go() {
9. go();
10. }
11. }

And given the following three code fragments:

I. new Gotcha() .go() ;
II. try { new Gotcha().go(); }

catch (Error e) { System.out.println("ouch"); }
III. try { new Gotcha().go(); }

catch (Exception e) { System.out.println("ouch"); }

When fragments I - [1I are added, independently, at line 5, which are true? (Choose all that apply.)
Some will not compile

They will all compile

All will complete normally

None will complete normally

Only one will complete normally

mmonNw®y»

Two of them will complete normally

Answer:

B and E are correct. First off, go () is a badly designed recursive method, guaranteed to
cause a StackOverflowError. Since Exception is not a superclass of Error, catching an
Exception will not help handle an Error, so fragment Il will not complete normally.
Only fragment II will catch the Error.

X A, C, D, and F are incorrect based on the above. (Objective 2.5)

Self Test Answers 42 |

14. Given:

3. public class Clumsy

4 public static void main(Stringl[] args) {

5 int j = 7;

6. assert (++3 > 7);

7 assert (++j > 8): "hi";

8. assert(j > 10): j=12;

9. assert (j==12) : doStuff () ;
10. assert (j==12) : new Clumsy () ;
11. }

12. static void dostuff() { }
13. }

Which are true? (Choose all that apply.)
Compilation succeeds

Compilation fails due to an error on line 6
Compilation fails due to an error on line 7
Compilation fails due to an error on line 8

Compilation fails due to an error on line 9

mm oo ® >

Compilation fails due to an error on line 10

Answer:

4 E is correct. When an assert statement has two expressions, the second expression must
return a value. The only two-expression assert statement that doesn’t return a value is on
line 9.

X A, B, C, D, and F are incorrect based on the above. (Objective 2.3)

15. Given:

public class Frisbee {
// insert code here
int x = 0;
System.out.println(7/x) ;
}
}

o Ul W N R

4272 Chapter5: Flow Control, Exceptions, and Assertions

And given the following four code fragments:

I. public static void main(String[] args) {

II. public static void main(String[] args) throws Exception {

III. public static void main(String[] args) throws IOException

IV. public static void main(String[] args) throws RuntimeException {

If the four fragments are inserted independently at line 4, which are true? (Choose all that apply.)
A. All four will compile and execute without exception

All four will compile and execute and throw an exception

Some, but not all, will compile and execute without exception

Some, but not all, will compile and execute and throw an exception

moQow

When considering fragments II, III, and IV, of those that will compile, adding a try/catch
block around line 6 will cause compilation to fail

Answer:

D is correct. This is kind of sneaky, but remember that we're trying to toughen you up for
the real exam. If you're going to throw an IOException, you have to import the java.io
package or declare the exception with a fully qualified name.

X E is incorrect because it's okay to both handle and declare an exception. A, B, and C are
incorrect based on the above. (Objective 2.4)

16. Given:

2. class MyException extends Exception { }
3. class Tire {

4. wvoid dostuff() { }

5.}

6. public class Retread extends Tire {

7. public static void main(Stringl[] args)
8. new Retread () .doStuff () ;

9. }

10. // insert code here

11. System.out .println(7/0) ;

12. }

13. }

Self Test Answers 42 3

And given the following four code fragments:

I. void doStuff ()

II. void doStuff() throws MyException

III. void doStuff() throws RuntimeException {
IV. void doStuff () throws ArithmeticException {

When fragments [- IV are added, independently, at line 10, which are true? (Choose all that apply.)
None will compile

They will all compile

Some, but not all, will compile

All of those that compile will throw an exception at runtime

None of those that compile will throw an exception at runtime

Mmoo N w®»

Only some of those that compile will throw an exception at runtime

Answer:

C and D are correct. An overriding method cannot throw checked exceptions that are
broader than those thrown by the overridden method. However an overriding method can
throw RuntimeExceptions not thrown by the overridden method.

Xl A, B, E, and F are incorrect based on the above. (Objective 2.4)

