Strings, |/O,
Formatting,
and Parsing

CERTIFICATION OBJECTIVES

e Using String, StringBuilder, and e Using Regular Expressions
StringBuffer
v/ Two-Minute Drill

e File I/O using the java.io package Q&A SelfTest

e Serialization using the java.io
package

e Working with Dates, Numbers,
and Currencies

426 Chapter 6: Strings, I/O, Formatting, and Parsing

his chapter focuses on the various API-related topics that were added to the exam

for Java 5 and remain in the Java 6 exam. J2SE comes with an enormous API, and a lot

of your work as a Java programmer will revolve around using this APl. The exam team
chose to focus on APIs for I/O, formatting, and parsing. Each of these topics could fill an entire
book. Fortunately, you won't have to become a total I/O or regex guru to do well on the exam.
The intention of the exam team was to include just the basic aspects of these technologies, and in
this chapter we cover more than you'll need to get through the String, I/O, formatting, and parsing
objectives on the exam.

CERTIFICATION OBJECTIVE

String, StringBuilder, and StringBuffer
(Exam Objective 3.1)

3.1 Discuss the differences between the String, StringBuilder, and StringBuffer classes.

Everything you needed to know about Strings in the SCJP 1.4 exam, you'll need to
know for the SCJP 5 and SCJP 6 exams. plus, Sun added the StringBuilder class to the
API, to provide faster, nonsynchronized StringBuffer capability. The StringBuilder
class has exactly the same methods as the old StringBuffer class, but StringBuilder

is faster because its methods aren't synchronized. Both classes give you String-like
objects that handle some of the String class's shortcomings (like immutability).

The String Class

This section covers the String class, and the key concept to understand is that once
a String object is created, it can never be changed—so what is happening when a
String object seems to be changing? Let's find out.

Strings Are Immutable Objects

We'll start with a little background information about strings. You may not need
this for the test, but a little context will help. Handling "strings" of characters is a
fundamental aspect of most programming languages. In Java, each character in a

The String Class (Exam Objective 3.1) 427

string is a 16-bit Unicode character. Because Unicode characters are 16 bits (not
the skimpy 7 or 8 bits that ASCII provides), a rich, international set of characters is
easily represented in Unicode.

In Java, strings are objects. Just like other objects, you can create an instance of a
String with the new keyword, as follows:

String s = new String();

This line of code creates a new object of class String, and assigns it to the
reference variable s. So far, String objects seem just like other objects. Now, let's
give the String a value:

s = "abcdef";

As you might expect, the String class has about a zillion constructors, so you can
use a more efficient shortcut:

String s = new String("abcdef");

And just because you'll use strings all the time, you can even say this:

String s = "abcdef";

There are some subtle differences between these options that we'll discuss later,
but what they have in common is that they all create a new String object, with a
value of "abcdef ", and assign it to a reference variable s. Now let's say that you
want a second reference to the String object referred to by s:

String s2 = s; // refer s2 to the same String as s

So far so good. String objects seem to be behaving just like other objects, so
what's all the fuss about?...Immutability! (What the heck is immutability?) Once
you have assigned a String a value, that value can never change— it's immutable,
frozen solid, won't budge, fini, done. (We'll talk about why later, don't let us forget.)
The good news is that while the String object is immutable, its reference variable is
not, so to continue with our previous example:

s = s.concat (" more stuff"); // the concat() method 'appends'
// a literal to the end

428 Chapter 6: Strings, I/O, Formatting, and Parsing

Now wait just a minute, didn't we just say that Strings were immutable? So what's
all this "appending to the end of the string" talk? Excellent question: let's look at
what really happened...

The VM took the value of String s (which was "abcdef"), and tacked " more
stuff" onto the end, giving us the value "abcdef more stuff". Since Strings
are immutable, the VM couldn't stuff this new value into the old String referenced
by s, so it created a new String object, gave it the value "abcdef more stuff",
and made s refer to it. At this point in our example, we have two String objects: the
first one we created, with the value "abedef ", and the second one with the value
"abcdef more stuff. Technically there are now three String objects, because
the literal argument to concat, " more stuff", is itself a new String object. But we
have references only to "abcdef " (referenced by s2) and "abcdef more stuff"
(referenced by s).

What if we didn't have the foresight or luck to create a second reference variable
ﬁmthe"abcdef"Stﬂngbeﬁne\vecaﬂeds = s.concat (" more stuff");!In
that case, the original, unchanged String containing "abcdef" would still exist in
memory, but it would be considered "lost." No code in our program has any way to
reference it—it is lost to us. Note, however, that the original "abcdef" String
didn't change (it can't, remember, it's immutable); only the reference variable s
was changed, so that it would refer to a different String. Figure 6-1 shows what
happens on the heap when you reassign a reference variable. Note that the
dashed line indicates a deleted reference.

To review our first example:

String s = "abcdef"; // create a new String object, with
// value "abcdef", refer s to it
String s2 = s; // create a 2nd reference variable

// referring to the same String

// create a new String object, with value "abcdef more stuff",
// refer s to it. (Change s's reference from the old String
// to the new String.) (Remember s2 is still referring to

// the original "abcdef" String.)

s = g.concat (" more stuff");

The String Class (Exam Objective 3.1) 429

m String objects and their reference variables

Step I: String s = “abc”;

=]

String reference
variable

The heap

=@

String object

The heap

Step2: String s2 = s;

[]

String reference
variable

String object

String reference
variable

The heap

Step3: s = s.concat ("def”);

s2 > “abc”

String reference -1

- String object
variable T

String object

String reference
variable

430 Chapter 6: Strings, I/O, Formatting, and Parsing

Let's look at another example:

String x = "Java";
x.concat (" Rules!");
System.out.println("x = " + x); // the output is "x = Java"

The first line is straightforward: create a new String object, give it the value
"Java", and refer x to it. Next the VM creates a second String object with the value
"Java Rules!" but nothing refers to it. The second String object is instantly lost;
you can't get to it. The reference variable x still refers to the original String with the
value "Java". Figure 6-2 shows creating a String without assigning a reference to it.

A String object is abandoned upon creation

The heap

Step I: String x = “Java”;

=]

String reference
variable

;@

String object

The heap

Step2: x.concat (” Rules!”);

String object

String reference
variable

]

String reference
variable

“Java Rules!”

String object

Notice that no reference
variable is created to access
the “Java Rules!” String.

The String Class (Exam Objective 3.1) 43 |

Let's expand this current example. We started with

String x = "Java';
x.concat (" Rules!") ;

System.out.println("x "+ ox); // the output is: x = Java

Now let's add

X .toUpperCase () ;
System.out.println("x

"+ ox); // the output is still:
// x = Java

(We actually did just create a new String object with the value "gavar, but it was lost,
and x still refers to the original, unchanged String "Java".) How about adding

x.replace('a', 'X');
System.out.println("x = " + x); // the output is still:
// x = Java

Can you determine what happened? The VM created yet another new String
object, with the value "Jxvx", (replacing the a's with x's), but once again this new
String was lost, leaving x to refer to the original unchanged and unchangeable String
object, with the value "Java". In all of these cases we called various String methods
to create a new String by altering an existing String, but we never assigned the newly
created String to a reference variable.

But we can put a small spin on the previous example:

String x = "Java';

X = X.concat (" Rules!"); // Now we're assigning the
// new String to x

System.out.println("x = " + Xx); // the output will be:

// x = Java Rules!

This time, when the VM runs the second line, a new String object is created with
the value of "Java Rules!", and x is set to reference it. But wait, there's more—
now the original String object, "Java", has been lost, and no one is referring to it.
So in both examples we created two String objects and only one reference variable,
so one of the two String objects was left out in the cold. See Figure 6-3 for a graphic
depiction of this sad story. The dashed line indicates a deleted reference.

432 Chapter 6: Strings, I/O, Formatting, and Parsing

m An old String object being abandoned

The heap

Step I: String x = “Java”;

[~]

String reference
variable

=@

String object

Step2: x = x.concat (” Rules!”); The heap

String object

“Java Rules!”

String object

String reference
variable

Notice in step 2 that there is no
valid reference to the “Java” String;
that object has been “abandoned,”
and a new object created.

Let's take this example a little further:

String x = "Java";
X = X.concat (" Rules!");
System.out.println ("x "+ ox); // the output is:

// x = Java Rules!

x.toLowerCase () ; // no assignment, create a
// new, abandoned String

// no assignment, the output
// is still: x = Java Rules!

I
+
%

System.out.println("x =

Important Facts About Strings and Memory (Exam Objective 3.1) 43 3

X = x.toLowerCase () ; // create a new String,
// assigned to x
System.out.println("x = " + x); // the assignment causes the

// output: x = java rules!

The preceding discussion contains the keys to understanding Java String
immutability. If you really, really get the examples and diagrams, backward and
forward, you should get 80 percent of the String questions on the exam correct.

We will cover more details about Strings next, but make no mistake—in terms of
bang for your buck, what we've already covered is by far the most important part of
understanding how String objects work in Java.

We'll finish this section by presenting an example of the kind of devilish String
question you might expect to see on the exam. Take the time to work it out on paper
(as a hint, try to keep track of how many objects and reference variables there are,
and which ones refer to which).

String sl = "spring ";

String s2 = sl + "summer ";
sl.concat ("fall ") ;

s2.concat (s1) ;

sl += "winter ";
System.out.println(sl + " " + s2);

What is the output? For extra credit, how many String objects and how many
reference variables were created prior to the print1n statement?

Answer: The result of this code fragment is spring winter spring summer
There are two reference variables, s1 and s2. There were a total of eight String objects
created as follows: "spring", "summer " (lost), "spring summer", "fall" (lost), "spring
fall" (lost), "spring summer spring" (lost), "winter" (lost), "spring winter" (at this point
"spring” is lost). Only two of the eight String objects are not lost in this process.

Important Facts About Strings and Memory

In this section we'll discuss how Java handles String objects in memory, and some of
the reasons behind these behaviors.

One of the key goals of any good programming language is to make efficient use
of memory. As applications grow, it's very common for String literals to occupy large
amounts of a program's memory, and there is often a lot of redundancy within the

434 Chapter 6: Strings, I/O, Formatting, and Parsing

universe of String literals for a program. To make Java more memory efficient, the
JVM sets aside a special area of memory called the "String constant pool." When the
compiler encounters a String literal, it checks the pool to see if an identical String
already exists. If a match is found, the reference to the new literal is directed to the
existing String, and no new String literal object is created. (The existing String simply
has an additional reference.) Now we can start to see why making String objects
immutable is such a good idea. If several reference variables refer to the same String
without even knowing it, it would be very bad if any of them could change the
String's value.

You might say, "Well that's all well and good, but what if someone overrides the
String class functionality; couldn't that cause problems in the pool?" That's one of
the main reasons that the String class is marked £final. Nobody can override the
behaviors of any of the String methods, so you can rest assured that the String
objects you are counting on to be immutable will, in fact, be immutable.

Creating New Strings

Earlier we promised to talk more about the subtle differences between the various
methods of creating a String. Let's look at a couple of examples of how a String
might be created, and let's further assume that no other String objects exist in the
pool:

String s = "abc"; // creates one String object and one
// reference variable

In this simple case, "abc" will go in the pool and s will refer to it.

String s = new String("abc"); // creates two objects,
// and one reference variable

In this case, because we used the new keyword, Java will create a new String object
in normal (nonpool) memory, and s will refer to it. In addition, the literal "abc" will
be placed in the pool.

Important Methods in the String Class

The following methods are some of the more commonly used methods in the String
class, and also the ones that you're most likely to encounter on the exam.

Important Methods in the String Class (Exam Objective 3.1) 43 §

charAt() Returns the character located at the specified index

concat() Appends one String to the end of another ("+" also works)
equalslgnoreCase() Determines the equality of two Strings, ignoring case
length() Returns the number of characters in a String

replace() Replaces occurrences of a character with a new character

[

[

[

[

[

B substring() Returns a part of a String

B toLowerCase() Returns a String with uppercase characters converted
B toString() Returns the value of a String

B toUpperCase() Returns a String with lowercase characters converted
[

trim() Removes whitespace from the ends of a String

Let's look at these methods in more detail.

public char charAt(int index) This method returns the character located at
the String's specified index. Remember, String indexes are zero-based—for example,

String x = "airplane";
System.out.println(x.charAt(2)); // output is 'r'

public String concat(String s) This method returns a String with the value
of the String passed in to the method appended to the end of the String used to
invoke the method—for example,

String x = "taxi";
System.out.println(x.concat (" cab")); // output is "taxi cab"

The overloaded + and += operators perform functions similar to the concat ()
method—for example,

String x = "library";

System.out.println(x + " card"); // output is "library card"
String x = "Atlantic";

X+= " ocean";

System.out.println(x); // output is "Atlantic ocean"

436 Chapter 6: Strings, |/O, Formatting, and Parsing

In the preceding "Atlantic ocean" example, notice that the value of x really did
change! Remember that the += operator is an assignment operator, so line 2 is really
creating a new String, "Atlantic ocean", and assigning it to the x variable. After
line 2 executes, the original String x was referring to, "Atlantic", is abandoned.

public boolean equalslignoreCase(String s) This method returns a
boolean value (true or false) depending on whether the value of the String in the
argument is the same as the value of the String used to invoke the method. This
method will return true even when characters in the String objects being compared
have differing cases—for example,

String x = "Exit";
System.out.println(x.equalsIgnoreCase ("EXIT")) ; // 1is "true"
System.out.println(x.equalsIgnoreCase("tixe")) ; // 1is "false"

public int length() This method returns the length of the String used to invoke
the method—for example,

String x = "01234567";
System.out.println(x.length()); // returns "8"

public String replace(char old, char new) This method returns a String
whose value is that of the String used to invoke the method, updated so that any
occurrence of the char in the first argument is replaced by the char in the second
argument—for example,

String x = "oxoxoxox";
System.out.println(x.replace('x', 'X')); // output is
// "oXoXoXoX"

public String substring(int begin)

public String substring(int begin, int end) The substring() method
is used to return a part (or substring) of the String used to invoke the method. The
first argument represents the starting location (zero-based) of the substring. If the call
has only one argument, the substring returned will include the characters to the end
of the original String. If the call has two arguments, the substring returned will end
with the character located in the nth position of the original String where n is the

Important Methods in the String Class (Exam Objective 3.1) 437

Uatch
Arrays have an attribute (not a method), called 1ength. You may

encounter questions in the exam that attempt to use the length() method on an array,
or that attempt to use the length attribute on a String. Both cause compiler errors—for
example,

String x = "test";

System.out.println(x.length); // compiler error

or

String[] x = new String[3];
System.out.println(x.length()); // compiler error

second argument. Unfortunately, the ending argument is not zero-based, so if the
second argument is 7, the last character in the returned String will be in the original
String's 7 position, which is index 6 (ouch). Let's look at some examples:

String x = "0123456789"; // as if by magic, the value
// of each char
// is the same as its index!
System.out.println(x.substring(5)); // output is "56789"
System.out.println(x.substring(5, 8)); // output is "567"

The first example should be easy: start at index 5 and return the rest of the
String. The second example should be read as follows: start at index 5 and return
the characters up to and including the 8th position (index 7).

public String toLowerCase() This method returns a String whose value is
the String used to invoke the method, but with any uppercase characters converted to
lowercase—for example,

String x = "A New Moon";
System.out.println(x.toLowerCase ()) ; // output is
// "a new moon"

438 Chapter 6: Strings, I/O, Formatting, and Parsing

public String toString() This method returns the value of the String used

to invoke the method. What? Why would you need such a seemingly "do nothing"
method? All objects in Java must have a toString () method, which typically returns
a String that in some meaningful way describes the object in question. In the case of
a String object, what more meaningful way than the String's value? For the sake of
consistency, here's an example:

String x = "big surprise";
System.out.println(x.toString()); // output -
// reader's exercise

public String toUpperCase() This method returns a String whose value is
the String used to invoke the method, but with any lowercase characters converted to
uppercase—for example,

String x = "A New Moon";
System.out.println(x.toUpperCase()); // output is
// "A NEW MOON"

public String trim() This method returns a String whose value is the String
used to invoke the method, but with any leading or trailing blank spaces removed—
for example,

String x = " hi ",
System.out.println(x + "x"); // result is

// " hi x"
System.out.println(x.trim() + "x"); // result is "hix"

The StringBuffer and StringBuilder Classes

The java.lang.StringBuffer and java.lang.StringBuilder classes should be used when
you have to make a lot of modifications to strings of characters. As we discussed in
the previous section, String objects are immutable, so if you choose to do a lot of
manipulations with String objects, you will end up with a lot of abandoned String
objects in the String pool. (Even in these days of gigabytes of RAM, it's not a good
idea to waste precious memory on discarded String pool objects.) On the other hand,
objects of type StringBuffer and StringBuilder can be modified over and over again
without leaving behind a great effluence of discarded String objects.

on the

0ob

The StringBuffer and StringBuilder Classes (Exam Objective 3.1) 439

A common use for StringBuffers and StringBuilders is file /O when large,
ever-changing streams of input are being handled by the program. In these
cases, large blocks of characters are handled as units, and StringBuffer
objects are the ideal way to handle a block of data, pass it on, and then
reuse the same memory to handle the next block of data.

StringBuffer vs. StringBuilder

The StringBuilder class was added in Java 5. It has exactly the same API as the
StringBuffer class, except StringBuilder is not thread safe. In other words, its
methods are not synchronized. (More about thread safety in Chapter 9.) Sun
recommends that you use StringBuilder instead of StringBuffer whenever possible
because StringBuilder will run faster (and perhaps jump higher). So apart from
synchronization, anything we say about StringBuilder's methods holds true for
StringBuffer's methods, and vice versa. The exam might use these classes in the
creation of thread-safe applications, and we'll discuss how that works in Chapter 9.

Using StringBuilder and StringBuffer

In the previous section, we saw how the exam might test your understanding of
String immutability with code fragments like this:

String x = "abc";
x.concat ("def") ;
System.out.println("x = " + X); // output is "x = abc"

Because no new assignment was made, the new String object created with the
concat () method was abandoned instantly. We also saw examples like this:

String x = "abc";
X = x.concat ("def");
System.out.println("x = " + x); // output is "x = abcdef"

We got a nice new String out of the deal, but the downside is that the old String
"abc" has been lost in the String pool, thus wasting memory. If we were using a
StringBuffer instead of a String, the code would look like this:

StringBuffer sb = new StringBuffer ("abc") ;
sb.append ("def") ;

System.out.println("sb = " + sb); // output is "sb = abcdef"

440 Chapter 6: Strings, I/O, Formatting, and Parsing

All of the StringBuffer methods we will discuss operate on the value of the
StringBuffer object invoking the method. So a call to sb. append("def"); is actually
appending "def" to itself (StringBuffer sb). In fact, these method calls can be
chained to each other—for example,

StringBuilder sb = new StringBuilder ("abc");
sb.append ("def") .reverse () .insert (3, "---");
System.out.println(sb); // output is "fed---cba"

Notice that in each of the previous two examples, there was a single call to new,
concordantly in each example we weren't creating any extra objects. Each example
needed only a single StringXxx object to execute.

Important Methods in the StringBuffer and StringBuilder Classes

The following method returns a StringXxx object with the argument's value
appended to the value of the object that invoked the method.

public synchronized StringBuffer append(String s) As we've seen
earlier, this method will update the value of the object that invoked the method,
whether or not the return is assigned to a variable. This method will take many dif-
ferent arguments, including boolean, char, double, float, int, long, and others, but
the most likely use on the exam will be a String argument—for example,

StringBuffer sb = new StringBuffer("set ");
sb.append ("point") ;

System.out .println (sb) ; // output is "set point"
StringBuffer sb2 = new StringBuffer("pi = ");

sb2.append (3.14159f) ;

System.out.println (sb2) ; // output is "pi = 3.14159"

public StringBuilder delete(int start, int end) This method returns a
StringBuilder object and updates the value of the StringBuilder object that invoked
the method call. In both cases, a substring is removed from the original object. The
starting index of the substring to be removed is defined by the first argument (which
is zero-based), and the ending index of the substring to be removed is defined by the
second argument (but it is one-based)! Study the following example carefully:

StringBuilder sb = new StringBuilder ("0123456789") ;
System.out .println(sb.delete(4,6)) ; // output is "01236789"

Important Methods in the StringBuffer and StringBuilder Classes (Exam Objective 3.1) 44 |

Match
The exam will probably test your knowledge of the difference between

String and StringBuffer objects. Because StringBuffer objects are changeable, the
following code fragment will behave differently than a similar code fragment that uses
String objects:

StringBuffer sb = new StringBuffer ("abc");

sb.append ("def") ;

System.out.println(sb);

In this case, the output will be: "abcdef"

public StringBuilder insert(int offset, String s) This method returns

a StringBuilder object and updates the value of the StringBuilder object that invoked
the method call. In both cases, the String passed in to the second argument is
inserted into the original StringBuilder starting at the offset location represented by
the first argument (the offset is zero-based). Again, other types of data can be passed
in through the second argument (boolean, char, double, float, int, long, and so
on), but the String argument is the one you're most likely to see:

StringBuilder sb = new StringBuilder ("01234567") ;
sb.insert (4, "---");
System.out.println(sb); // output is "0123---4567"

public synchronized StringBuffer reverse() This method returns a
StringBuffer object and updates the value of the StringBuffer object that invoked the
method call. In both cases, the characters in the StringBuffer are reversed, the first
character becoming the last, the second becoming the second to the last, and so on:

StringBuffer s = new StringBuffer ("A man a plan a canal Panama") ;
sb.reverse() ;
System.out.println(sb); // output: "amanaP lanac a nalp a nam A"

public String toString() This method returns the value of the StringBuffer
object that invoked the method call as a String:

StringBuffer sb = new StringBuffer("test string");
System.out.println(sb.toString()); // output is "test string"

4472 Chapter 6: Strings, I/O, Formatting, and Parsing

That's it for StringBuffers and StringBuilders. If you take only one thing away
from this section, it's that unlike Strings, StringBuffer objects and StringBuilder

objects can be changed.

ﬂ
Jatch
Many of the exam questions covering this chapter’s topics use a tricky

(and not very readable) bit of Java syntax known as "chained methods." A statement
with chained methods has this general form:

result = methodl () .method2 () .method3 () ;

In theory, any number of methods can be chained in this fashion,
although typically you won't see more than three. Here's how to decipher these
"handy Java shortcuts" when you encounter them:

I. Determine what the leftmost method call will return (let’s call it x).

2. Use x as the object invoking the second (from the left) method. If there
are only two chained methods, the result of the second method call is
the expression's result.

3. If there is a third method, the result of the second method call is used
to invoke the third method, whose result is the expression's result—

for example,

String x = "abc";
String y = x.concat ("def") .toUpperCase () .replace('C','x"');

//chained methods
System.out.println("y = " + y); // result is "y = ABXDEF"

Let's look at what happened.The literal def was concatenated to abc,
creating a temporary, intermediate String (soon to be lost), with the value abcdef.
The toUppercCase () method created a new (soon to be lost) temporary String with
the value 2ABCDEF. The replace () method created a final String with the value ABxDEF,

and referred v to it.

File Navigation and I/O (Exam Objective 3.2) 443

CERTIFICATION OBJECTIVE

File Navigation and I/O (Exam Obijective 3.2)

3.2 Given a scenario involving navigating file systems, reading from files, or writing to
files, dewvelop the correct solution using the following classes (sometimes in combination),
from java.io: BufferedReader, BufferedWhriter, File, FileReader, FileWriter, PrintWriter,
and Console.

I/O has had a strange history with the SCJP certification. It was included in all the
versions of the exam up to and including 1.2, then removed from the 1.4 exam, and
then re-introduced for Java 5 and extended for Java 6.

/O is a huge topic in general, and the Java APIs that deal with I/O in one fashion
or another are correspondingly huge. A general discussion of I/O could include
topics such as file 1/O, console I/O, thread I/O, high-performance 1/O, byte-oriented
1/O, character-oriented I/O, I/O filtering and wrapping, serialization, and more.
Luckily for us, the I/O topics included in the Java 5 exam are fairly well restricted to
file I/O for characters, and serialization.

Here's a summary of the I/O classes you'll need to understand for the exam:

B File The API says that the class File is "An abstract representation of file
and directory pathnames." The File class isn't used to actually read or write
data; it's used to work at a higher level, making new empty files, searching for
files, deleting files, making directories, and working with paths.

B FileReader This class is used to read character files. Its read () methods are
fairly low-level, allowing you to read single characters, the whole stream of
characters, or a fixed number of characters. FileReaders are usually wrapped
by higher-level objects such as BufferedReaders, which improve performance
and provide more convenient ways to work with the data.

B BufferedReader This class is used to make lower-level Reader classes like
FileReader more efficient and easier to use. Compared to FileReaders,
BufferedReaders read relatively large chunks of data from a file at once, and
keep this data in a buffer. When you ask for the next character or line of data,
it is retrieved from the buffer, which minimizes the number of times that
time-intensive, file read operations are performed. In addition,

444 Chapter6:

Datch

Stream classes are used to read and write bytes, and Readers and Writers
are used to read and write characters. Since all of the file /0 on the exam is related
to characters, if you see API class names containing the word "Stream", for instance
DataOutputStream, then the question is probably about serialization, or something
unrelated to the actual I/O objective.

Strings, I/O, Formatting, and Parsing

BufferedReader provides more convenient methods such as readrine (), that
allow you to get the next line of characters from a file.

FileWriter This class is used to write to character files. [ts write ()
methods allow you to write character(s) or Strings to a file. FileWriters are
usually wrapped by higher-level Writer objects such as Buffered Writers or
PrintWriters, which provide better performance and higher-level, more
flexible methods to write data.

BufferedWriter This class is used to make lower-level classes like
FileWriters more efficient and easier to use. Compared to FileWriters,
BufferedWriters write relatively large chunks of data to a file at once,
minimizing the number of times that slow, file writing operations are
performed. The BufferedWriter class also provides a newLine ()
method to create platform-specific line separators automatically.

PrintWriter This class has been enhanced significantly in Java 5. Because
of newly created methods and constructors (like building a PrintWriter with
a File or a String), you might find that you can use PrintWriter in places
where you previously needed a Writer to be wrapped with a FileWriter and/or
a BufferedWriter. New methods like format (), printf (), and append ()
make PrintWriters very flexible and powerful.

Console This new, Java 6 convenience class provides methods to read input
from the console and write formatted output to the console.

File Navigation and I/O (Exam Objective 3.2) 4458

Creating Files Using Class File

Objects of type File are used to represent the actual files (but not the data in the
files) or directories that exist on a computer's physical disk. Just to make sure we're
clear, when we talk about an object of type File, we'll say File, with a capital E
When we're talking about what exists on a hard drive, we'll call it a file with a
lowercase f (unless it's a variable name in some code). Let's start with a few basic
examples of creating files, writing to them, and reading from them. First, let's create
a new file and write a few lines of data to it:

import java.io.*; // The Java 6 exam focuses on
// classes from java.io
class Writerl f{
public static void main(String [] args) {
File file = new File("fileWritel.txt"); // There's no
// file vyet!

If you compile and run this program, when you look at the contents of
your current directory, you'll discover absolutely no indication of a file called
fileWritel.txt. When you make a new instance of the class File, you're not yet
making an actual file, you're just creating a filename. Once you have a File object, there
are several ways to make an actual file. Let's see what we can do with the File object
we just made:

import java.io.*;

class Writerl f{
public static void main(String [] args) {

try { // warning: exceptions possible
boolean newFile = false;
File file = new File // it's only an object

("fileWritel.txt") ;

System.out.println(file.exists()); // look for a real file
newFile = file.createNewFile () ; // maybe create a file!
System.out .println (newFile) ; // already there?
System.out.println(file.exists()); // look again

} catch(IOException e) { }

}
}

446 Chapter 6: Strings, |/O, Formatting, and Parsing

This produces the output

false
true
true

And also produces an empty file in your current directory. If you run the code a
second time you get the output

true
false
true

Let's examine these sets of output:

B First execution The first call to exists () returned false, which we
expected...remember new File () doesn't create a file on the disk! The
createNewFile () method created an actual file, and returned true,
indicating that a new file was created, and that one didn't already exist.
Finally, we called exists () again, and this time it returned true, indicating
that the file existed on the disk.

B Second execution The first call to exists () returns true because we
built the file during the first run. Then the call to createNewFile () returns
false since the method didn't create a file this time through. Of course, the
last call to exists () returns true.

A couple of other new things happened in this code. First, notice that we had
to put our file creation code in a try/catch. This is true for almost all of the file I/O
code you'll ever write. I/O is one of those inherently risky things. We're keeping it
simple for now, and ignoring the exceptions, but we still need to follow the handle-
or-declare rule since most I/O methods declare checked exceptions. We'll talk more
about 1/O exceptions later. We used a couple of File's methods in this code:

B boolean exists() This method returns true if it can find the actual file.

B boolean createNewFile() This method creates a new file if it doesn't
already exist.

File Navigation and I/O (Exam Objective 3.2) 447

Uatch
Remember, the exam creators are trying to jam as much code as they can
into a small space, so in the previous example, instead of these three lines of code,

boolean newFile = false;

newFile = file.createNewFile() ;
System.out.println (newFile) ;

You might see something like the following single line of code, which is a
bit harder to read, but accomplishes the same thing:

System.out.println(file.createNewFile ()) ;

Using FileWriter and FileReader

In practice, you probably won't use the FileWriter and FileReader classes without
wrapping them (more about "wrapping" very soon). That said, let's go ahead and do

a little "naked" file I/O:
import java.io.*;

class Writer2 f{
public static void main(String [] args) {

char[] in = new char[50]; // to store input
int size = 0;
try {

File file = new File(// just an object

"fileWrite2.txt") ;
FileWriter fw =

new FileWriter (file); // create an actual file
// & a FileWriter obj
fw.write ("howdy\nfolks\n") ; // write characters to
// the file
fw.flush () ; // flush before closing

fw.close() ; // close file when done

448 Chapter 6: Strings, I/O, Formatting, and Parsing

FileReader fr =

new FileReader(file); // create a FileReader
// object
size = fr.read(in) ; // read the whole file!
System.out.print (size + " "); // how many bytes read
for(char ¢ : in) // print the array
System.out.print (c) ;
fr.close() ; // again, always close

} catch(IOException e) { }

}
}

which produces the output:

12 howdy
folks

Here's what just happened:

|. FileWriter fw = new FileWriter (file) did three things:
a. It created a FileWriter reference variable, fw.
b. It created a FileWriter object, and assigned it to fw.
c. It created an actual empty file out on the disk (and you can prove it).

2. We wrote 12 characters to the file with the write () method, and we did a
flush() and a close ().

3. We made a new FileReader object, which also opened the file on disk for
reading.

4. The read () method read the whole file, a character at a time, and put it into
the char[] in.

5. We printed out the number of characters we read size, and we looped
through the in array printing out each character we read, then we closed

the file.

Before we go any further let's talk about f1ush () and close (). When you write
data out to a stream, some amount of buffering will occur, and you never know for
sure exactly when the last of the data will actually be sent. You might perform many

File Navigation and I/O (Exam Objective 3.2) 449

write operations on a stream before closing it, and invoking the f1ush () method
guarantees that the last of the data you thought you had already written actually
gets out to the file. Whenever you're done using a file, either reading it or writing
to it, you should invoke the close () method. When you are doing file I/O you're
using expensive and limited operating system resources, and so when you're done,
invoking close () will free up those resources.

Now, back to our last example. This program certainly works, but it's painful in a
couple of different ways:

I. When we were writing data to the file, we manually inserted line separators
(in this case \n), into our data.

2. When we were reading data back in, we put it into a character array. It
being an array and all, we had to declare its size beforehand, so we'd have
been in trouble if we hadn't made it big enough! We could have read the
data in one character at a time, looking for the end of file after each
read (), but that's pretty painful too.

Because of these limitations, we'll typically want to use higher-level I/O classes
like BufferedWriter or BufferedReader in combination with FileWriter or FileReader.

Combining 1/O classes

Java's entire I/O system was designed around the idea of using several classes in
combination. Combining I/O classes is sometimes called wrapping and sometimes
called chaining. The java.io package contains about 50 classes, 10 interfaces, and
15 exceptions. Each class in the package has a very specific purpose (creating high
cohesion), and the classes are designed to be combined with each other in countless
ways, to handle a wide variety of situations.

When it's time to do some I/O in real life, you'll undoubtedly find yourself
pouring over the java.io API, trying to figure out which classes you'll need, and
how to hook them together. For the exam, you'll need to do the same thing, but
we've artificially reduced the API. In terms of studying for exam Objective 3.2, we
can imagine that the entire java.io package consisted of the classes listed in exam
Objective 3.2, and summarized in Table 6-1, our mini I/O APIL.

450 Chapter 6: Strings, I/O, Formatting, and Parsing

Iiiﬁ!i!l'lll java.io Mini AP

java.io Class Extends Key Constructor(s) Key Methods
From Arguments
File Object File, String createNewFile ()
String delete ()
String, String exists ()
isDirectory ()
isFile ()
list ()
mkdizr ()

renameTo ()

FileWriter Writer File close ()
String flush ()
write ()
BufferedWriter Writer Writer close ()
flush ()
newLine ()
write ()
PrintWriter Writer File (as of Java 5) close ()
String (as of Java 5) flush ()
OutputStream format () *, printf()*
Writer print (), println()
write ()
FileReader Reader File read ()
String
BufferedReader Reader Reader read ()

readLine ()

*Discussed later

Now let's say that we want to find a less painful way to write data to a file and
read the file's contents back into memory. Starting with the task of writing data to
a file, here's a process for determining what classes we'll need, and how we'll hook
them together:
I. We know that ultimately we want to hook to a File object. So whatever
other class or classes we use, one of them must have a constructor that takes
an object of type File.

File Navigation and I/O (Exam Objective 3.2) 45§ |

2. Find a method that sounds like the most powerful, easiest way to accomplish
the task. When we look at Table 6-1 we can see that BufferedWriter has
anewLine () method. That sounds a little better than having to manually
embed a separator after each line, but if we look further we see that
PrintWriter has a method called print1n (). That sounds like the easiest
approach of all, so we'll go with it.

3. When we look at PrintWriter's constructors, we see that we can build a
PrintWriter object if we have an object of type File, so all we need to do to
create a PrintWriter object is the following:

File file = new File("fileWrite2.txt"); // create a File

PrintWriter pw = new PrintWriter(file) ; // pass file to
// the PrintWriter

// constructor

Okay, time for a pop quiz. Prior to Java 5, PrintWriter did not have constructors
that took either a String or a File. If you were writing some I/O code in Java 1.4,
how would you get a PrintWriter to write data to a file? Hint: You can figure this out
by studying the mini I/O API, Table 6-1.

Here's one way to go about solving this puzzle: First, we know that we'll create
a File object on one end of the chain, and that we want a PrintWriter object on
the other end. We can see in Table 6-1 that a PrintWriter can also be built using
a Writer object. Although Writer isn't a class we see in the table, we can see that
several other classes extend Writer, which for our purposes is just as good; any class
that extends Writer is a candidate. Looking further, we can see that FileWriter has
the two attributes we're looking for:

I. It can be constructed using a File.

2. It extends Writer.

Given all of this information, we can put together the following code (remember,
this is a Java 1.4 example):

File file = new File("fileWrite2.txt"); // create a File object

FileWriter fw = new FileWriter (file) ; // create a FileWriter
// that will send its
// output to a File

4572 Chapter 6: Strings, I/O, Formatting, and Parsing

PrintWriter pw = new PrintWriter (fw) ;

pw.println ("howdy") ;
pw.println("folks") ;

// create a PrintWriter
// that will send its
// output to a Writer

// write the data

At this point it should be fairly easy to put together the code to more easily read
data from the file back into memory. Again, looking through the table, we see a
method called readLine () that sounds like a much better way to read data. Going
through a similar process we get the following code:

File file =
new File("fileWrite2.txt"); //
//
FileReader fr =
new FileReader (file) ; //
//
BufferedReader br =
new BufferedReader (fr) ; //
//

String data = br.readLine() ; //

Match

You’re almost certain to encounter exam questions that test your
knowledge of how I/O classes can be chained. If you’re not totally clear on this last
section, we recommend that you use Table 6-1 as a reference, and write code to
experiment with which chaining combinations are legal and which are illegal.

create a File object AND
open "fileWrite2.txt"

create a FileReader to get
data from 'file'

create a BufferReader to
get its data from a Reader
read some data

Working with Files and Directories

Earlier we touched on the fact that the File class is used to create files and
directories. In addition, File's methods can be used to delete files, rename files,
determine whether files exist, create temporary files, change a file's attributes, and
differentiate between files and directories. A point that is often confusing is that an
object of type File is used to represent either a file or a directory. We'll talk about both

cases next.

File Navigation and I/O (Exam Objective 3.2) 4.8 3

We saw earlier that the statement

File file = new File("foo");

always creates a File object, and then does one of two things:

I. If "foo" does NOT exist, no actual file is created.

2. If "foo" does exist, the new File object refers to the existing file.

Notice that File file = new File("foo"); NEVER creates an actual file.
There are two ways to create a file:

I. Invoke the createNewFile () method on a File object. For example:

File file = new File("foo") ; // no file yet
file.createNewFile () ; // make a file, "foo" which
// is assigned to 'file'

2. Create a Writer or a Stream. Specifically, create a FileWriter, a PrintWeriter,
or a FileOutputStream. Whenever you create an instance of one of these
classes, you automatically create a file, unless one already exists, for instance

File file = new File("foo"); // no file yet
PrintWriter pw =
new PrintWriter (file); // make a PrintWriter object AND
// make a file, "foo" to which
// 'file' is assigned, AND assign
// 'pw' to the PrintWriter

Creating a directory is similar to creating a file. Again, we'll use the convention
of referring to an object of type File that represents an actual directory, as a Directory
File object, capital D, (even though it's of type File.) We'll call an actual directory
on a computer a directory, small d. Phew! As with creating a file, creating a directory
is a two-step process; first we create a Directory (File) object, then we create an
actual directory using the following mkdir () method:

454 Chapter 6:

Strings, I/O, Formatting, and Parsing

File myDir = new File("mydir") ; // create an object
myDir.mkdir () ; // create an actual directory

Once you've got a directory, you put files into it, and work with those files:

File myFile = new File(myDir, "myFile.txt");
myFile.createNewFile () ;

This code is making a new file in a subdirectory. Since you provide the

subdirectory to the constructor, from then on you just refer to the file by its reference
variable. In this case, here's a way that you could write some data to the file myFile:

PrintWriter pw = new PrintWriter (myFile) ;
pw.println("new stuff");

pw.flush() ;

pw.close() ;

Be careful when you're creating new directories! As we've seen, constructing a

Writer or a Stream will often create a file for you automatically if one doesn't exist,
but that's not true for a directory:

File myDir = new File ("mydixr");
// myDir.mkdir () ; // call to mkdir () omitted!
File myFile = new File(
myDir, "myFile.txt");
myFile.createNewFile () ; // exception if no mkdir!

This will generate an exception something like

java.io.IOException: No such file or directory

You can refer a File object to an existing file or directory. For example, assume

that we already have a subdirectory called existingDir in which resides an existing
file existingDirFile.txt, which contains several lines of text. When you run the

following code,

File existingDir = new File("existingDir"); // assign a dir
System.out.println(existingDir.isDirectory()) ;

File Navigation and I/O (Exam Objective 3.2) 48558

File existingDirFile = new File(
existingDir, "existingDirFile.txt"); // assign a file
System.out.println (existingDirFile.isFile()) ;

FileReader fr = new FileReader (existingDirFile) ;

BufferedReader br = new BufferedReader (fr) ; // make a Reader
String s;
while((s = br.readLine()) != null) // read data

System.out.println(s) ;

br.close() ;

the following output will be generated:

true

true

existing sub-dir data
line 2 of text

line 3 of text

Take special note of what the readLine () method returns. When there is no
more data to read, readLine () returns a null—this is our signal to stop reading the
file. Also, notice that we didn't invoke a £1ush () method. When reading a file, no
flushing is required, so you won't even find a f1ush () method in a Reader kind of
class.

In addition to creating files, the File class also lets you do things like renaming
and deleting files. The following code demonstrates a few of the most common ins
and outs of deleting files and directories (via delete ()), and renaming files and
directories (via renameTo ()):

File delDir = new File("deldizr"); // make a directory
delDir.mkdir () ;

File delFilel = new File(
delDir, "delFilel.txt"); // add file to directory
delFilel.createNewFile () ;

File delFile2 = new File(
delDir, "delFile2.txt"); // add file to directory
delFile2.createNewFile () ;

456 Chapter 6: Strings, /O, Formatting, and Parsing

delFilel.delete() ; // delete a file
System.out.println("delDir is "
+ delDir.delete()) ; // attempt to delete
// the directory
File newName = new File(

delDir, "newName.txt") ; // a new object
delFile2.renameTo (newName) ; // rename file
File newDir = new File ("newDir") ; // rename directory

delDir.renameTo (newDir) ;

This outputs

delDir is false

and leaves us with a directory called newDir that contains a file called
newName . txt. Here are some rules that we can deduce from this result:

B delete() You can'tdelete a directory if it's not empty, which is why the
invocation delDir.delete () failed.

B renameTo() You must give the existing File object a valid new File object
with the new name that you want. (If newName had been nu11 we would
have gotten a NullPointerException.)

B renameTo() It's okay to rename a directory, even if it isn't empty.

There's a lot more to learn about using the java.io package, but as far as the
exam goes we only have one more thing to discuss, and that is how to search for a
file. Assuming that we have a directory named searchThis that we want to search
through, the following code uses the File.1list () method to create a String array
of files and directories, which we then use the enhanced for loop to iterate through
and print:

String[] files = new String[100];
File search = new File("searchThisg") ;
files = search.list(); // create the list

for(String fn : files) // iterate through it
System.out.println("found " + fn);

The java.io.Console Class (Exam Objective 3.2) 487

On our system, we got the following output:

found dirl
found dir2
found dir3
found filel.txt
found file2.txt

Your results will almost certainly vary :)

In this section we've scratched the surface of what's available in the java.io package.
Entire books have been written about this package, so we're obviously covering only
a very small (but frequently used) portion of the API. On the other hand, if you
understand everything we've covered in this section, you will be in great shape to
handle any java.io questions you encounter on the exam (except for the Console class,
which we'll cover next, and serialization, which is covered in the next section).

The java.io.Console Class

New to Java 6 is the java.io.Console class. In this context, the console is the
physical device with a keyboard and a display (like your Mac or PC). If you’re
running Java SE 6 from the command line, you'll typically have access to a console
object, to which you can get a reference by invoking System.console (). Keep in
mind that it's possible for your Java program to be running in an environment that
doesn't have access to a console object, so be sure that your invocation of System
.console () actually returns a valid console reference and not null.

The console class makes it easy to accept input from the command line, both
echoed and nonechoed (such as a password), and makes it easy to write formatted
output to the command line. It's a handy way to write test engines for unit testing
or if you want to support a simple but secure user interaction and you don't need
a GUL

On the input side, the methods you'll have to understand are readLine and
readPassword. The readLine method returns a string containing whatever the
user keyed in—that's pretty intuitive. However, the readrassword method doesn't
return a string: it returns a character array. Here's the reason for this: Once you've
got the password, you can verify it and then absolutely remove it from memory. If a
string was returned, it could exist in a pool somewhere in memory and perhaps some
nefarious hacker could find it.

458 Chapter 6: Strings, I/O, Formatting, and Parsing

Let's take a look at a small program that uses a console to support testing
another class:

import java.io.Console;

public class NewConsole {
public static void main(String[] args) {

Console ¢ = System.console() ; // #1: get a Console
char[] pw;
pw = c.readPassword("%$s", "pw: "); // #2: return a charl[]
for (char ch: pw)

c.format ("$c ", ch); // #3: format output

c.format ("\n") ;
MyUtility mu = new MyUtility () ;
while (true) {

name = c.readLine("%s", "input?: "); // #4: return a String

c.format ("output: %s \n", mu.doStuff (name)) ;

!
1
}
class MyUtility ({ // #5: class to test
String doStuff (String argl) {
// stub code
return "result is " + argl;
}
!

Let's review this code:
B At line 1, we get a new console object. Remember that we can't say this:

Console ¢ = new Console() ;

B At line 2, we invoke readPassword, which returns a char [], not a string.
You'll notice when you test this code that the password you enter isn't echoed
on the screen.

Serialization (Exam Objective 3.3) 4859

B At line 3, we're just manually displaying the password you keyed in, separat-
ing each character with a space. Later on in this chapter, you'll read about the
format method, so stay tuned.

At line 4, we invoke readLine, which returns a string.

B At line 5 is the class that we want to test. Later in this chapter, when you're
studying regex and formatting, we recommend that you use something like
NewConsole to test the concepts that you're learning.

The console class has more capabilities than are covered here, but if you
understand everything discussed so far, you'll be in good shape for the exam.

CERTIFICATION OBJECTIVE

Serialization (Exam Objective 3.3)

3.3 Develop code that serializes and/or de-serializes objects using the following APIs from
java.io: DatalnputStream, DataOutputStream, FileInputStream, FileOutputStream,
ObjectinputStream, ObjectOutputStream, and Serializable.

Imagine you want to save the state of one or more objects. If Java didn't have
serialization (as the earliest version did not), you'd have to use one of the [/O
classes to write out the state of the instance variables of all the objects you want to
save. The worst part would be trying to reconstruct new objects that were virtually
identical to the objects you were trying to save. You'd need your own protocol for
the way in which you wrote and restored the state of each object, or you could end
up setting variables with the wrong values. For example, imagine you stored an
object that has instance variables for height and weight. At the time you save the
state of the object, you could write out the height and weight as two ints in a file,
but the order in which you write them is crucial. It would be all too easy to re-create
the object but mix up the height and weight values—using the saved height as the
value for the new object's weight and vice versa.

Serialization lets you simply say "save this object and all of its instance variables."
Actually it's a little more interesting than that, because you can add, "... unless I've

460 Chapter é:

Strings, I/O, Formatting, and Parsing

explicitly marked a variable as transient, which means, don't include the transient
variable's value as part of the object's serialized state."

Working with ObjectOutputStream and ObjectinputStream

The magic of basic serialization happens with just two methods: one to serialize objects
and write them to a stream, and a second to read the stream and deserialize objects.

ObjectOutputStream.writeObject () // serialize and write

ObjectInputStream.readObject () // read and deserialize

The java.io.ObjectOutputStream and java.io.ObjectInputStream classes are

considered to be higher-level classes in the java.io package, and as we learned earlier,
that means that you'll wrap them around lower-level classes, such as
java.io.FileOutputStream and java.io.FileInputStream. Here's a small program that
creates a (Cat) object, serializes it, and then deserializes it:

import java.io.*;
class Cat implements Serializable { } // 1

public class SerializeCat {
public static void main(Stringl[] args)

Cat ¢ = new Cat(); // 2

try {
FileOutputStream fs = new FileOutputStream("testSer.ser");
ObjectOutputStream os = new ObjectOutputStream(fs) ;
os.writeObject (c); // 3
os.close() ;

} catch (Exception e) { e.printStackTrace(); }

try {
FileInputStream fis = new FileInputStream("testSer.ser");
ObjectInputStream ois = new ObjectInputStream(fis) ;
c = (Cat) ois.readObject(); // 4
ois.close() ;

} catch (Exception e) { e.printStackTrace(); }

}
}

Let's take a look at the key points in this example:

Serialization (Exam Objective 3.3) 46 |

I. We declare that the Cat class implements the Serializable interface.
Serializable is a marker interface; it has no methods to implement. (In the
next several sections, we'll cover various rules about when you need to declare
classes Serializable.)

2. We make a new Cat object, which as we know is serializable.

3. We serialize the Cat object ¢ by invoking the writeobject () method. It
took a fair amount of preparation before we could actually serialize our Cat.
First, we had to put all of our I/O-related code in a try/catch block. Next we
had to create a FileOutputStream to write the object to. Then we wrapped the
FileOutputStream in an ObjectOutputStream, which is the class that has the
magic serialization method that we need. Remember that the invocation of
writeObject () performs two tasks: it serializes the object, and then it writes
the serialized object to a file.

4. We de-serialize the Cat object by invoking the readobject () method. The
readoObject () method returns an Object, so we have to cast the deserialized
object back to a Cat. Again, we had to go through the typical I/O hoops to
set this up.

This is a bare-bones example of serialization in action. Over the next set of pages
we'll look at some of the more complex issues that are associated with serialization.

Object Graphs

What does it really mean to save an object? If the instance variables are all primitive
types, it's pretty straightforward. But what if the instance variables are themselves
references to objects? What gets saved? Clearly in Java it wouldn't make any sense to
save the actual value of a reference variable, because the value of a Java reference has
meaning only within the context of a single instance of a JVM. In other words, if you
tried to restore the object in another instance of the JVM, even running on the same
computer on which the object was originally serialized, the reference would be useless.
But what about the object that the reference refers to? Look at this class:

class Dog
private Collar theCollar;
private int dogSize;
public Dog(Collar collar, int size) {
theCollar = collar;
dogSize = size;

4672 Chapter 6: Strings, I/O, Formatting, and Parsing

}

public Collar getCollar() { return theCollar; }

}

class Collar ({
private int collarSize;
public Collar(int size) { collarSize = size; }
public int getCollarSize() { return collarSize; }

Now make a dog... First, you make a Collar for the Dog:

Collar ¢ = new Collar(3);

Then make a new Dog, passing it the Collar:
Dog d = new Dog(c, 8);

Now what happens if you save the Dog? If the goal is to save and then restore a
Dog, and the restored Dog is an exact duplicate of the Dog that was saved, then the
Dog needs a Collar that is an exact duplicate of the Dog's Collar at the time the Dog
was saved. That means both the Dog and the Collar should be saved.

And what if the Collar itself had references to other objects—like perhaps
a Color object? This gets quite complicated very quickly. If it were up to the
programmer to know the internal structure of each object the Dog referred to, so
that the programmer could be sure to save all the state of all those objects...whew.
That would be a nightmare with even the simplest of objects.

Fortunately, the Java serialization mechanism takes care of all of this. When you
serialize an object, Java serialization takes care of saving that object's entire "object
graph." That means a deep copy of everything the saved object needs to be restored.
For example, if you serialize a Dog object, the Collar will be serialized automatically.
And if the Collar class contained a reference to another object, THAT object would
also be serialized, and so on. And the only object you have to worry about saving
and restoring is the Dog. The other objects required to fully reconstruct that Dog are
saved (and restored) automatically through serialization.

Remember, you do have to make a conscious choice to create objects that are
serializable, by implementing the Serializable interface. If we want to save Dog
objects, for example, we'll have to modify the Dog class as follows:

class Dog implements Serializable
// the rest of the code as before

Serialization (Exam Objective 3.3) 463

// Serializable has no methods to implement

And now we can save the Dog with the following code:

import java.io.*;
public class SerializeDog
public static void main(String[] args) {

Collar ¢ = new Collar(3);
Dog d = new Dogl(c, 8);
try {

FileOutputStream fs = new FileOutputStream("testSer.ser");
ObjectOutputStream os = new ObjectOutputStream(fs) ;
os.writeObject (d) ;
os.close() ;

} catch (Exception e) { e.printStackTrace(); }

}
}

But when we run this code we get a runtime exception something like this

java.ilo.NotSerializableException: Collar

What did we forget? The Collar class must ALSO be Serializable. If we modify

the Collar class and make it serializable, then there's no problem:

class Collar implements Serializable ({
// same

Here's the complete listing:

import java.io.*;
public class SerializeDog
public static void main(String[] args) {
Collar ¢ = new Collar(3);
Dog d = new Dog(c, 5);
System.out.println("before: collar size is "
+ d.getCollar () .getCollarSize()) ;

try {
FileOutputStream fs = new FileOutputStream("testSer.ser");

464 Chapter 6:

Strings, I/O, Formatting, and Parsing

ObjectOutputStream os = new ObjectOutputStream(fs) ;
os.writeObject (d) ;

os.close();

} catch (Exception e)

try {

{ e.printStackTrace(); }

FileInputStream fis = new FileInputStream("testSer.ser");
ObjectInputStream ois = new ObjectInputStream(fis) ;

d = (Dog)
ois.close() ;

} catch (Exception e)

System.out.println("after:

}
}

ois.readObject () ;

{ e.printStackTrace(); }

collar size is "
+ d.getCollar () .getCollarSize()) ;

class Dog implements Serializable (
private Collar theCollar;
private int dogSize;
public Dog(Collar collar,
theCollar = collar;
dogSize = size;
}

public Collar getCollar ()

int size)

}

class Collar implements Serializable {
private int collarSize;
public Collar (int size) { collarSize
public int getCollarSize ()

This produces the output:

before: collar size is 3

after: collar size is 3

= size; }

{ return theCollar; }

{ return collarSize; }

But what would happen if we didn't have access to the Collar class source code?
In other words, what if making the Collar class serializable was not an option? Are
we stuck with a non-serializable Dog?

Obviously we could subclass the Collar class, mark the subclass as Serializable,
and then use the Collar subclass instead of the Collar class. But that's not always an
option either for several potential reasons:

Serialization (Exam Objective 3.3) 465

I. The Collar class might be final, preventing subclassing.
OR

2. The Collar class might itself refer to other non-serializable objects, and with-
out knowing the internal structure of Collar, you aren't able to make all these
fixes (assuming you even wanted to TRY to go down that road).

OR

3. Subclassing is not an option for other reasons related to your design.

So...THEN what do you do if you want to save a Dog?

That's where the transient modifier comes in. If you mark the Dog's Collar
instance variable with transient, then serialization will simply skip the Collar
during serialization:

class Dog implements Serializable ({
private transient Collar theCollar; // add transient
// the rest of the class as before

}

class Collar ({ // no longer Serializable
// same code

}

Now we have a Serializable Dog, with a non-serializable Collar, but the Dog has
marked the Collar transient; the output is

before: collar size is 3
Exception in thread "main" java.lang.NullPointerException

So NOW what can we do?

Using writeObject and readObject

Consider the problem: we have a Dog object we want to save. The Dog has a Collar,
and the Collar has state that should also be saved as part of the Dog's state. But...the
Collar is not Serializable, so we must mark it transient. That means when the Dog
is deserialized, it comes back with a null Collar. What can we do to somehow make
sure that when the Dog is deserialized, it gets a new Collar that matches the one the
Dog had when the Dog was saved?

466 Chapter 6: Strings, |/O, Formatting, and Parsing

Java serialization has a special mechanism just for this—a set of private methods
you can implement in your class that, if present, will be invoked automatically
during serialization and deserialization. It's almost as if the methods were defined
in the Serializable interface, except they aren't. They are part of a special callback
contract the serialization system offers you that basically says, "If you (the
programmer) have a pair of methods matching this exact signature (you'll see them
in a moment), these methods will be called during the serialization/deserialization
process.

These methods let you step into the middle of serialization and deserialization.
So they're perfect for letting you solve the Dog/Collar problem: when a Dog is
being saved, you can step into the middle of serialization and say, "By the way, I'd
like to add the state of the Collar's variable (an int) to the stream when the Dog
is serialized." You've manually added the state of the Collar to the Dog's serialized
representation, even though the Collar itself is not saved.

Of course, you'll need to restore the Collar during deserialization by stepping into
the middle and saying, "I'll read that extra int I saved to the Dog stream, and use
it to create a new Collar, and then assign that new Collar to the Dog that's being
deserialized." The two special methods you define must have signatures that look

EXACTLY like this:

private void writeObject (ObjectOutputStream os) {
// your code for saving the Collar variables

}

private void readObject (ObjectInputStream is)
// your code to read the Collar state, create a new Collar,
// and assign it to the Dog

Yes, we're going to write methods that have the same name as the ones we've
been calling! Where do these methods go? Let's change the Dog class:

class Dog implements Serializable {
transient private Collar theCollar; // we can't serialize this
private int dogSize;
public Dog(Collar collar, int size) {
theCollar = collar;
dogSize = size;
}

public Collar getCollar() { return theCollar; }

Serialization (Exam Objective 3.3) 467

private void writeObject (ObjectOutputStream os) {

// throws IOException { // 1
try {
os.defaultWriteObject () ; // 2
os.writelnt (theCollar.getCollarSize()) ; // 3
} catch (Exception e) { e.printStackTrace(); }
1
private void readObject (ObjectInputStream is) {
// throws IOException, ClassNotFoundException { // 4
try {
is.defaultReadObject () ; // 5
theCollar = new Collar(is.readInt()); // 6
} catch (Exception e) { e.printStackTrace(); }

}
}

Let's take a look at the preceding code.

In our scenario we've agreed that, for whatever real-world reason, we can't
serialize a Collar object, but we want to serialize a Dog. To do this we're going
to implement writeObject () and readobject (). By implementing these two
methods you're saying to the compiler: "If anyone invokes writeObject () or
readObject () concerning a Dog object, use this code as part of the read and write."

I. Like most I/O-related methods writeobject () can throw exceptions. You
can declare them or handle them but we recommend handling them.

2. When you invoke defaultWriteObject () from within writeobject ()
you're telling the JVM to do the normal serialization process for this object.
When implementing writeobject (), you will typically request the normal
serialization process, and do some custom writing and reading too.

3. In this case we decided to write an extra int (the collar size) to the stream
that's creating the serialized Dog. You can write extra stuff before and/or
after you invoke defaultWriteObject (). BUT...when you read it back in,
you have to read the extra stuff in the same order you wrote it.

4. Again, we chose to handle rather than declare the exceptions.

5. When it's time to deserialize, defaultReadobject () handles the normal
deserialization you'd get if you didn't implement a readobject () method.

6. Finally we build a new Collar object for the Dog using the collar size that we
manually serialized. (We had to invoke readint () after we invoked
defaultReadObject () or the streamed data would be out of sync!)

468 Chapter 6: Strings, I/O, Formatting, and Parsing

Remember, the most common reason to implement writeobject () and
readObject () is when you have to save some part of an object's state manually. If
you choose, you can write and read ALL of the state yourself, but that's very rare.
So, when you want to do only a part of the serialization/deserialization yourself, you
MUST invoke the defaultReadobject () and defaultWriteObject () methods
to do the rest.

Which brings up another question—why wouldn't all Java classes be serializable?
Why isn't class Object serializable? There are some things in Java that simply cannot
be serialized because they are runtime specific. Things like streams, threads, runtime,
etc. and even some GUI classes (which are connected to the underlying OS) cannot
be serialized. What is and is not serializable in the Java APl is NOT part of the exam,
but you'll need to keep them in mind if you're serializing complex objects.

How Inheritance Affects Serialization

Serialization is very cool, but in order to apply it effectively you're going to have to
understand how your class's superclasses affect serialization.

W
Jatch
If a superclass is Serializable, then according to normal Java interface

rules, all subclasses of that class automatically implement Serializable implicitly. In other
words, a subclass of a class marked Serializable passes the IS-A test for Serializable,

and thus can be saved without having to explicitly mark the subclass as Serializable.

You simply cannot tell whether a class is or is not Serializable UNLESS you can see the
class inheritance tree to see if any other superclasses implement Serializable. If the class
does not explicitly extend any other class, and does not implement Serializable, then
you know for CERTAIN that the class is not Serializable, because class Object does NOT
implement Serializable.

That brings up another key issue with serialization...what happens if a superclass
is not marked Serializable, but the subclass is? Can the subclass still be serialized
even if its superclass does not implement Serializable? Imagine this:

Serialization (Exam Objective 3.3) 469

class Animal { }
class Dog extends Animal implements Serializable {
// the rest of the Dog code

Now you have a Serializable Dog class, with a non-Serializable superclass. This
works! But there are potentially serious implications. To fully understand those
implications, let's step back and look at the difference between an object that comes
from deserialization vs. an object created using new. Remember, when an object
is constructed using new (as opposed to being deserialized), the following things
happen (in this order):

I. All instance variables are assigned default values.

2. The constructor is invoked, which immediately invokes the superclass
constructor (or another overloaded constructor, until one of the overloaded
constructors invokes the superclass constructor).

3. All superclass constructors complete.

4. Instance variables that are initialized as part of their declaration are assigned
their initial value (as opposed to the default values they're given prior to
the superclass constructors completing).

5. The constructor completes.

But these things do NOT happen when an object is deserialized. When an instance of
a serializable class is deserialized, the constructor does not run, and instance variables
are NOT given their initially assigned values! Think about it—if the constructor
were invoked, and/or instance variables were assigned the values given in their
declarations, the object you're trying to restore would revert back to its original
state, rather than coming back reflecting the changes in its state that happened
sometime after it was created. For example, imagine you have a class that declares an
instance variable and assigns it the int value 3, and includes a method that changes
the instance variable value to 10:

class Foo implements Serializable ({
int num = 3;
void changeNum() { num = 10; }

470 Chapter 6: Strings, I/O, Formatting, and Parsing

Obviously if you serialize a Foo instance after the changeNum () method runs,
the value of the num variable should be 10. When the Foo instance is deserialized,
you want the num variable to still be 10! You obviously don't want the initialization
(in this case, the assignment of the value 3 to the variable num) to happen. Think
of constructors and instance variable assignments together as part of one complete
object initialization process (and in fact, they DO become one initialization method
in the bytecode). The point is, when an object is deserialized we do NOT want any
of the normal initialization to happen. We don't want the constructor to run, and
we don't want the explicitly declared values to be assigned. We want only the values
saved as part of the serialized state of the object to be reassigned.

Of course if you have variables marked transient, they will not be restored to
their original state (unless you implement readobject ()), but will instead be given
the default value for that data type. In other words, even if you say

class Bar implements Serializable {
transient int x = 42;

when the Bar instance is deserialized, the variable x will be set to a value of o.
Object references marked transient will always be reset to null, regardless of
whether they were initialized at the time of declaration in the class.

So, that's what happens when the object is deserialized, and the class of the
serialized object directly extends object, or has ONLY serializable classes in its
inheritance tree. It gets a little trickier when the serializable class has one or more
non-serializable superclasses. Getting back to our non-serializable Animal class with
a serializable Dog subclass example:

class Animal
public String name;

}

class Dog extends Animal implements Serializable {
// the rest of the Dog code

Because Animal is NOT serializable, any state maintained in the Animal class,
even though the state variable is inherited by the Dog, isn't going to be restored
with the Dog when it's deserialized! The reason is, the (unserialized) Animal part of
the Dog is going to be reinitialized just as it would be if you were making a new Dog
(as opposed to deserializing one). That means all the things that happen to an object

Serialization (Exam Objective 3.3) 47 |

during construction, will happen—but only to the Animal parts of a Dog. In other
words, the instance variables from the Dog's class will be serialized and deserialized
correctly, but the inherited variables from the non-serializable Animal superclass will
come back with their default/initially assigned values rather than the values they
had at the time of serialization.

If you are a serializable class, but your superclass is NOT serializable, then any
instance variables you INHERIT from that superclass will be reset to the values they
were given during the original construction of the object. This is because the non-
serializable class constructor WILL run!

In fact, every constructor ABOVE the first non-serializable class constructor will
also run, no matter what, because once the first super constructor is invoked, (during
deserialization), it of course invokes its super constructor and so on up the inheritance
tree.

For the exam, you'll need to be able to recognize which variables will and will not
be restored with the appropriate values when an object is deserialized, so be sure to
study the following code example and the output:

import java.io.*;
class SuperNotSerial
public static void main(String [] args) {

Dog d = new Dog (35, "Fido") ;
System.out.println("before: " + d.name + " "
+ d.weight) ;

try {
FileOutputStream fs = new FileOutputStream("testSer.ser");
ObjectOutputStream os = new ObjectOutputStream(fs) ;
os.writeObject (d) ;
os.close();

} catch (Exception e) { e.printStackTrace(); }

try {
FileInputStream fis = new FileInputStream("testSer.ser");
ObjectInputStream ois = new ObjectInputStream(fis) ;

d = (Dog) ois.readObject () ;

ois.close();
} catch (Exception e) { e.printStackTrace(); }
System.out.println("after: " + d.name + " "

+ d.weight) ;

}
}

class Dog extends Animal implements Serializable {
String name;

4772 Chapter 6: Strings, [/O, Formatting, and Parsing

Dog(int w, String n)

weight = w; // inherited
name = n; // not inherited
}
}
class Animal { // not serializable !

int weight = 42;

}

which produces the output:

before: Fido 35
after: Fido 42

The key here is that because Animal is not serializable, when the Dog was
deserialized, the Animal constructor ran and reset the Dog's inherited weight variable.

Jatch
If you serialize a collection or an array, every element must be

serializable! A single non-serializable element will cause serialization to fail. Note also
that while the collection interfaces are not serializable, the concrete collection classes in
the Java API are.

Serialization Is Not for Statics

Finally, you might notice that we've talked ONLY about instance variables, not
static variables. Should static variables be saved as part of the object's state? Isn't the
state of a static variable at the time an object was serialized important? Yes and no.
It might be important, but it isn't part of the instance's state at all. Remember, you
should think of static variables purely as CLASS variables. They have nothing to
do with individual instances. But serialization applies only to OBJECTS. And what
happens if you deserialize three different Dog instances, all of which were serialized
at different times, and all of which were saved when the value of a static variable
in class Dog was different. Which instance would "win"? Which instance's static
value would be used to replace the one currently in the one and only Dog class that's
currently loaded? See the problem?

Static variables are NEVER saved as part of the object's state...because they do
not belong to the object!

Dates, Numbers, and Currency (Exam Objective 3.4) 47 3

Datch
What about DatalnputStream and DataOutputStream? They're in the

objectives! It turns out that while the exam was being created, it was decided that those
two classes wouldn't be on the exam after all, but someone forgot to remove them from
the objectives! So you get a break.That's one less thing you'll have to worry about.

As simple as serialization code is to write, versioning problems can occur
in the real world. If you save a Dog object using one version of the class,
but attempt to deserialize it using a newer, different version of the class,
deserialization might fail. See the Java API for details about versioning
issues and solutions.

CERTIFICATION OBJECTIVE

Dates, Numbers, and Currency
(Exam Objective 3.4)

3.4 Use standard J2SE APIs in the java.text package to correctly format or parse dates,
numbers and currency values for a specific locale; and, given a scenario, determine the
appropriate methods to use if you want to use the default locale or a specific locale. Describe
the purpose and use of the java.util.Locale class.

on the

Qob

The Java API provides an extensive (perhaps a little too extensive) set of classes

to help you work with dates, numbers, and currency. The exam will test your
knowledge of the basic classes and methods you'll use to work with dates and such.
When you've finished this section you should have a solid foundation in tasks such
as creating new Date and DateFormat objects, converting Strings to Dates and back
again, performing Calendaring functions, printing properly formatted currency
values, and doing all of this for locations around the globe. In fact, a large part of
why this section was added to the exam was to test whether you can do some basic
internationalization (often shortened to "i18n").

474 Chapter 6: Strings, [/O, Formatting, and Parsing

Working with Dates, Numbers, and Currencies

If you want to work with dates from around the world (and who doesn't?), you'll
need to be familiar with at least four classes from the java.text and java.util
packages. In fact, we'll admit it right up front, you might encounter questions on the
exam that use classes that aren't specifically mentioned in the Sun objective. Here
are the four date related classes you'll need to understand:

B java.util.pate Most of this class's methods have been deprecated, but
you can use this class to bridge between the calendar and DateFormat class.
An instance of Date represents a mutable date and time, to a millisecond.

B java.util.Calendar This class provides a huge variety of methods that
help you convert and manipulate dates and times. For instance, if you want
to add a month to a given date, or find out what day of the week January 1,
3000 falls on, the methods in the calendar class will save your bacon.

B java.text.DateFormat This class is used to format dates not only
providing various styles such as "01/01/70" or "January 1, 1970," but also to
format dates for numerous locales around the world.

B java.text.NumberFormat [his class is used to format numbers and
currencies for locales around the world.

B java.util.Locale This class is used in conjunction with bateFormat
and NumberFormat to format dates, numbers and currency for specific lo-
cales. With the help of the Locale class you'll be able to convert a date like
"10/10/2005" to "Segunda-feira, 10 de Outubro de 2005" in no time. If you
want to manipulate dates without producing formatted output, you can use
the Locale class directly with the Calendar class.

Orchestrating Date- and Number-Related Classes

When you work with dates and numbers, you'll often use several classes together.

[t's important to understand how the classes we described above relate to each
other, and when to use which classes in combination. For instance, you'll need to
know that if you want to do date formatting for a specific locale, you need to create
your Locale object before your DateFormat object, because you'll need your Locale
object as an argument to your DateFormat factory method. Table 6-2 provides a
quick overview of common date- and number-related use cases and solutions using
these classes. Table 6-2 will undoubtedly bring up specific questions about individual
classes, and we will dive into specifics for each class next. Once you've gone through
the class level discussions, you should find that Table 6-2 provides a good summary.

Working with Dates, Numbers, and Currencies (Exam Objective 3.4) 47§

Common Use Cases When Working with Dates and Numbers

Use Case Steps

Get the current date and
time.

L.

2. Get its value:

Create a Date: Date d = new Date() ;

String s = d.toString() ;

Get an object that lets
you perform date and time
calculations in your locale.

. Create a Calendar:

Calendar ¢ = Calendar.getInstance() ;

.Usec.add(...) and c.roll(...) to perform date and time

manipulations.

Get an object that lets
you perform date and time
calculations in a different

. Create a Locale:

Locale loc = new Locale (language) ; or

Locale loc = new Locale(language, country) ;

locale. 2. Create a Calendar for that locale:
Calendar ¢ = Calendar.getInstance (loc) ;
3.Use c.add(...) and c.roll(...) to perform date and time
manipulations.
Get an object that lets 1. Create a Calendar:
you perform date and time Calendar c¢ = Calendar.getInstance() ;
calculations, and then format 2. Create a Locale for each location:
it for output in different Locale loc = new Locale(...);
locales with different date 3. Convert your Calendar to a Date:
styles. Date d = c.getTime() ;
4. Create a DateFormat for each Locale:
DateFormat df = DateFormat.getDateInstance
(style, loc);
5. Use the format() method to create formatted dates:
String s = df.format (d) ;
Get an object that lets you 1. Create a Locale for each location:
format numbers or currencies Locale loc = new Locale(...);
across many different locales. 2. Create a NumberFormat:
NumberFormat nf = NumberFormat.getInstance (loc) ;
-0r- NumberFormat nf = NumberFormat.
getCurrencylInstance (loc) ;
3. Use the format() method to create formatted output:

String s = nf.format (someNumber) ;

476 Chapter 6: Strings, |/O, Formatting, and Parsing

The Date Class

The Date class has a checkered past. Its API design didn't do a good job of handling
internationalization and localization situations. In its current state, most of its
methods have been deprecated, and for most purposes you'll want to use the
Calendar class instead of the Date class. The Date class is on the exam for several
reasons: you might find it used in legacy code, it's really easy if all you want is a
quick and dirty way to get the current date and time, it's good when you want
a universal time that is not affected by time zones, and finally, you'll use it as a
temporary bridge to format a Calendar object using the DateFormat class.

As we mentioned briefly above, an instance of the Date class represents a
single date and time. Internally, the date and time is stored as a primitive 1ong.
Specifically, the 1ong holds the number of milliseconds (you know, 1000 of these per
second), between the date being represented and January 1, 1970.

Have you ever tried to grasp how big really big numbers are? Let's use the Date
class to find out how long it took for a trillion milliseconds to pass, starting at
January 1, 1970:

import java.util.*;
class TestDates {
public static void main(Stringl[] args)
Date dl1 = new Date(1000000000000L); // a trillion!
System.out.println("lst date " + dl.toString());

}
}

On our JVM, which has a US locale, the output is

1lst date Sat Sep 08 19:46:40 MDT 2001

Okay, for future reference remember that there are a trillion milliseconds for
every 31 and 2/3 years.

Although most of Date's methods have been deprecated, it's still acceptable to
use the getTime and setTime methods, although as we'll soon see, it's a bit painful.
Let's add an hour to our Date instance, d1, from the previous example:

import java.util.=*;
class TestDates ({
public static void main(String[] args) {
Date dl1 = new Date(1000000000000L); // a trillion!

Working with Dates, Numbers, and Currencies (Exam Objective 3.4) 477

System.out.println("lst date " + dl.toString());
dl.setTime (dl.getTime() + 3600000); // 3600000 millis / hour
System.out.println("new time " + dl.toString());

}
}

which produces (again, on our JVM):

lst date Sat Sep 08 19:46:40 MDT 2001
new time Sat Sep 08 20:46:40 MDT 2001

Notice that both setTime () and getTime () used the handy millisecond scale...
if you want to manipulate dates using the Date class, that's your only choice. While
that wasn't too painful, imagine how much fun it would be to add, say, a year to a
given date.

We'll revisit the Date class later on, but for now the only other thing you need
to know is that if you want to create an instance of Date to represent "now," you use
Date's no-argument constructor:

Date now = new Date() ;

(We're guessing that if you call now.getTime (), you'll get a number somewhere
between one trillion and two trillion.)

The Calendar Class

We've just seen that manipulating dates using the Date class is tricky. The Calendar
class is designed to make date manipulation easy! (Well, easier.) While the Calendar
class has about a million fields and methods, once you get the hang of a few of them
the rest tend to work in a similar fashion.

When you first try to use the calendar class you might notice that it's an
abstract class. You can't say

Calendar ¢ = new Calendar () ; // illegal, Calendar is abstract

In order to create a Calendar instance, you have to use one of the overloaded
getInstance () static factory methods:

Calendar cal = Calendar.getInstance() ;

478 Chapter 6: Strings, I/O, Formatting, and Parsing

When you get a Calendar reference like cal, from above, your Calendar reference
variable is actually referring to an instance of a concrete subclass of Calendar. You
can't know for sure what subclass you'll get (java.util.GregorianCalendar
is what you'll almost certainly get), but it won't matter to you. You'll be using
Calendar's API. (As Java continues to spread around the world, in order to maintain
cohesion, you might find additional, locale-specific subclasses of calendar.)

Okay, so now we've got an instance of Calendar, let's go back to our earlier
example, and find out what day of the week our trillionth millisecond falls on, and
then let's add a month to that date:

import java.util.=*;
class Dates2 f{
public static void main(String[] args)
Date dl = new Date(1000000000000L) ;
System.out.println("lst date " + dl.toString());

Calendar c¢ = Calendar.getInstance() ;
c.setTime (dl) ; // #1
if (Calendar.SUNDAY == c.getFirstDayOfWeek()) // #2

System.out.println("Sunday is the first day of the week");
System.out.println("trillionth milli day of week ig "

+ c.get(Calendar.DAY OF WEEK)) ; // #3
c.add(Calendar.MONTH, 1); // #4
Date d2 = c.getTime(); // #5

System.out.println("new date " + d2.toString());

This produces something like
1st date Sat Sep 08 19:46:40 MDT 2001
Sunday is the first day of the week

trillionth milli day of week is 7
new date Mon Oct 08 19:46:40 MDT 2001

Let's take a look at this program, focusing on the five highlighted lines:

I. We assign the Date d1 to the Calendar instance c.

Working with Dates, Numbers, and Currencies (Exam Objective 3.4) 479

2. We use Calendar's SUNDAY field to determine whether, for our JVM, SuNDAY
is considered to be the first day of the week. (In some locales, MONDAY is the
first day of the week.) The Calendar class provides similar fields for days of
the week, months, the day of the month, the day of the year, and so on.

3. We use the pAY oF wEEK field to find out the day of the week that the
trillionth millisecond falls on.

4. So far we've used setter and getter methods that should be intuitive to figure
out. Now we're going to use Calendar's add () method. This very
powerful method lets you add or subtract units of time appropriate for
whichever Calendar field you specify. For instance:

c.add (Calendar.HOUR, -4); // subtract 4 hours from c's value
c.add (Calendar.YEAR, 2); // add 2 years to c's value
c.add (Calendar.DAY OF WEEK, -2); // subtract two days from

// c's wvalue

5. Convert c's value back to an instance of Date.

The other Calendar method you should know for the exam is the rol1 ()
method. The ro11 () method acts like the add () method, except that when a part
of a Date gets incremented or decremented, larger parts of the Date will not get
incremented or decremented. Hmmm...for instance:

// assume c is October 8, 2001

c.roll (Calendar.MONTH, 9); // notice the year in the output
Date d4 = c.getTime() ;

System.out .println("new date " + d4.toString());

The output would be something like this

new date Fri Jul 08 19:46:40 MDT 2001

Notice that the year did not change, even though we added 9 months to an
October date. In a similar fashion, invoking ro11 () with HOUR won't change the
date, the month, or the year.

For the exam, you won't have to memorize the Calendar class's fields. If you need
them to help answer a question, they will be provided as part of the question.

480 Chapter 6: Strings, I/O, Formatting, and Parsing

The DateFormat Class

Having learned how to create dates and manipulate them, let's find out how to
format them. So that we're all on the same page, here's an example of how a date
can be formatted in different ways:

import java.text.*;
import java.util.*;
class Dates3 {
public static void main(Stringl[] args)
Date dl = new Date(1000000000000L) ;

DateFormat [] dfa = new DateFormat [6] ;
dfa[0] = DateFormat.getInstance() ;
dfa[l] = DateFormat.getDatelInstance() ;
dfa[2] = DateFormat.getDateInstance (DateFormat.SHORT) ;
dfa[3] = DateFormat.getDateInstance (DateFormat.MEDIUM) ;
(
(

dfa[4] = DateFormat.getDatelInstance (DateFormat .LONG) ;
dfa[5] = DateFormat.getDatelInstance (DateFormat.FULL) ;

for (DateFormat df : dfa)
System.out.println (df.format (dl)) ;

which on our JVM produces

9/8/01 7:46 PM

Sep 8, 2001

9/8/01

Sep 8, 2001

September 8, 2001

Saturday, September 8, 2001

Examining this code we see a couple of things right away. First off, it looks
like DateFormat is another abstract class, so we can't use new to create instances
of DateFormat. In this case we used two factory methods, get Instance () and
getDateInstance (). Notice that getDateInstance () is overloaded; when we
discuss locales, we'll look at the other version of getDateInstance () that you'll
need to understand for the exam.

Next, we used static fields from the DateFormat class to customize our various
instances of DateFormat. Each of these static fields represents a formatting style. In

Working with Dates, Numbers, and Currencies (Exam Objective 3.4) 48 |l

this case it looks like the no-arg version of getDateInstance () gives us the same
style as the MEDIUM version of the method, but that's not a hard and fast rule. (More
on this when we discuss locales.) Finally, we used the format () method to create
Strings representing the properly formatted versions of the Date we're working with.
The last method you should be familiar with is the parse () method. The
parse () method takes a String formatted in the style of the DateFormat instance
being used, and converts the String into a Date object. As you might imagine, this is
a risky operation because the parse () method could easily receive a badly formatted
String. Because of this, parse () can throw a ParseException. The following code
creates a Date instance, uses DateFormat . format () to convert it into a String, and
then uses DateFormat .parse () to change it back into a Date:

Date dl = new Date(1000000000000L) ;
System.out.println("dl = " + dl.toString());

DateFormat df = DateFormat.getDateInstance (
DateFormat .SHORT) ;

String s = df.format (dl) ;

System.out.println(s) ;

try {
Date d2 = df.parse(s);
System.out.println("parsed = " + d2.toString());
} catch (ParseException pe) {
System.out.println("parse exc"); }

which on our JVM produces

dl = Sat Sep 08 19:46:40 MDT 2001
9/8/01
parsed = Sat Sep 08 00:00:00 MDT 2001

Note: If we'd wanted to retain the time along with the date we could have used
the getDateTimeInstance () method, but it's not on the exam.

The API for DateFormat.parse() explains that by default, the parse ()
on thB method is lenient when parsing dates. Our experience is that parse () isn't
Qob very lenient about the formatting of Strings it will successfully parse into
dates; take care when you use this method!

482 Chapter 6: Strings, I/O, Formatting, and Parsing

The Locale Class

Earlier we said that a big part of why this objective exists is to test your ability to

do some basic internationalization tasks. Your wait is over; the Locale class is your
ticket to worldwide domination. Both the DateFormat class and the NumberFormat
class (which we'll cover next) can use an instance of Locale to customize formatted
output to be specific to a locale. You might ask how Java defines a locale? The API
says a locale is "a specific geographical, political, or cultural region." The two Locale
constructors you'll need to understand for the exam are

Locale (String language)
Locale (String language, String country)

The language argument represents an ISO 639 Language Code, so for instance
if you want to format your dates or numbers in Walloon (the language sometimes
used in southern Belgium), you'd use "wa" as your language string. There are over
500 ISO Language codes, including one for Klingon ("t1h"), although unfortunately
Java doesn't yet support the Klingon locale. We thought about telling you that you'd
have to memorize all these codes for the exam...but we didn't want to cause any
heart attacks. So rest assured, you won't have to memorize any ISO Language codes
or ISO Country codes (of which there are about 240) for the exam.

Let's get back to how you might use these codes. If you want to represent basic
[talian in your application, all you need is the language code. If, on the other hand,
you want to represent the Italian used in Switzerland, you'd want to indicate that
the country is Switzerland (yes, the country code for Switzerland is "cu"), but that
the language is Italian:

Locale locPT = new Locale("it") ; // Italian
Locale locBR = new Locale("it", "CH"); // Switzerland

Using these two locales on a date could give us output like this:

sabato 1 ottobre 2005
sabato, 1. ottobre 2005

Now let's put this all together in some code that creates a Calendar object, sets its
date, then converts it to a Date. After that we'll take that Date object and print it
out using locales from around the world:

Working with Dates, Numbers, and Currencies (Exam Objective 3.4) 483

Calendar c¢ = Calendar.getInstance() ;

c.set (2010, 11, 14); // December 14, 2010
// (month is 0-based

Date d2 = c.getTime() ;

Locale locIT = new Locale("it", "IT"); // Italy
Locale locPT = new Locale("pt"); // Portugal
Locale locBR = new Locale("pt", "BR"); // Brazil
Locale locIN = new Locale("hi", "IN"); // India
Locale locdA = new Locale("ja"); // Japan

DateFormat dfUS = DateFormat.getInstance() ;
System.out.println ("US " + dfUS.format (d2)) ;

DateFormat dfUSfull = DateFormat.getDatelInstance (
DateFormat .FULL) ;
System.out.println("US full " + dfUSfull.format (d2)) ;

DateFormat dfIT = DateFormat.getDatelInstance (
DateFormat.FULL, locIT);
System.out.println("Italy " + dfIT.format (d2)) ;

DateFormat dfPT = DateFormat.getDatelInstance (
DateFormat .FULL, locPT) ;
System.out.println("Portugal " + dfPT.format (d2)) ;

DateFormat dfBR = DateFormat.getDatelInstance (
DateFormat .FULL, locBR) ;
System.out.println("Brazil " + dfBR.format (d2)) ;

DateFormat dfIN = DateFormat.getDatelInstance (
DateFormat .FULL, locIN) ;
System.out.println("India " + dfIN.format (d2)) ;

DateFormat dfJA = DateFormat.getDatelInstance (
DateFormat.FULL, locJAd);
System.out.println ("Japan " + dfJA.format (d2)) ;

This, on our JVM, produces

Us 12/14/10 3:32 PM
US full Sunday, December 14, 2010
Italy domenica 14 dicembre 2010

484 Chapter 6: Strings, I/O, Formatting, and Parsing

Portugal Domingo, 14 de Dezembro de 2010
Brazil Domingo, 14 de Dezembro de 2010

India ?P??7?7, ?? ??9°°7, ??°°

Japan 20107127147

Oops! Our machine isn't configured to support locales for India or Japan, but you
can see how a single Date object can be formatted to work for many locales.

Datch
Remember that both DateFormat and NumberFormat objects can have

their locales set only at the time of instantiation. Watch for code that attempts to
change the locale of an existing instance—no such methods exist!

There are a couple more methods in Locale (getDisplayCountry () and
getDisplayLanguage ()) that you'll have to know for the exam. These methods let
you create Strings that represent a given locale's country and language in terms of
both the default locale and any other locale:

Calendar c¢ = Calendar.getInstance() ;
c.set (2010, 11, 14);
Date d2 = c.getTime() ;

Locale locBR = new Locale("pt", "BR"); // Brazil
Locale locDK = new Locale("da", "DK"); // Denmark
Locale locIT = new Locale("it", "IT"); // Italy

+

System.out.println("def " locBR.getDisplayCountry()) ;
System.out.println("loc " + locBR.getDisplayCountry (locBR)) ;

System.out.println("def " + locDK.getDisplayLanguage()) ;

System.out.println("loc " + locDK.getDisplayLanguage (locDK)) ;
System.out.println("D>I " + locDK.getDisplayLanguage (locIT)) ;

This, on our JVM, produces

Working with Dates, Numbers, and Currencies (Exam Objective 3.4) 4858

def Brazil
loc Brasil
def Danish
loc dansk

D>I danese

Given that our JVM's locale (the default for us) is us, the default for the
country Brazil is "Brazil", and the default for the Danish language is "Danish".
In Brazil, the country is called "Brasil", and in Denmark the language is called
"dansk". Finally, just for fun, we discovered that in Italy, the Danish language is
called "danese".

The NumberFormat Class

We'll wrap up this objective by discussing the NumberFormat class. Like the
DateFormat class, NumberFormat is abstract, so you'll typically use some version
OfeﬁhergetInstance()OrgetCurrencyInstance()tocraneaIQunﬁxxFOHnat
object. Not surprisingly, you use this class to format numbers or currency values:

float £f1 = 123.4567f;
Locale locFR = new Locale("fr"); // France
NumberFormat [] nfa = new NumberFormat [4];

nfa[0] = NumberFormat.getInstance() ;

nfa[l] = NumberFormat.getInstance (locFR) ;

nfa[2] = NumberFormat.getCurrencyInstance() ;
nfa[3] = NumberFormat.getCurrencyInstance (locFR) ;

for (NumberFormat nf : nfa)
System.out.println (nf.format (£1)) ;

This, on our JVM, produces

123.457
123,457
$123.46
123,46 ?

Don't be worried if, like us, you're not set up to display the symbols for
francs, pounds, rupees, yen, baht, or drachmas. You won't be expected to

486 Chapter 6: Strings, I/O, Formatting, and Parsing

know the symbols used for currency: if you need one, it will be specified in
the question. You might encounter methods other than the format method
on the exam. Here's a little code that uses getMaximumFractionDigits (),
setMaximumFractionDigits (), parse (), and setParseIntegerOnly ():

float f1 = 123.45678f;

NumberFormat nf NumberFormat .getInstance() ;

System.out.print (nf.getMaximumFractionDigits() + " ");
System.out.print (nf.format (£1) + " ");

nf.setMaximumFractionDigits (5) ;
System.out.println (nf.format (£1) + " ");

try {
System.out.println (nf.parse("1234.567"));

nf.setParselntegerOnly (true) ;

System.out.println (nf.parse("1234.567")) ;
} catch (ParseException pe) {

System.out.println ("parse exc") ;

This, on our JVM, produces

3 123.457 123.45678
1234.567
1234

Notice that in this case, the initial number of fractional digits for the default
NumberFormat is three: and that the format () method rounds £1's value, it
doesn't truncate it. After changing nf's fractional digits, the entire value of £1 is
displayed. Next, notice that the parse () method must run in a try/catch block
and that the setParseIntegeronly () method takes a boolean and in this
case, causes subsequent calls to parse () to return only the integer part of Strings
formatted as floating-point numbers.

As we've seen, several of the classes covered in this objective are abstract. In
addition, for all of these classes, key functionality for every instance is established
at the time of creation. Table 6-3 summarizes the constructors or methods used to
create instances of all the classes we've discussed in this section.

Parsing, Tokenizing, and Formatting (Exam Objective 3.5) 487

TABLE 6-3 Instance Creation for Key java.text and java.util Classes

Key Instance Creation Options

util.Date new Date () ;
new Date(long millisecondsSince010170) ;

util.Calendar Calendar.getInstance () ;
Calendar.getInstance (Locale) ;

util.Locale Locale.getDefault () ;
new Locale (String language) ;
new Locale (String language, String country) ;

text.DateFormat DateFormat.getInstance () ;
DateFormat .getDateInstance () ;
DateFormat .getDateInstance (style) ;
DateFormat .getDateInstance (style, Locale) ;

text .NumberFormat NumberFormat .getInstance ()
NumberFormat .getInstance (Locale)
NumberFormat .getNumberInstance ()
NumberFormat .getNumberInstance (Locale)
NumberFormat .getCurrencyInstance ()
NumberFormat .getCurrencylInstance (Locale)

CERTIFICATION OBJECTIVE

Parsing, Tokenizing, and Formatting
(Exam Objective 3.5)

3.5 White code that uses standard J2SE APIs in the java.util and java.util regex packages to
format or parse strings or streams. For strings, write code that uses the Pattern and Matcher
classes and the String.split method. Recognize and use regular expression patterns for matching
(limited to: .(dot), *(star), +(plus), 2, \d, \s, \w, [], ()). The use of *, + , and ? will

be limited to greedy quantifiers, and the parenthesis operator will only be used as a grouping
mechanism, not for capturing content during matching. For streams, write code using the
Formatter and Scanner classes and the PrintWriter.format/printf methods. Recognize and use
formatting parameters (limited to: %b, %c, %d, %f, %s) in format strings.

488 Chapter 6: Strings, I/O, Formatting, and Parsing

We're going to start with yet another disclaimer: This small section isn't going to morph
you from regex newbie to regex guru. In this section we'll cover three basic ideas:

B Finding stuff You've got big heaps of text to look through. Maybe you're
doing some screen scraping, maybe you're reading from a file. In any case,
you need easy ways to find textual needles in textual haystacks. We'll use the
java.util.regex.Pattern, java.util.regex.Matcher, and java.util.Scanner classes
to help us find stuff.

B Tokenizing stuff You've got a delimited file that you want to get useful
data out of. You want to transform a piece of a text file that looks like:
"1500.00,343.77,123.4" into some individual float variables. We'll show you
the basics of using the String.split () method and the java.util.Scanner
class, to tokenize your data.

B Formatting stuff You've got a report to create and you need to take a float
variable with a value of 32500.000f and transform it into a String with a
value of "$32,500.00". We'll introduce you to the java.util. Formatter class
and to the printf () and format () methods.

A Search Tutorial

Whether you're looking for stuff or tokenizing stuff, a lot of the concepts are the
same, so let's start with some basics. No matter what language you're using, sooner
or later you'll probably be faced with the need to search through large amounts of
textual data, looking for some specific stuff.

Regular expressions (regex for short) are a kind of language within a language,
designed to help programmers with these searching tasks. Every language that
provides regex capabilities uses one or more regex engines. Regex engines search
through textual data using instructions that are coded into expressions. A regex
expression is like a very short program or script. When you invoke a regex engine,
you'll pass it the chunk of textual data you want it to process (in Java this is usually
a String or a stream), and you pass it the expression you want it to use to search
through the data.

It's fair to think of regex as a language, and we will refer to it that way throughout
this section. The regex language is used to create expressions, and as we work
through this section, whenever we talk about expressions or expression syntax, we're
talking about syntax for the regex "language." Oh, one more disclaimer...we know
that you regex mavens out there can come up with better expressions than what

A Search Tutorial (Exam Objective 3.5) 489

we're about to present. Keep in mind that for the most part we're creating these
expressions using only a portion of the total regex instruction set, thanks.

Simple Searches
For our first example, we'd like to search through the following source String

abaaaba
for all occurrences (or matches) of the expression
ab

In all of these discussions we'll assume that our data sources use zero-based
indexes, so if we apply an index to our source string we get

source: abaaaba
index: 0123456

We can see that we have two occurrences of the expression ab: one starting at
position 0 and the second starting at position 4. If we sent the previous source data
and expression to a regex engine, it would reply by telling us that it found matches
at positions 0 and 4:

import java.util.regex.*;
class RegexSmall
public static void main(String [] args) {

Pattern p = Pattern.compile ("ab") ; // the expression
Matcher m = p.matcher ("abaaaba") ; // the source
while (m.£find ()) {
System.out.print (m.start () + " ");
}
}
}
This produces

490 Chapter 6: Strings, I/O, Formatting, and Parsing

We're not going to explain this code right now. In a few pages we're going to
show you a lot more regex code, but first we want to go over some more regex
syntax. Once you understand a little more regex, the code samples will make a lot
more sense. Here's a more complicated example of a source and an expression:

source: abababa
index: 0123456

expression: aba

How many occurrences do we get in this case? Well, there is clearly an occurrence
starting at position 0, and another starting at position 4. But how about starting at
position 2?7 In general in the world of regex, the aba string that starts at position 2
will not be considered a valid occurrence. The first general regex search rule is

In general, a regex search runs from left to right, and once a source's character has
been used in a match, it cannot be reused.

So in our previous example, the first match used positions 0, 1, and 2 to match
the expression. (Another common term for this is that the first three characters
of the source were consumed.) Because the character in position 2 was consumed
in the first match, it couldn't be used again. So the engine moved on, and didn't
find another occurrence of aba until it reached position 4. This is the typical way
that a regex matching engine works. However, in a few pages, we'll look at an
exception to the first rule we stated above.

So we've matched a couple of exact strings, but what would we do if we wanted
to find something a little more dynamic? For instance, what if we wanted to find
all of the occurrences of hex numbers or phone numbers or ZIP codes?

Searches Using Metacharacters

As luck would have it, regex has a powerful mechanism for dealing with the cases
we described above. At the heart of this mechanism is the idea of a metacharacter.
As an easy example, let's say that we want to search through some source data
looking for all occurrences of numeric digits. In regex, the following expression is
used to look for numeric digits:

\d

A Search Tutorial (Exam Objective 3.5) 49 |

If we change the previous program to apply the expression \d to the following
source string

source: al2c3e4d56f
index: 0123456789

regex will tell us that it found digits at positions 1, 2, 4, 6, 7, and 8. (If you want to
try this at home, you'll need to "escape" the compile method's "\d" argument by
making it "\\d", more on this a little later.)

Regex provides a rich set of metacharacters that you can find described in the
API documentation for java.util.regex.Pattern. We won't discuss them all here, but
we will describe the ones you'll need for the exam:

\d A digit
\s A whitespace character

\w A word character (letters, digits, or "_"

(underscore))

So for example, given

source: "a 1 56 _2zZ"
index: 012345678
pattern: \w

regex will return positions 0, 2, 4, 5, 7, and 8. The only characters in this source that
don't match the definition of a word character are the whitespaces. (Note: In this
example we enclosed the source data in quotes to clearly indicate that there was no
whitespace at either end.)

You can also specify sets of characters to search for using square brackets and
ranges of characters to search for using square brackets and a dash:

[abc] Searches only for a's, b's or c's
[a-f] Searches only for a, b, ¢, d, e, or f characters

In addition, you can search across several ranges at once. The following
expression is looking for occurrences of the lettersa - fora - F,it's NOT looking

for an £A combination:

[a-fAa-F] Searches for the first six letters of the alphabet, both cases.

492 Chapter 6: Strings, I/O, Formatting, and Parsing

on the

Qob

So for instance,

source: "cafeBABE"
index: 01234567
pattern: [a-cA-C]

returns positions 0, 1, 4, 5, 6.

In addition to the capabilities described for the exam, you can also apply
the following attributes to sets and ranges within square brackets: """ to
negate the characters specified, nested brackets to create a union of sets,
and "s&" to specify the intersection of sets. While these constructs are not
on the exam, they are quite useful, and good examples can be found in the
API for the java.util.regex.Pattern class.

Searches Using Quantifiers

Let's say that we want to create a regex pattern to search for hexadecimal literals. As
a first step, let's solve the problem for one-digit hexadecimal numbers:

0 [xX] [0-9a-fA-F]

The preceding expression could be stated: "Find a set of characters in which the
first character is a "0", the second character is either an "x" or an "x", and the third
character is either a digit from "0" to "9", a letter from "a" to "£" or an uppercase

letter from "A" to "F" ". Using the preceding expression, and the following data,

source: "12 0x 0x12 O0Xf 0xg"
index: 012345678901234567

regex would return 6 and 11. (Note: 0x and 0xg are not valid hex numbers.)

As a second step, let's think about an easier problem. What if we just wanted
regex to find occurrences of integers? Integers can be one or more digits long, so it
would be great if we could say "one or more" in an expression. There is a set of regex
constructs called quantifiers that let us specify concepts such as "one or more." In
fact, the quantifier that represents "one or more" is the "+" character. We'll see the
others shortly.

A Search Tutorial (Exam Objective 3.5) 493

The other issue this raises is that when we're searching for something whose
length is variable, getting only a starting position as a return value has limited value.
So, in addition to returning starting positions, another bit of information that a
regex engine can return is the entire match or group that it finds. We're going to
change the way we talk about what regex returns by specifying each return on its
own line, remembering that now for each return we're going to get back the starting
position AND then the group:

source: "1 al2 234b"
pattern: \d+

You can read this expression as saying: "Find one or more digits in a row." This
expression produces the regex output

01
3 12
6 234

You can read this as "At position O there's an integer with a value of 1, then at
position 3 there's an integer with a value of 12, then at position 6 there's an integer
with a value of 234." Returning now to our hexadecimal problem, the last thing we
need to know is how to specify the use of a quantifier for only part of an expression.
In this case we must have exactly one occurrence of 0x or 0x but we can have from
one to many occurrences of the hex "digits" that follow. The following expression
adds parentheses to limit the "+" quantifier to only the hex digits:

0[xX] ([0-9a-fA-F])+

The parentheses and "+" augment the previous find-the-hex expression by
saying in effect: "Once we've found our Ox or 0X, you can find from one to many
occurrences of hex digits." Notice that we put the "+" quantifier at the end of the
expression. It's useful to think of quantifiers as always quantifying the part of the
expression that precedes them.

The other two quantifiers we're going to look at are

* Zero or more occurrences
? Zero or one occurrence

494 Chapter 6: Strings, I/O, Formatting, and Parsing

Let's say you have a text file containing a comma-delimited list of all the file
names in a directory that contains several very important projects. (BTW, this isn't
how we'd arrange our directories :) You want to create a list of all the files whose
names start with proj1. You might discover .txt files, .java files, .pdf files, who
knows? What kind of regex expression could we create to find these various proj1
files? First let's take a look at what a part of this text might look like:

..."proj3.txt,projlsched.pdf,projl,proj2,projl.java"...

To solve this problem we're going to use the regex * (carat) operator, which we
mentioned earlier. The regex * operator isn't on the exam, but it will help us create
a fairly clean solution to our problem. The * is the negation symbol in regex. For
instance, if you want to find anything but a's, b's, or c's in a file you could say

[“abc]

So, armed with the * operator and the * (zero or more) quantifier we can create
the following:

proj1([*,1)*

If we apply this expression to just the portion of the text file we listed above,
regex returns

10 projlsched.pdf
25 projl
37 projl.java

The key part of this expression is the "give me zero or more characters that aren't
a comma."

The last quantifier example we'll look at is the ? (zero or one) quantifier. Let's say
that our job this time is to search a text file and find anything that might be a local,
7-digit phone number. We're going to say, arbitrarily, that if we find either seven
digits in a row, or three digits followed by a dash or a space followed by 4 digits, that
we have a candidate. Here are examples of "valid" phone numbers:

1234567
123 4567
123-4567

A Search Tutorial (Exam Objective 3.5) 49§

The key to creating this expression is to see that we need "zero or one instance of
either a space or a dash" in the middle of our digits:

\d\d\d ([-\s])?\d\d\d\d

The Predefined Dot

In addition to the \s, \d, and \w metacharacters that we discussed, you also have
to understand the "." (dot) metacharacter. When you see this character in a regex
expression, it means "any character can serve here." For instance, the following
source and pattern

source: "ac abc a c"
pattern: a.c

will produce the output

3 abc
7 a c

The "." was able to match both the "v" and the " " in the source data.

Greedy Quantifiers

When you use the *, +, and ? quantifiers, you can fine tune them a bit to produce
behavior that's known as "greedy", "reluctant”, or "possessive". Although you need
to understand only the greedy quantifier for the exam, we're also going to discuss the

reluctant quantifier to serve as a basis for comparison. First the syntax:
? is greedy, 2?2 is reluctant, for zero or once
* is greedy, *? is reluctant, for zero or more
+ is greedy, +? is reluctant, for one or more

What happens when we have the following source and pattern?

source: YYXXXYXX
pattern: L FXX

First off, we're doing something a bit different here by looking for characters that
prefix the static (xx) portion of the expression. We think we're saying something

496 Chapter 6: Strings, I/O, Formatting, and Parsing

like: "Find sets of characters that ends with xx". Before we tell what happens, we at
least want you to consider that there are two plausible results...can you find them?
Remember we said earlier that in general, regex engines worked from left to right,
and consumed characters as they went. So, working from left to right, we might
predict that the engine would search the first 4 characters (0-3), find xx starting in
position 2, and have its first match. Then it would proceed and find the second xx
starting in position 6. This would lead us to a result like this:

0 yyxx
4 XYXX

A plausible second argument is that since we asked for a set of characters that
ends with xx we might get a result like this:

0 YYXXXYXX

The way to think about this is to consider the name greedy. In order for the
second answer to be correct, the regex engine would have to look (greedily) at the
entire source data before it could determine that there was an xx at the end. So in
fact, the second result is the correct result because in the original example we used
the greedy quantifier *. The result that finds two different sets can be generated by
using the reluctant quantifier *?. Let's review:

source: YYXXXYXX
pattern: L FXX

is using the greedy quantifier * and produces
0 YYXXXYXX

If we change the pattern to

source: YYyXXXYXX
pattern: L FP?XX

we're now using the reluctant qualifier *?, and we get the following:

0 yyxx
4 XYXX

on th?

Qob

A Search Tutorial (Exam Objective 3.5) 497

The greedy quantifier does in fact read the entire source data, and then it works
backward (from the right) until it finds the rightmost match. At that point, it
includes everything from earlier in the source data up to and including the data that
is part of the rightmost match.

There are a lot more aspects to regex quantifiers than we've discussed
here, but we've covered more than enough for the exam. Sun has several
tutorials that will help you learn more about quantifiers, and turn you into
the go-to person at your job.

When Metacharacters and Strings Collide

So far we've been talking about regex from a theoretical perspective. Before we can
put regex to work we have to discuss one more gotcha. When it's time to implement
regex in our code, it will be quite common that our source data and/or our
expressions will be stored in Strings. The problem is that metacharacters and Strings
don't mix too well. For instance. let's say we just want to do a simple regex pattern
that looks for digits. We might try something like

String pattern = "\d"; // compiler error!

This line of code won't compile! The compiler sees the \ and thinks, "Ok, here
comes an escape sequence, maybe it'll be a new line!" But no, next comes the d and
the compiler says "I've never heard of the \d escape sequence.” The way to satisfy
the compiler is to add another backslash in front of the \d

String pattern = "\\d"; // a compilable metacharacter

The first backslash tells the compiler that whatever comes next should be taken
literally, not as an escape sequence. How about the dot (.) metacharacter? If we want
a dot in our expression to be used as a metacharacter, then no problem, but what if
we're reading some source data that happens to use dots as delimiters? Here's another
way to look at our options:

non, // regex sees this as the "." metacharacter
"\."; // the compiler sees this as an illegal
// Java escape sequence

String p
String p

498 Chapter 6: Strings, I/O, Formatting, and Parsing

on the

Qob

String p = "\\."; // the compiler is happy, and regex sees a
// dot, not a metacharacter

A similar problem can occur when you hand metacharacters to a Java program
via command-line arguments. If we want to pass the \d metacharacter into our Java
program, our JVM does the right thing if we say

)

% java DoRegex "\d"

But your JVM might not. If you have problems running the following examples, you
might try adding a backslash (i.e., \\d) to your command-line metacharacters. Don't
worry, you won't see any command-line metacharacters on the exam!

The Java language defines several escape sequences, including

\n = linefeed (which you might see on the exam)
\b = backspace
\t = tab

And others, which you can find in the Java Language Specification. Other
than perhaps seeing a \n inside a String, you won't have to worry about
Java's escape sequences on the exam.

At this point we've learned enough of the regex language to start using it in our
Java programs. We'll start by looking at using regex expressions to find stuff, and
then we'll move to the closely related topic of tokenizing stuff.

Locating Data via Pattern Matching

Once you know a little regex, using the java.util.regex.Pattern (Pattern) and
java.util.regex.Matcher (Matcher) classes is pretty straightforward. The Pattern
class is used to hold a representation of a regex expression, so that it can be used
and reused by instances of the Matcher class. The Matcher class is used to invoke
the regex engine with the intention of performing match operations. The following
program shows Pattern and Matcher in action, and it's not a bad way for you to do
your own regex experiments. Note, you might want to modify the following class by
adding some functionality from the Console class. That way you'll get some practice
with the Console class, and it'll be easier to run multiple regex experiments.

Locating Data via Pattern Matching (Exam Objective 3.5) 499

import java.util.regex.*;
class Regex {
public static void main(String [] args)
Pattern p = Pattern.compile(args[0]) ;
Matcher m = p.matcher (args[l]);
System.out.println("Pattern is " + m.pattern());
while (m.find()) {
System.out.println(m.start() + " " + m.group()) ;

}
}
}

This program uses the first command-line argument (args[0]) to represent the
regex expression you want to use, and it uses the second argument (args[1]) to
represent the source data you want to search. Here's a test run:

% java Regex "\d\w" "ab4 56 7ab"

Produces the output

Pattern is \d\w
4 56
7 7a

(Remember, if you want this expression to be represented in a String, you'd use
\\d\\w). Because you'll often have special characters or whitespace as part of

your arguments, you'll probably want to get in the habit of always enclosing your
argument in quotes. Let's take a look at this code in more detail. First off, notice
that we aren't using new to create a Pattern; if you check the API, you'll find no
constructors are listed. You'll use the overloaded, static compile () method (that
takes String expression) to create an instance of Pattern. For the exam, all you'll
need to know to create a Matcher, is to use the Pattern.matcher () method (that
takes String sourceData).

The important method in this program is the £ind () method. This is the method
that actually cranks up the regex engine and does some searching. The find ()
method returns true if it gets a match, and remembers the start position of the
match. If £ind () returns true, you can call the start () method to get the starting
position of the match, and you can call the group () method to get the string that
represents the actual bit of source data that was matched.

BOO0O Chapter 6: Strings, /O, Formatting, and Parsing

$atch

To provide the most flexibility, Matcher .find (), when coupled with the

greedy quantifiers ? or *, allow for (somewhat unintuitively) the idea of a zero-length
match. As an experiment, modify the previous Regex.java class and add an invocation of
m.end () to the S.O.P.in the while loop. With that modification in place, the invocation

java Regex "a?" "aba"

should produce something very similar to this:

Pattern is a?
01 a

11
2 3 a
33

The lines of output 1 1 and 3 3 are examples of zero-length matches.

Zero-length matches can occur in several places:

After the last character of source data (the 3 3 example)

In between characters after a match has been found (the 1 1 example)
At the beginning of source data (try java Regex "a?" "baba")

At the beginning of zero-length source data

on the

Qob

A common reason to use regex is to perform search and replace
operations. Although replace operations are not on the exam you should
know that the Matcher class provides several methods that perform search
and replace operations. See the appendReplacement (), appendTail (), and
replaceall () methods in the Matcher API for more details.

The Matcher class allows you to look at subsets of your source data by using a
concept called regions. In real life, regions can greatly improve performance, but you
won't need to know anything about them for the exam.

Tokenizing (Exam Objective 3.5) 50 ||

Searching Using the Scanner Class Although the java.util.Scanner
class is primarily intended for tokenizing data (which we'll cover next), it can also
be used to find stuff, just like the Pattern and Matcher classes. While Scanner
doesn't provide location information or search and replace functionality, you can
use it to apply regex expressions to source data to tell you how many instances of an
expression exist in a given piece of source data. The following program uses the first
command-line argument as a regex expression, then asks for input using System. in.
It outputs a message every time a match is found:

import java.util.*;
class ScanIn {
public static void main(String[] args) {
System.out.print ("input: ");
System.out.flush() ;
try {
Scanner s = new Scanner (System.in) ;
String token;
do {
token = s.findInLine (args[0]) ;
System.out.println("found " + token);
} while (token != null);
} catch (Exception e) { System.out.println("scan exc"); }
}
}

The invocation and input

java ScanIn "\d\d"
input: 1b2c335f456

produce the following:

found 33
found 45

found null

Tokenizing

Tokenizing is the process of taking big pieces of source data, breaking them into
little pieces, and storing the little pieces in variables. Probably the most common
tokenizing situation is reading a delimited file in order to get the contents of the file

B02 Chapter 6: Strings, /O, Formatting, and Parsing

moved into useful places like objects, arrays or collections. We'll look at two classes
in the API that provide tokenizing capabilities: String (using the split () method)
and Scanner, which has many methods that are useful for tokenizing.

Tokens and Delimiters

When we talk about tokenizing, we're talking about data that starts out composed of
two things: tokens and delimiters. Tokens are the actual pieces of data, and delimit-
ers are the expressions that separate the tokens from each other. When most people
think of delimiters, they think of single characters, like commas or backslashes or
maybe a single whitespace. These are indeed very common delimiters, but strictly
speaking, delimiters can be much more dynamic. In fact, as we hinted at a few sen-
tences ago, delimiters can be anything that qualifies as a regex expression. Let's take
a single piece of source data and tokenize it using a couple of different delimiters:

source: "ab,cd5b,6x,z4"

If we say that our delimiter is a comma, then our four tokens would be

ab
cd5b
6xX
z4

If we use the same source, but declare our delimiter to be \d, we get three tokens:

ab,cd

b,

X,z
In general, when we tokenize source data, the delimiters themselves are discarded,
and all that we are left with are the tokens. So in the second example, we defined

digits to be delimiters, so the 5, 6, and 4 do not appear in the final tokens.

Tokenizing with String.split()

The String class's sp1it () method takes a regex expression as its argument,

and returns a String array populated with the tokens produced by the split (or
tokenizing) process. This is a handy way to tokenize relatively small pieces of data.
The following program uses args [0] to hold a source string, and args [1] to hold
the regex pattern to use as a delimiter:

Tokenizing (Exam Objective 3.5) £03

import java.util.*;
class SplitTest {
public static void main(String[] args) {
String[] tokens = args[0].split(args(1]);
System.out.println("count " + tokens.length) ;
for(String s : tokens)
System.out.println(">" + s + "<");

Everything happens all at once when the split () method is invoked. The source
string is split into pieces, and the pieces are all loaded into the tokens String array.
All the code after that is just there to verify what the split operation generated. The
following invocation

)

% java SplitTest "ab5 ccc 45 @" "\d"

produces

count 4
>ab<

> Cccc <
><

> @<

(Note: Remember that to represent "\" in a string you may need to use the escape
sequence "\ \". Because of this, and depending on your OS, your second argument

might have to be "\ \d" or even "\ \\\d".)

We put the tokens inside "> <" characters to show whitespace. Notice that every
digit was used as a delimiter, and that contiguous digits created an empty token.

One drawback to using the string.split () method is that often you'll want
to look at tokens as they are produced, and possibly quit a tokenization operation
early when you've created the tokens you need. For instance, you might be searching
a large file for a phone number. If the phone number occurs early in the file, you'd
like to quit the tokenization process as soon as you've got your number. The Scanner
class provides a rich API for doing just such on-the-fly tokenization operations.

B04 Chapter 6: Strings, 1/O, Formatting, and Parsing

Datch
Because system.out.println() is so heavily used on the exam, you

might see examples of escape sequences tucked in with questions on most any topic,
including regex. Remember that if you need to create a String that contains a double
quote " or a backslash \ you need to add an escape character first:

System.out.println ("\" \\");
This prints
n \

So, what if you need to search for periods (.) in your source data? If you
just put a period in the regex expression, you get the "any character" behavior. So, what
if you try \ . 2 Now the Java compiler thinks you're trying to create an escape sequence
that doesn’t exist. The correct syntax is

String s = "ab.cde.fg";
String[] tokens = s.split("\\.");

Tokenizing with Scanner

The java.util.Scanner class is the Cadillac of tokenizing. When you need to do some
serious tokenizing, look no further than Scanner—this beauty has it all. In addition

to the basic tokenizing capabilities provided by string.split (), the Scanner class
offers the following features:

B Scanners can be constructed using files, streams, or Strings as a source.

B Tokenizing is performed within a loop so that you can exit the process at any
point.

B Tokens can be converted to their appropriate primitive types automatically.

Let's look at a program that demonstrates several of Scanner's methods and
capabilities. Scanner's default delimiter is whitespace, which this program uses.

Tokenizing (Exam Objective 3.5) 505§

The program makes two Scanner objects: s1 is iterated over with the more generic
next () method, which returns every token as a String, while s2 is analyzed with
several of the specialized nextxxx () methods (where xxx is a primitive type):

import java.util.Scanner;
class ScanNext {
public static void main(String [] args) {
boolean b2, b;
int 1i;
String s, hits = " ";
Scanner sl = new Scanner (args[0]) ;
Scanner s2 = new Scanner (args[0]) ;
while (b = sl.hasNext()) {
s = sl.next(); hits += "s";
}
while (b = s2.hasNext ()) {
if (s2.hasNextInt()) ({
i = s2.nextInt(); hits += "i";
} else if (s2.hasNextBoolean()) {
b2 = s2.nextBoolean(); hits += "b";
} else {
s2.next(); hits += "s2";
}
}

System.out.println("hits " + hits);

If this program is invoked with
% java ScanNext "1 true 34 hin"
it produces

hits ssssibis2

Of course we're not doing anything with the tokens once we've got them, but you

can see that s2's tokens are converted to their respective primitives. A key point
here is that the methods named hasNextxxx () test the value of the next token

BO6 Chapter 6: Strings, /O, Formatting, and Parsing

but do not actually get the token, nor do they move to the next token in the source
data. The nextxxx () methods all perform two functions: they get the next token,
and then they move to the next token.

The Scanner class has nextxxx () (for instance nextLong ()) and hasNextXxx ()
(for instance hasNextDouble ()) methods for every primitive type except char. In
addition, the Scanner class has a usebelimiter () method that allows you to set
the delimiter to be any valid regex expression.

Formatting with printf() and format()

What fun would accounts receivable reports be if the decimal points didn't line up?
Where would you be if you couldn't put negative numbers inside of parentheses?
Burning questions like these caused the exam creation team to include formatting
as a part of the exam. The format () and printf () methods were added to
java.io.PrintStream in Java 5. These two methods behave exactly the same way, so
anything we say about one of these methods applies to both of them. (The rumor is
that Sun added printf () just to make old C programmers happy.)

Behind the scenes, the format () method uses the java.util.Formatter class
to do the heavy formatting work. You can use the Formatter class directly if you
choose, but for the exam all you have to know is the basic syntax of the arguments
you pass to the format () method. The documentation for these formatting
arguments can be found in the Formatter API. We're going to take the "nickel tour"
of the formatting String syntax, which will be more than enough to allow you to do
a lot of basic formatting work, AND ace all the formatting questions on the exam.

Let's start by paraphrasing the API documentation for format strings (for more
complete, way-past-what-you-need-for-the-exam coverage, check out the
java.util. Formatter API):

printf ("format string", argument (s)) ;

The format string can contain both normal string literal information that isn't
associated with any arguments, and argument-specific formatting data. The clue to
determining whether you're looking at formatting data, is that formatting data will
always start with a percent sign (%). Let's look at an example, and don't panic, we'll
cover everything that comes after the % next:

System.out.printf ("2d + %1$d", 123, 456);

Formatting with printf() and format() (Exam Objective 3.5) §Q7

This produces

456 + 123

Let's look at what just happened. Inside the double quotes there is a format string,
then a +, and then a second format string. Notice that we mixed literals in with

the format strings. Now let's dive in a little deeper and look at the construction of
format strings:

% [arg index$] [flags] [width] [.precision] conversion char

The values within [] are optional. In other words, the only required elements of
a format string are the % and a conversion character. In the example above the only
optional values we used were for argument indexing. The 2¢ represents the second
argument, and the 1¢ represents the first argument. (Notice that there's no problem
switching the order of arguments.) The d after the arguments is a conversion
character (more or less the type of the argument). Here's a rundown of the format
string elements you'll need to know for the exam:

arg_index An integer followed directly by a ¢, this indicates which argument
should be printed in this position.

flags While many flags are available, for the exam you'll need to know:

W "-" Leftjustify this argument

B "+" Include asign (+ or -) with this argument

B "0" Pad this argument with zeroes

B " Use locale-specific grouping separators (i.e., the comma in 123,456)
B "(" Enclose negative numbers in parentheses

width This value indicates the minimum number of characters to print. (If you
want nice even columns, you'll use this value extensively.)

precision For the exam you'll only need this when formatting a floating-point
number, and in the case of floating point numbers, precision indicates the number of
digits to print after the decimal point.

BO08 Chapter 6: Strings, 1/O, Formatting, and Parsing

conversion The type of argument you'll be formatting. You'll need to know:

B b

s

boolean

char

integer
floating point

string

Let's see some of these formatting strings in action:

int i1
int i2

System.
System.
System.
System.

= -123;

= 12345;

out.printf (">%1$(7d< \n", il);
out.printf (">%0,7d< \n", 12);
out.format (">%+-7d< \n", 1i2);
out.printf (">%2%b + %$1$5d< \n", i1,

This produces:

> (123)<
>012,345<
>+12345 <

>false

+ -123<

false) ;

(We added the > and < literals to help show how minimum widths, and zero
padding and alignments work.) Finally, it's important to remember that if you
have a mismatch between the type specified in your conversion character and your
argument, you'll get a runtime exception:

System

.out.format ("%d", 12.3);

This produces something like

Exception in thread "main" java.util.IllegalFormatConversionEx-

ception: d != java.lang.Double

Certification Summary 509

CERTIFICATION SUMMARY

Strings The most important thing to remember about Strings is that String
objects are immutable, but references to Strings are not! You can make a new String
by using an existing String as a starting point, but if you don't assign a reference
variable to the new String it will be lost to your program—you will have no way to
access your new String. Review the important methods in the String class.

The StringBuilder class was added in Java 5. It has exactly the same methods as
the old StringBuffer class, except StringBuilder's methods aren't thread-safe. Because
StringBuilder's methods are not thread safe, they tend to run faster than StringBuffer
methods, so choose StringBuilder whenever threading is not an issue. Both
StringBuffer and StringBuilder objects can have their value changed over and over
without having to create new objects. If you're doing a lot of string manipulation,
these objects will be more efficient than immutable String objects, which are, more
or less, "use once, remain in memory forever." Remember, these methods ALWAYS
change the invoking object's value, even with no explicit assignment.

File /O Remember that objects of type File can represent either files or directo-
ries, but that until you call createNewFile () or mkdir () you haven't actually cre-
ated anything on your hard drive. Classes in the java.io package are designed to be
chained together. It will be rare that you'll use a FileReader or a FileWriter without
"wrapping" them with a BufferedReader or BufferedWriter object, which gives you
access to more powerful, higher-level methods. As of Java 5, the PrintWriter class
has been enhanced with advanced append (), format (), and printf () methods,
and when you couple that with new constructors that allow you to create PrintWrit-
ers directly from a String name or a File object, you may use BufferWriters a lot less.
The Console class allows you to read non-echoed input (returned in a char[]), and is
instantiated using System.console().

Serialization Serialization lets you save, ship, and restore everything you need
to know about a live object. And when your object points to other objects, they get
saved too. The java.io.ObjectOutputStream and java.io.ObjectInputStream classes
are used to serialize and deserialize objects. Typically you wrap them around instanc-
es of FileOutputStream and FilelnputStream, respectively.

The key method you invoke to serialize an object is writeoObject (), and to
deserialize an object invoke readobject (). In order to serialize an object, it must
implement the Serializable interface. Mark instance variables transient if you
don't want their state to be part of the serialization process. You can augment

B 10 Chapter 6: Strings, /O, Formatting, and Parsing

the serialization process for your class by implementing writeobject () and
readObject (). If you do that, an embedded call to defaultReadobject () and
defaultWriteoObject () will handle the normal serialization tasks, and you can
augment those invocations with manual reading from and writing to the stream.

If a superclass implements Serializable then all of its subclasses do too. If a
superclass doesn't implement Serializable, then when a subclass object is deserialized
the unserializable superclass's constructor runs—be careful! Finally, remember that
serialization is about instances, so static variables aren't serialized.

Dates, Numbers, and Currency Remember that the Sun objective is a bit
misleading, and that you'll have to understand the basics of five related classes:
java.util.Date, java.util.Calendar, java.util.Locale, java.text.DateFormat, and java.
text.NumberFormat. A Date is the number of milliseconds since Jan 1, 1970, stored
in a 1long. Most of Date's methods have been deprecated, so use the Calendar class
for your date-manipulation tasks. Remember that in order to create instances of
Calendar, DateFormat, and NumberFormat, you have to use static factory methods
like getInstance (). The Locale class is used with DateFormat and NumberFormat
to generate a variety of output styles that are language and/or country specific.

Parsing, Tokenizing, and Formatting To find specific pieces of data in
large data sources, Java provides several mechanisms that use the concepts of regular
expressions (Regex). regex expressions can be used with the java.util.regex package's
Pattern and Matcher classes, as well as with java.util.Scanner and with the
String.split () method. When creating regex patterns, you can use literal
characters for matching or you can use metacharacters, that allow you to match on
concepts like "find digits" or "find whitespace". Regex provides quantifiers that allow
you to say things like "find one or more of these things in a row." You won't have to
understand the Matcher methods that facilitate replacing strings in data.

Tokenizing is splitting delimited data into pieces. Delimiters are usually as simple
as a comma, but they can be as complex as any other regex pattern. The
java.util.Scanner class provides full tokenizing capabilities using regex, and allows
you to tokenize in a loop so that you can stop the tokenizing process at any point.
String.split () allows full regex patterns for tokenizing, but tokenizing is done in
one step, hence large data sources can take a long time to process.

Formatting data for output can be handled by using the Formatter class, or
more commonly by using the new PrintStream methods format () and printf ().
Remember format () and printf () behave identically. To use these methods, you
create a format string that is associated with every piece of data you want to format.

Two-Minute Drill] |

TWO-MINUTE DRILL

Here are some of the key points from the certification objectives in this chapter.

Using String, StringBuffer, and StringBuilder (Objective 3.1)

a

U000 0O 00

U 0

String objects are immutable, and String reference variables are not.
If you create a new String without assigning it, it will be lost to your program.
If you redirect a String reference to a new String, the old String can be lost.

String methods use zero-based indexes, except for the second argument of

substring ().

The String class is final—its methods can't be overridden.

When the JVM finds a String literal, it is added to the String literal pool.
Strings have a method: 1ength () ; arrays have an attribute named length.

The StringBuffer's API is the same as the new StringBuilder's API, except
that StringBuilder's methods are not synchronized for thread safety.

StringBuilder methods should run faster than StringBuffer methods.
All of the following bullets apply to both StringBuffer and StringBuilder:
Q They are mutable—they can change without creating a new object.

Q StringBuffer methods act on the invoking object, and objects can change
without an explicit assignment in the statement.

Q StringBuffer equals () is not overridden; it doesn't compare values.
Remember that chained methods are evaluated from left to right.

String methods to remember: charat () , concat (), equalsIgnoreCase (),
length(), replace (), substring (), toLowerCase (), toString (),
toUpperCase (), and trim ().

StringBuffer methods to remember: append (), delete (), insert (),
reverse (), and toString ().

File /0 (Objective 3.2)

a

a
a

The classes you need to understand in java.io are File, FileReader,

BufferedReader, File Writer, BufferedWriter, PrintWriter and, Console.
A new File object doesn't mean there's a new file on your hard drive.

File objects can represent either a file or a directory.

B 12 Chapteré:

Strings, I/O, Formatting, and Parsing

The File class lets you manage (add, rename, and delete) files and directories.
The methods createNewFile () and mkdir () add entries to your file system.
FileWriter and FileReader are low-level I/O classes. You can use them to
write and read files, but they should usually be wrapped.

Classes in java.io are designed to be "chained" or "wrapped." (This is a
common use of the decorator design pattern.)

It's very common to "wrap" a BufferedReader around a FileReader

or a BufferedWriter around a FileWriter, to get access to higher-level

(more convenient) methods.

PrintWriters can be used to wrap other Writers, but as of Java 5 they can be
built directly from Files or Strings.

Java 5 PrintWriters have new append (), format (), and printf () methods.

Console objects can read non-echoed input and are instantiated using
System.console().

Serialization (Objective 3.3)

a

The classes you need to understand are all in the java.io package; they
include: ObjectOutputStream and ObjectInputStream primarily, and
FileOutputStream and FileInputStream because you will use them to create
the low-level streams that the ObjectXxxStream classes will use.

A class must implement Serializable before its objects can be serialized.

The objectoutputStream.writeobject () method serializes objects, and
the ObjectInputStream.readobject () method deserializes objects.

If you mark an instance variable transient, it will not be serialized even

thought the rest of the object's state will be.

You can supplement a class's automatic serialization process by implementing
the writeObject () and readobject () methods. If you do this, embedding
calls to defaultWriteObject () and defaultReadObject (), respectively,
will handle the part of serialization that happens normally.

If a superclass implements Serializable, then its subclasses do automatically.

If a superclass doesn't implement Serializable, then when a subclass object
is deserialized, the superclass constructor will be invoked, along with its
superconstructor(s).

DatalnputStream and DataOutputStream aren't actually on the exam, in
spite of what the Sun objectives say.

Two-Minute Drill 5] 3

Dates, Numbers, and Currency (Objective 3.4)

Q

00 uUd

U

The classes you need to understand are java.util.Date, java.util.Calendar,
java.text.DateFormat, java.text.NumberFormat, and java.util.Locale.

Most of the Date class's methods have been deprecated.
A Date is stored as a 1ong, the number of milliseconds since January 1, 1970.
Date objects are go-betweens the Calendar and Locale classes.

The Calendar provides a powerful set of methods to manipulate dates,
performing tasks such as getting days of the week, or adding some number of
months or years (or other increments) to a date.

Create Calendar instances using static factory methods (get Instance ()).

The Calendar methods you should understand are add (), which allows you
to add or subtract various pieces (minutes, days, years, and so on) of dates,
and rol11 (), which works like add () but doesn't increment a date's bigger
pieces. (For example: adding 10 months to an October date changes the
month to August, but doesn't increment the Calendar's year value.)

DateFormat instances are created using static factory methods
(getInstance () and getDateInstance ()).

There are several format "styles" available in the DateFormat class.

DateFormat styles can be applied against various Locales to create a wide
array of outputs for any given date.

The DateFormat . format () method is used to create Strings containing
properly formatted dates.

The Locale class is used in conjunction with DateFormat and NumberFormat.

Both DateFormat and NumberFormat objects can be constructed with a
specific, immutable Locale.

For the exam you should understand creating Locales using language, or a
combination of language and country.

Parsing, Tokenizing, and Formatting (Objective 3.5)

a

a

regex is short for regular expressions, which are the patterns used to search for
data within large data sources.

regex is a sub-language that exists in Java and other languages (such as Perl).
regex lets you to create search patterns using literal characters or

metacharacters. Metacharacters allow you to search for slightly more abstract
data like "digits" or "whitespace".

B 14 Chapteré:

Strings, I/O, Formatting, and Parsing

Study the \g, \'s, \w, and . metacharacters

regex provides for quantifiers which allow you to specify concepts like: "look
for one or more digits in a row."

Study the 2, *, and + greedy quantifiers.

Remember that metacharacters and Strings don't mix well unless you
remember to "escape" them properly. For instance string s = "\\d";

The Pattern and Matcher classes have Java's most powerful regex capabilities.

You should understand the Pattern compile () method and the Matcher
matches (), pattern(), find (), start (), and group () methods.

You WON'T need to understand Matcher's replacement-oriented methods.

You can use java.util.Scanner to do simple regex searches, but it is primarily
intended for tokenizing.

Tokenizing is the process of splitting delimited data into small pieces.

In tokenizing, the data you want is called tokens, and the strings that separate
the tokens are called delimiters.

Tokenizing can be done with the Scanner class, or with String.split ().
Delimiters are single characters like commas, or complex regex expressions.

The Scanner class allows you to tokenize data from within a loop, which
allows you to stop whenever you want to.

The Scanner class allows you to tokenize Strings or streams or files.

The string.split () method tokenizes the entire source data all at once, so
large amounts of data can be quite slow to process.

New to Java 5 are two methods used to format data for output. These
methods are format () and printf (). These methods are found in the
PrintStream class, an instance of which is the out in System.out.

The format () and printf () methods have identical functionality.

Formatting data with print£ () (or format ()) is accomplished using
formatting strings that are associated with primitive or string arguments.

The format () method allows you to mix literals in with your format strings.
The format string values you should know are

Q Flags: -, +,0,",", and ¢

Q Conversions: b, ¢, d, £, and s

If your conversion character doesn't match your argument type, an exception
will be thrown.

Self Test B 5%

SELFTEST

I. Given:

import java.util.regex.*;
class Regex2
public static void main(String[] args) {
Pattern p = Pattern.compile(args[0]) ;
Matcher m = p.matcher (args[1l]);
boolean b = false;
while(b = m.find())
System.out.print (m.start () + m.group()) ;
}
}
}

And the command line:

java Regex2 "\d*" ab34ef

What is the result?

A. 234

B. 334

C. 2334

D. 0123456

E. 01234456

F 12334567

G. Compilation fails

2. Given:

import java.io.*;

class Player ({
Player () { System.out.print("p"); }

}

class CardPlayer extends Player implements Serializable {
CardPlayer () { System.out.print("c"); }

B 1 6 Chapter 6: Strings, /O, Formatting, and Parsing

public static void main(Stringl[] args)

CardPlayer cl = new CardPlayer () ;

try {
FileOutputStream fos = new FileOutputStream("play.txt");
ObjectOutputStream os = new ObjectOutputStream(fos) ;
os.writeObject (cl) ;
os.close() ;
FileInputStream fis = new FileInputStream("play.txt");
ObjectInputStream is = new ObjectInputStream(fis);
CardPlayer c2 = (CardPlayer) is.readObject () ;
is.close() ;

} catch (Exception x) { }

}
}

What is the result?
pcC

pcc

pcp

pcpc

Compilation fails

mmonNwy»

An exception is thrown at runtime

3. Given:

class TKO {
public static void main(Stringl[] args)
String s = "-";
Integer x = 343;
long L343 = 343L;

if (x.equals (L343)) S += ".el ";

if (x.equals(343)) s += ".e2 ";

Short sl = (short) ((new Short ((short)343)) / (new Short ((short)49)));
if (sl == 7) s += "=g ";

if (sl < new Integer(7+1)) s += "fly ";
System.out.println(s) ;

Self Test § |7

Which of the following will be included in the output String s? (Choose all that apply.)

A el

B. .e2

C. =s

D. fiy

E. None of the above

F. Compilation fails

G. An exception is thrown at runtime
4. Given:

import java.io.*;

class Keyboard { }
public class Computer implements Serializable
private Keyboard k = new Keyboard() ;
public static void main(String[] args) {
Computer ¢ = new Computer () ;
c.storelt(c);
}
void storelt (Computer c) {
try {
ObjectOutputStream os = new ObjectOutputStream (
new FileOutputStream("myFile")) ;
os.writeObject (c) ;
os.close() ;
System.out.println ("done") ;
} catch (Exception x) {System.out.println("exc"); }

}
}

What is the result? (Choose all that apply.)
A. exc

done

Compilation fails

Exactly one object is serialized

mgog N ®

Exactly two objects are serialized

B 18 Chapter 6: Strings, 1/O, Formatting, and Parsing

5. Using the fewest fragments possible (and filling the fewest slots possible), complete the code
below so that the class builds a directory named "dir3" and creates a file named "file3" inside
"dir3". Note you can use each fragment either zero or one times.

Code:

import java.io.

class Maker {
public static void main(Stringl[] args)

!
}

Fragments:
File; FileDescriptor; FileWriter; Directory;
try { .createNewDir () ; File dir File
{1} (Exception x) ("dir3") ; file
file .createNewFile () ; = new File = new File
dir (dir, "filel3"); (dir, file); .createFile () ;

} catch ("dir3n, "file3"); .mkdir(); File file

Self Test §]9

6. Given that 1119280000000L is roughly the number of milliseconds from Jan 1, 1970, to June
20, 2005, and that you want to print that date in German, using the LONG style such that "June"
will be displayed as "guni", complete the code using the fragments below. Note: you can use
each fragment either zero or one times, and you might not need to fill all of the slots.

Code:
import java.
import java.
class DateTwo {
public static void main(String[] args) {

Date d = new Date(1119280000000L) ;

DateFormat df =

System.out.println

}
}

Fragments:
io.*; new DateFormat (Locale.LONG
nio.*; DateFormat.getInstance (Locale.GERMANY
util.*; DateFormat .getDateInstance (DateFormat . LONG
text.*; util.regex; DateFormat . GERMANY
date.*; df . format (d)) ; d.format (df)) ;
7. Given:

import java.io.*;
class Directories ({
static String [] dirs = {"dirl", "dir2"};
public static void main(String [] args) ({
for (String d : dirs) {

// insert code 1 here
File file = new File(path, args[0]);

// insert code 2 here
!

}
}

B20 Chapter 6: Strings, /O, Formatting, and Parsing

and that the invocation

java Directories file2.txt

is issued from a directory that has two subdirectories, "dir1" and "dir2", and that "dir1" has afile
"filel.txt" and "dir2" hasafile "file2.txt", and the output is "false true"; which set(s)
of code fragments must be inserted? (Choose all that apply.)

A. String path = d;

System.out .print (file.exists () + " ");

B. string path = d;

System.out .print (file.isFile() + " ");

C. string path = File.separator + d;

System.out .print (file.exists () + " ");

D. string path = File.separator + d;

System.out.print (file.isFile() + " ");
8. Given:
import java.io.*;

public class TestSer {
public static void main(String[] args) {

SpecialSerial s = new SpecialSerial() ;

try {
ObjectOutputStream os = new ObjectOutputStream(

new FileOutputStream("myFile")) ;

os.writeObject(s); os.closel();
System.out.print (++s.z2 + " ");

ObjectInputStream is = new ObjectInputStream(

new FileInputStream("myFile")) ;
SpecialSerial s2 = (SpecialSerial)is.readObject () ;
is.close() ;

Self Test §72 1

System.out.println(s2.y + " " + s2.z);
} catch (Exception x) {System.out.println("exc"); }

}
}

class SpecialSerial implements Serializable {
transient int y = 7;
static int z = 9;

Which are true? (Choose all that apply.)
Compilation fails

The outputis10 0 9

The outputis 10 0 10

The outputis 10 7 9

The output is 10 7 10

mmoOo®»

In order to alter the standard deserialization process you would implement the
readoObject () method in SpecialSerial

G. In order to alter the standard deserialization process you would implement the
defaultReadObject () method in SpecialSerial

9. Given:
3. public class Theory {
4. public static void main(String[] args) {
5. String sl1 = "abc";
6. String s2 = sl;
7. sl += "d";
8. System.out.println(sl + " " + s2 + " " + (sl==s2));
9.
10. StringBuffer sbl = new StringBuffer ("abc") ;
11. StringBuffer sb2 = sbil;
12. sbl.append("d") ;
13. System.out.println(sbl + " " 4+ sb2 + " " 4+ (sbl==sb2));
14. }
15. }

Which are true? (Choose all that apply.)
A. Compilation fails

B. The first line of output is abc abc true

B272 Chapter 6: Strings, I/O, Formatting, and Parsing

C. The first line of output is abc abc false
D. The first line of output is abcd abc false
E. The second line of output is abcd abc false
F. The second line of output is abecd abcd true
G. The second line of output is abcd abcd false
10. Given:
3. import java.io.*;
4. public class ReadingFor {
5. public static void main(Stringl[] args)
6. String s;
7. try {
8. FileReader fr = new FileReader ("myfile.txt");
9. BufferedReader br = new BufferedReader (fr) ;
10. while((s = br.readLine()) != null)
11. System.out.println(s) ;
12. br.flush() ;
13. } catch (IOException e) { System.out.println("io error");
16. }
17. }

And given that myfile.txt contains the following two lines of data:

ab
cd
What is the result?
A. ab
B. abcd
C. ab
cd
D. a
b
C
d

E. Compilation fails

Self Test £23

1l1. Given:
3. import java.io.*;
4. public class Talker
5. public static void main(String[] args)
6 Console ¢ = System.console();
7 String u = c.readLine("%s", "username: ") ;
8. System.out.println("hello " + u);
9. String pw;
10. if (¢ != null && (pw = c.readPassword("%s", "password: ")) != null)
11. // check for valid password
12. }
13. }

If line 6 creates a valid Console object, and if the user enters fred as a username and 1234 as a
password, what is the result? (Choose all that apply.)

A. username:

password:

B. username: fred

password:

C. username: fred
password: 1234

D. Compilation fails

E. An exception is thrown at runtime

12. Given:
3. import java.io.*;
4. class Vehicle { }
5. class Wheels { }
6. class Car extends Vehicle implements Serializable { }
7. class Ford extends Car { }
8. class Dodge extends Car
9. Wheels w = new Wheels() ;
10. }

Instances of which class(es) can be serialized? (Choose all that apply.)
A. Car
B. Ford

824 Chapter 6: Strings, I/O, Formatting, and Parsing

C. Dodge

D. Wheels

E. Vehicle

13. Given:

3. import java.text.*;
4. public class Slice {
5. public static void main(Stringl[] args)
6. String s = "987.123456";
7. double d = 987.123456d;
8. NumberFormat nf = NumberFormat.getInstance() ;
9. nf.setMaximumFractionDigits (5) ;
10. System.out.println (nf.format(d) + " ");
11. try {
12. System.out.println(nf.parse(s));
13. } catch (Exception e) { System.out.println("got exc"); }
14. }
15. }

Which are true? (Choose all that apply.)
The output is 987.12345 987.12345
The output is 987.12346 987.12345
The output is 987.12345 987.123456
The output is 987.12346 987.123456
The try/catch block is unnecessary

The code compiles and runs without exception

Ommon® >

The invocation of parse () must be placed within a try/catch block

14. Given:

import java.util.regex.*;
public class Archie ({
public static void main(Stringl[] args)
Pattern p = Pattern.compile (args[0]) ;
Matcher m = p.matcher(args[1l]);
int count 0;
while(m.find())
count++;

O W 0 J o0 Ul b W

Self Test §25§

11. System.out.print (count) ;
12. }
13. }

And given the command line invocation:

java Archie "\d+" ab2c4dé7

What is the result?

A 0O

B. 3

C. 4

D. 8

E. 9

F. Compilation fails
Given:

3. import java.util.*;

4. public class Looking ({

5 public static void main(String[] args) {
6. String input = "1 2 a 3 45 6";

7 Scanner sc = new Scanner (input) ;

8 int x = 0;

9. do {

10. X = sc.nextInt();

11. System.out.print(x + " ");
12. } while (x!=0);

13. }

14. }

What is the result?
1 2

1 2 3 45 6

1 2 a3 45 6

A.

B

C. 1234586
D

E. Compilation fails
F

1 2 followed by an exception

B26 Chapter 6: Strings, I/O, Formatting, and Parsing

SELF TEST ANSWERS

Given:

import java.util.regex.*;
class Regex2 {
public static void main(Stringl[] args)
Pattern p Pattern.compile (args[0]) ;
Matcher m p.matcher (args[1]) ;
boolean b false;
while(b = m.£find()) {
System.out.print (m.start () + m.group());

}

}
}

And the command line:

java Regex2 "\d*" ab34ef

What is the result?

A. 231

B. 334

C. 2334

D. 0123456

E. 01234456

F 12334567

G. Compilation fails
Answer:

E is correct. The \d is looking for digits. The * is a quantifier that looks for 0 to many
occurrences of the pattern that precedes it. Because we specified *, the group () method
returns empty Strings until consecutive digits are found, so the only time group () returns
a value is when it returns 34 when the matcher finds digits starting in position 2. The
start () method returns the starting position of the previous match because, again,
we said find 0 to many occurrences.

X A, B, C, D, E and G are incorrect based on the above. (Objective 3.5)

Self Test Answers §27

2. Given:

import java.io.*;
class Player ({
Player () { System.out.print("p"); }
}
class CardPlayer extends Player implements Serializable {
CardPlayer () { System.out.print("c"); }
public static void main(Stringl[] args) {
CardPlayer cl = new CardPlayer() ;
try {
FileOutputStream fos = new FileOutputStream("play.txt");
ObjectOutputStream os = new ObjectOutputStream(fos) ;
os.writeObject (cl) ;
os.close() ;
FileInputStream fis = new FileInputStream("play.txt");
ObjectInputStream is = new ObjectInputStream(fis);
CardPlayer c2 = (CardPlayer) is.readObject () ;
is.close() ;
} catch (Exception x) { }
}
}

What is the result?
pcC

pcc

pcp

pcpc

Compilation fails

mmoOo®»

An exception is thrown at runtime

Answer:

M Cis correct. It's okay for a class to implement Serializable even if its superclass doesn't.
However, when you deserialize such an object, the non-serializable superclass must run its
constructor. Remember, constructors don't run on deserialized classes that implement
Serializable.

Xl A, B, D, E, and F are incorrect based on the above. (Objective 3.3)

B28 Chapter 6: Strings, I/O, Formatting, and Parsing

3. Given:

class TKO
public static void main(String[] args) {
String s = "-";
Integer x = 343;
long L343 = 343L;

if (x.equals(L343)) s += ".el ";

if (x.equals(343)) s += ".e2 ";

Short sl = (short) ((new Short ((short)343)) / (new Short ((short)49)));
if (sl == 7) s += "=s ";

if (sl < new Integer(7+1)) s += "fly ";
System.out.println(s) ;

b}
Which of the following will be included in the output String s? (Choose all that apply.)

A el

B. .e2

C. =s

D. fiy

E. None of the above

F. Compilation fails

G. An exception is thrown at runtime
Answer:

B, C, and D are correct. Remember, that the equals () method for the integer wrappers
will only return true if the two primitive types and the two values are equal. With C, it's
okay to unbox and use ==. For D, it's okay to create a wrapper object with an expression,
and unbox it for comparison with a primitive.

& A, E, E and G are incorrect based on the above. (Remember that A is using the equals ()
method to try to compare two different types.) (Objective 3.1)

4. Given:
import java.io.*;

class Keyboard { }
public class Computer implements Serializable {

Self Test Answers £29

private Keyboard k = new Keyboard() ;
public static void main(String[] args) {
Computer ¢ = new Computer () ;
c.storelt(c);
}
void storelt (Computer c)
try {
ObjectOutputStream os = new ObjectOutputStream(
new FileOutputStream("myFile")) ;
os.writeObject (c) ;
os.close() ;
System.out.println ("done") ;
} catch (Exception x) {System.out.println("exc"); }

}
}

What is the result? (Choose all that apply.)

A. exc

B. done

C. Compilation fails

D. Exactly one object is serialized

E. Exactly two objects are serialized

Answer:

4 A is correct. An instance of type Computer Has-a Keyboard. Because Keyboard doesn't
implement Serializable, any attempt to serialize an instance of Computer will cause an
exception to be thrown.

& B, C, D, and E are incorrect based on the above. If Keyboard did implement Serializable
then two objects would have been serialized. (Objective 3.3)

Using the fewest fragments possible (and filling the fewest slots possible), complete the code
below so that the class builds a directory named "dir3" and creates a file named "file3" inside
"dir3". Note you can use each fragment either zero or one times.

B30 Chapter 6: Strings, /O, Formatting, and Parsing

Code:

import java.io.

class Maker {
public static void main(String[] args) {

b}
Fragments:
File; FileDescriptor; FileWriter; Directory;
try { .createNewDir () ; File dir File
{1} (Exception x) ("dir3") ; file
file .createNewFile () ; = new File = new File
dir (dir, "filel3"); (dir, file); .createFile () ;
} catch ("dir3n, "file3"); .mkdir(); File file
Answer:

import java.io.File;
class Maker ({
public static void main (String[] args) {

try {
File dir = new File("dir3");
dir.mkdir() ;
File file = new File(dir, "file3");

file.createNewFile () ;
} catch (Exception x) { }

.

Notes: The new File statements don't make actual files or directories, just objects. You
need the mkdir () and createNewFile () methods to actually create the directory and

the file. (Objective 3.2)

Self Test Answers §3 |

6. Given that 1119280000000L is roughly the number of milliseconds from Jan. 1, 1970, to June
20, 2005, and that you want to print that date in German, using the LONG style such that "June"
will be displayed as "guni", complete the code using the fragments below. Note: you can use
each fragment either zero or one times, and you might not need to fill all of the slots.

Code:
import java.
import java.

class DateTwo {
public static void main(String[] args) {
Date d = new Date(1119280000000L) ;
DateFormat df =

System.out.println(

}

}

Fragments:
io.*; new DateFormat (Locale.LONG
nio.*; DateFormat.getInstance (Locale.GERMANY
util.*; DateFormat .getDateInstance (DateFormat . LONG
text.*; util.regex; DateFormat . GERMANY
date.*; df.format (d)) ; d.format (df)) ;
Answer:

import java.util.*;
import java.text.*;
class DateTwo {
public static void main(String[] args) ({
Date d = new Date(1119280000000L) ;
DateFormat df = DateFormat.getDateInstance (
DateFormat .LONG, Locale.GERMANY) ;
System.out .println (df.format (d)) ;
}
}

B 32 Chapter 6: Strings, I/O, Formatting, and Parsing

Notes: Remember that you must build bateFormat objects using static methods. Also
remember that you must specify a Locale for a DateFormat object at the time of instantiation.
The getInstance () method does not take a Locale. (Objective 3.4)

7. Given:
import java.io.*;
class Directories
static String [] dirs = {"dirl", "dir2"};
public static void main(String [] args) {
for (String d : dirs)
// insert code 1 here

File file = new File(path, args[0]);

// insert code 2 here

}
}
}

and that the invocation

java Directories file2.txt

is issued from a directory that has two subdirectories, "dir1" and "dir2", and that "dir1" has afile
"filel.txt" and "dir2" hasafile "file2.txt", and the output is "false true", which set(s)
of code fragments must be inserted? (Choose all that apply.)

A. string path = d;
System.out.print (file.exists () + " ");
B. string path = d;

System.out .print (file.isFile() + " ");

Self Test Answers §3 3

C. string path = File.separator + d;
System.out .print (file.exists () + " ");
D. string path = File.separator + d;

System.out.print (file.isFile() + " ");

Answer:

4 A and B are correct. Because you are invoking the program from the directory whose
direct subdirectories are to be searched, you don't start your path with a File.separator
character. The exists () method tests for either files or directories; the isFile ()
method tests only for files. Since we're looking for a file, both methods work.

C and D are incorrect based on the above. (Objective 3.2)

8. Given:
import java.io.*;

public class TestSer {
public static void main(String[] args) {

SpecialSerial s = new SpecialSerial();

try {
ObjectOutputStream os = new ObjectOutputStream (

new FileOutputStream("myFile")) ;

os.writeObject(s); os.close();
System.out.print (++s.z + " ");

ObjectInputStream is = new ObjectInputStream/(
new FileInputStream("myFile")) ;

SpecialSerial s2 = (SpecialSerial)is.readObject() ;
is.close() ;
System.out.println(s2.y + " " + s2.2z);

} catch (Exception x) {System.out.println("exc"); }

}

}

class SpecialSerial implements Serializable
transient int y = 7;
static int z = 9;

B34 Chapter 6: Strings, 1/O, Formatting, and Parsing

Which are true? (Choose all that apply.)
Compilation fails

The outputis 10 0 9

The outputis10 7 9

A

B

C. Theoutputis10 0 10
D.

E. The outputis 10 7 10
F

In order to alter the standard deserialization process you would implement the
readobject () method in SpecialSerial

G. In order to alter the standard deserialization process you would implement the
defaultReadObject () method in SpecialSerial

Answer:

M C and F are correct. C is correct because static and transient variables are not
serialized when an object is serialized. F is a valid statement.

X A, B, D, and E are incorrect based on the above. G is incorrect because you
don't implement the defaultReadobject () method, you call it from within the
readobject () method, along with any custom read operations your class needs.

(Objective 3.3)
9. Given:
3. public class Theory ({
4. public static void main(Stringl[] args)
5. String sl1 = "abc";
6. String s2 = s1;
7. sl += "d";
8. System.out.println(sl + " " + 82 + " " + (sl==s82));
9.
10. StringBuffer sbl = new StringBuffer ("abc") ;
11. StringBuffer sb2 = sbil;
12. sbl.append("d") ;
13. System.out.println(sbl + " " + sb2 + " " + (sbl==sb2));
14. }

15. }

Self Test Answers §3 8

Which are true? (Choose all that apply.)

A. Compilation fails

B. The first line of output is abc abc true

C. The first line of output is abc abc false

D. The first line of output is abcd abc false

E. The second line of output is abcd abc false
F. The second line of output is abcd abcd true
G. The second line of output is abcd abcd false
Answer:

M D and F are correct. While String objects are immutable, references to Strings are mutable.
The code s1 += "d"; creates a new String object. StringBuffer objects are mutable, so the
append () is changing the single StringBuffer object to which both StringBuffer references
refer.

X A, B, C, E, and G are incorrect based on the above. (Objective 3.1)

10. Given:
3. import java.io.*;
4. public class ReadingFor ({
5. public static void main(String[] args) ({
6. String s;
7 try {
8 FileReader fr = new FileReader ("myfile.txt");
9. BufferedReader br = new BufferedReader (fr) ;
10. while((s = br.readLine()) != null)
11. System.out.println(s) ;
12. br.flush() ;
13. } catch (IOException e) { System.out.println("io error"); }
16. }
17. }

And given that myfile.txt contains the following two lines of data:

ab
cd

B 36 Chapter 6: Strings, /O, Formatting, and Parsing

What is the result?

A. ab
B. abcd
C. ab
cd
D. a
b
C
d
E. Compilation fails
Answer:

4 E is correct. You need to call £1ush () only when you're writing data. Readers don't have

flush () methods. If not for the call to £1ush (), answer C would be correct.

X A, B, C, and D are incorrect based on the above. (Objective 3.2)

Given:
3. import java.io.*;
4. public class Talker
5 public static void main(String[] args) ({
6 Console ¢ = System.console() ;
7. String u = c.readLine("%$s", "username: ");
8 System.out.println("hello " + u);
9 String pw;
10. if (¢ != null && (pw = c.readPassword("%s", "password: ")) != null)
11. // check for valid password
12. }
13. }

If line 6 creates a valid Console object, and if the user enters fred as a username and 1234 as a
password, what is the result? (Choose all that apply.)

A

username:

password:

username: fred

password:

Self Test Answers §37

C. username: fred
password: 1234

D. Compilation fails

E. An exception is thrown at runtime

Answer:

M D is correct. The readPassword () method returns a char []. If a char [] were used,
answer B would be correct.

A, B, C, and E are incorrect based on the above. (Objective 3.2)

Given:

3. import java.io.*;

4. class Vehicle { }

5. class Wheels { }

6. class Car extends Vehicle implements Serializable { }
7. class Ford extends Car { }

8. class Dodge extends Car

9. Wheels w = new Wheels() ;
10. }

Instances of which class(es) can be serialized? (Choose all that apply.)

A. Car

B. Ford

C. Dodge
D. Wheels
E. Vehicle
Answer:

A and B are correct. Dodge instances cannot be serialized because they "have" an instance
of Wheels, which is not serializable. Vehicle instances cannot be serialized even though the
subclass Car can be.

C, D, and E are incorrect based on the above. (Objective 3.3)

B 38 Chapter 6: Strings, I/O, Formatting, and Parsing

13. Given:

3. import java.text.*;

4. public class Slice {

5. public static void main(String[] args) {

6. String s = "987.123456";

7. double d = 987.123456d;

8. NumberFormat nf = NumberFormat.getInstance() ;
9. nf.setMaximumFractionDigits (5) ;

10. System.out.println (nf.format(d) + " ");

11. try {
12. System.out.println (nf.parse(s));
13. } catch (Exception e) { System.out.println("got exc"); }
14. }
15. }

Which are true? (Choose all that apply.)

A. The output is 987.12345 987.12345

B. The output is 987.12346 987.12345

C. The output is 987.12345 987.123456

D. The output is 987.12346 987.123456

E. The try/catch block is unnecessary

F. The code compiles and runs without exception

G. The invocation of parse () must be placed within a try/catch block
Answer:

M D, FE and G are correct. The setMaximumFractionDigits () applies to the formatting
but not the parsing. The try/catch block is placed appropriately. This one might scare you
into thinking that you'll need to memorize more than you really do. If you can remember
that you're formatting the number and parsing the string you should be fine for the exam.

X A, B, C, and E are incorrect based on the above. (Objective 3.4)

14. Given:

import java.util.regex.*;
public class Archie ({
public static void main(String[] args) {
Pattern p = Pattern.compile (args[0]) ;

o Ul b W

Self Test Answers £ 39

7. Matcher m = p.matcher (args[1l]);
8. int count = 0;
9. while (m.find())
10. count++;
11. System.out .print (count) ;
12. }
13. }

And given the command line invocation:

java Archie "\d+" ab2c4dé7

What is the result?

A 0

B. 3

C. 4

D. 8

E. 9

F. Compilation fails
Answer:

4 B is correct. The "\d" metacharacter looks for digits, and the + quantifier says look for
"one or more" occurrences. The £ind () method will find three sets of one or more con-
secutive digits: 2, 4, and 67.

X A, C, D, E, and F are incorrect based on the above. (Objective 3.5)

15. Given:

3. import java.util.*;

4. public class Looking {

5. public static void main(String[] args) {
6. String input = "1 2 a 3 45 6";
7. Scanner sc = new Scanner (input) ;
8. int x = 0;

9. do {

10. X = sc.nextInt();
11. System.out.print(x + " ");
12. } while (x!=0);
13. }

14. }

B40 Chapter 6: Strings, |/O, Formatting, and Parsing

What is the result?
12

12 3 45 6

A

B

C. 1234586
D. 12 a3 4556
E. Compilation fails
F

1 2 followed by an exception

Answer:

4 Fis correct. The nextxxx () methods are typically invoked after a call to a hasNextxxx (),
which determines whether the next token is of the correct type.

X A, B, C, D, and E are incorrect based on the above. (Objective 3.5)

