Generics and
Collections

CERTIFICATION OBJECTIVES

o Design Using Collections e UseType Parameters,

. Write Generics methods
e Override equals() and hashCode(),

Distinguish == and equals() e Use java.util to Sort and Search

))) Use Comparable and Comparator
e Use GenericVersions of Collections

Including Set, List, and Map v/ Two-Minute Drill
Q&A SelfTest

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

B472 Chapter 7: Generics and Collections

enerics are possibly the most talked about feature of Java 5. Some people love 'em,
some people hate 'em, but they're here to stay. At their simplest, they can help make
code easier to write,and more robust. At their most complex, they can be very,
very hard to create, and maintain. Luckily, the exam creators stuck to the simple end of generics,
covering the most common and useful features, and leaving out most of the especially tricky bits.
Coverage of collections in this exam has expanded in two ways from the previous exam: the use of
generics in collections, and the ability to sort and search through collections.

CERTIFICATION OBJECTIVE

Overriding hashCode() and equals() (Objective 6.2)

6.2 Distinguish between correct and incorrect overrides of corresponding hashCode and
equals methods, and explain the difference between == and the equals method.

You're an object. Get used to it. You have state, you have behavior, you have a job.
(Or at least your chances of getting one will go up after passing the exam.) If you
exclude primitives, everything in Java is an object. Not just an object, but an Object
with a capital O. Every exception, every event, every array extends from
java.lang.Object. For the exam, you don't need to know every method in Object, but
you will need to know about the methods listed in Table 7-1.

Chapter 9 covers wait (), notify (), and notifyall (). The finalize ()
method was covered in Chapter 3. So in this section we'll look at just the
hashCode () and equals () methods. Oh, that leaves out toString (), doesn't it.
Okay, we'll cover that right now because it takes two seconds.

The toString() Method Override tostring() when you want a mere mor-
tal to be able to read something meaningful about the objects of your class. Code can
call tostring () on your object when it wants to read useful details about your ob-
ject. When you pass an object reference to the System.out .println () method, for
example, the object's tostring () method is called, and the return of tostring ()

is shown in the following example:

ch07.indd 542 5/21/08 5:37:59 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Overriding hashCode() and equals() (Exam Objective 6.2) £4 3

Methods of Class Object Covered on the Exam

Metho Description

boolean equals (Object obj) | Decides whether two objects are meaningfully equivalent.

void finalize() Called by garbage collector when the garbage collector sees that
the object cannot be referenced.

int hashCode () Returns a hashcode int value for an object, so that the object can
be used in Collection classes that use hashing, including Hashtable,
HashMap, and HashSet.

final void notify () Wakes up a thread that is waiting for this object’s lock.
final void notifyAll () Wakes up all threads that are waiting for this object’s lock.
final void wait () Causes the current thread to wait until another thread calls

notify () ornotifyAll () on this object.

String toString() Returns a “text representation” of the object.

public class HardToRead ({
public static void main (String [] args) {
HardToRead h = new HardToRead () ;
System.out.println (h) ;

}

Running the HardToRead class gives us the lovely and meaningful,

% java HardToRead
HardToRead@a47e0

The preceding output is what you get when you don't override the toString ()
method of class Object. It gives you the class name (at least that's meaningful)
followed by the @ symbol, followed by the unsigned hexadecimal representation of
the object's hashcode.

Trying to read this output might motivate you to override the toString ()
method in your classes, for example,

public class BobTest {

public static void main (String[] args) {
Bob f = new Bob ("GoBobGo", 19);

ch07.indd 543 5/21/08 5:37:59 PM

544

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Chapter 7: Generics and Collections

System.out.println(f) ;

}
}

class Bob ({
int shoeSize;
String nickName;
Bob (String nickName, int shoeSize)
this.shoeSize = shoeSize;
this.nickName = nickName;
}
public String toString()
return ("I am a Bob, but you can call me " + nickName +
". My shoe size is " + shoeSize);

This ought to be a bit more readable:

% java BobTest
I am a Bob, but you can call me GoBobGo. My shoe size is 19

Some people affectionately refer to toString () as the "spill-your-guts method,"
because the most common implementations of toString () simply spit out
the object's state (in other words, the current values of the important instance

variables). That's it for toString (). Now we'll tackle equals () and hashcCode ().

Overriding equals()

ch07.indd 544

You learned about the equals () method in earlier chapters, where we looked at
the wrapper classes. We discussed how comparing two object references using the
== operator evaluates to true only when both references refer to the same object
(because == simply looks at the bits in the variable, and they're either identical or
they're not). You saw that the String class and the wrapper classes have overridden
the equals () method (inherited from class Object), so that you could compare
two different objects (of the same type) to see if their contents are meaningfully
equivalent. If two different Integer instances both hold the int value 5, as far as
you're concerned they are equal. The fact that the value 5 lives in two separate
objects doesn't matter.

When you really need to know if two references are identical, use ==. But when
you need to know if the objects themselves (not the references) are equal, use the
equals () method. For each class you write, you must decide if it makes sense to

5/21/08 5:37:59 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Overriding equals() (Exam Objective 6.2) 548

consider two different instances equal. For some classes, you might decide that

two objects can never be equal. For example, imagine a class Car that has instance
variables for things like make, model, year, configuration—you certainly don't want
your car suddenly to be treated as the very same car as someone with a car that has
identical attributes. Your car is your car and you don't want your neighbor Billy
driving off in it just because, "hey, it's really the same car; the equals () method said
s0." So no two cars should ever be considered exactly equal. If two references refer to
one car, then you know that both are talking about one car, not two cars that have
the same attributes. So in the case of a Car you might not ever need, or want, to
override the equals () method. Of course, you know that isn't the end of the story.

What It Means If You Don't Override equals()

There's a potential limitation lurking here: if you don't override a class's equals ()
method, you won't be able to use those objects as a key in a hashtable and you
probably won't get accurate Sets, such that there are no conceptual duplicates.

The equals () method in class Object uses only the == operator for comparisons,
so unless you override equals (), two objects are considered equal only if the two
references refer to the same object.

Let's look at what it means to not be able to use an object as a hashtable key.
Imagine you have a car, a very specific car (say, John's red Subaru Outback as
opposed to Mary's purple Mini) that you want to put in a HashMap (a type of
hashtable we'll look at later in this chapter), so that you can search on a particular
car and retrieve the corresponding Person object that represents the owner. So you
add the car instance as the key to the HashMap (along with a corresponding Person
object as the value). But now what happens when you want to do a search? You want
to say to the HashMap collection, "Here's the car, now give me the Person object
that goes with this car." But now you're in trouble unless you still have a reference
to the exact object you used as the key when you added it to the Collection. In other
words, you can’t make an identical Car object and use it for the search.

The bottom line is this: if you want objects of your class to be used as keys for a
hashtable (or as elements in any data structure that uses equivalency for searching
for—and/or retrieving—an object), then you must override equals () so that two
different instances can be considered the same. So how would we fix the car? You
might override the equals () method so that it compares the unique VIN (Vehicle
Identification Number) as the basis of comparison. That way, you can use one
instance when you add it to a Collection, and essentially re-create an identical
instance when you want to do a search based on that object as the key. Of course,
overriding the equals () method for Car also allows the potential that more than
one object representing a single unique car can exist, which might not be safe

ch07.indd 545 5/21/08 5:38:00 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

B46 Chapter 7: Generics and Collections

in your design. Fortunately, the String and wrapper classes work well as keys in
hashtables—they override the equals () method. So rather than using the actual
car instance as the key into the car/fowner pair, you could simply use a String that
represents the unique identifier for the car. That way, you'll never have more than
one instance representing a specific car, but you can still use the car—or rather, one
of the car's attributes—as the search key.

Implementing an equals() Method
Let's say you decide to override equals () in your class. It might look like this:

public class EqualsTest
public static void main (String [] args) {
Moof one = new Moof (8);
Moof two = new Moof (8) ;
if (one.equals (two)) {
System.out.println("one and two are equal");

}
}

class Moof ({
private int moofValue;
Moof (int val)
moofVvValue = val;
}
public int getMoofValue()
return moofValue;
}
public boolean equals (Object o) {
if ((o instanceof Moof) && (((Moof)o) .getMoofValue ()
== this.moofValue)) ({
return true;
} else {
return false;
}
}
}

Let's look at this code in detail. In the main () method of EqualsTest, we create
two Moof instances, passing the same value 8 to the Moof constructor. Now look at
the Moof class and let's see what it does with that constructor argument—it assigns
the value to the moofvalue instance variable. Now imagine that you've decided
two Moof objects are the same if their moofvalue is identical. So you override the

ch07.indd 546 5/21/08 5:38:00 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Overriding equals() (Exam Objective 6.2) 547

equals () method and compare the two moofvalues. It is that simple. But let's
break down what's happening in the equals () method:

1. public boolean equals (Object o) ({

2. if ((o instanceof Moof) && (((Moof)o) .getMoofvalue ()
== this.moofValue)) {

3. return true;

4. } else {

5. return false;

6. }

7. }

First of all, you must observe all the rules of overriding, and in line 1 we are
indeed declaring a valid override of the equals () method we inherited from Object.
Line 2 is where all the action is. Logically, we have to do two things in order to

make a valid equality comparison.

First, be sure that the object being tested is of the correct type! It comes in
polymorphically as type Object, so you need to do an instanceof test on it. Having
two objects of different class types be considered equal is usually not a good idea,
but that's a design issue we won't go into here. Besides, you'd still have to do the
instanceof test just to be sure that you could cast the object argument to the
correct type so that you can access its methods or variables in order to actually do
the comparison. Remember, if the object doesn't pass the instanceof test, then
you'll get a runtime ClassCastException. For example:

public boolean equals (Object o) {
if (((Moof)o).getMoofValue() == this.moofValue) {
// the preceding line compiles, but it's BAD!
return true;
} else {
return false;

}

The (Moof) o cast will fail if o doesn't refer to something that IS-A Moof.

Second, compare the attributes we care about (in this case, just moofvalue).
Only the developer can decide what makes two instances equal. (For best
performance, you're going to want to check the fewest number of attributes.)

In case you were a little surprised by the whole ((Moof) o) .getMoofvalue ()
syntax, we're simply casting the object reference, o, just-in-time as we try to call a
method that's in the Moof class but not in Object. Remember, without the cast, you

ch07.indd 547 5/21/08 5:38:00 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

B48 Chapter 7: Generics and Collections

can't compile because the compiler would see the object referenced by o as simply,
well, an Object. And since the Object class doesn't have a getMoofvalue () method,
the compiler would squawk (technical term). But then as we said earlier, even with
the cast, the code fails at runtime if the object referenced by o isn't something that's
castable to a Moof. So don't ever forget to use the instanceof test first. Here's
another reason to appreciate the short circuit && operator—if the instanceof test
fails, we'll never get to the code that does the cast, so we're always safe at runtime
with the following:

if ((o instanceof Moof) && (((Moof)o).getMoofVvalue ()
== this.moofVvalue))
return true;
} else {
return false;

}

So that takes care of equals () ...

Whoa...not so fast. If you look at the Object class in the Java API spec, you'll
find what we call a contract specified in the equals () method. A Java contract is a
set of rules that should be followed, or rather must be followed if you want to provide
a "correct” implementation as others will expect it to be. Or to put it another way, if
you don't follow the contract, your code may still compile and run, but your code (or
someone else's) may break at runtime in some unexpected way.

Datch
Remember that the equals (), hashCode (), and toString () methods are

all public.The following would not be a valid override of the equals () method, although
it might appear to be if you don’t look closely enough during the exam:

class Foo { boolean equals (Object o) { } }

And watch out for the argument types as well. The following method is an
overload, but not an override of the equals () method:

class Boo { public boolean equals(Boo b) { } }

ch07.indd 548 5/21/08 5:38:01 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Overriding hashCode() (Exam Objective 6.2) 5§49

Match
Be sure you’re very comfortable with the rules of overriding so that you

can identify whether a method from Object is being overridden, overloaded, or illegally
redeclared in a class.The equals () method in class Boo changes the argument from
Object to Boo, so it becomes an overloaded method and won’t be called unless it’s from
your own code that knows about this new, different method that happens to also be
named equals ().

The equals() Contract

Pulled straight from the Java docs, the equals () contract says

B It is reflexive. For any reference value x, x.equals (x) should return true.

B [t is symmetric. For any reference values x and v, x.equals (y) should
return true if and only if y. equals (x) returns true.

B It is transitive. For any reference values x, v, and z, if x.equals (y) returns
true and y.equals (z) returns true, then x.equals (z) must return true.

B [t is consistent. For any reference values x and v, multiple invocations of
x.equals (y) consistently return true or consistently return false, pro-
vided no information used in equals comparisons on the object is modified.

B For any non-null reference value x, x.equals (null) should return false.

And you're so not off the hook yet. We haven't looked at the hashcode ()
method, but equals () and hashcode () are bound together by a joint contract that
specifies if two objects are considered equal using the equals () method, then they
must have identical hashcode values. So to be truly safe, your rule of thumb should
be, if you override equals (), override hashcode () as well. So let's switch over to
hashCode () and see how that method ties in to equals ().

Overriding hashCode()

Hashcodes are typically used to increase the performance of large collections of
data. The hashcode value of an object is used by some collection classes (we'll look

ch07.indd 549 5/21/08 5:38:01 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

B B0 Chapter 7: Generics and Collections

at the collections later in this chapter). Although you can think of it as kind of an
object ID number, it isn't necessarily unique. Collections such as HashMap and
HashSet use the hashcode value of an object to determine how the object should

be stored in the collection, and the hashcode is used again to help locate the object
in the collection. For the exam you do not need to understand the deep details of
how the collection classes that use hashing are implemented, but you do need to
know which collections use them (but, um, they all have "hash" in the name so

you should be good there). You must also be able to recognize an appropriate or
correct implementation of hashCode (). This does not mean legal and does not even
mean efficient. It's perfectly legal to have a terribly inefficient hashcode method

in your class, as long as it doesn't violate the contract specified in the Object class
documentation (we'll look at that contract in a moment). So for the exam, if you're
asked to pick out an appropriate or correct use of hashcode, don't mistake appropriate
for legal or efficient.

Understanding Hashcodes

In order to understand what's appropriate and correct, we have to look at how some
of the collections use hashcodes.

Imagine a set of buckets lined up on the floor. Someone hands you a piece of
paper with a name on it. You take the name and calculate an integer code from it by
using A is 1, B is 2, and so on, and adding the numeric values of all the letters in the
name together. A given name will always result in the same code; see Figure 7-1.

FIGURE 7-1 Key Hashcode Algorithm Hashcode

Alex A(l) +L(12) + E(5) + X(24) =42
A simplified Bob B(2) + O(I5) + B(2) =19
hashcode Dirk D(4) +1(9) + R(I8) + K(I1) =42

Fred F(6) + R(I8) + E(5) + (D) =33
example

HashMap Collection

Hashcode Buckets]]]]

“Bob” “Fred” “Alex”
“Dirk”

We don't introduce anything random, we simply have an algorithm that will
always run the same way given a specific input, so the output will always be identical
for any two identical inputs. So far so good? Now the way you use that code (and
we'll call it a hashcode now) is to determine which bucket to place the piece of

ch07.indd 550 5/21/08 5:38:02 PM

ch07.indd 551

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Overriding hashCode() (Exam Objective 6.2) § 5§ ||

paper into (imagine that each bucket represents a different code number you might
get). Now imagine that someone comes up and shows you a name and says, "Please
retrieve the piece of paper that matches this name." So you look at the name they
show you, and run the same hashcode-generating algorithm. The hashcode tells you
in which bucket you should look to find the name.

You might have noticed a little flaw in our system, though. Two different names
might result in the same value. For example, the names Amy and May have the same
letters, so the hashcode will be identical for both names. That's acceptable, but
it does mean that when someone asks you (the bucket-clerk) for the amy piece of
paper, you'll still have to search through the target bucket reading each name until
we find Amy rather than May. The hashcode tells you only which bucket to go into,
but not how to locate the name once we're in that bucket.

Jatch
In real-life hashing, it’s not uncommon to have more than one entry in a

bucket. Hashing retrieval is a two-step process.

I. Find the right bucket (using hashcCode ())
2. Search the bucket for the right element (using equals ()).

So for efficiency, your goal is to have the papers distributed as evenly as possible
across all buckets. Ideally, you might have just one name per bucket so that when
someone asked for a paper you could simply calculate the hashcode and just grab the
one paper from the correct bucket (without having to go flipping through different
papers in that bucket until you locate the exact one you're looking for). The least
efficient (but still functional) hashcode generator would return the same hashcode
(say, 42) regardless of the name, so that all the papers landed in the same bucket
while the others stood empty. The bucket-clerk would have to keep going to that
one bucket and flipping painfully through each one of the names in the bucket until
the right one was found. And if that's how it works, they might as well not use the
hashcodes at all but just go to the one big bucket and start from one end and look
through each paper until they find the one they want.

This distributed-across-the-buckets example is similar to the way hashcodes are
used in collections. When you put an object in a collection that uses hashcodes, the
collection uses the hashcode of the object to decide in which bucket/slot the object

5/21/08 5:38:02 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

B 82 Chapter 7: Generics and Collections

should land. Then when you want to fetch that object (or, for a hashtable, retrieve
the associated value for that object), you have to give the collection a reference to
an object that the collection compares to the objects it holds in the collection. As
long as the object (stored in the collection, like a paper in the bucket) you're trying
to search for has the same hashcode as the object you're using for the search (the
name you show to the person working the buckets), then the object will be found.
But...and this is a Big One, imagine what would happen if, going back to our name
example, you showed the bucket-worker a name and they calculated the code based
on only half the letters in the name instead of all of them. They'd never find the
name in the bucket because they wouldn't be looking in the correct bucket!

Now can you see why if two objects are considered equal, their hashcodes must
also be equal? Otherwise, you'd never be able to find the object since the default
hashcode method in class Object virtually always comes up with a unique number
for each object, even if the equals () method is overridden in such a way that two
or more objects are considered equal. It doesn't matter how equal the objects are if
their hashcodes don't reflect that. So one more time: If two objects are equal, their
hashcodes must be equal as well.

Implementing hashCode()

What the heck does a real hashcode algorithm look like? People get their PhDs on
hashing algorithms, so from a computer science viewpoint, it's beyond the scope
of the exam. The part we care about here is the issue of whether you follow the
contract. And to follow the contract, think about what you do in the equals ()
method. You compare attributes. Because that comparison almost always involves
instance variable values (remember when we looked at two Moof objects and
considered them equal if their int moofvalues were the same?). Your hashCode ()
implementation should use the same instance variables. Here's an example:

class HasHash {
public int x;
HasHash (int xVal) { x = xVal; }

public boolean equals (Object o) {
HasHash h = (HasHash) o; // Don't try at home without
// instanceof test

if (h.x == this.x) {
return true;
} else {

return false;

}

ch07.indd 552 5/21/08 5:38:03 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Overriding hashCode() (Exam Objective 6.2) 5§ 3

}

public int hashCode() { return (x * 17); }

}

This equals () method says two objects are equal if they have the same x value,
so objects with the same x value will have to return identical hashcodes.

Datch
A hashCode () that returns the same value for all instances whether

they’re equal or not is still a legal—even appropriate—hashcCode () method! For example,

public int hashCode() { return 1492; }

This does not violate the contract. Two objects with an x value of 8 will
have the same hashcode. But then again, so will two unequal objects, one with an x
value of 12 and the other a value of -920.This hashCode () method is horribly inefficient,
remember, because it makes all objects land in the same bucket, but even so, the object
can still be found as the collection cranks through the one and only bucket—using
equals ()—trying desperately to finally, painstakingly, locate the correct object. In other
words, the hashcode was really no help at all in speeding up the search, even though
improving search speed is hashcode’s intended purpose! Nonetheless, this one-hash-fits-
all method would be considered appropriate and even correct because it doesn’t violate
the contract. Once more, correct does not necessarily mean good.

Typically, you'll see hashcode () methods that do some combination of A-ing
(XOR-ing) a class's instance variables (in other words, twiddling their bits), along
with perhaps multiplying them by a prime number. In any case, while the goal
is to get a wide and random distribution of objects across buckets, the contract
(and whether or not an object can be found) requires only that two equal objects
have equal hashcodes. The exam does not expect you to rate the efficiency of a
hashCode () method, but you must be able to recognize which ones will and will not
work (work meaning "will cause the object to be found in the collection").

Now that we know that two equal objects must have identical hashcodes, is the
reverse true! Do two objects with identical hashcodes have to be considered equal?
Think about it—you might have lots of objects land in the same bucket because
their hashcodes are identical, but unless they also pass the equals () test, they won't
come up as a match in a search through the collection. This is exactly what you'd

ch07.indd 553 5/21/08 5:38:03 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

B84 Chapter 7: Generics and Collections

get with our very inefficient everybody-gets-the-same-hashcode method. It's legal
and correct, just slooooow.
So in order for an object to be located, the search object and the object in
the collection must have both identical hashcode values and return true for the
equals () method. So there's just no way out of overriding both methods to be
absolutely certain that your objects can be used in Collections that use hashing.

The hashCode() Contract

Now coming to you straight from the fabulous Java API documentation for class
Object, may we present (drum roll) the hashCode () contract:

B Whenever it is invoked on the same object more than once during an execu-

tion of a Java application, the hashCode () method must consistently return

the same integer, provided no information used in equals () comparisons

on the object is modified. This integer need not remain consistent from one

execution of an application to another execution of the same application.

B If two objects are equal according to the equals (Object) method, then

calling the hashcode () method on each of the two objects must produce the

same integer result.

B It is NOT required that if two objects are unequal according to the

equals(java.lang.Object)IneﬁuXLthen(xdhngthehashCode()nﬁﬁhod

on each of the two objects must produce distinct integer results. However,

the programmer should be aware that producing distinct integer results for

unequal objects may improve the performance of hashtables.

And what this means to you is...

Condition Required Not Required (But Allowed)
x.equals(y) == true x.hashCode () ==
y -hashCode ()

x.hashCode () == x.equals (y) == true

y.hashCode ()

x.equals (y) == false No hashCode ()
requirements

x.hashCode () != x.equals(y) == false

y.hashCode ()

ch07.indd 554

5/21/08 5:38:03 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Overriding hashCode() (Exam Objective 6.2) 55§

So let's look at what else might cause a hashcode () method to fail. What
happens if you include a transient variable in your hashcode () method? While
that's legal (compiler won't complain), under some circumstances an object you
put in a collection won't be found. As you know, serialization saves an object so
that it can be reanimated later by deserializing it back to full objectness. But danger
Will Robinson—remember that transient variables are not saved when an object is
serialized. A bad scenario might look like this:

class SaveMe implements Serializable{
transient int x;

int y;

SaveMe (int xVal, int yVal) ({
X = xVal;
y = yVval;

}

public int hashCode() {
return (x * vy); // Legal, but not correct to
// use a transient variable

}

public boolean equals (Object o) {
SaveMe test = (SaveMe)o;
if (test.y == y && test.x == x) { // Legal, not correct
return true;
} else {
return false;

}

Here's what could happen using code like the preceding example:

I. Give an object some state (assign values to its instance variables).
Put the object in a HashMap, using the object as a key.
Save the object to a file using serialization without altering any of its state.

Retrieve the object from the file through deserialization.

vk W

Use the deserialized (brought back to life on the heap) object to get the
object out of the HashMap.

Qops. The object in the collection and the supposedly same object brought
back to life are no longer identical. The object's transient variable will come

ch07.indd 555 5/21/08 5:38:04 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

B B6 Chapter 7: Generics and Collections

back with a default value rather than the value the variable had at the time it
was saved (or put into the HashMap). So using the preceding SaveMe code, if
the value of x is 9 when the instance is put in the HashMap, then since x is used
in the calculation of the hashcode, when the value of x changes, the hashcode
changes too. And when that same instance of SaveMe is brought back from
deserialization, x == 0, regardless of the value of x at the time the object was
serialized. So the new hashcode calculation will give a different hashcode, and
the equals () method fails as well since x is used to determine object equality.

Bottom line: transient variables can really mess with your equals () and
hashCode () implementations. Keep variables non-transient or, if they must
be marked transient, don't use them to determine hashcodes or equality.

CERTIFICATION OBJECTIVE

Collections (Exam Objective 6.1)

6.1 Given a design scenario, determine which collection classes and/or interfaces should
be used to properly implement that design, including the use of the Comparable interface.

Can you imagine trying to write object-oriented applications without using data
structures like hashtables or linked lists? What would you do when you needed
to maintain a sorted list of, say, all the members in your Simpsons fan club?
Obviously you can do it yourself; Amazon.com must have thousands of algorithm
books you can buy. But with the kind of schedules programmers are under today,
it's almost too painful to consider.

The Collections Framework in Java, which took shape with the release of JDK 1.2
and was expanded in 1.4 and again in Java 5 and yet again in Java 6, gives you lists,
sets, maps, and queues to satisfy most of your coding needs. They've been tried, tested,
and tweaked. Pick the best one for your job and you'll get—at the least—reasonable
performance. And when you need something a little more custom, the Collections
Framework in the java.util package is loaded with interfaces and utilities.

So What Do You Do with a Collection?

There are a few basic operations you'll normally use with collections:
B Add objects to the collection.

B Remove objects from the collection.

ch07.indd 556 5/21/08 5:38:04 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

So What Do You Do with a Collection? (Exam Objective 6.1) §§7

Find out if an object (or group of objects) is in the collection.

B Retrieve an object from the collection (without removing it).

B [terate through the collection, looking at each element (object) one

after another.

Key Interfaces and Classes of the Collections Framework

For the exam you'll need to know which collection to choose based on a stated
requirement. The collections API begins with a group of interfaces, but also gives
you a truckload of concrete classes. The core interfaces you need to know for the

exam (and life in general) are the following nine:

Collection Set SortedSet
List Map SortedMap
Queue NavigableSet NavigableMap

The core concrete implementation classes you need to know for the exam are the
following 13 (there are others, but the exam doesn't specifically cover them):

Maps Sets Lists Queues Utilities
HashMap HashSet ArrayList PriorityQueue Collections
Hashtable LinkedHashSet Vector Arrays
TreeMap TreeSet LinkedList

LinkedHashMap

ch07.indd 557

Not all collections in the Collections Framework actually implement the
Collection interface. In other words, not all collections pass the IS-A test for
Collection. Specifically, none of the Map-related classes and interfaces extend
from Collection. So while SortedMap, Hashtable, HashMap, TreeMap, and
LinkedHashMap are all thought of as collections, none are actually extended
from Collection-with-a-capital-C (see Figure 7-2). To make things a little more
confusing, there are really three overloaded uses of the word "collection":

5/21/08 5:38:04 PM

58 Chapter7:

Generics and Collections

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

B collection (lowercase c), which represents any of the data structures in

which objects are stored and iterated over.

B Collection (capital C), which is actually the java.util.Collection interface
from which Set, List, and Queue extend. (That's right, extend, not imple-
ment. There are no direct implementations of Collection.)

B Collections (capital C and ends with s) is the java.util.Collections class
that holds a pile of static utility methods for use with collections.

FIGURE 7-2 The interface and class hierarchy for collections

<<interface>>

<<interface>>
Collection

<<interface>>

\

<<interface>>

Arrays

Set List Queue
<<interface>>
HashSet SortedSet
A A
<<interface>>
LinkedHashSet N:\]/igabalzzet ArrayList Vector LinkedList PriorityQueue
A
TreeSet
) <<interface>>
Object Map \
<<interface>>
SortedMap
Collecti <<interface>>
ollections Hashtable HashMap NavigableMap
A A
»»»»»»»»»»» » implements LinkedHashMap TreeMap

———p extends

ch07.indd 558

5/21/08 5:38:05 PM

ch07.indd 559

Jatch

Keep in mind that Collections is a class, with static utility methods, while Collection
is an interface with declarations of the methods common to most collections
including add (), remove (), contains (), size (), and iterator ().

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

So What Do You Do with a Collection? (Exam Objective 6.1) 55O

You can so easily mistake "Collections™ for "Collection"—be careful.

FIGURE 7-3

The structure of
a List, a Set, and
a Map

Collections come in four basic flavors:

B Lists Lists of things (classes that implement List).

B Sets Unique things (classes that implement Set).

B Maps Things with a unique ID (classes that implement Map).

B Queues Things arranged by the order in which they are to be processed.

Figure 7-3 illustrates the structure of a List, a Set, and a Map.

Index: 0 | 2 3 4 5

Value: | “Boulder” | |“Ft. Collins”| | “Greeley” “Boulder”

“Denver” “Boulder”

List: The salesman’s itinerary (Duplicates allowed)

Ft. Collins

Greeley
Idaho Springs

Set: The salesman’s territory (No duplicates allowed)

Hashcode Buckets: C]

Values: “Sky Hook” “MonkeyWrench” “Phase Inverter” “Warp Core”
“Flux Capacitor”

HashMap: the salesman’s products (Keys generated from product IDs)

5/21/08 5:38:06 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

B60 Chapter 7: Generics and Collections

ch07.indd 560

But there are sub-flavors within those four flavors of collections:

Sorted Unsorted Ordered Unordered

An implementation class can be unsorted and unordered, ordered but unsorted, or
both ordered and sorted. But an implementation can never be sorted but unordered,
because sorting is a specific type of ordering, as you'll see in a moment. For example,
a HashSet is an unordered, unsorted set, while a LinkedHashSet is an ordered (but
not sorted) set that maintains the order in which objects were inserted.

Maybe we should be explicit about the difference between sorted and ordered, but
first we have to discuss the idea of iteration. When you think of iteration, you may
think of iterating over an array using, say, a for loop to access each element in the
array in order ([0], [1], [2], and so on). Iterating through a collection usually means
walking through the elements one after another starting from the first element.
Sometimes, though, even the concept of first is a little strange—in a Hashtable there
really isn't a notion of first, second, third, and so on. In a Hashtable, the elements
are placed in a (seemingly) chaotic order based on the hashcode of the key. But
something has to go first when you iterate; thus, when you iterate over a Hashtable,
there will indeed be an order. But as far as you can tell, it's completely arbitrary and
can change in apparently random ways as the collection changes.

Ordered When a collection is ordered, it means you can iterate through the
collection in a specific (not-random) order. A Hashtable collection is not ordered.
Although the Hashtable itself has internal logic to determine the order (based on
hashcodes and the implementation of the collection itself), you won't find any order
when you iterate through the Hashtable. An ArrayList, however, keeps the order es-
tablished by the elements' index position (just like an array). LinkedHashSet keeps
the order established by insertion, so the last element inserted is the last element in
the LinkedHashSet (as opposed to an ArrayList, where you can insert an element at
a specific index position). Finally, there are some collections that keep an order re-
ferred to as the natural order of the elements, and those collections are then not just
ordered, but also sorted. Let's look at how natural order works for sorted collections.

5/21/08 5:38:06 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

List Interface (Exam Objective 6.1) 5@ |

Sorted A sorted collection means that the order in the collection is determined
according to some rule or rules, known as the sort order. A sort order has nothing
to do with when an object was added to the collection, or when was the last time it
was accessed, or what "position" it was added at. Sorting is done based on properties
of the objects themselves. You put objects into the collection, and the collection
will figure out what order to put them in, based on the sort order. A collection that
keeps an order (such as any List, which uses insertion order) is not really considered
sorted unless it sorts using some kind of sort order. Most commonly, the sort order
used is something called the natural order. What does that mean?

You know how to sort alphabetically—A comes before B, F comes before G, and
so on. For a collection of String objects, then, the natural order is alphabetical. For
Integer objects, the natural order is by numeric value—1 before 2, and so on. And
for Foo objects, the natural order is...um...we don't know. There is no natural
order for Foo unless or until the Foo developer provides one, through an interface
(Comparable)that defines how instances of a class can be compared to one another
(does instance a come before b, or does instance b come before a?). If the developer
decides that Foo objects should be compared using the value of some instance
variable (let's say there's one called bar), then a sorted collection will order the
Foo objects according to the rules in the Foo class for how to use the bar instance
variable to determine the order. Of course, the Foo class might also inherit a natural
order from a superclass rather than define its own order, in some cases.

Aside from natural order as specified by the Comparable interface, it's also
possible to define other, different sort orders using another interface: Comparator.
We will discuss how to use both Comparable and Comparator to define sort orders
later in this chapter. But for now, just keep in mind that sort order (including
natural order) is not the same as ordering by insertion, access, or index.

Now that we know about ordering and sorting, we'll look at each of the four
interfaces, and we'll dive into the concrete implementations of those interfaces.

List Interface

A List cares about the index. The one thing that List has that non-lists don't have
is a set of methods related to the index. Those key methods include things like

get (int index), indexOf (Object o), add(int index, Object obj), and so
on. All three List implementations are ordered by index position—a position that
you determine either by setting an object at a specific index or by adding it without
specifying position, in which case the object is added to the end. The three List
implementations are described in the following sections.

ch07.indd 561 5/21/08 5:38:07 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

B62 Chapter 7: Generics and Collections

ArrayList Think of this as a growable array. It gives you fast iteration and fast
random access. To state the obvious: it is an ordered collection (by index), but not
sorted. You might want to know that as of version 1.4, ArrayList now implements
the new RandomAccess interface—a marker interface (meaning it has no methods)
that says, "this list supports fast (generally constant time) random access." Choose
this over a LinkedList when you need fast iteration but aren't as likely to be doing a
lot of insertion and deletion.

Vector Vector is a holdover from the earliest days of Java; Vector and Hashtable
were the two original collections, the rest were added with Java 2 versions 1.2 and
1.4. A Vector is basically the same as an ArrayList, but Vector methods are syn-
chronized for thread safety. You'll normally want to use ArrayList instead of Vector
because the synchronized methods add a performance hit you might not need. And
if you do need thread safety, there are utility methods in class Collections that can
help. Vector is the only class other than ArrayList to implement RandomAccess.

LinkedList A LinkedList is ordered by index position, like ArrayList, except
that the elements are doubly-linked to one another. This linkage gives you new
methods (beyond what you get from the List interface) for adding and removing
from the beginning or end, which makes it an easy choice for implementing a stack
or queue. Keep in mind that a LinkedList may iterate more slowly than an ArrayList,
but it's a good choice when you need fast insertion and deletion. As of Java 5, the
LinkedList class has been enhanced to implement the java.util. Queue interface. As
such, it now supports the common queue methods: peek (), poll (), and offer ().

Set Interface

ch07.indd 562

A Set cares about uniqueness—it doesn't allow duplicates. Your good friend the
equals () method determines whether two objects are identical (in which case only
one can be in the set). The three Set implementations are described in the following
sections.

HashSet A HashSet is an unsorted, unordered Set. It uses the hashcode

of the object being inserted, so the more efficient your hashCode () implementation
the better access performance you'll get. Use this class when you want a collection
with no duplicates and you don't care about order when you iterate through it.

5/21/08 5:38:07 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Map Interface (Exam Objective 6.1) &3

LinkedHashSet A LinkedHashSet is an ordered version of HashSet that
maintains a doubly-linked List across all elements. Use this class instead of HashSet
when you care about the iteration order. When you iterate through a HashSet the
order is unpredictable, while a LinkedHashSet lets you iterate through the elements
in the order in which they were inserted.

Match
When using HashSet or LinkedHashSet, the objects you add to them

must override hashCode (). If they don’t override hashCode (), the default object .
hashCode () method will allow multiple objects that you might consider "meaningfully
equal" to be added to your "no duplicates allowed" set.

TreeSet The TreeSet is one of two sorted collections (the other being TreeMap).
It uses a Red-Black tree structure (but you knew that), and guarantees that the
elements will be in ascending order, according to natural order. Optionally, you can
construct a TreeSet with a constructor that lets you give the collection your own
rules for what the order should be (rather than relying on the ordering defined by
the elements' class) by using a Comparable or Comparator. As of Java 6, TreeSet
implements NavigableSet.

Map Interface

A Map cares about unique identifiers. You map a unique key (the ID) to a specific
value, where both the key and the value are, of course, objects. You're probably quite
familiar with Maps since many languages support data structures that use a key/value
or name/value pair. The Map implementations let you do things like search for a
value based on the key, ask for a collection of just the values, or ask for a collection
of just the keys. Like Sets, Maps rely on the equals () method to determine whether
two keys are the same or different.

HashMap The HashMap gives you an unsorted, unordered Map. When you
need a Map and you don't care about the order (when you iterate through it), then
HashMap is the way to go; the other maps add a little more overhead. Where the
keys land in the Map is based on the key's hashcode, so, like HashSet, the more ef-
ficient your hashCode () implementation, the better access performance you'll get.
HashMap allows one nul1 key and multiple nu11 values in a collection.

ch07.indd 563 5/21/08 5:38:07 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

BG4 Chapter 7: Generics and Collections

Hashtable Like Vector, Hashtable has existed from prehistoric Java times.

For fun, don't forget to note the naming inconsistency: HashMap vs. Hashtable.
Where's the capitalization of t? Oh well, you won't be expected to spell it. Anyway,
just as Vector is a synchronized counterpart to the sleeker, more modern ArrayList,
Hashtable is the synchronized counterpart to HashMap. Remember that you don't
synchronize a class, so when we say that Vector and Hashtable are synchronized, we
just mean that the key methods of the class are synchronized. Another difference,
though, is that while HashMap lets you have nu11 values as well as one nul1 key, a
Hashtable doesn't let you have anything that's nul1l.

LinkedHashMap Like its Set counterpart, LinkedHashSet, the LinkedHash-
Map collection maintains insertion order (or, optionally, access order). Although it
will be somewhat slower than HashMap for adding and removing elements, you can
expect faster iteration with a LinkedHashMap.

TreeMap You can probably guess by now that a TreeMap is a sorted Map.
And you already know that by default, this means "sorted by the natural order of
the elements." Like TreeSet, TreeMap lets you define a custom sort order (via a
Comparable or Comparator) when you construct a TreeMap, that specifies how the
elements should be compared to one another when they're being ordered. As of
Java 6, TreeMap implements NavigableMap.

Queue Interface

ch07.indd 564

A Queue is designed to hold a list of "to-dos," or things to be processed in some way.
Although other orders are possible, queues are typically thought of as FIFO (first-in,
first-out). Queues support all of the standard Collection methods and they also add
methods to add and subtract elements and review queue elements.

PriorityQueue This class is new with Java 5. Since the LinkedList class has
been enhanced to implement the Queue interface, basic queues can be handled with
a LinkedList. The purpose of a PriorityQueue is to create a "priority-in, priority out”
queue as opposed to a typical FIFO queue. A PriorityQueue's elements are ordered
either by natural ordering (in which case the elements that are sorted first will be
accessed first) or according to a Comparator. In either case, the elements' ordering
represents their relative priority.

5/21/08 5:38:07 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Queue Interface (Exam Objective 6.1) §G 5

Jatch
You can easily eliminate some answers right away if you recognize

that, for example, a Map can’t be the class to choose when you need a namelvalue
pair collection, since Map is an interface and not a concrete implementation class.
The wording on the exam is explicit when it matters, so if you’re asked to choose an
interface, choose an interface rather than a class that implements that interface.The
reverse is also true—if you’re asked to choose a class, don’t choose an interface type.

Table 7-2 summarizes the 11 of the 13 concrete collection-oriented classes you'll
need to understand for the exam. (Arrays and Collections are coming right up!)

TABLE 7-2 Collection Interface Concrete Implementation Classes

Class Map Set List Ordered Sorted

HashTable X No No

HashTable X No No

TreeMap X Sorted By natural order or
custom comparison rules

LinkedHashMap X By insertion order No

or last access order

HashSet No No

TreeSet Sorted By natural order or
custom comparison rules

LinkedHashSet By insertion order No

ArrayList x By index No

Vector x By index No

LinkedList x By index No

PriorityQueue Sorted By to-do order

5/21/08 5:38:08 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

B66 Chapter 7: Generics and Collections

Datch
Be sure you know how to interpret Table 7-2 in a practical way. For the

exam, you might be expected to choose a collection based on a particular requirement,
where that need is expressed as a scenario. For example, which collection would you
use if you needed to maintain and search on a list of parts, identified by their unique
alphanumeric serial number where the part would be of type Part? Would you change
your answer at all if we modified the requirement such that you also need to be able to
print out the parts in order, by their serial number? For the first question, you can see
that since you have a Part class, but need to search for the objects based on a serial
number, you need a Map.The key will be the serial number as a String, and the value
will be the Part instance.The default choice should be HashMap, the quickest Map for
access. But now when we amend the requirement to include getting the parts in order
of their serial number, then we need a TreeMap—which maintains the natural order

of the keys. Since the key is a String, the natural order for a String will be a standard
alphabetical sort. If the requirement had been to keep track of which part was last
accessed, then we’d probably need a LinkedHashMap. But since a LinkedHashMap loses
the natural order (replacing it with last-accessed order), if we need to list the parts by
serial number, we’ll have to explicitly sort the collection, using a utility method.

CERTIFICATION OBJECTIVE

Using the Collections Framework
(Objectives 6.3 and 6.5)

6.3 Whrite code that uses the NavigableSet and NavigableMap interfaces.

6.5 Use capabilities in the java.util package to write code to manipulate a list by sorting,
performing a binary search, or converting the list to an array. Use capabilities in the
java.util package to write code to manipulate an array by sorting, performing a binary
search, or converting the array to a list. Use the java.util. Comparator and java.lang.
Comparable interfaces to affect the sorting of lists and arrays. Furthermore, recognize the
effect of the "natural ordering” of primitive wrapper classes and java.lang.String on sorting.

We've taken a high-level, theoretical look at the key interfaces and classes in the
Collections Framework, now let's see how they work in practice.

ch07.indd 566 5/21/08 5:38:08 PM

ch07.indd 567

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

ArrayList Basics (Exam Objectives 6.3 and 6.5) 57

ArrayList Basics

The java.util.ArrayList class is one of the most commonly used of all the
classes in the Collections Framework. It's like an array on vitamins. Some of the
advantages ArrayList has over arrays are

B [t can grow dynamically.

B [t provides more powerful insertion and search mechanisms than arrays.

Let's take a look at using an ArrayList that contains Strings. A key design goal
of the Collections Framework was to provide rich functionality at the level of the
main interfaces: List, Set, and Map. In practice, you'll typically want to instantiate
an ArrayList polymorphically like this:

List myList = new ArrayList();
As of Java 5 you'll want to say
List<String> myList = new ArrayList<String>() ;

This kind of declaration follows the object oriented programming principle of
"coding to an interface", and it makes use of generics. We'll say lots more about
generics later in this chapter, but for now just know that, as of Java 5, the <String>
syntax is the way that you declare a collection's type. (Prior to Java 5 there was no
way to specify the type of a collection, and when we cover generics, we'll talk about
the implications of mixing Java 5 (typed) and pre-Java 5 (untyped) collections.)

In many ways, ArrayList<Strings is similar to a String[] in that it declares a
container that can hold only Strings, but it's more powerful than a string[]. Let's
look at some of the capabilities that an ArrayList has

List<String> test = new ArrayList<Strings> () ;
String s = "hi";

test.add("string") ;

test.add(s) ;

test.add(s+s) ;
System.out.println(test.size());
System.out.println(test.contains(42)) ;

5/21/08 5:38:08 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

B68 Chapter 7: Generics and Collections

System.out.println(test.contains ("hihi")) ;
test.remove ("hi") ;
System.out.println(test.size());

which produces

false
true

There's lots going on in this small program. Notice that when we declared the
ArrayList we didn't give it a size. Then we were able to ask the ArrayList for
its size, we were able to ask it whether it contained specific objects, we removed an
object right out from the middle of it, and then we rechecked its size.

Autoboxing with Collections

In general, collections can hold Objects but not primitives. Prior to Java 5, a very
common use for the wrapper classes was to provide a way to get a primitive into a
collection. Prior to Java 5, you had to wrap a primitive by hand before you could put
it into a collection. With Java 5, primitives still have to be wrapped, but autoboxing
takes care of it for you.

List myInts = new ArrayList(); // pre Java 5 declaration
myInts.add (new Integer (42)); // had to wrap an int

As of Java 5 we can say
myInts.add (42) ; // autoboxing handles it!

In this last example, we are still adding an Integer object to myInts (not an int
primitive); it's just that autoboxing handles the wrapping for us.

Sorting Collections and Arrays

Sorting and searching topics have been added to the exam for Java 5. Both
collections and arrays can be sorted and searched using methods in the API.

ch07.indd 568 5/21/08 5:38:08 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Sorting Collections and Arrays (Exam Objectives 6.3 and 6.5) 569

Sorting Collections

Let's start with something simple like sorting an ArrayList of Strings alphabetically.
What could be easier? Okay, we'll wait while you go find ArrayList's sort ()
method...got it? Of course, ArrayList doesn't give you any way to sort its contents,
but the java.util.Collections class does

import java.util.*;
class TestSortl {
public static void main(Stringl[] args)

ArrayList<String> stuff = new ArrayList<String>(); // #1
stuff.add ("Denver") ;
stuff.add("Boulder") ;
stuff.add("vail") ;
stuff.add ("Aspen") ;
stuff.add("Telluride") ;
System.out.println ("unsorted " + stuff);
Collections.sort (stuff) ; // #2
System.out.println ("sorted " + stuff);

This produces something like this:

unsorted [Denver, Boulder, Vail, Aspen, Telluride]

sorted [Aspen, Boulder, Denver, Telluride, Vail]

Line 1 is declaring an ArrayList of Strings, and line 2 is sorting the ArrayList
alphabetically. We'll talk more about the Collections class, along with the Arrays
class in a later section, for now let's keep sorting stuff.

Let's imagine we're building the ultimate home-automation application. Today
we're focused on the home entertainment center, and more specifically the DVD
control center. We've already got the file [/O software in place to read and write
data between the dvdinfo.txt file and instances of class DvDInfo. Here are the key
aspects of the class:

class DVDInfo {
String title;
String genre;
String leadActor;
DVDInfo(String t, String g, String a) {

ch07.indd 569 5/21/08 5:38:09 PM

B70 Chapter?7:

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Generics and Collections

title = t; genre = g; leadActor = a;
}
public String toString() {
return title + " " + genre + " " + leadActor + "\n";

}

// getters and setter go here

}

Here's the DVD data that's in the dvdinfo. txt file:

Donnie Darko/sci-fi/Gyllenhall, Jake

Raiders of the Lost Ark/action/Ford, Harrison
2001/sci-fi/??

Caddy Shack/comedy/Murray, Bill

Star Wars/sci-fi/Ford, Harrison

Lost in Translation/comedy/Murray, Bill
Patriot Games/action/Ford, Harrison

In our home-automation application, we want to create an instance of DvDInfo

for each line of data we read in from the dvdInfo.txt file. For each instance, we
will parse the line of data (remember String.split ()?) and populate DVDInfo's
three instance variables. Finally, we want to put all of the DvDInfo instances into an
ArrayList. Imagine that the populateList () method (below) does all of this. Here
is a small piece of code from our application:

ArrayList<DVDInfo> dvdList = new ArrayList<DVDInfos> () ;
populateList () ; // adds the file data to the ArrayList
System.out.println (dvdList) ;

You might get output like this:

[Donnie Darko sci-fi Gyllenhall, Jake

, Raiders of the Lost Ark action Ford, Harrison
, 2001 sci-fi ??

, Caddy Shack comedy Murray, Bill

, Star Wars sci-fi Ford, Harrison

, Lost in Translation comedy Murray, Bill

, Patriot Games action Ford, Harrison

(Note: We overrode DvDInfo's toString () method, so when we invoked

println() on the ArrayList it invoked tostring () for each instance.)

ch07.indd 570

5/21/08 5:38:09 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Sorting Collections and Arrays (Exam Objectives 6.3 and 6.5) §7 |

Now that we've got a populated ArrayList, let's sort it:

Collections.sort (dvdlist) ;

Oops!, you get something like this:

TestDVD.java:13: cannot find symbol

symbol : method sort(java.util.ArrayList<DVDInfo>)

location: class java.util.Collections
Collections.sort (dvdlist) ;

What's going on here? We know that the Collections class has a sort () method,
yet this error implies that Collections does NOT have a sort () method that can
take a dvdlist. That means there must be something wrong with the argument
we're passing (dvdlist).

If you've already figured out the problem, our guess is that you did it without
the help of the obscure error message shown above...How the heck do you sort
instances of bvDInfo! Why were we able to sort instances of String? When you
look up collections.sort () in the API your first reaction might be to panic.
Hang tight, once again the generics section will help you read that weird looking
method signature. If you read the description of the one-arg sort () method,
you'll see that the sort () method takes a List argument, and that the objects in
the List must implement an interface called Comparable. It turns out that String
implements Comparable, and that's why we were able to sort a list of Strings using
the collections.sort () method.

The Comparable Interface

The comparable interface is used by the collections.sort () method and

the java.util.Arrays.sort () method to sort Lists and arrays of objects,
respectively. To implement Comparable, a class must implement a single method,
compareTo (). Here's an invocation of compareTo () :

int x = thisObject.compareTo (anotherObject) ;

The compareTo () method returns an int with the following characteristics:

B negative If thisObject < anotherObject
B zero If thisObject == anotherObject
B positive If thisObject > anotherObject

ch07.indd 571 5/21/08 5:38:09 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

B72 Chapter 7: Generics and Collections

The sort () method uses compareTo () to determine how the List or object array
should be sorted. Since you get to implement compareTo () for your own classes,
you can use whatever weird criteria you prefer, to sort instances of your classes.
Returning to our earlier example for class DVDInfo, we can take the easy way out
and use the String class's implementation of compareTo ():

class DVDInfo implements Comparable<DVDInfo> { // #1
// existing code
public int compareTo (DVDInfo d)
return title.compareTo(d.getTitle()); // #2

I

In line 1 we declare that class DvDInfo implements Comparable in such a way
that DvDInfo objects can be compared to other DVDInfo objects. In line 2 we
implement compareTo () by comparing the two DVDInfo object's titles. Since we
know that the titles are Strings, and that String implements Comparable, this is an
easy way to sort our DVDInfo objects, by title. Before generics came along in Java 5,
you would have had to implement Comparable something like this:

class DVDInfo implements Comparable {
// existing code
public int compareTo (Object o) { // takes an Object rather
// than a specific type
DVDInfo d = (DVDInfo)o;
return title.compareTo(d.getTitle()) ;

I

This is still legal, but you can see that it's both painful and risky, because you
have to do a cast, and you need to verify that the cast will not fail before you try it.

Datch
It’s important to remember that when you override equals () you MUST
take an argument of type object, but that when you override compareTo () you
should take an argument of the type you’re sorting.

ch07.indd 572 5/21/08 5:38:09 PM

ch07.indd 573

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Sorting Collections and Arrays (Exam Objectives 6.3 and 6.5) 5§73

Putting it all together, our DVDInfo class should now look like this:

class DVDInfo implements Comparable<DVDInfos {

String title;
String genre;
String leadActor;
DVDInfo(String t, String g, String a) {
title = t; genre = g; leadActor = a;
}
public String toString()
return title + " " + genre + " " + leadActor + "\n";
}
public int compareTo (DVDInfo d) {
return title.compareTo(d.getTitle());
}
public String getTitle()
return title;

}

// other getters and setters

Now, when we invoke Collections.sort (dvdList); we get

[2001 sci-fi 27

’

Caddy Shack comedy Murray, Bill

Donnie Darko sci-fi Gyllenhall, Jake

Lost in Translation comedy Murray, Bill
Patriot Games action Ford, Harrison

Raiders of the Lost Ark action Ford, Harrison
Star Wars sci-fi Ford, Harrison

Hooray! Our ArrayList has been sorted by title. Of course, if we want our home

automation system to really rock, we'll probably want to sort DVD collections in lots
of different ways. Since we sorted our ArrayList by implementing the compareTo ()
method, we seem to be stuck. We can only implement compareTo () once in a class,
so how do we go about sorting our classes in an order different than what we specify
in our compareTo () method? Good question. As luck would have it, the answer is
coming up next.

5/21/08 5:38:09 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

B74 Chapter 7: Generics and Collections

ch07.indd 574

Sorting with Comparator

While you were looking up the collections.sort () method you might have
noticed that there is an overloaded version of sort () that takes a both List AND
something called a Comparator. The Comparator interface gives you the capability
to sort a given collection any number of different ways. The other handy thing about
the Comparator interface is that you can use it to sort instances of any class—even
classes you can't modify—unlike the Comparable interface, which forces you to
change the class whose instances you want to sort. The Comparator interface is also
very easy to implement, having only one method, compare (). Here's a small class
that can be used to sort a List of DVDInfo instances, by genre.

import java.util.*;
class GenreSort implements Comparator<DVDInfos {
public int compare (DVDInfo one, DVDInfo two)
return one.getGenre () .compareTo (two.getGenre ()) ;
}
}

The comparator.compare () method returns an int whose meaning is the same
as the Comparable . compareTo () method's return value. In this case we're taking
advantage of that by asking compareTo () to do the actual comparison work for
us. Here's a test program that lets us test both our Comparable code and our new
Comparator code:

import java.util.*;
import java.io.*; // populateList () needs this
public class TestDVD ({
ArrayList<DVDInfo> dvdlist = new ArrayList<DVDInfo> () ;
public static void main(String[] args) {
new TestDVD () .go() ;

}

public void go() {

populatelList () ;

System.out.println(dvdlist) ; // output as read from file
Collections.sort (dvdlist) ;

System.out.println(dvdlist) ; // output sorted by title
GenreSort gs = new GenreSort () ;

Collections.sort (dvdlist, gs);
System.out.println(dvdlist) ; // output sorted by genre

5/21/08 5:38:10 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Sorting Collections and Arrays (Exam Objectives 6.3 and 6.5) §7§

public void populateList ()
// read the file, create DVDInfo instances, and
// populate the ArrayList dvdlist with these instances

You've already seen the first two output lists, here's the third:

[Patriot Games action Ford, Harrison

, Raiders of the Lost Ark action Ford, Harrison
, Caddy Shack comedy Murray, Bill

, Lost in Translation comedy Murray, Bill

, 2001 sci-fi ??

, Donnie Darko sci-fi Gyllenhall, Jake

, Star Wars sci-fi Ford, Harrison

Because the Comparable and Comparator interfaces are so similar, expect the
exam to try to confuse you. For instance you might be asked to implement the
compareTo () method in the Comparator interface. Study Table 7-3 to burn in the
differences between these two interfaces.

TABLE 7-3 Comparing Comparable to Comparator

java.lang.Comparable java.util. Comparator

int objOne.compareTo (objTwo) int compare (objOne, objTwo)
Returns Same as Comparable
negative if objOne < objTwo
zero if objOne == objTwo
positive if objOne > objTwo
You must modify the class whose You build a class separate from the class whose instances you
instances you want to sort. want to sort.
Only one sort sequence can be created Many sort sequences can be created
Implemented frequently in the API by: Meant to be implemented to sort instances of third-party
String, Wrapper classes, Date, Calendar... | classes.

ch07.indd 575 5/21/08 5:38:10 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

B76 Chapter 7: Generics and Collections

Sorting with the Arrays Class

We've been using the java.util.Collections class to sort collections; now let's look

at using the java.util. Arrays class to sort arrays. The good news is that sorting arrays

of objects is just like sorting collections of objects. The Arrays.sort () method is
overridden in the same way the collections.sort () method is.

B Arrays.sort (arrayToSort)

B Arrays.sort (arrayToSort, Comparator)

In addition, the Arrays.sort () method is overloaded about a million times to
provide a couple of sort methods for every type of primitive. The Arrays.sort ()
methods that sort primitives always sort based on natural order. Don't be fooled by
an exam question that tries to sort a primitive array using a Comparator.

Finally, remember that the sort () methods for both the Collections class and

the Arrays class are static methods, and that they alter the objects they are sorting,

instead of returning a different sorted object.

Jatch
We’ve talked a lot about sorting by natural order and using Comparators

to sort.The last rule you’ll need to burn in is that, whenever you want to sort an array
or a collection, the elements inside must all be mutually comparable. In other words, if you
have an Object [] and you put Cat and Dog objects into it, you won’t be able to sort
it. In general, objects of different types should be considered NOT mutually comparable,
unless specifically stated otherwise.

Searching Arrays and Collections

The Collections class and the Arrays class both provide methods that allow you
to search for a specific element. When searching through collections or arrays, the
following rules apply:

B Searches are performed using the binarySearch () method.

B Successful searches return the int index of the element being searched.

B Unsuccessful searches return an int index that represents the insertion point.

The insertion point is the place in the collection/array where the element
would be inserted to keep the collection/array properly sorted. Because posi-

ch07.indd 576

5/21/08 5:38:10 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Sorting Collections and Arrays (Exam Objectives 6.3 and 6.5) 77

tive return values and o0 indicate successful searches, the binarySearch ()
method uses negative numbers to indicate insertion points. Since 0 is a valid
result for a successful search, the first available insertion point is -1. There-
fore, the actual insertion point is represented as (- (insertion point) -1). For
instance, if the insertion point of a search is at element 2, the actual insertion
point returned will be -3.

The collection/array being searched must be sorted before you can search it.

B If you attempt to search an array or collection that has not already been
sorted, the results of the search will not be predictable.

B If the collection/array you want to search was sorted in natural order, it must
be searched in natural order. (Usually this is accomplished by NOT sending
a Comparator as an argument to the binarySearch () method.)

B If the collection/array you want to search was sorted using a Comparator, it
must be searched using the same Comparator, which is passed as the second
argument to the binarysearch () method. Remember that Comparators
cannot be used when searching arrays of primitives.

Let's take a look at a code sample that exercises the binarySearch () method:

import java.util.¥*;
class SearchObjArray
public static void main(String [] args) {

String [] sa = {"one", "two", "three", "four"};
Arrays.sort (sa) ; // #1
for(String s : sa)

System.out.print(s + " ");
System.out.println("\none = "
+ Arrays.binarySearch(sa,"one")); // #2

System.out.println("now reverse sort");
ReSortComparator rs = new ReSortComparator() ; // #3
Arrays.sort (sa,rs);
for(String s : sa)
System.out.print(s + " ");
System.out.println("\none = "

+ Arrays.binarySearch(sa,"one")); // #4
System.out.println("one = "
+ Arrays.binarySearch(sa, "one",rs)); // #5

ch07.indd 577 5/21/08 5:38:11 PM

B78 Chapter7:

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Generics and Collections

static class ReSortComparator

implements Comparator<Strings> { // #6é

public int compare (String a, String b) {

}
}
}

return b.compareTo(a) ; /] #7

which produces something like this:

four one three two

one =

1

now reverse sort
two three one four

one = -1

one = 2

Here's what happened:

Line 1 ~Sort the sa array, alphabetically (the natural order).

Line 2 Search for the location of element "one", which is 1.

Line 3 Make a Comparator instance. On the next line we re-sort the array using
the Comparator.

Line 4 Attempt to search the array. We didn't pass the binarySearch ()
method the Comparator we used to sort the array, so we got an incorrect
(undefined) answer.

Line 5 Search again, passing the Comparator to binarySearch (). This time
we get the correct answer, 2

Line 6 We define the Comparator; it's okay for this to be an inner class.

Line 7 By switching the use of the arguments in the invocation of

Datch

When solving searching and sorting questions, two big gotchas are

compareTo (), we get an inverted sort.

I. Searching an array or collection that hasn’t been sorted.
2. Using a Comparator in either the sort or the search,
but not both.

ch07.indd 578

5/21/08 5:38:11 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Sorting Collections and Arrays (Exam Objectives 6.3 and 6.5) 579

Converting Arrays to Lists to Arrays

There are a couple of methods that allow you to convert arrays to Lists, and Lists to
arrays. The List and Set classes have toarray () methods, and the Arrays class has a
method called asnist ().

The Arrays.asList () method copies an array into a List. The API says,
"Returns a fixed-size list backed by the specified array. (Changes to the returned list
'write through' to the array.)" When you use the asList () method, the array and
the List become joined at the hip. When you update one of them, the other gets
updated automatically. Let's take a look:

String[] sa = {"one", "two", "three", "four"};

List sList = Arrays.asList (sa); // make a List
System.out.println("size " + sList.size());
System.out.println("idx2 " + sList.get(2));

sList.set (3, "six"); // change List
sall] = "five"; // change array

for(String s : sa)
System.out.print(s + " ");
System.out.println("\nsl[1] " + sList.get(1));

This produces

size 4

idx2 three

one five three six
sl[1] five

Notice that when we print the final state of the array and the List, they have both
been updated with each other's changes. Wouldn't something like this behavior
make a great exam question?

Now let's take a look at the toarray () method. There's nothing too fancy going
on with the toArray () method; it comes in two flavors: one that returns a new
Object array, and one that uses the array you send it as the destination array:

List<Integer> 1L = new ArrayList<Integers>() ;
for (int x=0; x<3; X++)

iL.add (%) ;
Object[] oa = iL.toArray () ; // create an Object array
Integer[] ia2 = new Integer|[3];
ia2 = iL.toArray(ia2) ; // create an Integer array

ch07.indd 579 5/21/08 5:38:11 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

B80 Chapter 7: Generics and Collections

Using Lists

Remember that Lists are usually used to keep things in some kind of order. You can
use a LinkedList to create a first-in, first-out queue. You can use an ArrayList to
keep track of what locations were visited, and in what order. Notice that in both of
these examples it's perfectly reasonable to assume that duplicates might occur. In
addition, Lists allow you to manually override the ordering of elements by adding or
removing elements via the element's index. Before Java 5, and the enhanced for
loop, the most common way to examine a List "element by element" was by the use
of an Iterator. You'll still find Iterators in use in the Java code you encounter, and
you might just find an Iterator or two on the exam. An Iterator is an object that's
associated with a specific collection. It lets you loop through the collection step by
step. The two Iterator methods you need to understand for the exam are

B boolean hasNext() Returns true if there is at least one more element in
the collection being traversed. Invoking hasNext () does NOT move you to
the next element of the collection.

B object next() This method returns the next object in the collection,
AND moves you forward to the element after the element just returned.

Let's look at a little code that uses a List and an Iterator:

import java.util.=*;
class Dog {
public String name;
Dog (String n) { name = n; }
}
class ItTest ({
public static void main(String[] args) {
List<Dog> d = new ArrayList<Dogs() ;
Dog dog = new Dog("aiko") ;
d.add (dog) ;
d.add (new Dog("clover")) ;
d.add (new Dog("magnolia")) ;
Iterator<Dog> i3 = d.iterator(); // make an iterator
while (i3.hasNext ()) {
Dog d2 = i3.next(); // cast not required
System.out.println (d2.name) ;
}
System.out.println("size " + d.size());
System.out.println("getl " + d.get(1l) .name) ;
System.out.println("aiko " + d.indexOf (dog)) ;

ch07.indd 580 5/21/08 5:38:11 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Sorting Collections and Arrays (Exam Objectives 6.3 and 6.5) 58 |

d.remove (2) ;

Object[] oa = d.toArray() ;

for (Object o : oa)
Dog d2 = (Dog)o;
System.out.println("oa " + d2.name);

}
}
}

This produces

aiko

clover
magnolia
size 3

getl clover
aiko 0

oa aiko

oa clover

First off, we used generics syntax to create the Iterator (an Iterator of type Dog).
Because of this, when we used the next () method, we didn't have to cast the
Object returned by next () to a Dog. We could have declared the Iterator like this:

Iterator 13 = d.iterator(); // make an iterator

But then we would have had to cast the returned value:
Dog d2 = (Dog)i3.next () ;

The rest of the code demonstrates using the size (), get (), index0f (), and
toArray () methods. There shouldn't be any surprises with these methods. In a few
pages Table 7-5 will list all of the List, Set, and Map methods you should be familiar
with for the exam. As a last warning, remember that List is an interface!

Using Sets

Remember that Sets are used when you don't want any duplicates in your collection.
If you attempt to add an element to a set that already exists in the set, the duplicate
element will not be added, and the add () method will return false. Remember,
HashSets tend to be very fast because, as we discussed earlier, they use hashcodes.

ch07.indd 581 5/21/08 5:38:11 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

B82 Chapter 7: Generics and Collections

You can also create a TreeSet, which is a Set whose elements are sorted. You must
use caution when using a TreeSet (we're about to explain why):

import java.util.*;
class SetTest {
public static void main(String[] args) {
boolean[] ba = new boolean|[5];
// insert code here

ba[0] = s.add("a");

ba[l] = s.add(new Integer(42));
bal2] = s.add("b");

ba[3] = s.add("a");

ba[4] = s.add(new Object()) ;

for (int x=0; x<ba.length; x++)
System.out.print (bal[x] + " ");

System.out.println("\n") ;

for (Object o :)
System.out.print (o + " ");

If you insert the following line of code you'll get output something like this:
Set s = new HashSet () ; // insert this code

true true true false true
a java.lang.Object@e09713 42 b

It's important to know that the order of objects printed in the second for loop
is not predictable: HashSets do not guarantee any ordering. Also, notice that the
fourth invocation of add () failed, because it attempted to insert a duplicate entry
(a String with the value a) into the Set.

If you insert this line of code you'll get something like this:

Set s = new TreeSet () ; // insert this code
Exception in thread "main" java.lang.ClassCastException: java.
lang.String

at java.lang.Integer.compareTo (Integer.java:35)
at java.util.TreeMap.compare (TreeMap.java:1093)

ch07.indd 582 5/21/08 5:38:12 PM

ch07.indd 583

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Sorting Collections and Arrays (Exam Objectives 6.3 and 6.5) 5§83

at java.util.TreeMap.put (TreeMap.java:465)
at java.util.TreeSet.add(TreeSet.java:210)

The issue is that whenever you want a collection to be sorted, its elements must

be mutually comparable. Remember that unless otherwise specified, objects of
different types are not mutually comparable.

Using Maps

Remember that when you use a class that implements Map, any classes that you

use as a part of the keys for that map must override the hashcode () and equals ()
methods. (Well, you only have to override them if you're interested in retrieving
stuff from your Map. Seriously, it's legal to use a class that doesn't override equals ()
and hashCode () as a key in a Map; your code will compile and run, you just won't
find your stuff.) Here's some crude code demonstrating the use of a HashMap:

import java.util.=*;
class Dog {
public Dog(String n) { name = n; }
public String name;
public boolean eguals (Object o) {
if ((o instanceof Dog) &&

(((Dog)o) .name == name)) {
return true;
} else {

return false;

}
}

public int hashCode() {return name.length(); }

}

class Cat { }
enum Pets {DOG, CAT, HORSE }

class MapTest {
public static void main(Stringl[] args) {
Map<Object, Object> m = new HashMap<Object, Object>();

m.put ("k1", new Dog("aiko")) ; // add some key/value pairs
m.put ("k2", Pets.DOG) ;

m.put (Pets.CAT, "CAT key");

Dog dl = new Dog("clover") ; // let's keep this reference

5/21/08 5:38:12 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

B84 Chapter 7: Generics and Collections

ch07.indd 584

m.put (d1, "Dog key") ;

m.put (new Cat (), "Cat key");

System.out.println(m.get ("k1")) ; // #1
String k2 = "k2";

System.out.println (m.get (k2)) ; // #2
Pets p = Pets.CAT;

System.out.println(m.get (p)) ; // #3
System.out .println(m.get (dl)) ; /] #4
System.out.println(m.get (new Cat())) ; // #5
System.out.println(m.size()); // #6

which produces something like this:

Dog@lc
DOG

CAT key
Dog key
null

5

Let's review the output. The first value retrieved is a Dog object (your value
will vary). The second value retrieved is an enum value (DOG). The third value
retrieved is a String; note that the key was an enum value. Pop quiz: What's the
implication of the fact that we were able to successfully use an enum as a key?

The implication of this is that enums override equals () and hashCode (). And,
if you look at the java.lang.Enum class in the API, you will see that, in fact, these
methods have been overridden.

The fourth output is a String. The important point about this output is that the
key used to retrieve the String was made of a Dog object. The fifth output is nu11.
The important point here is that the get () method failed to find the Cat object
that was inserted earlier. (The last line of output confirms that indeed, 5 key/value
pairs exist in the Map.) Why didn't we find the cat key String? Why did it work to
use an instance of Dog as a key, when using an instance of Cat as a key failed?

[t's easy to see that Dog overrode equals () and hashCode () while Cat didn't.

Let's take a quick look at hashcodes. We used an incredibly simplistic hashcode
formula in the Dog class—the hashcode of a Dog object is the length of the
instance's name. So in this example the hashcode = 6. Let's compare the following
two hashCode () methods:

5/21/08 5:38:12 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Sorting Collections and Arrays (Exam Objectives 6.3 and 6.5) 5§85

public int hashCode() {return name.length(); } // #1
public int hashCode () {return 4; } // #2

Time for another pop quiz: Are the preceding two hashcodes legal? Will they
successfully retrieve objects from a Map? Which will be faster?

The answer to the first two questions is Yes and Yes. Neither of these hashcodes
will be very efficient (in fact they would both be incredibly inefficient), but they
are both legal, and they will both work. The answer to the last question is that the
first hashcode will be a little bit faster than the second hashcode. In general, the
more unique hashcodes a formula creates, the faster the retrieval will be. The first
hashcode formula will generate a different code for each name length (for instance
the name Robert will generate one hashcode and the name Benchley will generate
a different hashcode). The second hashcode formula will always produce the same
result, 4, so it will be slower than the first.

Our last Map topic is what happens when an object used as a key has its values
changed? If we add two lines of code to the end of the earlier MapTest .main (),

dl.name = "magnolia";
System.out.println(m.get (dl)) ;

we get something like this:

Dog@4
DOG

CAT key
Dog key
null

5

null

The Dog that was previously found now cannot be found. Because the Dog.name
variable is used to create the hashcode, changing the name changed the value of the
hashcode. As a final quiz for hashcodes, determine the output for the following lines
of code if they're added to the end of MapTest .main():

dl.name = "magnolia";

System.out.println(m.get (dl)) ; // #1
dl.name = "clover";

System.out.println(m.get (new Dog("clover"))); // #2
dl.name = "arthur";

System.out .println(m.get (new Dog("clover"))) ; // #3

ch07.indd 585 5/21/08 5:38:12 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

B86 Chapter 7: Generics and Collections

Remember that the hashcode is equal to the length of the name variable. When
you study a problem like this, it can be useful to think of the two stages of retrieval:

I. Use the hashCode () method to find the correct bucket
2. Use the equals () method to find the object in the bucket

In the first call to get (), the hashcode is 8 (magnolia) and it should be 6
(clover), so the retrieval fails at step 1 and we get null. In the second call to
get (), the hashcodes are both 6, so step 1 succeeds. Once in the correct bucket (the
"length of name = 6" bucket), the equals () method is invoked, and since Dog's
equals () method compares names, equals () succeeds, and the output is Dog key.
In the third invocation of get (), the hashcode test succeeds, but the equals () test
fails because arthur is NOT equal to clover.

Navigating (Searching) TreeSets and TreeMaps

ch07.indd 586

We've talked about searching lists and arrays. Let's turn our attention to searching
TreeSets and TreeMaps. Java 6 introduced (among others) two new interfaces:
java.util.NavigableSet and java.util.NavigableMap. For the purposes
of the exam, you're interested in how TreeSet and TreeMap implement these
interfaces.

Imagine that the Santa Cruz—Monterey ferry has an irregular schedule. Let's
say that we have the daily Santa Cruz departure times stored, in military time, in a
TreeSet. Let's look at some code that determines two things:

I. The last ferry that leaves before 4 Pm (1600 hours)
2. The first ferry that leaves after 8 pm (2000 hours)

import java.util.*;
public class Ferry {
public static void main(String[] args) {
TreeSet<Integer> times = new TreeSet<Integers>();
times.add (1205) ; // add some departure times
times.add (1505)
times.add (1545) ;
times.add(1830) ;
()
()

7

7

times.add (2010
times.add (2100

7

5/21/08 5:38:13 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Other Navigation Methods 5§87

// Java 5 version

TreeSet<Integer> subset = new TreeSet<Integers>();
subset = (TreeSet)times.headSet (1600) ;
System.out.println("J5 - last before 4pm is: " + subset.last());

TreeSet<Integer> sub2 = new TreeSet<Integers>() ;
sub2 = (TreeSet)times.tailSet (2000) ;
System.out.println("J5 - first after 8pm is: " + sub2.first());

// Java 6 version using the new lower () and higher () methods

System.out.println("J6 - last before 4pm is: " + times.lower (1600)) ;
System.out.println("J6 - first after 8pm is: " + times.higher(2000)) ;

This should produce the following:

J5 - last before 4pm is: 1545
J5 - first after 8pm is: 2010
J6 - last before 4pm is: 1545
J6 - first after 8pm is: 2010

As you can see in the preceding code, before the addition of the NavigableSet
interface, zeroing in on an arbitrary spot in a Set—using the methods available in
Java 5—was a compute-expensive and clunky proposition. On the other hand, using
the new Java 6 methods 1lower () and higher (), the code becomes a lot cleaner.

For the purpose of the exam, the NavigableSet methods related to this type of
navigation are lower (), floor (), higher (), ceiling (), and the mostly parallel
NavigableMap methods are 1owerKey (), floorKey (), ceilingKey (), and
higherKey (). The difference between lower () and £loor () is that lower ()
returns the element less than the given element, and floor () returns the element
less than or equal to the given element. Similarly, higher () returns the element
greater than the given element, and ceiling () returns the element greater than or
equal to the given element. Table 7-4 summarizes the methods you should know for
the exam.

Other Navigation Methods

In addition to the methods we just discussed there are a few more new Java 6
methods that, could be considered "navigation" methods.

ch07.indd 587 5/21/08 5:38:13 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

B88 Chapter 7: Generics and Collections

Polling

Although the idea of polling isn't new to Java 6 (as you'll see in a minute,
PriorityQueue had a poll () method before Java 6), it is new to TreeSet and
TreeMap. The idea of polling is that we want both to retrieve and remove an
element from either the beginning or the end of a collection. In the case of TreeSet,
pollFirst () returns and removes the first entry in the set, and pollLast ()
returns and removes the last. Similarly, TreeMap now provides pol1FirstEntry ()
and pollLastEntry () to retrieve and remove key-value pairs.

Descending Order

Also new to Java 6 for TreeSet and TreeMap are methods that return a collection
in the reverse order of the collection on which the method was invoked. The
important methods for the exam are TreeSet.descendingSet() and TreeMap
.descendingMap().

Table 7-4 summarizes the "navigation" methods you'll need to know for the exam.

TABLE 7-4 Important "Navigation" Related Methods

Method Description

TreeSet.ceiling(e) Returns the lowest element >= e
TreeMap.ceilingKey (key) Returns the lowest key >= key
TreeSet.higher (e) Returns the lowest element > e

TreeMap . higherKey (key) Returns the lowest key > key
TreeSet.floor (e) Returns the highest element <= e
TreeMap . floorKey (key) Returns the highest key <= key
TreeSet.lower (e) Returns the highest element < e

TreeMap . lowerKey (key) Returns the highest key < key

TreeSet .pollFirst () Returns and removes the first entry
TreeMap.pollFirstEntry () Returns and removes the first key-value pair
TreeSet.pollLast () Returns and removes the last entry
TreeMap.pollLastEntry () Returns and removes the last key-value pair
TreeSet.descendingSet () Returns a NavigableSet in reverse order

TreeMap

.descendingMap ()

Returns a NavigableMap in reverse order

ch07.indd 588

5/21/08 5:38:13 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Backed Collections 589

Backed Collections

Some of the classes in the java.util package support the concept of "backed collections".
We'll use a little code to help explain the idea:

TreeMap<String, String> map = new TreeMap<String, Strings>();
map.put ("a", "ant"); map.put("d", "dog"); map.put("h", "horse");

SortedMap<String, Strings> submap;

submap = map.subMap ("b", "g"); // #1 create a backed collection
System.out.println(map + " " + submap) ; // #2 show contents

map.put ("b", "bat"); // #3 add to original

submap.put ("f", "fish"); // #4 add to copy

map.put ("r", "raccoon"); // #5 add to original - out of range
// submap.put ("p", "pig"); // #6 add to copy - out of range
System.out.println(map + " " + submap) ; // #7 show final contents

This should produce something like this:

{a=ant, d=dog, h=horse} {d=dog}
{a=ant, b=bat, d=dog, f=fish, h=horse, r=raccoon} {b=bat, d=dog, f=fish}

The important method in this code is the TreeMap. subMap () method. It's easy
to guess (and it's correct), that the subMap () method is making a copy of a portion
of the TreeMap named map. The first line of output verifies the conclusions we've
just drawn.

What happens next is powerful and a little bit unexpected (now we're getting to
why they're called backed collections). When we add key-value pairs to either the
original TreeMap or the partial-copy SortedMap, the new entries were automatically
added to the other collection—sometimes. When submap was created, we provided
a value range for the new collection. This range defines not only what should be
included when the partial copy is created, but also defines the range of values that
can be added to the copy. As we can verify by looking at the second line of output,
we can add new entries to either collection within the range of the copy, and the
new entries will show up in both collections. In addition, we can add a new entry
to the original collection, even if it's outside the range of the copy. In this case, the
new entry will show up only in the original—it won't be added to the copy because
it's outside the copy's range. Notice that we commented out line #6. If you attempt
to add an out-of-range entry to the copied collection an exception will be thrown.

ch07.indd 589 5/21/08 5:38:13 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

BOQO Chapter 7: Generics and Collections

For the exam, you'll need to understand the basics just explained, plus a few
more details about three methods from TreeSet—(headset (), subSet (), and
tailSet ()), and three methods from TreeMap (headMap (), subMap (), and
tailMap ()). As with the navigation-oriented methods we just discussed, we
can see a lot of parallels between the TreeSet and the TreeMap methods. The
headSet () [headMap () methods create a subset that starts at the beginning of the
original collection and ends at the point specified by the method's argument. The
tailSet () /tailMap () methods create a subset that starts at the point specified
by the method's argument and goes to the end of the original collection. Finally, the
subSet () / subMap () methods allow you to specify both the start and end points for
the subset collection you're creating.

As you might expect, the question of whether the subsetted collection's end
points are inclusive or exclusive is a little tricky. The good news is that for the exam
you have to remember only that when these methods are invoked with endpoint
and boolean arguments, the boolean always means "is inclusive?". A little more good
news is that all you have to know for the exam is that unless specifically indicated by
a boolean argument, a subset's starting point will always be inclusive. Finally, you'll
notice when you study the API that all of the methods we've been discussing here
have an overloaded version that's new to Java 6. The older methods return either a
SortedSet or a SortedMap, the new Java 6 methods return either a NavigableSet or a
NavigableMap. Table 7-5 summarizes these methods.

Important "Backed Collection" Methods for TreeSet and TreeMap
Method Description
headSet (e, b*) Returns a subset ending at element e and exclusive of e
headMap (k, b¥*) Returns a submap ending at key k and exclusive of key k
tailSet (e, b*) Returns a subset starting at and inclusive of element e
tailMap (k, b¥*) Returns a submap starting at and inclusive of key k
subSet (s, b*, e, b¥) Returns a subset starting at element s and ending just before element e
subMap (s, b*, e, b¥*) Returns a submap starting at key s and ending just before key s

* NOTE: These boolean arguments are optional. If they exist it’s a Java 6 method that lets you specify whether the
endpoint is exclusive, and these methods return a NavigableXxx. If the boolean argument(s) don’t exist, the method
returns either a SortedSet or a SortedMap.

ch07.indd 590 5/21/08 5:38:14 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Backed Collections §9Q ||

W
Jatch
Let’s say that you’ve created a backed collection using either a tailxxx ()

or subxxx () method. Typically in these cases the original and copy collections have
different “first” elements. For the exam it’s important that you remember that the
pollFirstXxx () methods will always remove the first entry from the collection on which
they’re invoked, but they will remove an element from the other collection only if it has
same value. So it’s most likely that invoking pollFirstXxx () on the copy will remove an
entry from both collections, but invoking pol1Firstxxx () on the original will remove only
the entry from the original.

Using the PriorityQueue Class

The last collection class you'll need to understand for the exam is the PriorityQueue.
Unlike basic queue structures that are first-in, first-out by default, a PriorityQueue
orders its elements using a user-defined priority. The priority can be as simple as
natural ordering (in which, for instance, an entry of 1 would be a higher priority
than an entry of 2). In addition, a PriorityQueue can be ordered using a Comparator,
which lets you define any ordering you want. Queues have a few methods not found
in other collection interfaces: peek (), poll (), and offer ().

import java.util.*;
class PQ {
static class PQsort
implements Comparator<Integer> { // inverse sort
public int compare (Integer one, Integer two) {
return two - one; // unboxing

}
}

public static void main(Stringl[] args)
int[] ia = {1,5,3,7,6,9,8 }; // unordered data
PriorityQueue<Integer> pgl =
new PriorityQueue<Integers () ; // use natural order

for (int x : 1ia) // load queue

ch07.indd 591 5/21/08 5:38:14 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

B9 Chapter 7: Generics and Collections

ch07.indd 592

pgl.offer(x) ;
for(int x : ia) // review queue
System.out.print (pgl.poll () + ™ ");
System.out.println("");

PQsort pgs = new PQsort () ; // get a Comparator
PriorityQueue<Integer> pg2 =
new PriorityQueue<Integers>(10,pgs) ; // use Comparator
for(int x : ia) // load queue
pg2.offer(x) ;
System.out.println("size " + pg2.size());
System.out.println("peek " + pg2.peek());
System.out.println("size " + pg2.size());
System.out.println("poll " + pg2.poll());
System.out.println("size " + pg2.size());
for (int x : ia) // review queue

System.out.print (pg2.poll () + " ");

This code produces something like this:

1356789

size 7
peek 9
size 7
poll 9
size 6

8 7 6 5 3 1 null

Let's look at this in detail. The first for loop iterates through the ia array, and
uses the offer () method to add elements to the PriorityQueue named pg1. The
second for loop iterates through pq1 using the pol1 () method, which returns
the highest priority entry in pg1 AND removes the entry from the queue. Notice
that the elements are returned in priority order (in this case, natural order). Next,
we create a Comparator—in this case, a Comparator that orders elements in the
opposite of natural order. We use this Comparator to build a second PriorityQueue,
pg2, and we load it with the same array we used earlier. Finally, we check the size of
pg2 before and after calls to peek () and po11 (). This confirms that peek () returns
the highest priority element in the queue without removing it, and po11 () returns
the highest priority element, AND removes it from the queue. Finally, we review the
remaining elements in the queue.

5/21/08 5:38:14 PM

ch07.indd 593

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Backed Collections 5§93

Method Overview for Arrays and Collections

For these two classes, we've already covered the trickier methods you might
encounter on the exam. Table 7-6 lists a summary of the methods you should be
aware of. (Note: The T[] syntax will be explained later in this chapter; for now,
think of it as meaning "any array that's NOT an array of primitives.")

Key Methods in Arrays and Collections

Key Methods in java.util.Arrays

static List asList (TI[])

Descriptions

Convert an array to a List (and bind them).

static int binarySearch(Object[], key) Search a sorted array for a given value, return

static int binarySearch(primitivel[], key) an index or insertion point.

static int binarySearch(T[], key, Comparator) Search a Comparator-sorted array for a value.

static boolean equals(Object[], Objectl]) Compare two arrays to determine if their

static boolean equals(primitive[], primitivel[]) contents are equal.

public static void sort(Object[1) Sort the elements of an array by natural

public static void sort (primitivel[]) order.

public static void sort (T[], Comparator) Sort the elements of an array using a
Comparator.

public static String toString(Object[]) Create a String containing the contents of

public static String toString(primitivel[]) an array.

Key Methods in java.util.Collections

Descriptions

static int binarySearch(List, key) Search a "sorted" List for a given value,
static int binarySearch(List, key, Comparator) return an index or insertion point.

static void reverse(List) Reverse the order of elements in a List.
static Comparator reverseOrder () Return a Comparator that sorts the reverse of
static Comparator reverseOrder (Comparator) the collection’s current sort sequence.
static void sort(List) Sort a List either by natural order or by a
static void sort(List, Comparator) Comparator.

5/21/08 5:38:15 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

B94 Chapter 7: Generics and Collections

Method Overview for List, Set, Map, and Queue

For these four interfaces, we've already covered the trickier methods you might
encounter on the exam. Table 7-7 lists a summary of the List, Set, and Map methods
you should be aware of, but don't forget the new "Navigable" methods floor, lower,
ceiling, and higher that we discussed a few pages back.

Key Methods in List, Set,and Map

Key Interface Methods List Set Map Descriptions

boolean add(element) X X Add an element. For Lists, optionally

boolean add(index, element) X add the element at an index point.

boolean contains(object) X X Search a collection for an object (or,

boolean containsKey (object key) X optionally for Maps a key), return the

boolean containsValue (object value) X result as a boolean.

object get (index) X Get an object from a collection, via an

object get (key) X index or a key.

int indexOf (object) X Get the location of an object in a List.

Iterator iterator() X X Get an Iterator for a List or a Set.

Set keySet () X Return a Set containing a Map’s keys.

put (key, value) X Add a key/value pair to a Map.

remove (index) X Remove an element via an index, or

remove (object) X X via the element’s value, or via a key.

remove (key) X

int size() X X X Return the number of elements in a
collection.

Object[] toArray() X X Return an array containing the

T[] toArray(TI[]) elements of the collection.

For the exam, the PriorityQueue methods that are important to understand are
offer () (which is similar to add ()), peek () (which retrieves the element at the
head of the queue, but doesn't delete it), and po11 () (which retrieves the head
element and removes it from the queue).

ch07.indd 594

5/21/08 5:38:15 PM

Match

It’s important to know some of the details of natural ordering. The
following code will help you understand the relative positions of uppercase characters,
lowercase characters, and spaces in a natural ordering:

for (String s
pa3.offer (s) ;
for (String s

String[] sa = {">ff<", "> f<", ">f <", ">FF<" }; // ordered?
PriorityQueue<String> pg3 = new PriorityQueue<Strings> () ;
sa)
sa)
System.out.print (pg3.poll () + " ");

This produces

> f< >FF< >f < >ffc<

If you remember that spaces sort before characters and that uppercase
letters sort before lowercase characters, you should be good to go for the exam.

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Generics Type (Exam Objectives 6.3 and 6.4) 598§

CERTIFICATION OBJECTIVE

Generic Types (Objectives 6.3 and 6.4)

ch07.indd 595

6.3 Whrite code that uses the generic versions of the Collections API, in particular the Set,
List, and Map interfaces and implementation classes. Recognize the limitations of the non-
generic Collections API and how to refactor code to use the generic versions.

6.4 Develop code that makes proper use of type parameters in class/interface declarations,
instance variables, method arguments, and return types; and write generic methods or
methods that make use of wildcard types and understand the similarities and differences
between these two approaches. Write code that uses the NavigableSet and NavigableMap

5/21/08 5:38:15 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

BO@G Chapter 7: Generics and Collections

ch07.indd 596

Arrays in Java have always been type safe—an array declared as type String (String
[1) can't accept Integers (or ints), Dogs, or anything other than Strings. But
remember that before Java 5 there was no syntax for declaring a type safe collection.
To make an ArrayList of Strings, you said,

ArrayList myList = new ArrayList () ;

or, the polymorphic equivalent

List myList = new ArrayList();

There was no syntax that let you specify that myList will take Strings and only
Strings. And with no way to specify a type for the ArrayList, the compiler couldn't
enforce that you put only things of the specified type into the list. As of Java 5,
we can use generics, and while they aren't only for making type safe collections,
that's just about all most developers use generics for. So, while generics aren't just
for collections, think of collections as the overwhelming reason and motivation for
adding generics to the language.

And it was not an easy decision, nor has it been an entirely welcome addition.
Because along with all the nice happy type safety, generics come with a lot of
baggage—most of which you'll never see or care about, but there are some gotchas
that come up surprisingly quickly. We'll cover the ones most likely to show up in
your own code, and those are also the issues that you'll need to know for the exam.

The biggest challenge for Sun in adding generics to the language (and the
main reason it took them so long) was how to deal with legacy code built without
generics. Sun's Java engineers obviously didn't want to break everyone's existing
Java code, so they had to find a way for Java classes with both type safe (generic)
and non-type safe (non-generic/pre-Java 5) collections to still work together. Their
solution isn't the friendliest, but it does let you use older non-generic code, as well
as use generic code that plays with non-generic code. But notice we said "plays," and
not "plays WELL."

While you can integrate Java 5 and Java 6 generic code with legacy non-generic
code, the consequences can be disastrous, and unfortunately, most of the disasters
happen at runtime, not compile time. Fortunately, though, most compilers will
generate warnings to tell you when you're using unsafe (meaning non-generic)
collections.

The Java 5 exam covers both pre-Java 5 (non-generic) and Java 5 style
collections, and you'll see questions that expect you to understand the tricky

5/21/08 5:38:15 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Generics Type (Exam Objectives 6.3 and 6.4) 597

problems that can come from mixing non-generic and generic code together. And
like some of the other topics in this book, you could fill an entire book if you really
wanted to cover every detail about generics, but the exam (and this book) covers
more than most developers will ever need to use.

The Legacy Way to Do Collections

Here's a review of a pre-Java 5 ArrayList intended to hold Strings. (We say
"intended" because that's about all you had—good intentions—to make sure that
the ArrayList would hold only Strings).

List myList = new ArrayList(); // can't declare a type
myList.add ("Fred") ; // OK, it will hold Strings
myList.add (new Dog()) ; // and it will hold Dogs too
myList.add (new Integer (42)); // and Integers...

A non-generic collection can hold any kind of object! A non-generic collection
is quite happy to hold anything that is NOT a primitive.

This meant it was entirely up to the programmer to be...careful. Having no way
to guarantee collection type wasn't very programmer-friendly for such a strongly
typed language. We're so used to the compiler stopping us from, say, assigning an int
to a boolean reference or a String to a Dog reference, but with collections, it was,
"Come on in! The door is always open! All objects are welcome here any time!"

And since a collection could hold anything, the methods that get objects out
of the collection could have only one kind of return type—java.lang.Object. That
meant that getting a String back out of our only-Strings-intended list required a cast:

String s = (String) myList.get (0) ;

And since you couldn't guarantee that what was coming out really was a String
(since you were allowed to put anything in the list), the cast could fail at runtime.

So, generics takes care of both ends (the putting in and getting out) by enforcing
the type of your collections. Let's update the String list:

List<String> myList = new ArrayList<String>() ;

myList.add ("Fred") ; // OK, it will hold Strings
myList.add (new Dog()) ; // compiler error!!

ch07.indd 597 5/21/08 5:38:16 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

BO8 Chapter 7: Generics and Collections

Perfect. That's exactly what we want. By using generics syntax—which means
putting the type in angle brackets <String>, we're telling the compiler that this
collection can hold only String objects. The type in angle brackets is referred to as
either the "parameterized type," "type parameter," or of course just old-fashioned
"type." In this chapter, we'll refer to it both new ways.

So, now that what you put IN is guaranteed, you can also guarantee what comes
OUT, and that means you can get rid of the cast when you get something from the
collection. Instead of

String s = (String)myList.get(0); // pre-generics, when a
// String wasn't guaranteed

we can now just say
String s = myList.get (0) ;

The compiler already knows that myList contains only things that can be
assigned to a String reference, so now there's no need for a cast. So far, it seems
pretty simple. And with the new for loop, you can of course iterate over the
guaranteed-to-be-String list:

for (String s : myList) {
int x = s.length();

// no need for a cast before calling a String method! The
// compiler already knew "s" was a String coming from MyList

And of course you can declare a type parameter for a method argument, which
then makes the argument a type safe reference:
void takeListOfStrings (List<String> strings) {
strings.add("foo"); // no problem adding a String
}
The method above would NOT compile if we changed it to

void takeListOfStrings (List<String> strings) {
strings.add (new Integer(42)); // NO!! strings is type safe
}

ch07.indd 598 5/21/08 5:38:16 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Generics Type (Exam Objectives 6.3 and 6.4) 599

Return types can obviously be declared type safe as well:

public List<Dog> getDogList () {
List<Dog> dogs = new ArrayList<Dog> () ;
// more code to insert dogs
return dogs;

The compiler will stop you from returning anything not compatible with a
List<Dog> (although what is and is not compatible is going to get very interesting
in a minute). And since the compiler guarantees that only a type safe Dog List is
returned, those calling the method won't need a cast to take Dogs from the List:

Dog d = getDogList().get(0); // we KNOW a Dog is coming out
With pre-Java 5, non-generic code, the getDogList () method would be
public List getDogList () {
List dogs = new ArrayList();
// code to add only Dogs... fingers crossed...
return dogs; // a List of ANYTHING will work here

and the caller would need a cast:

Dog d = (Dog) getDogList () .get (0);

(The cast in this example applies to what comes from the List's get () method; we
aren't casting what is returned from the getDogList () method, which is a List.)

But what about the benefit of a completely heterogeneous collection? In other
words, what if you liked the fact that before generics you could make an ArrayList
that could hold any kind of object?

List myList = new ArrayList(); // old-style, non-generic

is almost identical to

List<Object> myList = new
ArrayList<Object>(); // holds ANY object type

ch07.indd 599 5/21/08 5:38:16 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

600 Chapter 72 Generics and Collections

Declaring a List with a type parameter of <Object> makes a collection that works
in almost the same way as the original pre-Java 5, non-generic collection—you can
put ANY Object type into the collection. You'll see a little later that non-generic
collections and collections of type <Object> aren't entirely the same, but most of
the time the differences do not matter.

O, if only this were the end of the story...but there are still a few tricky issues
with methods arguments, polymorphism, and integrating generic and non-generic
code, so we're just getting warmed up here.

Generics and Legacy Code

The easiest generics thing you'll need to know for the exam is how to update
non-generic code to make it generic. You just add a type in angle brackets (<>)
immediately following the collection type in BOTH the variable declaration and the
constructor call, including any place you declare a variable (so that means arguments
and return types too). A pre-Java 5 List meant to hold only Integers:

List myList = new ArrayList();
becomes

List<Integer> myList = new ArrayList<Integers>();
and a list meant to hold only Strings goes from

public List changeStrings (ArrayList s) { }
to this:

public List<String> changeStrings (ArrayList<String> s) { }

Easy. And if there's code that used the earlier non-generic version and performed
a cast to get things out, that won't break anyone's code:

Integer i = (Integer) list.get(0); // cast no longer needed,
// but it won't hurt

ch07.indd 600 5/21/08 5:38:16 PM

ch07.indd 601

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Mixing Generic and Non-generic Collections (Exam Objectives 6.3 and 6.4) &0 |

Mixing Generic and Non-generic Collections

Now here's where it starts to get interesting...imagine we have an ArrayList, of type
Integer, and we're passing it into a method from a class whose source code we don't
have access to. Will this work?

// a Java 5 class using a generic collection
import java.util.*;
public class TestlLegacy {
public static void main(Stringl[] args)
List<Integer> myList = new ArrayList<Integers>() ;
// type safe collection
myList.add (4) ;
myList.add(6) ;
Adder adder = new Adder() ;
int total = adder.addAll (myList) ;
// pass it to an untyped argument
System.out.println (total) ;

The older, non-generics class we want to use:

import java.util.*;
class Adder {
int addall (List list)
// method with a non-generic List argument,
// but assumes (with no guarantee) that it will be Integers
Iterator it = list.iterator();
int total = 0;
while (it.hasNext()) {
int 1 = ((Integer)it.next()).intValue() ;
total += 1i;
}

return total;

Yes, this works just fine. You can mix correct generic code with older non-generic
code, and everyone is happy.

In the previous example, the addal1 () legacy method assumed (trusted? hoped?)
that the list passed in was indeed restricted to Integers, even though when the code
was written, there was no guarantee. It was up to the programmers to be careful.

5/21/08 5:38:16 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

6072 Chapter 72 Generics and Collections

ch07.indd 602

Since the addal1 () method wasn't doing anything except getting the Integer
(using a cast) from the list and accessing its value, there were no problems. In that
example, there was no risk to the caller's code, but the legacy method might have
blown up if the list passed in contained anything but Integers (which would cause a
ClassCastException).

But now imagine that you call a legacy method that doesn't just read a value but
adds something to the ArrayList? Will this work?

import java.util.*;
public class TestBadLegacy {
public static void main(String[] args) {

List<Integer> myList = new ArrayList<Integers>() ;
myList.add(4) ;
myList.add(6) ;
Inserter in = new Inserter();
in.insert (myList); // pass List<Integer> to legacy code

}
}

class Inserter ({
// method with a non-generic List argument
void insert (List list)
list.add (new Integer(42)); // adds to the incoming list

Sure, this code works. It compiles, and it runs. The insert () method puts an
Integer into the list that was originally typed as <Integer>, so no problem.
But...what if we modify the insert () method like this:

void insert (List list) {
list.add(new String("42")); // put a String in the list
// passed in

Will that work? Yes, sadly, it does! It both compiles and runs. No runtime
exception. Yet, someone just stuffed a String into a supposedly type safe ArrayList of
type <Integer>. How can that be?

Remember, the older legacy code was allowed to put anything at all (except
primitives) into a collection. And in order to support legacy code, Java 5 and Java 6
allows your newer type safe code to make use of older code (the last thing Sun wanted
to do was ask several million Java developers to modify all their existing code).

5/21/08 5:38:17 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Mixing Generic and Non-generic Collections (Exam Objectives 6.3 and 6.4) 60 3

So, the Java 5 or Java 6 compiler is forced into letting you compile your new type
safe code even though your code invokes a method of an older class that takes a
non-type safe argument and does who knows what with it.

However, just because the Java 5 compiler allows this code to compile doesn't
mean it has to be HAPPY about it. In fact the compiler will warn you that you're
taking a big, big risk sending your nice protected ArrayList<Integer> into a
dangerous method that can have its way with your list and put in Floats, Strings, or
even Dogs.

When you called the adda11 () method in the earlier example, it didn't insert
anything to the list (it simply added up the values within the collection), so there
was no risk to the caller that his list would be modified in some horrible way. It
compiled and ran just fine. But in the second version, with the legacy insert ()
method that adds a String, the compiler generated a warning:

javac TestBadLegacy.java
Note: TestBadLegacy.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

Remember that compiler warnings are NOT considered a compiler failure. The
compiler generated a perfectly valid class file from the compilation, but it was
kind enough to tell you by saying, in so many words, "I seriously hope you know
what you are doing because this old code has NO respect (or even knowledge) of
your <Integer> typing, and can do whatever the heck it wants to your precious
ArrayList<Integer>."

Jatch
Be sure you know the difference between "compilation fails"

and "compiles without error"” and "compiles without warnings" and "compiles
with warnings." In most questions on the exam, you care only about compiles vs.
compilation fails—compiler warnings don’t matter for most of the exam. But when
you are using generics, and mixing both typed and untyped code, warnings matter.

Back to our example with the legacy code that does an insert, keep in mind that
for BOTH versions of the insert () method (one that adds an Integer and one that
adds a String) the compiler issues warnings. The compiler does NOT know whether

ch07.indd 603 5/21/08 5:38:17 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

604 Chapter 70 Generics and Collections

the insert () method is adding the right thing (Integer) or wrong thing (String).
The reason the compiler produces a warning is because the method is ADDING
something to the collection! In other words, the compiler knows there's a chance
the method might add the wrong thing to a collection the caller thinks is type safe.

For the purposes of the exam, unless the question includes an answer that

mentions warnings, then even if you know compilation will produce warnings, that is still a
successful compile! Compiling with warnings is NEVER considered a compilation failure.

One more time—if you see code that you know will compile with

warnings, you must NOT choose "Compilation fails." as an answer.The bottom line is
this: code that compiles with warnings is still a successful compile. If the exam question
wants to test your knowledge of whether code will produce a warning (or what you can
do to the code to ELIMINATE warnings), the question (or answer) will explicitly include
the word "warnings."

ch07.indd 604

So far, we've looked at how the compiler will generate warnings if it sees that
there's a chance your type safe collection could be harmed by older, non-type-safe
code. But one of the questions developers often ask is, "Okay, sure, it compiles, but
why does it RUN? Why does the code that inserts the wrong thing into my list
work at runtime?" In other words, why does the JVM let old code stuff a String into
your ArrayList<Integer>, without any problems at all? No exceptions, nothing. Just
a quiet, behind-the-scenes, total violation of your type safety that you might not
discover until the worst possible moment.

There's one Big Truth you need to know to understand why it runs without
problems—the JVM has no idea that your ArrayList was supposed to hold only
Integers. The typing information does not exist at runtime! All your generic code
is strictly for the compiler. Through a process called "type erasure," the compiler
does all of its verifications on your generic code and then strips the type information
out of the class bytecode. At runtime, ALL collection code—both legacy and new
Java 5 code you write using generics—Ilooks exactly like the pre-generic version of
collections. None of your typing information exists at runtime. In other words, even

though you WROTE

List<Integer> myList = new ArrayList<Integers>() ;

5/21/08 5:38:17 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Mixing Generic and Non-generic Collections (Exam Objectives 6.3 and 6.4) G085

By the time the compiler is done with it, the JVM sees what it always saw before
Java 5 and generics:

List myList = new ArrayList();

The compiler even inserts the casts for you—the casts you had to do to get things
out of a pre-Java 5 collection.

Think of generics as strictly a compile-time protection. The compiler uses generic
type information (the <type> in the angle brackets) to make sure that your code
doesn't put the wrong things into a collection, and that you do not assign what you
get from a collection to the wrong reference type. But NONE of this protection
exists at runtime.

This is a little different from arrays, which give you BOTH compile-time
protection and runtime protection. Why did they do generics this way? Why is there
no type information at runtime? To support legacy code. At runtime, collections
are collections just like the old days. What you gain from using generics is compile-
time protection that guarantees that you won't put the wrong thing into a typed
collection, and it also eliminates the need for a cast when you get something out,
since the compiler already knows that only an Integer is coming out of an Integer list.

The fact is, you don't NEED runtime protection...until you start mixing up
generic and non-generic code, as we did in the previous example. Then you can
have disasters at runtime. The only advice we have is to pay very close attention to
those compiler warnings:

javac TestBadLegacy.java
Note: TestBadLegacy.java uses unchecked or unsafe operatiomns.
Note: Recompile with -Xlint:unchecked for details.

This compiler warning isn't very descriptive, but the second note suggests that
you recompile with -X1int :unchecked. If you do, you'll get something like this:

javac -Xlint:unchecked TestBadLegacy.java
TestBadLegacy.java:17: warning: [unchecked] unchecked call to
add (E) as a member of the raw type java.util.List

list.add (new String("42"));

A

1 warning

When you compile with the -x1int :unchecked flag, the compiler shows you
exactly which method(s) might be doing something dangerous. In this example,

ch07.indd 605 5/21/08 5:38:17 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

606 Chapter 72 Generics and Collections

since the list argument was not declared with a type, the compiler treats it as legacy
code and assumes no risk for what the method puts into the "raw" list.

On the exam, you must be able to recognize when you are compiling code that
will produce warnings but still compile. And any code that compiles (even with
warnings) will run! No type violations will be caught at runtime by the JVM, until
those type violations mess with your code in some other way. In other words, the act
of adding a String to an <Integer> list won't fail at runtime until you try to treat that
String-you-think-is-an-Integer as an Integer.

For example, imagine you want your code to pull something out of your supposedly
type safe ArrayList<Integer> that older code put a String into. It compiles (with
warnings). It runs...or at least the code that actually adds the String to the list runs.
But when you take the String-that-wasn't-supposed-to-be-there out of the list, and
try to assign it to an Integer reference or invoke an Integer method, you're dead.

Keep in mind, then, that the problem of putting the wrong thing into a typed
(generic) collection does not show up at the time you actually do the add () to the
collection. It only shows up later, when you try to use something in the list and it
doesn't match what you were expecting. In the old (pre-Java 5) days, you always
assumed that you might get the wrong thing out of a collection (since they were all
non-type safe), so you took appropriate defensive steps in your code. The problem
with mixing generic with non-generic code is that you won't be expecting those
problems if you have been lulled into a false sense of security by having written type
safe code. Just remember that the moment you turn that type safe collection over to
older, non-type safe code, your protection vanishes.

Again, pay very close attention to compiler warnings, and be prepared to see
issues like this come up on the exam.

When using legacy (non-type safe) collections—watch out for unboxing

problems! If you declare a non-generic collection, the get () method ALWAYS returns a
reference of type java.lang.Object. Remember that unboxing can’t convert a plain old
Object to a primitive, even if that Object reference refers to an Integer (or some other
wrapped primitive) on the heap. Unboxing converts only from a wrapper class reference
(like an Integer or a Long) to a primitive.

ch07.indd 606

5/21/08 5:38:18 PM

ch07.indd 607

Datch

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Polymorphism and Generics (Exam Objectives 6.3 and 6.4) @ OQ7

Unboxing gotcha, continued:

List test = new ArrayList () ;
test.add (43) ;

int x = (Integer)test.get(0); // you must cast !!
List<Integer> test2 =
test2.add (343) ;

test2.get (0) ;

new ArrayList<Integers> () ;

int x2 = // cast not necessary

Watch out for missing casts associated with pre-Java 5,

non-generic collections.

Polymorphism and Generics

Generic collections give you the same benefits of type safety that you've always had
with arrays, but there are some crucial differences that can bite you if you aren't
prepared. Most of these have to do with polymorphism.

You've already seen that polymorphism applies to the "base" type of the

collection:

List<Integer> myList =

new ArrayList<Integers>();

In other words, we were able to assign an ArrayList to a List reference, because
List is a supertype of ArrayList. Nothing special there—this polymorphic assignment
works the way it always works in Java, regardless of the generic typing.

But what about this?

class Parent { }

class Child extends Parent { }

List<Parent> myList

= new ArrayList<Childs> () ;

Think about it for a minute.

Keep thinking...

5/21/08 5:38:18 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

608 Chapter 72 Generics and Collections

ch07.indd 608

No, it doesn't work. There's a very simple rule here—the type of the variable
declaration must match the type you pass to the actual object type. If you declare
List<Foo> foo then whatever you assign to the foo reference MUST be of the

generic type <Foo>. Not a subtype of <Foo>. Not a supertype of <Foo>. Just <Foo>.

These are wrong:
List<Object> myList = new ArrayList<JButton>(); // NO!

List<Number> numbers = new ArrayList<Integer>(); // NO!
// remember that Integer is a subtype of Number

But these are fine:

List<JButton> myList = new ArrayList<JButtons>(); // yes
List<Object> myList = new ArrayList<Objects>(); // vyes
List<Integer> myList = new ArrayList<Integer>(); // yes

So far so good. Just keep the generic type of the reference and the generic type
of the object to which it refers identical. In other words, polymorphism applies here
to only the "base" type. And by "base," we mean the type of the collection class
itself—the class that can be customized with a type. In this code,

List<JButton> myList = new ArrayList<JButtons>() ;

List and ArrayList are the base type and JButton is the generic type. So an ArrayList
can be assigned to a List, but a collection of <JButton> cannot be assigned to a
reference of <Object>, even though JButton is a subtype of Object.

The part that feels wrong for most developers is that this is NOT how it works
with arrays, where you are allowed to do this,

import java.util.*;
class Parent { }
class Child extends Parent { }
public class TestPoly {
public static void main(String[] args) {
Parent [] myArray = new Child[3]; // yes

}

which means you're also allowed to do this

5/21/08 5:38:18 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Generic Methods (Exam Objectives 6.3 and 6.4) 609

Object [] myArray = new JButton[3]; // ves

but not this:

List<Object> list = new ArrayList<JButton>(); // NO!

Why are the rules for typing of arrays different from the rules for generic
typing? We'll get to that in a minute. For now, just burn it into your brain that
polymorphism does not work the same way for generics as it does with arrays.

Generic Methods

If you weren't already familiar with generics, you might be feeling very
uncomfortable with the implications of the previous no-polymorphic-assignment-
for-generic-types thing. And why shouldn't you be uncomfortable? One of the
biggest benefits of polymorphism is that you can declare, say, a method argument of a
particular type and at runtime be able to have that argument refer to any subtype—
including those you'd never known about at the time you wrote the method with the
supertype argument.

For example, imagine a classic (simplified) polymorphism example of a
veterinarian (AnimalDoctor) class with a method checkup (). And right now,
you have three Animal subtypes—Dog, Cat, and Bird—each implementing the
abstract checkup () method from Animal:

abstract class Animal {
public abstract void checkup () ;
}
class Dog extends Animal {
public void checkup() // implement Dog-specific code
System.out.println ("Dog checkup") ;
}
}

class Cat extends Animal ({
public void checkup() { // implement Cat-specific code
System.out.println("Cat checkup") ;
}
}

class Bird extends Animal ({
public void checkup() { // implement Bird-specific code
System.out.println ("Bird checkup") ;
bl

ch07.indd 609 5/21/08 5:38:18 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

610 Chapter7: Generics and Collections

ch07.indd 610

Forgetting collections/arrays for a moment, just imagine what the AnimalDoctor
class needs to look like in order to have code that takes any kind of Animal and
invokes the Animal checkup () method. Trying to overload the AnimalDoctor
class with checkup() methods for every possible kind of animal is ridiculous, and
obviously not extensible. You'd have to change the AnimalDoctor class every time
someone added a new subtype of Animal.

So in the AnimalDoctor class, you'd probably have a polymorphic method:

public void checkAnimal (Animal a)
a.checkup(); // does not matter which animal subtype each
// Animal's overridden checkup () method runs

And of course we do want the AnimalDoctor to also have code that can take
arrays of Dogs, Cats, or Birds, for when the vet comes to the dog, cat, or bird kennel.
Again, we don't want overloaded methods with arrays for each potential Animal
subtype, so we use polymorphism in the AnimalDoctor class:

public void checkAnimals (Animal[] animals) {
for (Animal a : animals)
a.checkup () ;
}
}

Here is the entire example, complete with a test of the array polymorphism that
takes any type of animal array (Dog[1, Cat [1, Bird[]).

import java.util.*;
abstract class Animal

public abstract void checkup () ;
}

class Dog extends Animal {
public void checkup() { // implement Dog-specific code
System.out.println ("Dog checkup") ;

}
}

class Cat extends Animal ({
public void checkup() { // implement Cat-specific code
System.out.println("Cat checkup") ;

}

5/21/08 5:38:19 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Generic Methods (Exam Objectives 6.3 and 6.4) @] |

class Bird extends Animal {
public void checkup() { // implement Bird-specific code
System.out.println ("Bird checkup") ;
}
}

public class AnimalDoctor {
// method takes an array of any animal subtype
public void checkAnimals (Animal[] animals) {
for (Animal a : animals) {
a.checkup() ;
}
}

public static void main(Stringl[] args)

// test it
Dog[] dogs = {new Dog(), new Dog()};
Cat[] cats = {new Cat(), new Cat(), new Cat()};

Bird[] birds {new Bird () };

AnimalDoctor doc = new AnimalDoctor() ;

doc.checkAnimals (dogs); // pass the Dogl]
doc.checkAnimals (cats); // pass the Cat][]
doc.checkAnimals (birds); // pass the Bird[]

This works fine, of course (we know, we know, this is old news). But here's why
we brought this up as refresher—this approach does NOT work the same way with
type safe collections!

In other words, a method that takes, say, an ArrayList<Animal> will NOT be
able to accept a collection of any Animal subtype! That means ArrayList<Dog>
cannot be passed into a method with an argument of ArrayList<Animal>, even
though we already know that this works just fine with plain old arrays.

Obviously this difference between arrays and ArrayList is consistent with the
polymorphism assignment rules we already looked at—the fact that you cannot
assign an object of type ArrayList<JButton> to a List<Object>. But this is where
you really start to feel the pain of the distinction between typed arrays and typed
collections.

We know it won't work correctly, but let's try changing the AnimalDoctor code
to use generics instead of arrays:

public class AnimalDoctorGeneric

ch07.indd 611 5/21/08 5:38:19 PM

612 Chapter7:

ch07.indd 612

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Generics and Collections

// change the argument from Animal[] to ArrayLis
public void checkAnimals (ArrayList<Animals> anima
for (Animal a : animals)
a.checkup () ;

}
}

public static void main(String[] args) {
// make ArrayLists instead of arrays for Dog,
List<Dog> dogs = new ArrayList<Dogs () ;
dogs.add (new Dog()) ;
dogs.add (new Dog()) ;
List<Cat> cats = new ArrayList<Cat>();
cats.add (new Cat()) ;
cats.add (new Cat()) ;
List<Bird> birds = new ArrayList<Birds>();
birds.add (new Bird()) ;
// this code is the same as the Array version
AnimalDoctorGeneric doc = new AnimalDoctorGen
// this worked when we used arrays instead of
doc.checkAnimals(dogs); // send a List<Dog>
doc.checkAnimals (cats); // send a List<Cat>
doc.checkAnimals (birds); // send a List<Bird>

So what does happen?

javac AnimalDoctorGeneric.java
AnimalDoctorGeneric.java:51: checkAnimals (java.util.
ArrayList<Animal>) in AnimalDoctorGeneric cannot be
(java.util.List<Dog>)

doc.checkAnimals (dogs) ;
AnimalDoctorGeneric.java:52: checkAnimals (java.util.
ArrayList<Animal>) in AnimalDoctorGeneric cannot be
(java.util.List<Cat>)

doc.checkAnimals (cats) ;
AnimalDoctorGeneric.java:53: checkAnimals (java.util.
ArrayList<Animal>) in AnimalDoctorGeneric cannot be
(java.util.List<Bird>)

doc.checkAnimals (birds) ;

A

3 errors

t<Animal>
1s)

Cat, Bird

eric() ;
ArrayLists

applied to

applied to

applied to

5/21/08 5:38:19 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Generic Methods (Exam Objectives 6.3 and 6.4) @ | 3

The compiler stops us with errors, not warnings. You simply CANNOT assign
the individual ArrayLists of Animal subtypes (<Dog>, <Cat>, or <Bird>) to an
ArrayList of the supertype <Animal>, which is the declared type of the argument.

This is one of the biggest gotchas for Java programmers who are so familiar with
using polymorphism with arrays, where the same scenario (Animal [] can refer to
Dog[], Cat [], or Bird []) works as you would expect. So we have two real issues:

I. Why doesn't this work?

2. How do you get around it?

You'd hate us and all of the Sun engineers if we told you that there wasn't a way
around it—that you had to accept it and write horribly inflexible code that tried to
anticipate and code overloaded methods for each specific <type>. Fortunately, there
is a way around it.

But first, why can't you do it if it works for arrays? Why can't you pass an
ArrayList<Dog> into a method with an argument of ArrayList<Animal>?

We'll get there, but first let's step way back for a minute and consider this
perfectly legal scenario:

Animal[] animals = new Animal [3];
animals [0] = new Cat();
animals[1] = new Dog() ;

Part of the benefit of declaring an array using a more abstract supertype is that the
array itself can hold objects of multiple subtypes of the supertype, and then you can
manipulate the array assuming everything in it can respond to the Animal interface
(in other words, everything in the array can respond to method calls defined in the
Animal class). So here, we're using polymorphism not for the object that the array
reference points to, but rather what the array can actually HOLD—in this case, any
subtype of Animal. You can do the same thing with generics:

List<Animal> animals = new ArrayList<Animals () ;
animals.add(new Cat()); // OK
animals.add (new Dog()); // OK

So this part works with both arrays and generic collections—we can add an
instance of a subtype into an array or collection declared with a supertype. You
can add Dogs and Cats to an Animal array (Animal [1) or an Animal collection
(ArrayList<Animal>).

ch07.indd 613 5/21/08 5:38:19 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

6 14 Chapter7: Generics and Collections

And with arrays, this applies to what happens within a method:

public void addAnimal (Animal[] animals) {
animals[0] = new Dog(); // no problem, any Animal works
// in Animal []

So if this is true, and if you can put Dogs into an ArrayList<Animal>, then why
can't you use that same kind of method scenario? Why can't you do this?

public void addAnimal (ArrayList<Animal> animals) {
animals.add (new Dog()); // sometimes allowed. ..

}

Actually, you CAN do this under certain conditions. The code above WILL
compile just fine IF what you pass into the method is also an ArrayList<Animal>.
This is the part where it differs from arrays, because in the array version, you
COULD pass a Dog[] into the method that takes an Animal [].

The ONLY thing you can pass to a method argument of ArrayList<Animal> is
an ArrayList<Animal>! (Assuming you aren't trying to pass a subtype of ArrayList,
since remember—the "base" type can be polymorphic.)

The question is still out there—why is this bad? And why is it bad for ArrayList
but not arrays? Why can't you pass an ArrayList<Dog> to an argument of
ArrayList<Animal>? Actually, the problem IS just as dangerous whether you're
using arrays or a generic collection. It's just that the compiler and JVM behave
differently for arrays vs. generic collections.

The reason it is dangerous to pass a collection (array or ArrayList) of a subtype
into a method that takes a collection of a supertype, is because you might add
something. And that means you might add the WRONG thing! This is probably
really obvious, but just in case (and to reinforce), let's walk through some scenarios.
The first one is simple:

public void foo() {

Dog[] dogs = {new Dog(), new Dog() };

addAnimal (dogs); // no problem, send the Dog[] to the method
}
public void addAnimal (Animal[] animals)

animals[0] = new Dog(); // ok, any Animal subtype works

}

ch07.indd 614 5/21/08 5:38:20 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Generic Methods (Exam Objectives 6.3 and 6.4) @ | §

This is no problem. We passed a Dog [] into the method, and added a Dog to the
array (which was allowed since the method parameter was type Animal [, which
can hold any Animal subtype). But what if we changed the calling code to

public void foo() {
Cat[] cats = {new Cat(), new Cat()};
addAnimal (cats); // no problem, send the Cat[] to the method

}

and the original method stays the same:

public void addAnimal (Animal[] animals)
animals[0] = new Dog(); // Eeek! We just put a Dog
// in a Cat array!

The compiler thinks it is perfectly fine to add a Dog to an animal [] array, since
a Dog can be assigned to an Animal reference. The problem is, if you passed in an
array of an Animal subtype (Cat, Dog, or Bird), the compiler does not know. The
compiler does not realize that out on the heap somewhere is an array of type cat [1,
not Animal [], and you're about to try to add a Dog to it. To the compiler, you have
passed in an array of type Animal, so it has no way to recognize the problem.

THIS is the scenario we're trying to prevent, regardless of whether it's an array or
an ArrayList. The difference is, the compiler lets you get away with it for arrays, but
not for generic collections.

The reason the compiler won't let you pass an ArrayList<Dog> into a method
that takes an ArrayList<Animal>, is because within the method, that parameter is
of type ArrayList<Animal>, and that means you could put any kind of Animal into
it. There would be no way for the compiler to stop you from putting a Dog into a
List that was originally declared as <Cat>, but is now referenced from the <Animal>
parameter.

We still have two questions...how do you get around it and why the heck does
the compiler allow you to take that risk for arrays but not for ArrayList (or any other
generic collection)?

The reason you can get away with compiling this for arrays is because there is a
runtime exception (ArrayStoreException) that will prevent you from putting the
wrong type of object into an array. If you send a Dog array into the method that takes
an Animal array, and you add only Dogs (including Dog subtypes, of course) into the
array now referenced by Animal, no problem. But if you DO try to add a Cat to the
object that is actually a Dog array, you'll get the exception.

ch07.indd 615 5/21/08 5:38:20 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

6 16 Chapter 72 Generics and Collections

ch07.indd 616

But there IS no equivalent exception for generics, because of type erasure!
In other words, at runtime the JVM KNOWS the type of arrays, but does NOT
know the type of a collection. All the generic type information is removed during
compilation, so by the time it gets to the JVM, there is simply no way to recognize
the disaster of putting a Cat into an ArrayList<Dog> and vice versa (and it becomes
exactly like the problems you have when you use legacy, non-type safe code).

So this actually IS legal code:

public void addAnimal (List<Animals> animals) {
animals.add (new Dog()); // this is always legal,
// since Dog can
// be assigned to an Animal
// reference
1
public static void main(String[] args) {
List<Animal> animals = new ArrayList<Animals> () ;
animals.add (new Dog()) ;
animals.add (new Dog()) ;
AnimalDoctorGeneric doc = new AnimalDoctorGeneric () ;
doc.addAnimal (animals); // OK, since animals matches
// the method arg

As long as the only thing you pass to the addAnimals (List<Animals) is an
ArrayList<Animal>, the compiler is pleased—knowing that any Animal subtype
you add will be valid (you can always add a Dog to an Animal collection, yada, yada,
yada). But if you try to invoke addAnimal () with an argument of any OTHER
ArrayList type, the compiler will stop you, since at runtime the JVM would have no
way to stop you from adding a Dog to what was created as a Cat collection.

For example, this code that changes the generic type to <Dog>, but without
changing the addanimal () method, will NOT compile:

public void addAnimal (List<Animal> animals) {
animals.add (new Dog()); // still OK as always

}

public static void main(String[] args) {
List<Dog> animals = new ArrayList<Dog> () ;
animals.add (new Dog()) ;
animals.add (new Dog()) ;
AnimalDoctorGeneric doc = new AnimalDoctorGeneric () ;
doc.addAnimal (animals); // THIS is where it breaks!

5/21/08 5:38:20 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Generic Methods (Exam Objectives 6.3 and 6.4) @ | 7

The compiler says something like:

javac AnimalDoctorGeneric.java
AnimalDoctorGeneric.java:49: addAnimal (java.util.List<Animals)
in AnimalDoctorGeneric cannot be applied to (java.util.
List<Dog>)

doc.addAnimal (animals) ;

A

1 error

Notice that this message is virtually the same one you'd get trying to invoke
any method with the wrong argument. It's saying that you simply cannot invoke
addAnimal (List<Animals) using something whose reference was declared as
List<Dog>. (It's the reference type, not the actual object type that matters—but
remember—the generic type of an object is ALWAYS the same as the generic
type declared on the reference. List<Dog> can refer ONLY to collections that are
subtypes of List, but which were instantiated as generic type <Dog>.)

Once again, remember that once inside the addanimals () method, all that
matters is the type of the parameter—in this case, List<Animal>. (We changed it
from ArrayList to List to keep our "base" type polymorphism cleaner.)

Back to the key question—how do we get around this? If the problem is related
only to the danger of adding the wrong thing to the collection, what about the
checkup () method that used the collection passed in as read-only? In other words,
what about methods that invoke Animal methods on each thing in the collection,
which will work regardless of which kind of ArrayList subtype is passed in?

And that's a clue! It's the add () method that is the problem, so what we need
is a way to tell the compiler, "Hey, I'm using the collection passed in just to invoke
methods on the elements—and [promise not to ADD anything into the collection."
And there IS a mechanism to tell the compiler that you can take any generic
subtype of the declared argument type because you won't be putting anything in the
collection. And that mechanism is the wildcard <?>.

The method signature would change from

public void addAnimal (List<Animal> animals)

to

public void addAnimal (List<? extends Animal> animals)

ch07.indd 617 5/21/08 5:38:21 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

618 Chapter7: Generics and Collections

ch07.indd 618

By saying <? extends Animals, we're saying, "l can be assigned a collection
that is a subtype of List and typed for <Animal> or anything that extends Animal.
And oh yes, | SWEAR that I will not ADD anything into the collection." (There's
a little more to the story, but we'll get there.)

So of course the addanimal () method above won't actually compile even with
the wildcard notation, because that method DOES add something.

public void addAnimal (List<? extends Animal> animals) {
animals.add (new Dog()); // NO! Can't add if we
// use <? extends Animals>

You'll get a very strange error that might look something like this:

javac AnimalDoctorGeneric.java

AnimalDoctorGeneric.java:38: cannot find symbol

symbol : method add (Dog)

location: interface java.util.List<capture of ? extends Animals>
animals.add (new Dog()) ;

A

1l error

which basically says, "you can't add a Dog here." If we change the method so that it
doesn't add anything, it works.

But wait—there's more. (And by the way, everything we've covered in this
generics section is likely to be tested for on the exam, with the exception of "type
erasure," for which you aren't required to know any details.)

First, the <? extends Animals means that you can take any subtype of Animal;
however, that subtype can be EITHER a subclass of a class (abstract or concrete)
OR a type that implements the interface after the word extends. In other words,
the keyword extends in the context of a wildcard represents BOTH subclasses and
interface implementations. There is no <? implements Serializables syntax. If
you want to declare a method that takes anything that is of a type that implements
Serializable, you'd still use extends like this:

void foo(List<? extends Serializables> list) // odd, but correct
// to use "extends"

This looks strange since you would never say this in a class declaration because
Serializable is an interface, not a class. But that's the syntax, so burn it in!

5/21/08 5:38:21 PM

ch07.indd 619

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Generic Methods (Exam Objectives 6.3and 6.4) G]| 9

One more time—there is only ONE wildcard keyword that represents both
interface implementations and subclasses. And that keyword is extends. But when
you see it, think "Is-a", as in something that passes the instanceof test.

However, there is another scenario where you can use a wildcard AND still add to
the collection, but in a safe way—the keyword super.

Imagine, for example, that you declared the method this way:

public void addAnimal (List<? super Dog> animals) {
animals.add(new Dog()); // adding is sometimes OK with super

}

public static void main(Stringl[] args)
List<Animal> animals = new ArrayList<Animals () ;
animals.add (new Dog()) ;
animals.add (new Dog()) ;
AnimalDoctorGeneric doc = new AnimalDoctorGeneric () ;
doc.addAnimal (animals); // passing an Animal List

Now what you've said in this line

public void addAnimal (List<? super Dog> animals)

is essentially, "Hey compiler, please accept any List with a generic type that is of type
Dog, or a supertype of Dog. Nothing lower in the inheritance tree can come in, but
anything higher than Dog is OK."

You probably already recognize why this works. If you pass in a list of type
Animal, then it's perfectly fine to add a Dog to it. If you pass in a list of type Dog, it's
perfectly fine to add a Dog to it. And if you pass in a list of type Object, it's STILL
fine to add a Dog to it. When you use the <? super ... syntax, you are telling
the compiler that you can accept the type on the right-hand side of super or any
of its supertypes, since—and this is the key part that makes it work—a collection
declared as any supertype of Dog will be able to accept a Dog as an element.
List<Object> can take a Dog. List<Animal> can take a Dog. And List<Dog> can
take a Dog. So passing any of those in will work. So the super keyword in wildcard
notation lets you have a restricted, but still possible way to add to a collection.

So, the wildcard gives you polymorphic assignments, but with certain restrictions
that you don't have for arrays. Quick question: are these two identical?

public void foo(List<?> list) { }
public void foo(List<Object> list) { }

5/21/08 5:38:21 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

620 Chapter7: Generics and Collections

ch07.indd 620

If there IS a difference (and we're not yet saying there is), what is it?

There IS a huge difference. L.ist<?>, which is the wildcard <?> without the
keywords extends or super, simply means "any type." So that means any type of
List can be assigned to the argument. That could be a List of <Dog>, <Integer>,
<JButton>, <Socket>, whatever. And using the wildcard alone, without the
keyword super (followed by a type), means that you cannot ADD anything to the
list referred to as List<?>.

List<Objects is completely different from List<?>. List<Object> means that
the method can take ONLY a List<Objects. Not a List<Dogs, or a List<Cat >.
It does, however, mean that you can add to the list, since the compiler has already
made certain that you're passing only a valid List<Object> into the method.

Based on the previous explanations, figure out if the following will work:

import java.util.*;
public class TestWildcards {
public static void main(String[] args) {
List<Integer> myList = new ArrayList<Integers>() ;
Bar bar = new Bar () ;
bar.doInsert (myList) ;

}
}

class Bar
void doInsert (List<?> list) ({
list.add (new Dog()) ;

If not, where is the problem?

The problem is in the 1ist.add () method within doInsert (). The <?>
wildcard allows a list of ANY type to be passed to the method, but the add ()
method is not valid, for the reasons we explored earlier (that you could put the
wrong kind of thing into the collection). So this time, the TestWildcards class is
fine, but the Bar class won't compile because it does an add () in a method that uses
a wildcard (without super). What if we change the doInsert () method to this:

public class TestWildcards
public static void main(Stringl[] args) {
List<Integer> myList = new ArrayList<Integer>();
Bar bar = new Bar () ;
bar.doInsert (myList) ;

5/21/08 5:38:21 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Generic Methods (Exam Objectives 6.3 and 6.4) &2 |

class Bar {
void doInsert (List<Object> list) {
list.add (new Dog()) ;

}

Now will it work? If not, why not?

This time, class Bar, with the doInsert () method, compiles just fine. The
problem is that the TestWildcards code is trying to pass a List<Integer> into a
method that can take ONLY a List<Object>. And nothing else can be substituted for
<Object>.

By the way, List<? extends Objects and List<?> are absolutely identical!
They both say, "I can refer to any type of object." But as you can see, neither of
them are the same as List<Object>. One way to remember this is that if you see
the wildcard notation (a question mark ?), this means "many possibilities". If you
do NOT see the question mark, then it means the <type> in the brackets, and
absolutely NOTHING ELSE. List<Dog> means List<Dog> and not List<Beagle>,
List<Poodle>, or any other subtype of Dog. But List<? extends Dog> could mean
List<Beagle>, List<Poodle>, and so on. Of course List<?> could be... anything at all.

Keep in mind that the wildcards can be used only for reference declarations
(including arguments, variables, return types, and so on). They can't be used as the
type parameter when you create a new typed collection. Think about that—while
a reference can be abstract and polymorphic, the actual object created must be of a
specific type. You have to lock down the type when you make the object using new.

As a little review before we move on with generics, look at the following
statements and figure out which will compile:

List<?> list = new ArrayList<Dog>() ;

List<? extends Animal> alList = new ArrayList<Dogs() ;
List<?> foo = new ArrayList<? extends Animals> () ;
List<? extends Dog> cList = new ArrayList<Integers();
List<? super Dog> bList = new ArrayList<Animals();

o Ul W N R

List<? super Animals> dList = new ArrayList<Dogs () ;

The correct answers (the statements that compile) are 1, 2, and 5.
The three that won't compile are

B Statement: List<?> foo = new ArrayList<? extends Animals>();

Problem: you cannot use wildcard notation in the object creation. So the
new ArrayList<? extends Animals () will not compile.

ch07.indd 621 5/21/08 5:38:22 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

622 Chapter 72 Generics and Collections

B Statement: List<? extends Dog> cList =
new ArrayList<Integers> () ;

Problem: You cannot assign an Integer list to a reference that takes only a
Dog (including any subtypes of Dog, of course).

B Statement: List<? super Animals> dList = new ArrayList<Dogs () ;

Problem: You cannot assign a Dog to <? super Animal>. The Dog is too "low"
in the class hierarchy. Only <Animal> or <Object> would have been legal.

Generic Declarations

Until now, we've talked about how to create type safe collections, and how to
declare reference variables including arguments and return types using generic
syntax. But here are a few questions: How do we even know that we're allowed/
supposed to specify a type for these collection classes? And does generic typing work
with any other classes in the API? And finally, can we declare our own classes as
generic types? In other words, can we make a class that requires that someone pass a
type in when they declare it and instantiate it?

First, the one you obviously know the answer to—the API tells you when a
parameterized type is expected. For example, this is the API declaration for the
java.util.List interface:

public interface List<E>

The <E> is a placeholder for the type you pass in. The List interface is behaving
as a generic "template" (sort of like C++ templates), and when you write your code,
you change it from a generic List to a List<Dog> or List<Integer>, and so on.

The E, by the way, is only a convention. Any valid Java identifier would work
here, but E stands for "Element," and it's used when the template is a collection. The
other main convention is T (stands for "type"), used for, well, things that are NOT
collections.

Now that you've seen the interface declaration for List, what do you think the
add () method looks like?

boolean add(E o)

In other words, whatever E is when you declare the List, that's what you can add to
it. So imagine this code:

List<Animal> list = new ArrayList<Animals> () ;

ch07.indd 622 5/21/08 5:38:22 PM

ch07.indd 623

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Generic Declarations (Exam Objectives 6.3 and 6.4) 62 3

The E in the List API suddenly has its waveform collapsed, and goes from the
abstract <your type goes here>, to a List of Animals. And if it's a List of Animals,
then the add () method of List must obviously behave like this:

boolean add(Animal a)

When you look at an API for a generics class or interface, pick a type parameter
(Dog, JButton, even Object) and do a mental find and replace on each instance of E
(or whatever identifier is used as the placeholder for the type parameter).

Making Your Own Generic Class

Let's try making our own generic class, to get a feel for how it works, and then we'll
look at a few remaining generics syntax details. Imagine someone created a class
Rental, that manages a pool of rentable items.

public class Rental {

private List rentalPool;

private int maxNum;

public Rental (int maxNum, List rentalPool) {
this.maxNum = maxNum;
this.rentalPool = rentalPool;

}

public Object getRental()
// blocks until there's something available
return rentalPool.get (0) ;

}

public void returnRental (Object o) {
rentalPool.add (o) ;

}

Now imagine you wanted to make a subclass of Rental that was just for renting
cars. You might start with something like this:

import java.util.*;
public class CarRental extends Rental {
public CarRental (int maxNum, List<Cars> rentalPool) {
super (maxNum, rentalPool) ;
}

public Car getRental() {
return (Car) super.getRental();

}

5/21/08 5:38:22 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

624 Chapter 7: Generics and Collections

public void returnRental (Car c) {
super.returnRental (c) ;

}

public void returnRental (Object o)
if (o instanceof Car) ({
super.returnRental (o) ;
} else {
System.out.println ("Cannot add a non-Car") ;
// probably throw an exception

bobd

But then the more you look at it, the more you realize:

I. You are doing your own type checking in the returnRental () method.
You can't change the argument type of returnRental () to take a Car,
since it's an override (not an overload) of the method from class Rental.
(Overloading would take away your polymorphic flexibility with Rental).

2. You really don't want to make separate subclasses for every possible kind of
rentable thing (cars, computers, bowling shoes, children, and so on).

But given your natural brilliance (heightened by this contrived scenario), you
quickly realize that you can make the Rental class a generic type—a template for any
kind of Rentable thing—and you're good to go.

(We did say contrived...since in reality, you might very well want to have
different behaviors for different kinds of rentable things, but even that could be
solved cleanly through some kind of behavior composition as opposed to inheritance
(using the Strategy design pattern, for example). And no, design patterns aren't on
the exam, but we still think you should read our design patterns book. Think of the
kittens.) So here's your new and improved generic Rental class:

import java.util.*;
public class RentalGeneric<T> { // "T" is for the type
// parameter
private List<T> rentalPool; // Use the class type for the
// List type
private int maxNum;
public RentalGeneric(
int maxNum, List<T> rentalPool) { // constructor takes a
// List of the class type
this.maxNum = maxNum;
this.rentalPool = rentalPool;

ch07.indd 624 5/21/08 5:38:22 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Generic Declarations (Exam Objectives 6.3 and 6.4) @2 5§

public T getRental() { // we rent out a T
// blocks until there's something available
return rentalPool.get (0) ;
}
public void returnRental (T returnedThing) { // and the renter
// returns a T
rentalPool.add (returnedThing) ;

}

Let's put it to the test:

class TestRental ({

public static void main (Stringl[] args) {
//make some Cars for the pool
Car cl = new Car();
Car c2 = new Car();
List<Car> carlList = new ArrayList<Cars>();
carList.add(cl) ;
carList.add(c2) ;
RentalGeneric<Car> carRental = new

RentalGeneric<Car> (2, carList) ;

// now get a car out, and it won't need a cast
Car carToRent = carRental.getRental () ;
carRental.returnRental (carToRent) ;
// can we stick something else in the original carList?
carList.add (new Cat ("Fluffy"));

We get one error:

kathy% javacl.5 RentalGeneric.java

RentalGeneric.java:38: cannot find symbol

symbol : method add(Cat)

location: interface java.util.List<Cars
carList.add (new Cat ("Fluffy"));

A

1l error

Now we have a Rental class that can be typed to whatever the programmer
chooses, and the compiler will enforce it. In other words, it works just as the

ch07.indd 625 5/21/08 5:38:23 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

626 Chapter 7: Generics and Collections

Collections classes do. Let's look at more examples of generic syntax you might find
in the API or source code. Here's another simple class that uses the parameterized
type of the class in several ways:

public class TestGenerics<T> { // as the class type

T anInstance; // as an instance variable type
T [] anArrayOfTs; // as an array type
TestGenerics (T anInstance) { // as an argument type

this.anInstance = anInstance;

}

T getT() { // as a return type
return anInstance;

Obviously this is a ridiculous use of generics, and in fact you'll see generics only
rarely outside of collections. But, you do need to understand the different kinds of
generic syntax you might encounter, so we'll continue with these examples until
we've covered them all.

You can use more than one parameterized type in a single class definition:

public class UseTwo<T, X>

T one;

X two;

UseTwo (T one, X two)
this.one = one;
this.two = two;

}

T getT() { return one; }

X getX() { return two; }

// test it by creating it with <String, Integer>
public static void main (Stringl[] args)
UseTwo<String, Integer> twos =

new UseTwo<String, Integers>("foo", 42);

String theT = twos.getT(); // returns a String
int theX = twos.getX(); // returns Integer, unboxes to int

ch07.indd 626 5/21/08 5:38:23 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Generic Declarations (Exam Objectives 6.3 and 6.4) @27

And you can use a form of wildcard notation in a class definition, to specify a
range (called "bounds") for the type that can be used for the type parameter:

public class AnimalHolder<T extends Animal> { // use "T" instead
// of "2
T animal;
public static void main(String[] args) {
AnimalHolder<Dog> dogHolder = new AnimalHolder<Dogs>(); // OK
AnimalHolder<Integer> x = new AnimalHolder<Integer>(); // NO!

}
}

Creating Generic Methods

Until now, every example we've seen uses the class parameter type—the type
declared with the class name. For example, in the UseTwo<T,X> declaration, we
used the T and X placeholders throughout the code. But it's possible to define a
parameterized type at a more granular level—a method.

Imagine you want to create a method that takes an instance of any type,
instantiates an ArrayList of that type, and adds the instance to the ArrayList. The class
itself doesn't need to be generic; basically we just want a utility method that we can
pass a type to and that can use that type to construct a type safe collection. Using a
generic method, we can declare the method without a specific type and then get the
type information based on the type of the object passed to the method. For example:

import java.util.*;
public class CreateAnArrayList
public <T> void makeArrayList (T t) { // take an object of an
// unknown type and use a
// "T" to represent the type
List<T> list = new ArrayList<T>(); // now we can create the
// list using "T"
list.add(t) ;

}

In the preceding code, if you invoke the makeArrayList () method with a Dog
instance, the method will behave as though it looked like this all along:

public void makeArrayList (Dog t) {

List<Dog> list = new ArrayList<Dogs () ;
list.add(t) ;

ch07.indd 627 5/21/08 5:38:23 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

628 Chapter 72 Generics and Collections

And of course if you invoke the method with an Integer, then the T is replaced by
Integer (not in the bytecode, remember—we're describing how it appears to behave,
not how it actually gets it done).

The strangest thing about generic methods is that you must declare the type
variable BEFORE the return type of the method:

public <T> void makeArrayList (T t)

The <T> before void simply defines what T is before you use it as a type in the
argument. You MUST declare the type like that unless the type is specified for the
class. In CreateAnArrayList, the class is not generic, so there's no type parameter
placeholder we can use.

You're also free to put boundaries on the type you declare, for example, if you
want to restrict the makeArrayList () method to only Number or its subtypes
(Integer, Float, and so on) you would say

public <T extends Number> void makeArrayList (T t)

Match
It’s tempting to forget that the method argument is NOT where you

declare the type parameter variable T. In order to use a type variable like T, you must
have declared it either as the class parameter type or in the method, before the return
type.The following might look right,

public void makeList (T t) { }

But the only way for this to be legal is if there is actually a class
named T, in which case the argument is like any other type declaration for a variable.
And what about constructor arguments? They, too, can be declared with a generic type,
but then it looks even stranger since constructors have no return type at all:

public class Radio {
public <T> Radio(T t) { } // legal constructor

}

ch07.indd 628

5/21/08 5:38:23 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Generic Declarations (Exam Objectives 6.3 and 6.4) @29

Jatch
If you REALLY want to get ridiculous (or fired), you can declare a class

with a name that is the same as the type parameter placeholder:
class X { public <X> X(X x) { } }

Yes, this works.The X that is the constructor name has no relationship
to the <X> type declaration, which has no relationship to the constructor
argument identifier, which is also, of course, X. The compiler is able to parse this
and treat each of the different uses of X independently. So there is no naming conflict
between class names, type parameter placeholders, and variable identifiers.

Datch
One of the most common mistakes programmers make when creating

generic classes or methods is to use a <?> in the wildcard syntax rather than a type
variable <T>, <E>, and so on.This code might look right, but isn’t:

public class NumberHolder<? extends Number> { }

While the question mark works when declaring a reference for a variable,
it does NOT work for generic class and method declarations. This code is not legal:

public class NumberHolder<?> { ? aNum; } // NO!

But if you replace the <?> with a legal identifier, you’re good:

public class NumberHolder<T> { T aNum; } // Yes

98% of what you're likely to do with generics is simply declare and use type safe
collections, including using (and passing) them as arguments. But now you know
much more (but by no means everything) about the way generics works.

ch07.indd 629 5/21/08 5:38:24 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

630 Chapter7: Generics and Collections

If this was clear and easy for you, that's excellent. If it was...painful...just know
that adding generics to the Java language very nearly caused a revolt among some
of the most experienced Java developers. Most of the outspoken critics are simply
unhappy with the complexity, or aren't convinced that gaining type safe collections
is worth the ten million little rules you have to learn now. It's true that with Java 5,
learning Java just got harder. But trust us...we've never seen it take more than two
days to "get" generics. That's 48 consecutive hours.

CERTIFICATION SUMMARY

ch07.indd 630

We began with a quick review of the toString () method. The tostring ()
method is automatically called when you ask System.out .println() to print an
object—you override it to return a String of meaningful data about your objects.

Next we reviewed the purpose of == (to see if two reference variables refer to
the same object) and the equals () method (to see if two objects are meaningfully
equivalent). You learned the downside of not overriding equals () —you may not be
able to find the object in a collection. We discussed a little bit about how to write a good
equals () method—don't forget to use instanceof and refer to the object's significant
attributes. We reviewed the contracts for overriding equals () and hashCode ().
We learned about the theory behind hashcodes, the difference between legal,
appropriate, and efficient hashcoding. We also saw that even though wildly
inefficient, it's legal for a hashCode () method to always return the same value.

Next we turned to collections, where we learned about Lists, Sets, and Maps, and
the difference between ordered and sorted collections. We learned the key attributes
of the common collection classes, and when to use which.

We covered the ins and outs of the Collections and Arrays classes: how to sort,
and how to search. We learned about converting arrays to Lists and back again.

Finally we tackled generics. Generics let you enforce compile-time type-safety
on collections or other classes. Generics help assure you that when you get an item
from a collection it will be of the type you expect, with no casting required. You
can mix legacy code with generics code, but this can cause exceptions. The rules for
polymorphism change when you use generics, although by using wildcards you can
still create polymorphic collections. Some generics declarations allow reading of a
collection, but allow very limited updating of the collection.

All in all, one fascinating chapter.

5/21/08 5:38:24 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Two-Minute Drill &3 ||

TWO-MINUTE DRILL

Here are some of the key points from this chapter.

Overriding hashCode() and equals() (Objective 6.2)

Q equals(), hashCode (), and toString () are public.

Q Override tostring () so that System.out.println() or other
methods can see something useful, like your object's state.

Use == to determine if two reference variables refer to the same object.
Use equals () to determine if two objects are meaningfully equivalent.

If you don't override equals (), your objects won't be useful hashing keys.
If you don't override equals (), different objects can't be considered equal.

Strings and wrappers override equals () and make good hashing keys.

UO0O0D0OO0OOo

When overriding equals (), use the instanceof operator to be sure you're
evaluating an appropriate class.

(]

When overriding equals (), compare the objects' significant attributes.

(]

Highlights of the equals () contract:
QO Reflexive: x.equals (x) is true.
QO Symmetric: If x.equals (y) is true, then y.equals (x) must be true.

Q Transitive: If x.equals (y) is true, and y.equals (z) is true,
then z.equals (x) is true.

Q Consistent: Multiple calls to x.equals (y) will return the same result.

Q Null: If x is not null, then x.equals (null) is false.

If x.equals (y) is true, then x.hashCode () == y.hashCode () is true.

If you override equals (), override hashCode () .

HashMap, HashSet, Hashtable, LinkedHashMap, & LinkedHashSet use hashing.
An appropriate hashCode () override sticks to the hashCode () contract.

An efficient hashCode () override distributes keys evenly across its buckets.
An overridden equals () must be at least as precise as its hashCode () mate.

To reiterate: if two objects are equal, their hashcodes must be equal.

L I I I S S N By

It's legal for a hashcode () method to return the same value for all instances
(although in practice it's very inefficient).

ch07.indd 631 5/21/08 5:38:24 PM

632 Chapter7:

ch07.indd 632

Q

Qa

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Generics and Collections

Highlights of the hashcode () contract:
Q Consistent: multiple calls to x. hashCode () return the same integer.
QO Ifx.equals(y) is true, x.hashCode () == y.hashCode () is true.

| Ifx.equals (y) is false, then x.hashCode () == y.hashCode () can
be either true or false, but false will tend to create better efficiency.

transient variables aren't appropriate for equals () and hashCode ().

Collections (Objective 6.1)

a

Q

a

Common collection activities include adding objects, removing objects, veri-
fying object inclusion, retrieving objects, and iterating.

Three meanings for "collection":

Q collection Represents the data structure in which objects are stored

Q Collection java.util interface from which Set and List extend

O Collections A class that holds static collection utility methods

Four basic flavors of collections include Lists, Sets, Maps, Queues:

Q Lists of things Ordered, duplicates allowed, with an index.

Q Sets of things May or may not be ordered and/or sorted; duplicates
not allowed.

Q Maps of things with keys May or may not be ordered and/or sorted;
duplicate keys are not allowed.

Q Queues of things to process Ordered by FIFO or by priority.

Four basic sub-flavors of collections Sorted, Unsorted, Ordered, Unordered.
O Ordered Iterating through a collection in a specific, non-random order.
Q Sorted Iterating through a collection in a sorted order.

Sorting can be alphabetic, numeric, or programmer-defined.

Key Attributes of Common Collection Classes (Objective 6.1)

a

Iy I I By

ArrayList: Fast iteration and fast random access.

Vector: It's like a slower ArrayList, but it has synchronized methods.
LinkedList: Good for adding elements to the ends, i.e., stacks and queues.
HashSet: Fast access, assures no duplicates, provides no ordering.
LinkedHashSet: No duplicates; iterates by insertion order.

TreeSet: No duplicates; iterates in sorted order.

5/21/08 5:38:25 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Two-Minute Drill 3 3

Q HashMap: Fastest updates (key/values); allows one null key, many
null values.

Q Hashtable: Like a slower HashMap (as with Vector, due to its synchronized
methods). No nul1 values or null keys allowed.

Q LinkedHashMap: Faster iterations; iterates by insertion order or last accessed;
allows one null key, many null values.

Q TreeMap: A sorted map.
Q PriorityQueue: A to-do list ordered by the elements' priority.

Using Collection Classes (Objective 6.3)

Q Collections hold only Objects, but primitives can be autoboxed.

[terate with the enhanced for, or with an Iterator via hasNext () & next ().
hasNext () determines if more elements exist; the Iterator does NOT move.
next () returns the next element AND moves the Iterator forward.

To work correctly, a Map's keys must override equals () and hashCode ().

I Iy N Ry

Queues use offer () to add an element, poll () to remove the head of the
queue, and peek () to look at the head of a queue.

()

As of Java 6 TreeSets and TreeMaps have new navigation methods like

floor() and higher().

O You can create/extend "backed" sub-copies of TreeSets and TreeMaps.

Sorting and Searching Arrays and Lists (Objective 6.5)

Q Sorting can be in natural order, or via a Comparable or many Comparators.
Implement Comparable using compareTo () ; provides only one sort order.
Create many Comparators to sort a class many ways; implement compare ().

To be sorted and searched, a List's elements must be comparable.

U000

To be searched, an array or List must first be sorted.

Utility Classes: Collections and Arrays (Objective 6.5)

Q Both of these java.util classes provide
Q A sort () method. Sort using a Comparator or sort using natural order.

QO A binarySearch () method. Search a pre-sorted array or List.

ch07.indd 633 5/21/08 5:38:25 PM

634 Chapter7:

ch07.indd 634

U000

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Generics and Collections

Arrays.asList () creates a List from an array and links them together.
Collections.reverse () reverses the order of elements in a List.
Collections.reverseOrder () returns a Comparator that sorts in reverse.

Lists and Sets have a toArray () method to create arrays.

Generics (Objective 6.4)

a

Qa

Generics let you enforce compile-time type safety on Collections (or other
classes and methods declared using generic type parameters).
An ArrayList<Animal> can accept references of type Dog, Cat, or any other
subtype of Animal (subclass, or if Animal is an interface, implementation).
When using generic collections, a cast is not needed to get (declared type) el-
ements out of the collection. With non-generic collections, a cast is required:

List<String> gList = new ArrayList<Strings>();

List list = new ArrayList() ;

// more code

String s = gList.get(0); // no cast needed
String s = (String)list.get(0); // cast required

You can pass a generic collection into a method that takes a non-generic col-
lection, but the results may be disastrous. The compiler can't stop the method
from inserting the wrong type into the previously type safe collection.

If the compiler can recognize that non-type-safe code is potentially endanger-
ing something you originally declared as type-safe, you will get a compiler
warning. For instance, if you pass a List<String> into a method declared as

void foo(List aList) { alist.add(anInteger); }

You'll get a warning because add() is potentially "unsafe".

"Compiles without error" is not the same as "compiles without warnings."
A compilation warning is not considered a compilation error or failure.

Generic type information does not exist at runtime—it is for compile-time
safety only. Mixing generics with legacy code can create compiled code that
may throw an exception at runtime.

Polymorphic assignments applies only to the base type, not the generic type
parameter. You can say

List<Animal> aList = new ArrayList<Animals () ; // ves
You can't say

List<Animal> aList = new ArrayList<Dogs> () ; // no

5/21/08 5:38:26 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Two-Minute Drill @3 §

Q The polymorphic assignment rule applies everywhere an assignment can be

made. The following are NOT allowed:

void foo(List<Animals> aList) { } // cannot take a List<Dogs>

List<Animal> bar() { } // cannot return a List<Dogs>

Q Wildcard syntax allows a generic method, accept subtypes (or supertypes) of
the declared type of the method argument:

void addD(List<Dog> d) {} // can take only <Dog>
void addD(List<? extends Dog>) {} // take a <Dog> or <Beagle>

Q The wildcard keyword extends is used to mean either "extends" or "imple-
ments." So in <? extends Dogs, Dog can be a class or an interface.

QO When using a wildcard, List<? extends Dogs, the collection can be
accessed but not modified.

QO When using a wildcard, List<?>, any generic type can be assigned to the
reference, but for access only, no modifications.

O List<Objects refers only to a List<Object>, while List<?> or
List<? extends Object> can hold any type of object, but for access only.

Q Declaration conventions for generics use T for type and E for element:

public interface List<E> // API declaration for List
boolean add(E o) // List.add() declaration

Q The generics type identifier can be used in class, method, and variable

declarations:

class Foo<t> { } // a class

T anInstance; // an instance variable
Foo (T aRef) {} // a constructor argument
void bar (T aRef) {} // a method argument

T baz() {} // a return type

The compiler will substitute the actual type.
Q You can use more than one parameterized type in a declaration:
public class UseTwo<T, X> { }
O You can declare a generic method using a type not defined in the class:
public <T> void makeList (T t) { }
is NOT using T as the return type. This method has a void return type, but

to use T within the method's argument you must declare the <T>, which
happens before the return type.

ch07.indd 635 5/21/08 5:38:26 PM

636 Chapter?7:

SELFTEST

I. Given:

public static void main(Stringl[]

Generics and Collections

// INSERT DECLARATION HERE

for (int 1 = 0;
List<Integer> row =
for (int j = 0;

row.add (i * j);
table.add (row) ;

}

for

(List<Integer> row

i <= 10;

i++

tab

System.out.println (row) ;

}

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

args) {

)

new ArrayList<Integers() ;
j <= 10; j

++)

le)

Which statements could be inserted at // INSERT DECLARATION HERE to allow this code to
compile and run? (Choose all that apply.)

List<List<Integer>> table

List<List<Integer>> table

List<List<Integer>> table

List<List, Integer> table

List<List, Integer> table

List<List, Integer> table

OmM Mmoo ®»

None of the above

new

new

new

new

new

new

List<List<Integer>>() ;
ArrayList<List<Integer>> () ;
ArrayList<ArrayList<Integers>> () ;
List<List, Integer>();
ArrayList<List, Integers>();

ArrayList<ArrayList, Integers>();

Which statements are true about comparing two instances of the same class, given that the

equals () and hashCode () methods have been properly overridden? (Choose all that apply.)

A

moQO®

ch07.indd 636

If the equals () method returns true, the hashCode () comparison == might return false
If the equals () method returns false, the hashCode () comparison == might return true
If the hashCode () comparison == returns true, the equals () method must return true

If the hashCode () comparison == returns true, the equals () method might return true

If the hashCode () comparison != returns true, the equals () method might return true

5/21/08 5:38:27 PM

3. Given:

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

public static void before() ({
Set set = new TreeSet () ;
set.add("2") ;
set.add(3) ;
set.add("1");

Iterator
while

System.out.print (it.next () + "

it = set.iterator();
(it .hasNext ())
") ;

Which statements are true?

A. The before ()

B. The before()

C. The before ()

D. The before ()

E. The before ()
4. Given:

ch07.indd 637

method will print 1 2

method will print 1 2 3

Self Test €37

method will print three numbers, but the order cannot be determined

method will not compile

method will throw an exception at runtime

import java.util.*;
class MapEQ

public static void main (String[]

args) {

Map<ToDos, String> m = new HashMap<ToDos,
ToDos tl = new ToDos ("Monday") ;

ToDos t2 = new ToDos ("Monday") ;

ToDos t3 = new ToDos ("Tuesday") ;

m.put (tl, "doLaundry") ;

m.put (t2, "payBills");

m.put (t£3, "cleanAttic");

System.out.println(m.size()) ;

}
}

class ToDos({
String day;

ToDos (String d)

{ day = 4; }

public boolean eqguals (Object o) {

return

}

// public int hashCode ()

((ToDos) o) .day == this.day;

{ return 9; }

String> () ;

5/21/08 5:38:27 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

638 Chapter 72 Generics and Collections

Which is correct? (Choose all that apply.)

A. As the code stands it will not compile

B. As the code stands the output will be 2

C. As the code stands the output will be 3

D. If the hashCode () method is uncommented the output will be 2

E. If the hashCode () method is uncommented the output will be 3

F. If the hashcode () method is uncommented the code will not compile

5. Given:

12. public class AccountManager ({
13. private Map accountTotals = new HashMap () ;
14. private int retirementFund;
15.
16. public int getBalance (String accountName) {
17. Integer total = (Integer) accountTotals.get (accountName) ;
18. if (total == null)
19. total = Integer.valueOf (0) ;
20. return total.intValue() ;
21. }
23. public void setBalance (String accountName, int amount)
24 . accountTotals.put (accountName, Integer.valueOf (amount)) ;
25. }
26. }

This class is to be updated to make use of appropriate generic types, with no changes in behavior
(for better or worse). Which of these steps could be performed? (Choose three.)
A. Replace line 13 with

private Map<String, int> accountTotals = new HashMap<String, intx>();

B. Replace line 13 with

private Map<String, Integer> accountTotals = new HashMap<String, Integers();

C. Replace line 13 with

private Map<String<Integer>> accountTotals = new HashMap<String<Integer>>();

D. Replace lines 17-20 with
int total = accountTotals.get (accountName) ;
if (total == null)
total = 0;

return total;

ch07.indd 638 5/21/08 5:38:28 PM

E. Replace lines 17-20 with
Integer total = accountTotals.get (accountName) ;
if (total == null)
total = 0;
return total;
F. Replace lines 17-20 with
return accountTotals.get (accountName) ;
G. Replace line 24 with
accountTotals.put (accountName, amount) ;
H. Replace line 24 with
accountTotals.put (accountName, amount.intValue()) ;
6. Given:

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

interface Hungry<E> { void munch(E x); }

interface Carnivore<E extends Animal> extends Hungry<E> {}
interface Herbivore<E extends Plant> extends Hungry<E> {}

abstract class Plant {}
class Grass extends Plant {}
abstract class Animal {}

class Sheep extends Animal implements Herbivore<Sheep> {

public void munch(Sheep x) {}

}

class Wolf extends Animal implements Carnivore<Sheep> {

public void munch (Sheep x) {}

}

Self Test

Which of the following changes (taken separately) would allow this code to compile?
(Choose all that apply.)

A

ch07.indd 639

Change the Carnivore interface to

interface Carnivore<E extends Plant> extends Hungry<E> {}

Change the Herbivore interface to

interface Herbivore<E extends Animal> extends Hungry<E> {}

Change the Sheep class to

class Sheep extends Animal implements Herbivore<Plants> {

public void munch(Grass x) {}

}
Change the Sheep class to

class Sheep extends Plant implements Carnivore<Wolfs> {

public void munch (Wolf x) {}

639

5/21/08 5:38:28 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

640 Chapter7: Generics and Collections

E. Change the Wolf class to
class Wolf extends Animal implements Herbivore<Grass> {
public void munch(Grass x) {}
}

F. No changes are necessary

7. Which collection class(es) allows you to grow or shrink its size and provides indexed access to
its elements, but whose methods are not synchronized? (Choose all that apply.)

A. java.util.HashSet
java.util.LinkedHashSet
java.util.List
java.util.ArrayList

java.util.Vector

Mmoo w®

java.util.PriorityQueue

8. Given a method declared as

public static <E extends Number> List<E> process (List<E> nums)

A programmer wants to use this method like this
// INSERT DECLARATIONS HERE

output = process (input) ;

Which pairs of declarations could be placed at // INSERT DECLARATIONS HERE to allow the
code to compile? (Choose all that apply.)

A. ArrayList<Integer> input = null;
ArraylList<Integer> output = null;

B. ArrayList<Integer> input = null;
List<Integer> output = null;

C. ArrayList<Integers> input = null;
List<Number> output = null;

ch07.indd 640 5/21/08 5:38:28 PM

ch07.indd 641

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

D. List<Number> input = null;
ArraylList<Integer> output = null;

E. List<Numbers> input = null;
List<Number> output = null;

F List<Integers> input = null;

List<Integer> output = null;

G. None of the above

9. Given the proper import statement(s), and

Self Test @4 1

13. PriorityQueue<String> pg = new PriorityQueue<Strings() ;
14. pg.add("2") ;

15. pg.add("4") ;

16. System.out.print (pg.peek () + " ");

17. pg.offer("1");

18. pg.add("3");

19. pg.remove ("1") ;

20. System.out.print (pg.poll () + " ");

21. if (pg.remove ("2")) System.out.print (pg.poll () ") ;

22. System.out.println(pg.poll () + "

What is the result?
A 2233

B. 2234

C. 4334

D. 22333

E. 43333

F 22334

G. Compilation fails
H

An exception is thrown at runtime

10. Given:

3. import java.util.*;
4. public class Mixup
5. public static void main(Stringl]

" + pg.peek());

args)

{

5/21/08 5:38:29 PM

642 Chapter7:

ch07.indd 642

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Generics and Collections

6. Object o = new Object() ;
7. // insert code here

8. s.add("o") ;

9. s.add (o) ;

10. }

11. }

And these three fragments:

I. Set s = new HashSet () ;
II. TreeSet s = new TreeSet();
III. LinkedHashSet s = new LinkedHashSet () ;

When fragments I, II, or III are inserted, independently, at line 7, which are true?

(Choose all that apply.)

Fragment I compiles

Fragment Il compiles

Fragment 1l compiles

Fragment [executes without exception

Fragment II executes without exception

mmgNn® >

Fragment III executes without exception

Given:

3. import java.util.*;
4. class Turtle {
5. int size;
6. public Turtle(int s) { size = s; }
7. public boolean equals(Object o) { return (this.size == ((Turtle)o).size);
8. // insert code here
9. }
10. public class TurtleTest
11. public static void main(Stringl[] args) ({
12. LinkedHashSet<Turtle> t = new LinkedHashSet<Turtle> () ;
13. t.add (new Turtle(1l)); t.add (new Turtle(2)); t.add (new Turtle(1l)) ;
14. System.out.println(t.size());
15. }
16. }

}

5/21/08 5:38:29 PM

ch07.indd 643

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

And these two fragments:

I.

IT.

public int hashCode() { return size/5; }
// no hashCode method declared

Self Test @43

If fragment I or II is inserted, independently, at line 8, which are true? (Choose all that apply.)

A. If fragment [is inserted, the output is 2

Mmoo w

If fragment I is inserted, the output is 3
If fragment Il is inserted, the output is 2
If fragment Il is inserted, the output is 3
If fragment I is inserted, compilation fails

If fragment Il is inserted, compilation fails

Given the proper import statement(s), and:

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

TreeSet<String> s = new TreeSet<String>() ;
TreeSet<String> subs = new TreeSet<Strings>();
s.add("a"); s.add("b"); s.add("c"); s.add("d");

subs = (TreeSet)s.subSet ("b", true, "d", true);
s.add("g") ;

s.pollFirst () ;

s.pollFirst () ;

s.add("c2") ;

System.out.println(s.size() +" "+ subs.size());

Which are true? (Choose all that apply.)

I0oTmoN® >

The size of s is 4
The size of s is 5
The size of s is 7
The size of subs is 1
The size of subs is 2
The size of subs is 3
The size of subs is 4

An exception is thrown at runtime

s.add("e");

5/21/08 5:38:29 PM

644 Chapter7:

13. Given:

17.
18.
19.
20.

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Generics and Collections

import java.util.*;
public class Magellan {

public static void main(Stringl]

TreeMap<String, String> myMap

myMap.put ("a", "apple"); myMap.put ("d",
myMap.put ("f", "fig"); myMap.put ("p",

System.out.println("lst after
myMap.higherKey ("£")) ;
System.out.println("lst after
myMap.ceilingKey ("f")) ;
System.out.println("lst after
myMap . floorKey ("f")) ;
SortedMap<String, String> sub
sub = myMap.tailMap("f");
System.out.println("lst after
sub.firstKey()) ;

args)

{

= new TreeMap<String,

mango :

mango:

mango :

+

+

+

"date") ;
npearn) ;

// sop 1
// sop 2

// sop 3

= new TreeMap<String,

mango:

+

// sop 4

String> () ;

Strings> () ;

Which of the System.out.println statements will produce the output 1st after mango: p!?

(Choose all that apply.)
A. sop 1
B. sop 2
C. sop 3
D. sop 4
E. None; compilation fails
F. None; an exception is thrown at runtime
14. Given:
3. import java.util.*;
4. class Business { }
5. class Hotel extends Business { }
6. class Inn extends Hotel { }
7. public class Travel (
8. ArrayList<Hotel> go() {
9. // insert code here
10. }
11. }

ch07.indd 644

5/21/08 5:38:29 PM

ch07.indd 645

Which, inserted independently at line 9, will compile? (Choose all that apply.)

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

A. return new ArrayList<Inns> () ;

return new ArrayList<Hotels () ;

B
C. return new ArrayList<Objects> () ;
D

return new ArrayList<Business> () ;

15. Given:

©® J 0 Ul bW

9.
10.
11.
12.
13.
14.

import java.util.*;

class Dog { int size; Dog(int s) { size

public class FirstGrade {

public static void main(String[] args)
TreeSet<Integer> i = new TreeSet<Integers> () ;

=s; }}

{

TreeSet<Dog> d = new TreeSet<Dogs () ;

d.add (new Dog (1)) ; d.add (new Dog(2)) ;
i.add(1); i.add(2);
System.out.println(d.size() + " " + i.size());

What is the result?

A 12
B. 22
C. 23
D. 32
E. 33
F
G.

16. Given:

N oUW

Compilation fails

An exception is thrown at runtime

import java.util.=*;

. public class GeoCache ({

public static void main(String[] args)
String[] s = {"map", "pen", "marble",
Othello o = new Othello();

{

Ilke-y-ll } ;

645

d.add (new Dog (1)) ;

5/21/08 5:38:29 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

646 Chapter 72 Generics and Collections

ch07.indd 646

8.

9.
10.
11.
12.
13.
14.
15.

Arrays.sort (s, o) ;
for(String s2: s) System.out.print(s2 + " ");
System.out.println (Arrays.binarySearch(s, "map"));
}
static class Othello implements Comparator<Strings>
public int compare(String a, String b) { return b.compareTo(a); }

}
}

Which are true? (Choose all that apply.)

O T Mmoo QN ® >

Compilation fails

The output will contain a 1

The output will contain a 2

The output will contain a —1

An exception is thrown at runtime

The output will contain "key map marble pen"

The output will contain "pen marble map key"

5/21/08 5:38:30 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

SELF TEST ANSWERS

I. Given:

Self Test Answers @47

public static void main(Stringl[] args)
// INSERT DECLARATION HERE
for (int 1 = 0; 1 <=1
List<Integer> row =

for (int j = 0;
row.add (i * j
table.add (row) ;

}

for (List<Integer> row

}

j <= 10;

)i

0;

i++)

{

new ArrayList<Integers>() ;

J++)

table)
System.out.println (row) ;

Which statements could be inserted at // INSERT DECLARATION HERE to allow this code to
compile and run? (Choose all that apply.)

A. List<List<Integers>
B. List<List<Integers>
C. List<List<Integers>
D. List<List, Integers>
E. List<List, Integers
F List<List, Integers>
G. None of the above
Answer:

B is correct.

table
table
table
table
table
table

new

new

new

new

new

new

List<List<Integer>>() ;
ArrayList<List<Integer>>();
ArraylList<ArrayList<Integer>> () ;
List<List, Integers>();
ArrayList<List, Integer>();
ArraylList<ArrayList, Integers>();

Xl A is incorrect because List is an interface, so you can't say new List () regardless of
any generic types. D, E, and F are incorrect because List only takes one type parameter
(a Map would take two, not a List). C is tempting, but incorrect. The type argument
<List<Integer>> must be the same for both sides of the assignment, even though the
constructor new ArrayList () on the right side is a subtype of the declared type List on

the left. (Objective 6.4)

ch07.indd 647

5/21/08 5:38:30 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

648 Chapter 72 Generics and Collections

2.

ch07.indd 648

Which statements are true about comparing two instances of the same class, given that the
equals () and hashCode () methods have been properly overridden? (Choose all that apply.)

A. If the equals () method returns true, the hashCode () comparison == might return false

B. If the equals () method returns false, the hashCode () comparison == might return true
C. If the hashCode () comparison == returns true, the equals () method must return true
D. If the hashCode () comparison == returns true, the equals () method might return true
E. If the hashCode () comparison != returns true, the equals () method might return true
Answer:

B and D. B is true because often two dissimilar objects can return the same hashcode
value. D is true because if the hashCode () comparison returns ==, the two objects might
or might not be equal.

Xl A, C, and E are incorrect. C is incorrect because the hashCode () method is very flexible
in its return values, and often two dissimilar objects can return the same hash code value.
A and E are a negation of the hashcode () and equals () contract. (Objective 6.2)

Given:

public static void before() {
Set set = new TreeSet () ;
set.add("2") ;
set.add (3) ;
set.add("1") ;
Iterator it = set.iterator() ;

while (it.hasNext ())

System.out.print (it.next () + " ");

}
Which statements are true?
A. The before () method will print 1 2
The before () method will print 1 2 3
The before () method will print three numbers, but the order cannot be determined

The before () method will not compile

moOw

The before () method will throw an exception at runtime

5/21/08 5:38:31 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Self Test Answers @49

Answer:

4 Eis correct. You can't put both Strings and ints into the same TreeSet. Without generics,
the compiler has no way of knowing what type is appropriate for this TreeSet, so it allows
everything to compile. At runtime, the TreeSet will try to sort the elements as they're
added, and when it tries to compare an Integer with a String it will throw a
ClassCastException. Note that although the before () method does not use generics,
it does use autoboxing. Watch out for code that uses some new features and some old
features mixed together.

X A, B, C, and D are incorrect based on the above. (Objective 6.5)

4. Given:

import java.util.=*;
class MapEQ
public static void main(String[] args) {
Map<ToDos, String> m = new HashMap<ToDos, Strings>();
ToDos tl = new ToDos ("Monday") ;
ToDos t2 = new ToDos ("Monday") ;
ToDos t3 = new ToDos ("Tuesday") ;
m.put (tl, "doLaundry") ;
m.put (t2, "payBills");
m.put (£3, "cleanAttic");
System.out.println(m.size()) ;
I
class ToDos({
String day;
ToDos (String d) { day = 4; }
public boolean eqguals (Object o) {
return ((ToDos)o).day == this.day;
}

// public int hashCode() { return 9; }

Which is correct? (Choose all that apply.)

As the code stands it will not compile

As the code stands the output will be 2

As the code stands the output will be 3

If the hashcode () method is uncommented the output will be 2

If the hashcode () method is uncommented the output will be 3

mmoOo® >

If the hashcode () method is uncommented the code will not compile

ch07.indd 649 5/21/08 5:38:31 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

650 Chapter7: Generics and Collections

Answer:

M C and D are correct. If hashcode () is not overridden then every entry will go into its own
bucket, and the overridden equals () method will have no effect on determining equivalency.
If hashcode () is overridden, then the overridden equals () method will view t1 and
t2 as duplicates.

Xl A, B, E, and F are incorrect based on the above. (Objective 6.2)

5. Given:
12. public class AccountManager
13. private Map accountTotals = new HashMap () ;
14. private int retirementFund;
15.
16. public int getBalance (String accountName) {
17. Integer total = (Integer) accountTotals.get (accountName) ;
18. if (total == null)
19. total = Integer.valueOf (0) ;
20. return total.intValue() ;
21. }
23. public void setBalance (String accountName, int amount)
24 . accountTotals.put (accountName, Integer.valueOf (amount)) ;

25. } }

This class is to be updated to make use of appropriate generic types, with no changes in behavior
(for better or worse). Which of these steps could be performed? (Choose three.)
A. Replace line 13 with

private Map<String, ints> accountTotals = new HashMap<String, int>();
B. Replace line 13 with

private Map<String, Integer> accountTotals = new HashMap<String, Integers();
C. Replace line 13 with

private Map<String<Integer>> accountTotals = new HashMap<String<Integer>>();

D. Replace lines 17-20 with

int total = accountTotals.get (accountName) ;
if (total == null) total = 0;
return total;

E. Replace lines 17-20 with

Integer total = accountTotals.get (accountName) ;
if (total == null) total = 0;
return total;

ch07.indd 650 5/21/08 5:38:31 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Self Test Answers @ 5§ |

F. Replace lines 17-20 with

return accountTotals.get (accountName) ;

G. Replace line 24 with
accountTotals.put (accountName, amount) ;
H. Replace line 24 with

accountTotals.put (accountName, amount.intValue()) ;

Answer:

M B, E, and G are correct.

® A is wrong because you can't use a primitive type as a type parameter. C is wrong because
a Map takes two type parameters separated by a comma. D is wrong because an int can't
autobox to a null, and F is wrong because a nul1 can't unbox to 0. H is wrong because you
can't autobox a primitive just by trying to invoke a method with it. (Objective 6.4)

6. Given:

interface Hungry<E> { void munch(E x); }

interface Carnivore<E extends Animal> extends Hungry<E> {}

interface Herbivore<E extends Plant> extends Hungry<E> {}

abstract class Plant {}

class Grass extends Plant {}

abstract class Animal {}

class Sheep extends Animal implements Herbivore<Sheeps> {
public void munch(Sheep x) {}

}

class Wolf extends Animal implements Carnivore<Sheep> {
public void munch (Sheep x) {}
}

Which of the following changes (taken separately) would allow this code to compile?
(Choose all that apply.)

A. Change the Carnivore interface to
interface Carnivore<E extends Plant> extends Hungry<E> {}

B. Change the Herbivore interface to
interface Herbivore<E extends Animal> extends Hungry<E> {}

C. Change the Sheep class to
class Sheep extends Animal implements Herbivore<Plants> {
public void munch(Grass x) {}
}

ch07.indd 651 5/21/08 5:38:31 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

652 Chapter7: Generics and Collections

ch07.indd 652

D. Change the Sheep class to

class Sheep extends Plant implements Carnivore<Wolfs {
public void munch (Wolf x) {}

}
E. Change the Wolf class to
class Wolf extends Animal implements Herbivore<Grass> {
public void munch(Grass x) {}
}
F. No changes are necessary
Answer:

4 B is correct. The problem with the original code is that Sheep tries to implement

Herbivore<Sheep> and Herbivore declares that its type parameter E can be any type that
extends Plant. Since a Sheep is not a Plant, Herbivore<Sheep> makes no sense—

the type Sheep is outside the allowed range of Herbivore's parameter . Only solutions
that either alter the definition of a Sheep or alter the definition of Herbivore will be able
to fix this. So A, E, and F are eliminated. B works, changing the definition of an Herbivore
to allow it to eat Sheep solves the problem. C doesn't work because an Herbivore<Plant >
must have a munch (Plant) method, not munch (Grass). And D doesn't work, because

in D we made Sheep extend Plant, now the Wolf class breaks because its munch (Sheep)
method no longer fulfills the contract of Carnivore. (Objective 6.4)

Which collection class(es) allows you to grow or shrink its size and provides indexed access to
its elements, but whose methods are not synchronized? (Choose all that apply.)

A

mmog QO

java.util.HashSet
java.util.LinkedHashSet
java.util.List
java.util.ArrayList
java.util.Vector

java.util.PriorityQueue

Answer:

4 D is correct. All of the collection classes allow you to grow or shrink the size of your

collection. ArrayList provides an index to its elements. The newer collection classes
tend not to have synchronized methods. Vector is an older implementation of ArrayList
functionality and has synchronized methods; it is slower than ArrayList.

Xl A, B, C, E, and F are incorrect based on the logic described above; Notes: C, List is an

interface, and F, PriorityQueue does not offer access by index. (Objective 6.1)

5/21/08 5:38:32 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Self Test Answers @5 3

8. Given a method declared as

public static <E extends Number> List<E> process (List<E> nums)
A programmer wants to use this method like this

// INSERT DECLARATIONS HERE
output = process (input) ;

Which pairs of declarations could be placed at // INSERT DECLARATIONS HERE to allow
the code to compile? (Choose all that apply.)

A. ArrayList<Integer> input = null;
ArrayList<Integer> output = null;

B. ArrayList<Integer> input = null;
List<Integer> output = null;

C. ArrayList<Integers input = null;
List<Number> output = null;

D. List<Numbers> input = null;
ArraylList<Integer> output = null;

E. List<Numbers> input = null;
List<Number> output = null;

F. List<Integers> input = null;

List<Integer> output = null;

G. None of the above

Answer:

M B, E, and F are correct.

& The return type of process is definitely declared as a List, not an ArrayList, so A and D
are wrong. C is wrong because the return type evaluates to List<Integers, and that can't
be assigned to a variable of type List<Numbers>. Of course all these would probably cause a
NullPointerException since the variables are still null—but the question only asked us
to get the code to compile. (Objective 6.4)

9. Given the proper import statement(s), and

13. PriorityQueue<String> pg = new PriorityQueue<Strings () ;
14. pg.add("2") ;
15. pg.add("4") ;

ch07.indd 653 5/21/08 5:38:32 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

654 Chapter7: Generics and Collections

ch07.indd 654

16. System.out.print (pg.peek() + " ");

17. pg.offer("1") ;

18. pg.add("3") ;

19. pg.remove ("1") ;

20. System.out.print (pg.poll() + " ");

21. if (pg.remove ("2")) System.out.print (pg.poll() + " ");
22. System.out.println(pg.poll() + " " + pg.peek());

What is the result?
2233
2234
4334
22333
43333
22334

Compilation fails

IommoN® >

An exception is thrown at runtime

Answer:

1 B is correct. For the sake of the exam, add () and offer () both add to (in this case),
naturally sorted queues. The calls to po11 () both return and then remove the first item
from the queue, so the if test fails.

A, C, D, E, E G, and H are incorrect based on the above. (Objective 6.1)

3. import java.util.*;

4. public class Mixup {

5 public static void main(String[] args) {
6. Object o = new Object () ;

7. // insert code here
8 s.add("o") ;
9 s.add (o) ;
0

1

5/21/08 5:38:32 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Self Test Answers @5 §

And these three fragments:

I. Set s = new HashSet () ;
II. TreeSet s = new TreeSet();
III. LinkedHashSet s = new LinkedHashSet () ;

When fragments I, II, or III are inserted, independently, at line 7, which are true?
(Choose all that apply.)

Fragment [compiles

Fragment II compiles

Fragment III compiles

Fragment [executes without exception

Fragment II executes without exception

mmoNw»

Fragment III executes without exception

Answer:

A, B, C, D, and F are all correct.

& Only E is incorrect. Elements of a TreeSet must in some way implement Comparable.

(Objective 6.1)

Il. Given:

3. import java.util.*;

4. class Turtle {

5. int size;

6. public Turtle(int s) { size = s; }

7. public boolean equals(Object o) { return (this.size == ((Turtle)o).size); }
8. // insert code here

9. }
10. public class TurtleTest {
11. public static void main(String[] args) ({
12. LinkedHashSet<Turtle> t = new LinkedHashSet<Turtles> () ;
13 t.add (new Turtle (1)) ; t.add (new Turtle(2)); t.add (new Turtle (1)) ;
14. System.out.println(t.size());
15. }
16. }

ch07.indd 655 5/21/08 5:38:33 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

656 Chapter7: Generics and Collections

12.

ch07.indd 656

And these two fragments:

I. public int hashCode () { return size/5; }
II. // no hashCode method declared

If fragment I or II is inserted, independently, at line 8, which are true? (Choose all that apply.)
A. If fragment [is inserted, the output is 2

If fragment I is inserted, the output is 3

If fragment Il is inserted, the output is 2

B

C

D. If fragment Il is inserted, the output is 3
E. If fragment | is inserted, compilation fails
F

If fragment Il is inserted, compilation fails

Answer:

4@ A and D are correct. While fragment II wouldn’t fulfill the hashcode () contract (as you
can see by the results), it is legal Java. For the purpose of the exam, if you don’t override
hashCode (), every object will have a unique hashcode.

B, C, E, and F are incorrect based on the above. (Objective 6.2)

Given the proper import statement(s), and:

13. TreeSet<String> s = new TreeSet<String>();

14. TreeSet<String> subs = new TreeSet<Strings> () ;

15. s.add("a"); s.add("b"); s.add("c"); s.add("d"); s.add("e");
16.

17. subs = (TreeSet)s.subSet ("b", true, "d", true);

18. s.add("g") ;

19. s.pollFirst () ;

20. s.pollFirst () ;

21. s.add("c2") ;

22. System.out.println(s.size() +" "+ subs.size());

Which are true? (Choose all that apply.)
A. Thesize of s is 4
B. The size of s is 5
C. Thesize of sis 7
D

The size of subs is 1

5/21/08 5:38:33 PM

ch07.indd 657

I o m m

Answer:

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

The size of subs is 2
The size of subs is 3
The size of subs is 4

An exception is thrown at runtime

Self Test Answers

657

¥ B and F are correct. After "g" is added, TreeSet s contains six elements and TreeSet subs
contains three (b, ¢, d), because "g" is out of the range of subs. The first pollFirst ()
finds and removes only the "a". The second pol1First () finds and removes the "b" from
both TreeSets (remember they are backed). The final add () is in range of both TreeSets.
The final contents are [c,c2,d,e,g] and [c,c2,d].

X A, C, D, E, G, and H are incorrect based on the above. (Objective 6.3)

13. Given:

3
4
5.
6
7
8

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

import java.util.*;
public class Magellan {
public static void main (String[]

TreeMap<String, String> myMap
myMap .put ("a",
myMap.put ("f",
System.out.println("lst after
myMap.higherKey ("£f")) ;
System.out.println("lst after
myMap.ceilingKey ("f")) ;
System.out.println("lst after
myMap.floorKey ("f")) ;
SortedMap<String, String> sub
sub = myMap.tailMap("f") ;
System.out.println("lst after
sub.firstKey ()) ;

"apple"); myMap.put ("d",
ufigu) ; myMap.put("p" ,

args) {
= new TreeMap<String, Strings();
"date") ;
upearu) ;
mango: " + // sop 1
mango: " + // sop 2
mango: " + // sop 3

= new TreeMap<String, Strings>();

mango: " + // sop 4

Which of the System.out.println statements will produce the output 1st after mango: p!

(Choose all that apply.)
A. sop 1
B. sop 2
C. sop 3

5/21/08 5:38:33 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

658 Chapter7: Generics and Collections

14.

ch07.indd 658

D. sop 4
E. None; compilation fails

F. None; an exception is thrown at runtime

Answer:

4 A is correct. The ceilingKey () method's argument is inclusive. The floorkey () method
would be used to find keys before the specified key. The firstKey () method's argument is
also inclusive.

B, C, D, E, and F are incorrect based on the above. (Objective 6.3)

Given:

import java.util.=*;
class Business { }
class Hotel extends Business { }
class Inn extends Hotel { }
public class Travel {
ArrayList<Hotels> go()
// insert code here

}

H O w oo J o Ul W

[

}

Which, inserted independently at line 9, will compile? (Choose all that apply.)
A. return new ArrayList<Inns();

B. return new ArrayList<Hotels();

C. return new ArrayList<Objects();

D. return new ArrayList<Businesss>();

Answer:

41 B is correct.

A is incorrect because polymorphic assignments don't apply to generic type parameters. C
and D are incorrect because they don't follow basic polymorphism rules. (Objective 6.4)

5/21/08 5:38:33 PM

ch07.indd 659

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

Self Test Answers @59
15. Given:

3. import java.util.*;

4. class Dog { int size; Dog(int s) { size = s; } }

5. public class FirstGrade ({

6. public static void main(String[] args) {

7. TreeSet<Integer> i = new TreeSet<Integers>() ;

8. TreeSet<Dog> d = new TreeSet<Dog> () ;

9.

10. d.add (new Dog (1)) ; d.add (new Dog(2)) ; d.add (new Dog (1)) ;
11. i.add(1); i.add(2); i.add(1);
12. System.out.println(d.size() + " " + i.size());
13. }
14. }

What is the result?
12
22
23
32
33

Compilation fails

Ommogn®»

An exception is thrown at runtime

Answer:

4 G is correct. Class Dog needs to implement Comparable in order for a TreeSet (which

keeps its elements sorted) to be able to contain Dog objects.

X A, B, C, D, E, and F are incorrect based on the above. (Objective 6.5)

16. Given:
3. import java.util.x*;
4. public class GeoCache {
5. public static void main(String[] args) {
6. String[] s = {"map", "pen", "marble", "key"};
7. Othello o = new Othello() ;
8. Arrays.sort (s,o0) ;

5/21/08 5:38:34 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 7

660 Chapter7: Generics and Collections

ch07.indd 660

9. for(String s2: s) System.out.print(s2 + " ");

10. System.out.println (Arrays.binarySearch(s, "map"));

11. }

12. static class Othello implements Comparator<Strings> {

13. public int compare (String a, String b) { return b.compareTo(a); }
14. }

15. }

Which are true? (Choose all that apply.)
Compilation fails

The output will contain a 1

The output will contain a 2

The output will contain a —1

An exception is thrown at runtime

The output will contain "key map marble pen"

O Mmoo ®»

The output will contain "pen marble map key"

Answer:

D and G are correct. First, the compareTo () method will reverse the normal sort.
Second, the sort () is valid. Third, the binarysearch () gives —1 because it needs to be
invoked using the same Comparator (o), as was used to sort the array. Note that when the
binarySearch () returns an "undefined result" it doesn’t officially have to be a -1, but it
usually is, so if you selected only G, you get full credit!

X A, B, C, E, and F are incorrect based on the above. (Objective 6.5)

5/21/08 5:38:34 PM

