Threads

CERTIFICATION OBJECTIVES

e Start New Threads e Write Code That Uses wait(),
notify(), or notifyAll
e Recognize Thread States and 0 A0
Transitions v/ Two-Minute Drill
e Use Object Locking to Avoid Q&A SelfTest

Concurrent Access

7072 Chapter 9: Threads

CERTIFICATION OBJECTIVE

Defining, Instantiating, and Starting Threads
(Objective 4.1)

4.1 White code to define, instantiate, and start new threads using both java.lang. Thread
and java.lang. Runnable.

Imagine a stockbroker application with a lot of complex capabilities. One of
its functions is "download last stock option prices," another is "check prices for
warnings," and a third time-consuming operation is "analyze historical data for
company XYZ."

In a single-threaded runtime environment, these actions execute one after
another. The next action can happen only when the previous one is finished. If a
historical analysis takes half an hour, and the user selects to perform a download and
check afterward, the warning may come too late to, say, buy or sell stock as a result.

We just imagined the sort of application that cries out for multithreading. Ideally,
the download should happen in the background (that is, in another thread). That
way, other processes could happen at the same time so that, for example, a warning
could be communicated instantly. All the while, the user is interacting with other
parts of the application. The analysis, too, could happen in a separate thread, so the
user can work in the rest of the application while the results are being calculated.

So what exactly is a thread? In Java, "thread" means two different things:

B An instance of class java.lang. Thread

B A thread of execution

An instance of Thread is just...an object. Like any other object in Java, it has
variables and methods, and lives and dies on the heap. But a thread of execution is
an individual process (a "lightweight" process) that has its own call stack. In Java,
there is one thread per call stack—or, to think of it in reverse, one call stack per
thread. Even if you don't create any new threads in your program, threads are back
there running.

The main () method, that starts the whole ball rolling, runs in one thread, called
(surprisingly) the main thread. If you looked at the main call stack (and you can, any
time you get a stack trace from something that happens after main begins, but not
within another thread), you'd see that main () is the first method on the stack—

on the

Qob

Defining, Instantiating, and Starting Threads (Exam Objective 4.1) 703

the method at the bottom. But as soon as you create a new thread, a new stack
materializes and methods called from that thread run in a call stack that's separate
from the main () call stack. That second new call stack is said to run concurrently
with the main thread, but we'll refine that notion as we go through this chapter.

You might find it confusing that we're talking about code running concurrently—
as if in parallel—given that there's only one CPU on most of the machines running
Java. What gives? The JVM, which gets its turn at the CPU by whatever scheduling
mechanism the underlying OS uses, operates like a mini-OS and schedules its own
threads regardless of the underlying operating system. In some JVMs, the Java
threads are actually mapped to native OS threads, but we won't discuss that here;
native threads are not on the exam. Nor is it required to understand how threads
behave in different JVM environments. In fact, the most important concept to
understand from this entire chapter is this:

When it comes to threads, very little is guaranteed.

So be very cautious about interpreting the behavior you see on one machine
as "the way threads work." The exam expects you to know what is and is not
guaranteed behavior, so that you can design your program in such a way that it will
work regardless of the underlying JVM. That's part of the whole point of Java.

Don't make the mistake of designing your program to be dependent on a
particular implementation of the JVM. As you'll learn a little later, different
JVMs can run threads in profoundly different ways. For example, one JVM
might be sure that all threads get their turn, with a fairly even amount of time
allocated for each thread in a nice, happy, round-robin fashion. But in other
JVMs, a thread might start running and then just hog the whole show, never
stepping out so others can have a turn. If you test your application on the
"nice turn-taking" JVM, and you don't know what is and is not guaranteed in
Java, then you might be in for a big shock when you run it under a JVM with a
different thread scheduling mechanism.

The thread questions are among the most difficult questions on the exam.
In fact, for most people they are the toughest questions on the exam, and with
four objectives for threads you'll be answering a lot of thread questions. If you're
not already familiar with threads, you'll probably need to spend some time
experimenting. Also, one final disclaimer: This chapter makes almost no attempt to
teach you how to design a good, safe, multithreaded application. We only scratch

704 Chapter 9: Threads

the surface of that huge topic in this chapter! You're here to learn the basics of
threading, and what you need to get through the thread questions on the exam.
Before you can write decent multithreaded code, however, you really need to study
more on the complexities and subtleties of multithreaded code.

(Note: The topic of daemon threads is NOT on the exam. All of the threads
discussed in this chapter are "user" threads. You and the operating system can create
a second kind of thread called a daemon thread. The difference between these two
types of threads (user and daemon) is that the JVM exits an application only when
all user threads are complete—the JVM doesn't care about letting daemon threads
complete, so once all user threads are complete, the JVM will shut down, regardless
of the state of any daemon threads. Once again, this topic is NOT on the exam.)

Making a Thread

A thread in Java begins as an instance of java.lang. Thread. You'll find methods
in the Thread class for managing threads including creating, starting, and pausing
them. For the exam, you'll need to know, at a minimum, the following methods:

start ()
yield ()
sleep ()
run ()

The action happens in the run () method. Think of the code you want to execute
in a separate thread as the job to do. In other words, you have some work that needs
to be done, say, downloading stock prices in the background while other things
are happening in the program, so what you really want is that job to be executed
in its own thread. So if the work you want done is the job, the one doing the work
(actually executing the job code) is the thread. And the job always starts from a
run () method as follows:

public void run() {
// your job code goes here
}

You always write the code that needs to be run in a separate thread in a run ()
method. The run () method will call other methods, of course, but the thread of
execution—the new call stack—always begins by invoking run () . So where does
the run () method go? In one of the two classes you can use to define your thread job.

You can define and instantiate a thread in one of two ways:

Defining a Thread (Exam Objective 4.1) 7058

B Extend the java.lang. Thread class.

B Implement the Runnable interface.

You need to know about both for the exam, although in the real world you're
much more likely to implement Runnable than extend Thread. Extending the
Thread class is the easiest, but it's usually not a good OO practice. Why? Because
subclassing should be reserved for specialized versions of more general superclasses.
So the only time it really makes sense (from an OO perspective) to extend Thread is
when you have a more specialized version of a Thread class. In other words, because
you have more specialized thread-specific behavior. Chances are, though, that the
thread work you want is really just a job to be done by a thread. In that case, you
should design a class that implements the Runnable interface, which also leaves your
class free to extend from some other class.

Defining a Thread

To define a thread, you need a place to put your run () method, and as we just
discussed, you can do that by extending the Thread class or by implementing the
Runnable interface. We'll look at both in this section.

Extending java.lang.Thread
The simplest way to define code to run in a separate thread is to

m Extend the java.lang. Thread class.

m Override the run() method.

It looks like this:

class MyThread extends Thread ({
public void run() {
System.out.println ("Important job running in MyThread") ;

}
}

The limitation with this approach (besides being a poor design choice in most
cases) is that if you extend Thread, you can’t extend anything else. And it's not as if
you really need that inherited Thread class behavior, because in order to use a thread
you'll need to instantiate one anyway.

706 Chapter9: Threads

Keep in mind that you're free to overload the run () method in your Thread
subclass:

class MyThread extends Thread {
public void run()
System.out.println ("Important job running in MyThread") ;

}
public void run(String s) {
System.out.println("String in run is " + s);

}
}

But know this: The overloaded run (String s) method will be ignored by the
Thread class unless you call it yourself. The Thread class expects a run () method
with no arguments, and it will execute this method for you in a separate call stack
after the thread has been started. With a run (String s) method, the Thread
class won't call the method for you, and even if you call the method directly
yourself, execution won't happen in a new thread of execution with a separate
call stack. It will just happen in the same call stack as the code that you made the
call from, just like any other normal method call.

Implementing java.lang.Runnable

Implementing the Runnable interface gives you a way to extend from any class you
like, but still define behavior that will be run by a separate thread. It looks like this:

class MyRunnable implements Runnable {
public void run()
System.out.println("Important job running in MyRunnable") ;
}

}

Regardless of which mechanism you choose, you've now got yourself some code
that can be run by a thread of execution. So now let's take a look at instantiating your
thread-capable class, and then we'll figure out how to actually get the thing running.

Instantiating a Thread

Remember, every thread of execution begins as an instance of class Thread.
Regardless of whether your run () method is in a Thread subclass or a Runnable
implementation class, you still need a Thread object to do the work.

Instantiating a Thread (Exam Objective 4.1) 707

If you extended the Thread class, instantiation is dead simple (we'll look at some
additional overloaded constructors in a moment):

MyThread t = new MyThread()

If you implement Runnable, instantiation is only slightly less simple. To have
code run by a separate thread, you still need a Thread instance. But rather than
combining both the thread and the job (the code in the run () method) into one
class, you've split it into two classes—the Thread class for the thread-specific code
and your Runnable implementation class for your job-that-should-be-run-by-a-
thread code. (Another common way to think about this is that the Thread is the
"worker," and the Runnable is the "job" to be done.)

First, you instantiate your Runnable class:

MyRunnable r = new MyRunnable () ;

Next, you get yourself an instance of java.lang. Thread (somebody has to run your
job...), and you give it your job!

Thread t = new Thread(r); // Pass your Runnable to the Thread

If you create a thread using the no-arg constructor, the thread will call its own
run () method when it's time to start working. That's exactly what you want when
you extend Thread, but when you use Runnable, you need to tell the new thread to
use your run () method rather than its own. The Runnable you pass to the Thread
constructor is called the target or the target Runnable.

You can pass a single Runnable instance to multiple Thread objects, so that the
same Runnable becomes the target of multiple threads, as follows:

public class TestThreads {
public static void main (String [] args) {
MyRunnable r = new MyRunnable() ;
Thread foo = new Thread (r) ;
Thread bar = new Thread (r) ;
Thread bat = new Thread(r) ;

}

Giving the same target to multiple threads means that several threads of
execution will be running the very same job (and that the same job will be done
multiple times).

708 Chapter 9: Threads

Jatch . . .
The Thread class itself implements Runnable. (After all, it has a run ()

method that we were overriding.) This means that you could pass a Thread to another
Thread’s constructor:

Thread t = new Thread (new MyThread()) ;

This is a bit silly, but it’s legal. In this case, you really just need a
Runnnable, and creating a whole other Thread is overkill.

Besides the no-arg constructor and the constructor that takes a Runnable (the
target, i.e., the instance with the job to do), there are other overloaded constructors
in class Thread. The constructors we care about are

Thread ()
Thread (Runnable target)

Thread (Runnable target, String name)

Thread (String name)

You need to recognize all of them for the exam! A little later, we'll discuss some of
the other constructors in the preceding list.

So now you've made yourself a Thread instance, and it knows which run ()
method to call. But nothing is happening yet. At this point, all we've got is a plain
old Java object of type Thread. It is not yet a thread of execution. To get an actual
thread—a new call stack—we still have to start the thread.

When a thread has been instantiated but not started (in other words, the
start () method has not been invoked on the Thread instance), the thread is
said to be in the new state. At this stage, the thread is not yet considered to be
alive. Once the start () method is called, the thread is considered to be alive
(even though the run () method may not have actually started executing yet). A
thread is considered dead (no longer alive) after the run () method completes. The
isAlive () method is the best way to determine if a thread has been started but has
not yet completed its run () method. (Note: The getstate () method is very useful
for debugging, but you won't have to know it for the exam.)

Starting a Thread (Exam Objective 4.1) 709

Starting a Thread

You've created a Thread object and it knows its target (either the passed-in
Runnable or itself if you extended class Thread). Now it's time to get the whole
thread thing happening—to launch a new call stack. It's so simple it hardly deserves
its own subheading:

t.start () ;

Prior to calling start () on a Thread instance, the thread (when we use
lowercase t, we're referring to the thread of execution rather than the Thread class)
is said to be in the new state as we said. The new state means you have a Thread
object but you don't yet have a true thread. So what happens after you call start () ?
The good stuff:

B A new thread of execution starts (with a new call stack).
m The thread moves from the new state to the runnable state.

m When the thread gets a chance to execute, its target run () method will run.

Be sure you remember the following: You start a Thread, not a Runnable. You call
start () on a Thread instance, not on a Runnable instance. The following example
demonstrates what we've covered so far—defining, instantiating, and starting a

thread:

class FooRunnable implements Runnable {
public void run() {
for(int x =1; x < 6; x++) {
System.out.println ("Runnable running") ;
}

}

public class TestThreads {
public static void main (String [] args)
FooRunnable r = new FooRunnable () ;
Thread t = new Thread(r) ;
t.start();

7 10 Chapter9: Threads

Running the preceding code prints out exactly what you'd expect:

% java TestThreads
Runnable running
Runnable running
Runnable running
Runnable running
Runnable running

(If this isn't what you expected, go back and re-read everything in this objective.)

Jatch
There’s nothing special about the run () method as far as Java is

concerned. Like main (), it just happens to be the name (and signature) of the method
that the new thread knows to invoke. So if you see code that calls the run () method on
a Runnable (or even on a Thread instance), that’s perfectly legal. But it doesn’t mean the
run () method will run in a separate thread! Calling a run () method directly just means
you’re invoking a method from whatever thread is currently executing, and the run ()
method goes onto the current call stack rather than at the beginning of a new call stack.
The following code does not start a new thread of execution:

Thread t = new Thread() ;
t.run(); // Legal, but does not start a new thread

So what happens if we start multiple threads? We'll run a simple example in a
moment, but first we need to know how to print out which thread is executing.
We can use the getName () method of class Thread, and have each Runnable print
out the name of the thread executing that Runnable object's run () method. The
following example instantiates a thread and gives it a name, and then the name is
printed out from the run () method:

class NameRunnable implements Runnable {
public void run()
System.out.println ("NameRunnable running") ;
System.out.println ("Run by "
+ Thread.currentThread () .getName ()) ;

Starting a Thread (Exam Objective 4.1) 7| |

}
}
public class NameThread
public static void main (String [] args)
NameRunnable nr = new NameRunnable () ;
Thread t = new Thread (nr) ;
t.setName ("Fred") ;
t.start () ;

}

Running this code produces the following, extra special, output:

% java NameThread
NameRunnable running
Run by Fred

To get the name of a thread you call—who would have guessed—getName () on
the Thread instance. But the target Runnable instance doesn't even have a reference
to the Thread instance, so we first invoked the static Thread.currentThread ()
method, which returns a reference to the currently executing thread, and then we
invoked getName () on that returned reference.

Even if you don't explicitly name a thread, it still has a name. Let's look at the
previous code, commenting out the statement that sets the thread's name:

public class NameThread
public static void main (String [] args) {
NameRunnable nr = new NameRunnable () ;
Thread t = new Thread (nr) ;
// t.setName ("Fred") ;
t.start () ;

Running the preceding code now gives us

°

% java NameThread
NameRunnable running
Run by Thread-0

And since we're getting the name of the current thread by using the static
Thread.currentThread () method, we can even get the name of the thread
running our main code,

7 1 2 Chapter 9: Threads

public class NameThreadTwo {
public static void main (String [] args) {
System.out.println("thread is "
+ Thread.currentThread () .getName ()) ;

which prints out

)

% java NameThreadTwo
thread is main

That's right, the main thread already has a name—main. (Once again, what are
the odds?) Figure 9-1 shows the process of starting a thread.

Starting a thread I) main() begins

public static void main(String [] args) {

// running main
/ stack A
//

some code

// in main()

method2 () ;
// running\
// more code main

} stack A

void method2 () {
Runnable r = new MyRunnable() ;

2) main() invokes method2()

method2

Thread t = new Thread(r) ;

t.start () ;
\ method?2
// do more stuff run

main

) stack B stack A
(thread t) (main thread)

3) method2() starts a new thread

Starting a Thread (Exam Objective 4.1) 7| 3

Starting and Running Multiple Threads

Enough playing around here; let's actually get multiple threads going (more than
two, that is). We already had two threads, because the main () method starts in a
thread of its own, and then t.start () started a second thread. Now we'll do more.
The following code creates a single Runnable instance and three Thread instances.
All three Thread instances get the same Runnable instance, and each thread is
given a unique name. Finally, all three threads are started by invoking start () on
the Thread instances.

class NameRunnable implements Runnable {
public void run()
for (int x = 1; x <= 3; x++) {
System.out.println("Run by "
+ Thread.currentThread () .getName ()
+ ", x 1s " + X);

}
}

public class ManyNames {
public static void main(String [] args) {
// Make one Runnable
NameRunnable nr = new NameRunnable () ;
Thread one = new Thread (nr) ;
Thread two = new Thread(nr) ;
Thread three = new Thread (nr) ;

one.setName ("Fred") ;
two.setName ("Lucy") ;
three.setName ("Ricky") ;
one.start () ;
two.start () ;
three.start () ;

Running this code might produce the following:
% java ManyNames

Run by Fred, x is 1
Run by Fred, x is 2
Run by Fred, x is 3

7 14 Chapter 9: Threads

Run by Lucy, x is 1
Run by Lucy, x is 2
Run by Lucy, x is 3
Run by Ricky, x is 1
Run by Ricky, x is 2
Run by Ricky, x is 3

Well, at least that's what it printed when we ran it—this time, on our machine.
But the behavior you see above is not guaranteed. This is so crucial that you need
to stop right now, take a deep breath, and repeat after me, "The behavior is not
guaranteed." You need to know, for your future as a Java programmer as well as for
the exam, that there is nothing in the Java specification that says threads will start
running in the order in which they were started (in other words, the order in which
start () was invoked on each thread). And there is no guarantee that once a thread
starts executing, it will keep executing until it's done. Or that a loop will complete
before another thread begins. No siree Bob. Nothing is guaranteed in the preceding
code except this:

Each thread will start, and each thread will run to completion.

Within each thread, things will happen in a predictable order. But the actions
of different threads can mix together in unpredictable ways. If you run the program
multiple times, or on multiple machines, you may see different output. Even if
you don't see different output, you need to realize that the behavior you see is not
guaranteed. Sometimes a little change in the way the program is run will cause a
difference to emerge. Just for fun we bumped up the loop code so that each run ()
method ran the for loop 400 times rather than 3, and eventually we did start to see
some wobbling:

public void run() {
for (int x = 1; x <= 400; x++) {
System.out.println("Run by "
+ Thread.currentThread () .getName ()
+ ", x is " + x);

Running the preceding code, with each thread executing its run loop 400 times,
started out fine but then became nonlinear. Here's just a snip from the command-

Starting a Thread (Exam Objective 4.1) 7| §

line output of running that code. To make it easier to distinguish each thread, we
put Fred's output in italics and Lucy's in bold, and left Ricky's alone:

Run by Fred, x is 345
Run by Lucy, x is 337
Run by Ricky, x is 310
Run by Lucy, x is 338
Run by Ricky, x is 311
Run by Lucy, x is 339
Run by Ricky, x is 312
Run by Lucy, x is 340
Run by Ricky, x is 313
Run by Lucy, x is 341
Run by Ricky, x is 314
Run by Lucy, x is 342
Run by Ricky, x is 315
Run by Fred, x is 346
Run by Lucy, x is 343
Run by Fred, x is 347
Run by Lucy, x is 344

... it continues on ...

Notice that there's not really any clear pattern here. If we look at only the output
from Fred, we see the numbers increasing one at a time, as expected:

Run by Fred, x is 345
Run by Fred, x is 346
Run by Fred, x is 347

And similarly if we look only at the output from Lucy, or Ricky. Each one
individually is behaving in a nice orderly manner. But together—chaos! In the
fragment above we see Fred, then Lucy, then Ricky (in the same order we originally
started the threads), but then Lucy butts in when it was Fred's turn. What nerve!
And then Ricky and Lucy trade back and forth for a while until finally Fred gets
another chance. They jump around like this for a while after this. Eventually
(after the part shown above) Fred finishes, then Ricky, and finally Lucy finishes
with a long sequence of output. So even though Ricky was started third, he actually

7 16 Chapter9: Threads

completed second. And if we run it again, we'll get a different result. Why? Because
it's up to the scheduler, and we don't control the scheduler! Which brings up
another key point to remember: Just because a series of threads are started in a
particular order doesn't mean they'll run in that order. For any group of started
threads, order is not guaranteed by the scheduler. And duration is not guaranteed.
You don't know, for example, if one thread will run to completion before the others
have a chance to get in or whether they'll all take turns nicely, or whether they'll do
a combination of both. There is a way, however, to start a thread but tell it not to
run until some other thread has finished. You can do this with the join () method,
which we'll look at a little later.

A thread is done being a thread when its target run () method completes.

When a thread completes its run () method, the thread ceases to be a thread of
execution. The stack for that thread dissolves, and the thread is considered dead.
Not dead and gone, however, just dead. It's still a Thread object, just not a thread of
execution. So if you've got a reference to a Thread instance, then even when that
Thread instance is no longer a thread of execution, you can still call methods on the
Thread instance, just like any other Java object. What you can't do, though, is call
start () again.

Once a thread has been started, it can never be started again.

If you have a reference to a Thread, and you call start (), it's started. If you call
start () a second time, it will cause an exception (an Illegal ThreadStateException,
which is a kind of RuntimeException, but you don't need to worry about the exact
type). This happens whether or not the run () method has completed from the first
start () call. Only a new thread can be started, and then only once. A runnable
thread or a dead thread cannot be restarted.

So far, we've seen three thread states: new, runnable, and dead. We'll look at more
thread states before we're done with this chapter.

The Thread Scheduler

The thread scheduler is the part of the JVM (although most JVMs map Java threads
directly to native threads on the underlying OS) that decides which thread should
run at any given moment, and also takes threads out of the run state. Assuming a
single processor machine, only one thread can actually run at a time. Only one stack

Starting a Thread (Exam Objective 4.1) 7| 7

can ever be executing at one time. And it's the thread scheduler that decides which
thread—of all that are eligible—will actually run. When we say eligible, we really
mean in the runnable state.

Any thread in the runnable state can be chosen by the scheduler to be the one
and only running thread. If a thread is not in a runnable state, then it cannot be
chosen to be the currently running thread. And just so we're clear about how little is
guaranteed here:

The order in which runnable threads are chosen to run is not guaranteed.

Although queue behavior is typical, it isn't guaranteed. Queue behavior means
that when a thread has finished with its "turn," it moves to the end of the line of the
runnable pool and waits until it eventually gets to the front of the line, where it can
be chosen again. In fact, we call it a runnable pool, rather than a runnable queue, to
help reinforce the fact that threads aren't all lined up in some guaranteed order.

Although we don't control the thread scheduler (we can't, for example, tell a
specific thread to run), we can sometimes influence it. The following methods give us
some tools for influencing the scheduler. Just don't ever mistake influence for control.

Datch
Expect to see exam questions that look for your understanding of

what is and is not guaranteed! You must be able to look at thread code and determine
whether the output is guaranteed to run in a particular way or is indeterminate.

Methods from the java.lang.Thread Class Some of the methods that can
help us influence thread scheduling are as follows:

public static void sleep(long millis) throws InterruptedException
public static void yield()
public final void join() throws InterruptedException

public final void setPriority (int newPriority)

Note that both sleep () and join () have overloaded versions not shown here.

7 18 Chapter9: Threads

Methods from the java.lang.Object Class Every class in Java inherits the
following three thread-related methods:

public final void wait () throws InterruptedException
public final void notify ()
public final void notifyAll ()

The wait () method has three overloaded versions (including the one listed here).
We'll look at the behavior of each of these methods in this chapter. First, though,
we're going to look at the different states a thread can be in.

CERTIFICATION OBJECTIVE

Thread States and Transitions (Objective 4.2)

4.2 Recognize the states in which a thread can exist, and identify ways in which a thread
can transition from one state to another.

We've already seen three thread states— new, runnable, and dead—but wait!
There's more! The thread scheduler's job is to move threads in and out of the
running state. While the thread scheduler can move a thread from the running state
back to runnable, other factors can cause a thread to move out of running, but not
back to runnable. One of these is when the thread's run () method completes, in
which case the thread moves from the running state directly to the dead state. Next
we'll look at some of the other ways in which a thread can leave the running state,
and where the thread goes.

Thread States

A thread can be only in one of five states (see Figure 9-2):

B New This is the state the thread is in after the Thread instance has been
created, but the start () method has not been invoked on the thread. It is
a live Thread object, but not yet a thread of execution. At this point, the
thread is considered not alive.

Transitioning
between
thread states

Thread States (Exam Objective 42) 719

Runnable This is the state a thread is in when it's eligible to run, but the
scheduler has not selected it to be the running thread. A thread first enters
the runnable state when the start () method is invoked, but a thread can
also return to the runnable state after either running or coming back from a
blocked, waiting, or sleeping state. When the thread is in the runnable state,
it is considered alive.

Running This is it. The "big time." Where the action is. This is the state a
thread is in when the thread scheduler selects it (from the runnable pool) to
be the currently executing process. A thread can transition out of a running
state for several reasons, including because "the thread scheduler felt like it."
We'll look at those other reasons shortly. Note that in Figure 9-2, there are
several ways to get to the runnable state, but only one way to get to the running
state: the scheduler chooses a thread from the runnable pool.

Waiting/
blocking

’_'

Waiting/blocked/sleeping This is the state a thread is in when it's

eligible to run. Okay, so this is really three states combined into one,

but they all have one thing in common: the thread is still alive, but is
currently not eligible to run. In other words, it is not runnable, but it might
return to a runnable state later if a particular event occurs. A thread may be
blocked waiting for a resource (like I/O or an object's lock), in which case the
event that sends it back to runnable is the availability of the resource—for
example, if data comes in through the input stream the thread code is reading
from, or if the object's lock suddenly becomes available. A thread may be
sleeping because the thread's run code tells it to sleep for some period of time,
in which case the event that sends it back to runnable is that it wakes up
because its sleep time has expired. Or the thread may be waiting, because the
thread's run code causes it to wait, in which case the event that sends it back
to runnable is that another thread sends a notification that it may no longer
be necessary for the thread to wait. The important point is that one thread

720 Chapter9: Threads

does not tell another thread to block. Some methods may look like they tell
another thread to block, but they don't. If you have a reference t to another
thread, you can write something like this:

t.sleep(); or t.yield()

But those are actually static methods of the Thread class—they don't affect the
instance t; instead they are defined to always affect the thread that's currently
executing. (This is a good example of why it's a bad idea to use an instance
variable to access a static method—it's misleading. There is a method,
suspend (), in the Thread class, that lets one thread tell another to suspend,
but the suspend () method has been deprecated and won't be on the exam
(nor will its counterpart resume ()). There is also a stop () method, but

it too has been deprecated and we won't even go there. Both suspend ()

and stop () turned out to be very dangerous, so you shouldn't use them and
again, because they're deprecated, they won't appear on the exam. Don't
study 'em, don't use 'em. Note also that a thread in a blocked state is still
considered to be alive.

B Dead A thread is considered dead when its run () method completes. It
may still be a viable Thread object, but it is no longer a separate thread of
execution. Once a thread is dead, it can never be brought back to life! (The
whole "I see dead threads" thing.) If you invoke start () on a dead Thread
instance, you'll get a runtime (not compiler) exception. And it probably
doesn't take a rocket scientist to tell you that if a thread is dead, it is no
longer considered to be alive.

Preventing Thread Execution

A thread that's been stopped usually means a thread that's moved to the dead state.
But Objective 4.2 is also looking for your ability to recognize when a thread will get
kicked out of running but not be sent back to either runnable or dead.

For the purpose of the exam, we aren't concerned with a thread blocking on I/O
(say, waiting for something to arrive from an input stream from the server). We are
concerned with the following:

Sleeping

Sleeping (Exam Objective 4.2) 72 |

B Sleeping
B Waiting

B Blocked because it needs an object's lock

The sleep () method is a static method of class Thread. You use it in your code
to "slow a thread down" by forcing it to go into a sleep mode before coming back to
runnable (where it still has to beg to be the currently running thread). When a thread
sleeps, it drifts off somewhere and doesn't return to runnable until it wakes up.

So why would you want a thread to sleep? Well, you might think the thread is
moving too quickly through its code. Or you might need to force your threads to
take turns, since reasonable turn-taking isn't guaranteed in the Java specification.
Or imagine a thread that runs in a loop, downloading the latest stock prices and
analyzing them. Downloading prices one after another would be a waste of time, as
most would be quite similar—and even more important, it would be an incredible
waste of precious bandwidth. The simplest way to solve this is to cause a thread to
pause (sleep) for five minutes after each download.

You do this by invoking the static Thread.sleep () method, giving it a time in
milliseconds as follows:

try {
Thread.sleep (5*60%1000); // Sleep for 5 minutes

} catch (InterruptedException ex) { }

Notice that the sleep () method can throw a checked InterruptedException
(you'll usually know if that is a possibility, since another thread has to explicitly do
the interrupting), so you must acknowledge the exception with a handle or declare.
Typically, you wrap calls to sleep () ina try/catch, as in the preceding code.

Let's modify our Fred, Lucy, Ricky code by using sleep () to try to force the
threads to alternate rather than letting one thread dominate for any period of time.
Where do you think the sleep () method should go?

class NameRunnable implements Runnable {
public void run() {
for (int x = 1; x < 4; x++) {
System.out.println("Run by "
+ Thread.currentThread () .getName ()) ;

7272 Chapter 9: Threads

try {
Thread.sleep(1000) ;

} catch (InterruptedException ex) { }

}

public class ManyNames {
public static void main (String [] args) {

// Make one Runnable
NameRunnable nr = new NameRunnable () ;

Thread one = new Thread(nr) ;
one.setName ("Fred") ;

Thread two = new Thread (nr) ;
two.setName ("Lucy") ;

Thread three = new Thread (nr) ;
three.setName ("Ricky") ;

one.start () ;
two.start () ;

three.start () ;

Running this code shows Fred, Lucy, and Ricky alternating nicely:

% java ManyNames
Run by Fred
Run by Lucy
Run by Ricky
Run by Fred
Run by Lucy
Run by Ricky
Run by Fred
Run by Lucy
Run by Ricky

Just keep in mind that the behavior in the preceding output is still not guaranteed.
You can't be certain how long a thread will actually run before it gets put to sleep,
,
so you can't know with certainty that only one of the three threads will be in the
runnable state when the running thread goes to sleep. In other words, if there are

Sleeping (Exam Objective 42) 723

two threads awake and in the runnable pool, you can't know with certainty that
the least recently used thread will be the one selected to run. Still, using sleep ()
is the best way to help all threads get a chance to run! Or at least to guarantee that
one thread doesn't get in and stay until it's done. When a thread encounters a sleep
call, it must go to sleep for at least the specified number of milliseconds (unless

it is interrupted before its wake-up time, in which case it immediately throws the
InterruptedException).

Datch
Just because a thread’s sleep () expires, and it wakes up, does not mean

it will return to running! Remember, when a thread wakes up, it simply goes back to
the runnable state. So the time specified in sleep () is the minimum duration in which
the thread won’t run, but it is not the exact duration in which the thread won’t run. So
you can’t, for example, rely on the sleep () method to give you a perfectly accurate
timer. Although in many applications using sleep () as a timer is certainly good enough,
you must know that a sleep () time is not a guarantee that the thread will start running
again as soon as the time expires and the thread wakes.

Remember that sleep () is a static method, so don't be fooled into thinking that
one thread can put another thread to sleep. You can put sleep () code anywhere,
since all code is being run by some thread. When the executing code (meaning the
currently running thread's code) hits a sleep () call, it puts the currently running
thread to sleep.

EXERCISE 9-1

Creating a Thread and Putting It to Sleep

In this exercise we will create a simple counting thread. It will count to 100, pausing
one second between each number. Also, in keeping with the counting theme, it will
output a string every ten numbers.

724 Chapter 9: Threads

I. Create a class and extend the Thread class. As an option, you can implement
the Runnable interface.

2. Override the run () method of Thread. This is where the code will go that will
output the numbers.

3. Create a for loop that will loop 100 times. Use the modulo operation to
check whether there are any remainder numbers when divided by 10.

4. Use the static method Thread.sleep () to pause. The long number
represents milliseconds.

Thread Priorities and yield()

on the

0ob

To understand yield (), you must understand the concept of thread priorities.
Threads always run with some priority, usually represented as a number between 1
and 10 (although in some cases the range is less than 10). The scheduler in most
JVMs uses preemptive, priority-based scheduling (which implies some sort

of time slicing). This does not mean that all JVMs use time slicing. The JVM
specification does not require a VM to implement a time-slicing scheduler, where
each thread is allocated a fair amount of time and then sent back to runnable to give
another thread a chance. Although many JVMs do use time slicing, some may use

a scheduler that lets one thread stay running until the thread completes its run ()
method.

In most JVMs, however, the scheduler does use thread priorities in one important
way: If a thread enters the runnable state, and it has a higher priority than any of
the threads in the pool and a higher priority than the currently running thread,
the lower-priority running thread usually will be bumped back to runnable and the
highest-priority thread will be chosen to run. In other words, at any given time the
currently running thread usually will not have a priority that is lower than any of
the threads in the pool. In most cases, the running thread will be of equal or greater
priority than the highest priority threads in the pool. This is as close to a guarantee
about scheduling as you'll get from the JVM specification, so you must never rely on
thread priorities to guarantee the correct behavior of your program.

Don't rely on thread priorities when designing your multithreaded application.
Because thread-scheduling priority behavior is not guaranteed, use thread
priorities as a way to improve the efficiency of your program, but just be sure
your program doesn't depend on that behavior for correctness.

Thread Priorities and yield() (Exam Objective 42) 7258

What is also not guaranteed is the behavior when threads in the pool are of equal
priority, or when the currently running thread has the same priority as threads in the
pool. All priorities being equal, a JVM implementation of the scheduler is free to do
just about anything it likes. That means a scheduler might do one of the following
(among other things):

M Pick a thread to run, and run it there until it blocks or completes.

B Time slice the threads in the pool to give everyone an equal opportunity to run.

Setting aThread's Priority A thread gets a default priority that is the priority
of the thread of execution that creates it. For example, in the code

public class TestThreads {
public static void main (String [] args) {
MyThread t = new MyThread() ;

}
}

the thread referenced by t will have the same priority as the main thread, since the
main thread is executing the code that creates the MyThread instance.

You can also set a thread's priority directly by calling the setPriority () method
on a Thread instance as follows:

FooRunnable r = new FooRunnable () ;
Thread t = new Thread(r) ;
t.setPriority(8) ;

t.start () ;

Priorities are set using a positive integer, usually between 1 and 10, and the JVM
will never change a thread's priority. However, the values 1 through 10 are not
guaranteed. Some JVM's might not recognize ten distinct values. Such a JVM might
merge values from 1 to 10 down to maybe values from 1 to 5, so if you have, say, ten
threads each with a different priority, and the current application is running in a
JVM that allocates a range of only five priorities, then two or more threads might be
mapped to one priority.

Although the default priority is 5, the Thread class has the three following
constants (static final variables) that define the range of thread priorities:

726 Chapter9: Threads

Thread.MIN_ PRIORITY (1)
Thread.NORM PRIORITY (5)
Thread.MAX PRIORITY (10)

The yield() Method So what does the static Thread.yield() have to
do with all this? Not that much, in practice. What yield () is supposed to do is
make the currently running thread head back to runnable to allow other threads of
the same priority to get their turn. So the intention is to use yield () to promote
graceful turn-taking among equal-priority threads. In reality, though, the yield ()
method isn't guaranteed to do what it claims, and even if yield () does cause a
thread to step out of running and back to runnable, there’s no guarantee the yielding
thread won't just be chosen again over all the others! So while yield () might—and
often does—make a running thread give up its slot to another runnable thread of the
same priority, there's no guarantee.

A yield () won't ever cause a thread to go to the waiting/sleeping/ blocking
state. At most, a yield () will cause a thread to go from running to runnable, but
again, it might have no effect at all.

The join(') Method

The non-static join () method of class Thread lets one thread "join onto the end"
of another thread. If you have a thread B that can't do its work until another thread

A has completed its work, then you want thread B to "join" thread A. This means that
thread B will not become runnable until A has finished (and entered the dead state).

Thread t = new Thread() ;
t.start () ;
t.join() ;

The preceding code takes the currently running thread (if this were in the
main () method, then that would be the main thread) and joins it to the end of the
thread referenced by t. This blocks the current thread from becoming runnable
until after the thread referenced by t is no longer alive. In other words, the
code t.join () means "Join me (the current thread) to the end of t, so that t
must finish before I (the current thread) can run again." You can also call one
of the overloaded versions of join () that takes a timeout duration, so that
you're saying, "wait until thread t is done, but if it takes longer than 5,000
milliseconds, then stop waiting and become runnable anyway." Figure 9-3 shows
the effect of the join () method.

Thread Priorities and yield() (Exam Objective 4.2) 727

m The join () method

Output

i = v o< B v~ ve B < v v I —ilve J ~ il v v I~ = < v [o i i i i i -

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is

running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running
running

Key Events in the Threads’ Code

Thread b = new Thread (aRunnable) ;
b.start () ;

// Threads bounce back and forth

b.join(); // A joins to the end
// of B

//Thread B completes !!
// Thread A starts again !

doStuff()
Stack Ais
running
doStuff() doOther()
Stack A'is Stack B is
running running
doOther()
Stack B
doStuff()
Stack A

Stack A joined
to Stack B

So far we've looked at three ways a running thread could leave the running state:

B A call to sleep()

Guaranteed to cause the current thread to stop execut-

ing for at least the specified sleep duration (although it might be interrupted
before its specified time).

B A call to yield()

Not guaranteed to do much of anything, although

typically it will cause the currently running thread to move back to runnable

so that a thread of the same priority can have a chance.

B A call to join()

Guaranteed to cause the current thread to stop execut-

ing until the thread it joins with (in other words, the thread it calls join ()

728 Chapter9: Threads

on) completes, or if the thread it's trying to join with is not alive, however,
the current thread won't need to back out.

Besides those three, we also have the following scenarios in which a thread might
leave the running state:

B The thread's run () method completes. Duh.

M Acalltowait () on an object (we don't call wait () on a thread, as we'll
see in a moment).

B A thread can't acquire the lock on the object whose method code it's
attempting to run.

B The thread scheduler can decide to move the current thread from running
to runnable in order to give another thread a chance to run. No reason is
needed—the thread scheduler can trade threads in and out whenever it likes.

CERTIFICATION OBJECTIVE

Synchronizing Code (Objective 4.3)

4.3 Given a scenario, write code that makes appropriate use of object locking to
protect static or instance variables from concurrent access problems.

Can you imagine the havoc that can occur when two different threads have access
to a single instance of a class, and both threads invoke methods on that object...and
those methods modify the state of the object? In other words, what might happen
if two different threads call, say, a setter method on a single object? A scenario
like that might corrupt an object's state (by changing its instance variable values in
an inconsistent way), and if that object's state is data shared by other parts of the
program, well, it's too scary to even visualize.

But just because we enjoy horror, let's look at an example of what might happen.
The following code demonstrates what happens when two different threads are
accessing the same account data. Imagine that two people each have a checkbook
for a single checking account (or two people each have ATM cards, but both cards
are linked to only one account).

Synchronizing Code (Exam Objective 4.3) 729

In this example, we have a class called Account that represents a bank account.
To keep the code short, this account starts with a balance of 50, and can be used
only for withdrawals. The withdrawal will be accepted even if there isn't enough
money in the account to cover it. The account simply reduces the balance by the
amount you want to withdraw:

class Account {
private int balance = 50;
public int getBalance() {
return balance;
1

public void withdraw(int amount) {
balance = balance - amount;

Now here's where it starts to get fun. Imagine a couple, Fred and Lucy, who both
have access to the account and want to make withdrawals. But they don't want the
account to ever be overdrawn, so just before one of them makes a withdrawal, he or
she will first check the balance to be certain there's enough to cover the withdrawal.
Also, withdrawals are always limited to an amount of 10, so there must be at least 10
in the account balance in order to make a withdrawal. Sounds reasonable. But that's
a two-step process:

I. Check the balance.

2. If there's enough in the account (in this example, at least 10), make the
withdrawal.

What happens if something separates step 1 from step 2? For example, imagine
what would happen if Lucy checks the balance and sees that there's just exactly
enough in the account, 10. But before she makes the withdrawal, Fred checks the
balance and also sees that there's enough for his withdrawal. Since Lucy has verified
the balance, but not yet made her withdrawal, Fred is seeing "bad data." He is seeing
the account balance before Lucy actually debits the account, but at this point that
debit is certain to occur. Now both Lucy and Fred believe there's enough to make
their withdrawals. So now imagine that Lucy makes her withdrawal, and now there
isn't enough in the account for Fred's withdrawal, but he thinks there is since when
he checked, there was enough! Yikes. In a minute we'll see the actual banking code,
with Fred and Lucy, represented by two threads, each acting on the same Runnable,
and that Runnable holds a reference to the one and only account instance—so, two
threads, one account.

730 Chapter9: Threads

The logic in our code example is as follows:

I. The Runnable object holds a reference to a single account.

2. Two threads are started, representing Lucy and Fred, and each thread is
given a reference to the same Runnable (which holds a reference to the
actual account)

3. The initial balance on the account is 50, and each withdrawal is exactly 10.

4. In the run () method, we loop 5 times, and in each loop we
B Make a withdrawal (if there's enough in the account).

M Print a statement if the account is overdrawn (which it should never be,
since we check the balance before making a withdrawal).

5. The makewithdrawal () method in the test class (representing the behavior
of Fred or Lucy) will do the following:

B Check the balance to see if there's enough for the withdrawal.
B If there is enough, print out the name of the one making the withdrawal.

B Go to sleep for 500 milliseconds—ijust long enough to give the other
partner a chance to get in before you actually make the withdrawal.

B Upon waking up, complete the withdrawal and print that fact.

B If there wasn't enough in the first place, print a statement showing who you
are and the fact that there wasn't enough.

So what we're really trying to discover is if the following is possible: for one partner

to check the account and see that there's enough, but before making the actual

withdrawal, the other partner checks the account and also sees that there's enough.

When the account balance gets to 10, if both partners check it before making the

withdrawal, both will think it's OK to withdraw, and the account will overdraw by 10!
Here's the code:

public class AccountDanger implements Runnable {

private Account acct = new Account () ;

public static void main (String [] args) {
AccountDanger r = new AccountDanger() ;
Thread one = new Thread(r) ;
Thread two = new Thread (r) ;
one.setName ("Fred") ;
two.setName ("Lucy") ;

Synchronizing Code (Exam Objective 4.3) 73 ||

one.start () ;
two.start () ;
}
public void run() {
for (int x = 0; x < 5; x++) {
makeWithdrawal (10) ;
if (acct.getBalance() < 0) {
System.out.println ("account is overdrawn!") ;
}

}
}

private void makeWithdrawal (int amt) {
if (acct.getBalance() >= amt) ({
System.out .println (Thread.currentThread () .getName ()
+ " is going to withdraw") ;
try {
Thread.sleep(500) ;
} catch(InterruptedException ex) { }
acct.withdraw (amt) ;
System.out.println (Thread.currentThread () .getName ()
+ " completes the withdrawal") ;
} else {
System.out.println ("Not enough in account for "
+ Thread.currentThread () .getName ()
+ " to withdraw " + acct.getBalance()) ;

So what happened? Is it possible that, say, Lucy checked the balance, fell asleep,
Fred checked the balance, Lucy woke up and completed her withdrawal, then Fred
completes his withdrawal, and in the end they overdraw the account? Look at the
(numbered) output:

)

% java AccountDanger

Fred is going to withdraw
Lucy 1is going to withdraw
Fred completes the withdrawal
Fred is going to withdraw
Lucy completes the withdrawal
Lucy is going to withdraw
Fred completes the withdrawal
Fred is going to withdraw
Lucy completes the withdrawal

O 00 J O Ul i WDN

7 32 Chapter9: Threads

10. Lucy is going to withdraw

11. Fred completes the withdrawal

12. Not enough in account for Fred to withdraw 0
13. Not enough in account for Fred to withdraw 0
14. Lucy completes the withdrawal

15. account is overdrawn!

16. Not enough in account for Lucy to withdraw -10
17. account is overdrawn!

18. Not enough in account for Lucy to withdraw -10
19. account is overdrawn!

Although each time you run this code the output might be a little different, let's
walk through this particular example using the numbered lines of output. For the
first four attempts, everything is fine. Fred checks the balance on line 1, and finds
it's OK. At line 2, Lucy checks the balance and finds it OK. At line 3, Fred makes
his withdrawal. At this point, the balance Lucy checked for (and believes is still
accurate) has actually changed since she last checked. And now Fred checks the
balance again, before Lucy even completes her first withdrawal. By this point, even
Fred is seeing a potentially inaccurate balance, because we know Lucy is going to
complete her withdrawal. It is possible, of course, that Fred will complete his before
Lucy does, but that's not what happens here.

On line 5, Lucy completes her withdrawal and then before Fred completes his,
Lucy does another check on the account on line 6. And so it continues until we
get to line 8, where Fred checks the balance and sees that it's 20. On line 9, Lucy
completes a withdrawal (that she had checked for earlier), and this takes the balance
to 10. On line 10, Lucy checks again, sees that the balance is 10, so she knows
she can do a withdrawal. But she didn't know that Fred, too, has already checked
the balance on line 8 so he thinks it's safe to do the withdrawal! On line 11, Fred
completes the withdrawal he approved on line 8. This takes the balance to zero. But
Lucy still has a pending withdrawal that she got approval for on line 10! You know
what's coming.

On lines 12 and 13, Fred checks the balance and finds that there's not enough
in the account. But on line 14, Lucy completes her withdrawal and BOOM! The
account is now overdrawn by 10—something we thought we were preventing by
doing a balance check prior to a withdrawal.

Figure 9-4 shows the timeline of what can happen when two threads concurrently
access the same object.

Synchronizing Code (Exam Objective 4.3) 73 3

Problems with
concurrent access

v

Time
Thread A will access Object 2 only

Thread B will access Object 1, and then Object 2

This problem is known as a "race condition," where multiple threads can access
the same resource (typically an object's instance variables), and can produce
corrupted data if one thread "races in" too quickly before an operation that should be
"atomic" has completed.

Preventing the Account Overdraw So what can be done? The solution

is actually quite simple. We must guarantee that the two steps of the withdrawal—
checking the balance and making the withdrawal—are never split apart. We need
them to always be performed as one operation, even when the thread falls asleep in
between step 1 and step 2! We call this an "atomic operation" (although the physics
is a little outdated, in this case "atomic" means "indivisible") because the operation,
regardless of the number of actual statements (or underlying byte code instructions),
is completed before any other thread code that acts on the same data.

You can't guarantee that a single thread will stay running throughout the entire
atomic operation. But you can guarantee that even if the thread running the atomic
operation moves in and out of the running state, no other running thread will be
able to act on the same data. In other words, If Lucy falls asleep after checking the
balance, we can stop Fred from checking the balance until after Lucy wakes up and
completes her withdrawal.

So how do you protect the data? You must do two things:

B Mark the variables private.

B Synchronize the code that modifies the variables.

734 Chapter9: Threads

Remember, you protect the variables in the normal way—using an access control
modifier. It's the method code that you must protect, so that only one thread at a
time can be executing that code. You do this with the synchronized keyword.

We can solve all of Fred and Lucy's problems by adding one word to the code. We
mark the makewithdrawal () method synchronized as follows:

private synchronized void makeWithdrawal (int amt) {
if (acct.getBalance() >= amt) ({
System.out.println (Thread.currentThread () .getName () +
" is going to withdraw") ;
try {
Thread.sleep (500) ;
} catch(InterruptedException ex) { }
acct.withdraw (amt) ;
System.out.println (Thread.currentThread () .getName () +
" completes the withdrawal") ;
} else {
System.out.println ("Not enough in account for "
+ Thread.currentThread () .getName ()
+ " to withdraw " + acct.getBalance()) ;

Now we've guaranteed that once a thread (Lucy or Fred) starts the withdrawal
process (by invoking makewithdrawal ()), the other thread cannot enter that
method until the first one completes the process by exiting the method. The new
output shows the benefit of synchronizing the makewithdrawal () method:

% java AccountDanger

Fred is going to withdraw

Fred completes the withdrawal

Lucy is going to withdraw

Lucy completes the withdrawal

Fred is going to withdraw

Fred completes the withdrawal

Lucy is going to withdraw

Lucy completes the withdrawal

Fred is going to withdraw

Fred completes the withdrawal

Not enough in account for Lucy to withdraw
Not enough in account for Fred to withdraw
Not enough in account for Lucy to withdraw
Not enough in account for Fred to withdraw
Not enough in account for Lucy to withdraw

O O O O O

Synchronization and Locks (Exam Objective 4.3) 73§

Notice that now both threads, Lucy and Fred, always check the account balance
and complete the withdrawal before the other thread can check the balance.

Synchronization and Locks

How does synchronization work? With locks. Every object in Java has a built-in lock
that only comes into play when the object has synchronized method code. When
we enter a synchronized non-static method, we automatically acquire the lock
associated with the current instance of the class whose code we're executing (the
this instance). Acquiring a lock for an object is also known as getting the lock,

or locking the object, locking on the object, or synchronizing on the object. We
may also use the term monitor to refer to the object whose lock we're acquiring.
Technically the lock and the monitor are two different things, but most people talk
about the two interchangeably, and we will too.

Since there is only one lock per object, if one thread has picked up the lock, no
other thread can pick up the lock until the first thread releases (or returns) the lock.
This means no other thread can enter the synchronized code (which means it can't
enter any synchronized method of that object) until the lock has been released.
Typically, releasing a lock means the thread holding the lock (in other words, the
thread currently in the synchronized method) exits the synchronized method.

At that point, the lock is free until some other thread enters a synchronized
method on that object. Remember the following key points about locking and
synchronization:

B Only methods (or blocks) can be synchronized, not variables or classes.
B Each object has just one lock.

B Not all methods in a class need to be synchronized. A class can have both

synchronized and non-synchronized methods.

B If two threads are about to execute a synchronized method in a class, and
both threads are using the same instance of the class to invoke the method,
only one thread at a time will be able to execute the method. The other
thread will need to wait until the first one finishes its method call. In other
words, once a thread acquires the lock on an object, no other thread can
enter any of the synchronized methods in that class (for that object).

736 Chapter9: Threads

[| Ifackmshasbodlsynchronizedandrmnksynchronizednuxhod&Inukuﬂe
threads can still access the class's non-synchronized methods! If you have
methods that don't access the data you're trying to protect, then you don't
need to synchronize them. Synchronization can cause a hit in some cases (or
even deadlock if used incorrectly), so you should be careful not to overuse it.

B If a thread goes to sleep, it holds any locks it has—it doesn't release them.

B A thread can acquire more than one lock. For example, a thread can enter a
synchronized method, thus acquiring a lock, and then immediately invoke
a synchronized method on a different object, thus acquiring that lock as
well. As the stack unwinds, locks are released again. Also, if a thread acquires
a lock and then attempts to call a synchronized method on that same
object, no problem. The JVM knows that this thread already has the lock for
this object, so the thread is free to call other synchronized methods on the
same object, using the lock the thread already has.

B You can synchronize a block of code rather than a method.

Because synchronization does hurt concurrency, you don't want to synchronize
any more code than is necessary to protect your data. So if the scope of a method is
more than needed, you can reduce the scope of the synchronized part to something
less than a full method—to just a block. We call this, strangely, a synchronized block,
and it looks like this:

class SyncTest {
public void doStuff () {
System.out.println("not synchronized") ;
synchronized (this) {
System.out.println ("synchronized") ;

}
}
}

When a thread is executing code from within a synchronized block, including
any method code invoked from that synchronized block, the code is said to be
executing in a synchronized context. The real question is, synchronized on what? Or,
synchronized on which object's lock?

When you synchronize a method, the object used to invoke the method is the
object whose lock must be acquired. But when you synchronize a block of code, you

Synchronization and Locks (Exam Objective 4.3) 737

specify which object's lock you want to use as the lock, so you could, for example,
use some third-party object as the lock for this piece of code. That gives you the
ability to have more than one lock for code synchronization within a single object.

Or you can synchronize on the current instance (this) as in the code above.
Since that's the same instance that synchronized methods lock on, it means that
you could always replace a synchronized method with a non-synchronized
method containing a synchronized block. In other words, this:

public synchronized void doStuff () {
System.out.println ("synchronized") ;

}

is equivalent to this:

public void doStuff () {
synchronized (this) {
System.out.println ("synchronized") ;

}

These methods both have the exact same effect, in practical terms. The compiled
bytecodes may not be exactly the same for the two methods, but they could be—and
any differences are not really important. The first form is shorter and more familiar
to most people, but the second can be more flexible.

So What About Static Methods? Can They Be Synchronized?

static methods can be synchronized. There is only one copy of the static data
you're trying to protect, so you only need one lock per class to synchronize static
methods—a lock for the whole class. There is such a lock; every class loaded in Java
has a corresponding instance of java.lang.Class representing that class. It's that
java.lang.Class instance whose lock is used to protect the static methods of

the class (if they're synchronized). There's nothing special you have to do to
synchronize a static method:

public static synchronized int getCount ()
return count;

}

738 Chapter9: Threads

Again, this could be replaced with code that uses a synchronized block. If the
method is defined in a class called MyClass, the equivalent code is as follows:

public static int getCount ()
synchronized (MyClass.class) {
return count;

}
}

Wait—what's that MyClass.class thing? That's called a class literal. It's a
special feature in the Java language that tells the compiler (who tells the JVM): go
and find me the instance of Class that represents the class called MyClass. You can
also do this with the following code:

public static void classMethod()
Class cl = Class.forName ("MyClass") ;
synchronized (cl)
// do stuff
}

}

However that's longer, ickier, and most important, not on the SCJP exam. But
it's quick and easy to use a class literal—just write the name of the class, and add
.class at the end. No quotation marks needed. Now you've got an expression for
the Class object you need to synchronize on.

EXERCISE 9-2

Synchronizing a Block of Code

In this exercise we will attempt to synchronize a block of code. Within that block of
code we will get the lock on an object, so that other threads cannot modify it while
the block of code is executing. We will be creating three threads that will all attempt
to manipulate the same object. Each thread will output a single letter 100 times, and
then increment that letter by one. The object we will be using is StringBuffer.
We could synchronize on a String object, but strings cannot be modified once

they are created, so we would not be able to increment the letter without generating
a new String object. The final output should have 100 As, 100 Bs, and 100 Cs all in

unbroken lines.

Synchronization and Locks (Exam Objective 4.3) 739

I. Create a class and extend the Thread class.

2. Opverride the run () method of Thread. This is where the synchronized
block of code will go.

3. For our three thread objects to share the same object, we will need to create
a constructor that accepts a StringBuffer object in the argument.

4. The synchronized block of code will obtain a lock on the StringBuffer
object from step 3.

5. Within the block, output the StringBuffer 100 times and then increment
the letter in the StringBuffer. You can check Chapter 6 for StringBuffer
methods that will help with this.

6. Finally, in the main () method, create a single StringBuffer object using the
letter A, then create three instances of our class and start all three of them.

What Happens If a thread Can't Get the Lock?

If a thread tries to enter a synchronized method and the lock is already taken, the
thread is said to be blocked on the object's lock. Essentially, the thread goes into a
kind of pool for that particular object and has to sit there until the lock is released
and the thread can again become runnable/running. Just because a lock is released
doesn't mean any particular thread will get it. There might be three threads waiting
for a single lock, for example, and there's no guarantee that the thread that has
waited the longest will get the lock first.

When thinking about blocking, it's important to pay attention to which objects
are being used for locking.

B Threads calling non-static synchronized methods in the same class will
only block each other if they're invoked using the same instance. That's
because they each lock on this instance, and if they're called using two dif-
ferent instances, they get two locks, which do not interfere with each other.

B Threads calling static synchronized methods in the same class will always
block each other—they all lock on the same Class instance.

B A static synchronized method and a non-static synchronized method
will not block each other, ever. The static method locks on a Class
instance while the non-static method locks on the this instance—these
actions do not interfere with each other at all.

740 Chapter9: Threads

B For synchronized blocks, you have to look at exactly what object has been
used for locking. (What's inside the parentheses after the word synchro-
nized?) Threads that synchronize on the same object will block each other.
Threads that synchronize on different objects will not.

Table 9-1 lists the thread-related methods and whether the thread gives up its
lock as a result of the call.

Methods and Lock Status

Class Defining

Give Up Locks Keep Locks the Method

wait

()

notify () (Although the thread will probably java.lang.Object
exit the synchronized code shortly after this call,
and thus give up its locks.)

join () java.lang.Thread
sleep () java.lang.Thread
yield() java.lang.Thread

So When Do | Need To Synchronize?

Synchronization can get pretty complicated, and you may be wondering why you
would want to do this at all if you can help it. But remember the earlier "race
conditions" example with Lucy and Fred making withdrawals from their account.
When we use threads, we usually need to use some synchronization somewhere to
make sure our methods don't interrupt each other at the wrong time and mess up our
data. Generally, any time more than one thread is accessing mutable (changeable)
data, you synchronize to protect that data, to make sure two threads aren't changing
it at the same time (or that one isn't changing it at the same time the other is
reading it, which is also confusing). You don't need to worry about local variables—
each thread gets its own copy of a local variable. Two threads executing the same
method at the same time will use different copies of the local variables, and they
won't bother each other. However, you do need to worry about static and non-
static fields, if they contain data that can be changed.

For changeable data in a non-static field, you usually use a non-static method
to access it. By synchronizing that method, you will ensure that any threads trying

Synchronization and Locks (Exam Objective 4.3) 74 |

to run that method using the same instance will be prevented from simultaneous
access. But a thread working with a different instance will not be affected, because
it's acquiring a lock on the other instance. That's what we want—threads working
with the same data need to go one at a time, but threads working with different data
can just ignore each other and run whenever they want to; it doesn't matter.

For changeable data in a static field, you usually use a static method to access it.
And again, by synchronizing the method you ensure that any two threads trying to
access the data will be prevented from simultaneous access, because both threads will
have to acquire locks on the Class object for the class the static method's defined
in. Again, that's what we want.

However—what if you have a non-static method that accesses a static field?
Or a static method that accesses a non-static field (using an instance)? In
these cases things start to get messy quickly, and there's a very good chance that
things will not work the way you want. If you've got a static method accessing a
non-static field, and you synchronize the method, you acquire a lock on the Class
object. But what if there's another method that also accesses the non-static field,
this time using a non-static method? It probably synchronizes on the current
instance (this) instead. Remember that a static synchronized method and a
non-static synchronized method will not block each other—they can run at
the same time. Similarly, if you access a static field using a non-static method,
two threads might invoke that method using two different this instances. Which
means they won't block each other, because they use different locks. Which means
two threads are simultaneously accessing the same static field—exactly the sort of
thing we're trying to prevent.

[t gets very confusing trying to imagine all the weird things that can happen here.
To keep things simple: in order to make a class thread-safe, methods that access
changeable fields need to be synchronized.

Access to static fields should be done from static synchronized methods. Access
to non-static fields should be done from non-static synchronized methods. For
example:

public class Thing {
private static int staticField;
private int nonstaticField;
public static synchronized int getStaticField() {
return staticField;
}
public static synchronized void setStaticField(
int staticField)

7472 Chapter9: Threads

Thing.staticField = staticField;

}

public synchronized int getNonstaticField() ({
return nonstaticField;

}

public synchronized void setNonstaticField(
int nonstaticField) ({
this.nonstaticField = nonstaticField;

What if you need to access both static and non-static fields in a method?
Well, there are ways to do that, but it's beyond what you need for the exam. You
will live a longer, happier life if you JUST DON'T DO IT. Really. Would we lie?

Thread-Safe Classes

When a class has been carefully synchronized to protect its data (using the rules

just given, or using more complicated alternatives), we say the class is "thread-safe."
Many classes in the Java APIs already use synchronization internally in order to
make the class "thread-safe." For example, StringBuffer and StringBuilder are nearly
identical classes, except that all the methods in StringBuffer are synchronized
when necessary, while those in StringBuilder are not. Generally, this makes
StringBuffer safe to use in a multithreaded environment, while StringBuilder is not.
(In return, StringBuilder is a little bit faster because it doesn't bother synchronizing.)
However, even when a class is "thread-safe," it is often dangerous to rely on these
classes to provide the thread protection you need. (C'mon, the repeated quotes
used around "thread-safe" had to be a clue, right?) You still need to think carefully
about how you use these classes, As an example, consider the following class.

import java.util.*;
public class NameList {
private List names = Collections.synchronizedList (
new LinkedList ()) ;
public void add(String name) {
names .add (name) ;
}

public String removeFirst() {
if (names.size() > 0)
return (String) names.remove (0) ;
else

return null;

Synchronization and Locks (Exam Objective 4.3) 74 3

The method collections.synchronizedList () returns a List whose methods
are all synchronized and "thread-safe" according to the documentation (like a
Vector—but since this is the 21st century, we're not going to use a Vector here).
The question is, can the NameList class be used safely from multiple threads? It's
tempting to think that yes, since the data in names is in a synchronized collection,
the NamelList class is "safe" too. However that's not the case—the removeFirst ()
may sometimes throw a NoSuchElementException. What's the problem? Doesn't it
correctly check the size () of names before removing anything, to make sure there's
something there? How could this code fail? Let's try to use NameList like this:

public static void main(String[] args) {
final NameList nl = new NameList () ;
nl.add("Ozymandias") ;
class NameDropper extends Thread {
public void run() {
String name = nl.removeFirst () ;
System.out.println (name) ;

}

Thread tl = new NameDropper () ;
Thread t2 = new NameDropper () ;
tl.start();
t2.start () ;

What might happen here is that one of the threads will remove the one name
and print it, then the other will try to remove a name and get nu11. If we think just
about the calls to names . size () and names.get (0), they occur in this order:

Thread t1 executes names.size (), which returns 1.
Thraxltlexeaﬂfsnames.remove(o),“&nchreanSOzymandias
Thread t2 executes names.size (), which returns O.

Thread t2 does not call remove (0).

The output here is

Ozymandias
null

744 Chapter9: Threads

However, if we run the program again something different might happen:

Thread t1 executes names.size (), which returns 1.

Thread t2 executes names.size (), which returns 1.

Thread t1 executes names . remove (0) N which returns Ozymandias.

Thread t2 executes names . remove (0), which throws an exception because the
list is now empty.

The thing to realize here is that in a "thread-safe" class like the one returned by
synchronizedList (), each individual method is synchronized. So names.size ()
is synchronized, and names . remove (0) is synchronized. But nothing prevents
another thread from doing something else to the list in between those two calls. And
that's where problems can happen.

There's a solution here: don't rely on Collections.synchronizedList ().
Instead, synchronize the code yourself:

import java.util.=*;
public class NameList {
private List names = new LinkedList () ;
public synchronized void add(String name) {
names.add (name) ;

}

public synchronized String removeFirst ()
if (names.size() > 0)
return (String) names.remove (0) ;
else
return null;

Now the entire removeFirst () method is synchronized, and once one thread
starts it and calls names . size (), there's no way the other thread can cut in and
steal the last name. The other thread will just have to wait until the first thread
completes the removeFirst () method.

The moral here is that just because a class is described as "thread-safe" doesn't
mean it is always thread-safe. If individual methods are synchronized, that may not
be enough—you may be better off putting in synchronization at a higher level (i.e.,
put it in the block or method that calls the other methods). Once you do that, the
original synchronization (in this case, the synchronization inside the object returned
by Collections.synchronizedList ()) may well become redundant.

Thread Deadlock (Exam Objective 4.3) 745

Thread Deadlock

Perhaps the scariest thing that can happen to a Java program is deadlock. Deadlock
occurs when two threads are blocked, with each waiting for the other's lock. Neither
can run until the other gives up its lock, so they'll sit there forever.

This can happen, for example, when thread A hits synchronized code, acquires
a lock B, and then enters another method (still within the synchronized code it
has the lock on) that's also synchronized. But thread A can't get the lock to enter
this synchronized code—block C—because another thread D has the lock already.
So thread A goes off to the waiting-for-the-C-lock pool, hoping that thread D will
hurry up and release the lock (by completing the synchronized method). But
thread A will wait a very long time indeed, because while thread D picked up lock
C, it then entered a method synchronized on lock B. Obviously, thread D can't
get the lock B because thread A has it. And thread A won't release it until thread D
releases lock C. But thread D won't release lock C until after it can get lock B and
continue. And there they sit. The following example demonstrates deadlock:

1. public class DeadlockRisk {

2. private static class Resource {

3. public int value;

4. }

5. private Resource resourceA = new Resource() ;

6. private Resource resourceB = new Resource() ;

7. public int read() {

8. synchronized (resourced) { // May deadlock here
9. synchronized (resourceB) {

10. return resourceB.value + resourceA.value;
11. }

12. }

13. }

14.

15. public void write(int a, int b) {

16. synchronized (resourceB) { // May deadlock here
17. synchronized (resourced) {

18. resourceA.value = a;

19. resourceB.value = b;

20. }

21. }

22. }

N
w
—~

746 Chapter9: Threads

Assume that read () is started by one thread and write () is started by another.
If there are two different threads that may read and write independently, there is a
risk of deadlock at line 8 or 16. The reader thread will have resourcea, the writer
thread will have resourceB, and both will get stuck waiting for the other.

Code like this almost never results in deadlock because the CPU has to switch
from the reader thread to the writer thread at a particular point in the code, and the
chances of deadlock occurring are very small. The application may work fine 99.9
percent of the time.

The preceding simple example is easy to fix; just swap the order of locking for
either the reader or the writer at lines 16 and 17 (or lines 8 and 9). More complex
deadlock situations can take a long time to figure out.

Regardless of how little chance there is for your code to deadlock, the bottom
line is, if you deadlock, you're dead. There are design approaches that can help avoid
deadlock, including strategies for always acquiring locks in a predetermined order.

But that's for you to study and is beyond the scope of this book. We're just trying
to get you through the exam. If you learn everything in this chapter, though, you'll
still know more about threads than most experienced Java programmers.

CERTIFICATION OBJECTIVE

Thread Interaction (Objective 4.4)

4.4 Given a scenario, write code that makes appropriate use of wait, notify. or notifyAll.

The last thing we need to look at is how threads can interact with one another

to communicate about—among other things—their locking status. The Object
class has three methods, wait (), notify (), and notifyall () that help threads
communicate about the status of an event that the threads care about. For example,
if one thread is a mail-delivery thread and one thread is a mail-processor thread,
the mail-processor thread has to keep checking to see if there's any mail to process.
Using the wait and notify mechanism, the mail-processor thread could check for
mail, and if it doesn't find any it can say, "Hey, I'm not going to waste my time
checking for mail every two seconds. I'm going to go hang out, and when the mail
deliverer puts something in the mailbox, have him notify me so [can go back to
runnable and do some work." In other words, using wait () and notify () lets one

Thread Interaction (Exam Objective 4.4) T4 7

thread put itself into a "waiting room" until some other thread notifies it that there's
a reason to come back out.

One key point to remember (and keep in mind for the exam) about wait/notify
is this:

wait (), notify(), and notifyall () must be called from within a synchronized
context! A thread can't invoke a wait or notify method on an object unless it owns
that object's lock.

Here we'll present an example of two threads that depend on each other to
proceed with their execution, and we'll show how to use wait () and notify () to
make them interact safely and at the proper moment.

Think of a computer-controlled machine that cuts pieces of fabric into different
shapes and an application that allows users to specify the shape to cut. The current
version of the application has one thread, which loops, first asking the user for
instructions, and then directs the hardware to cut the requested shape:

public void run() {
while (true) {
// Get shape from user
// Calculate machine steps from shape
// Send steps to hardware

This design is not optimal because the user can't do anything while the machine
is busy and while there are other shapes to define. We need to improve the situation.
A simple solution is to separate the processes into two different threads, one of
them interacting with the user and another managing the hardware. The user thread
sends the instructions to the hardware thread and then goes back to interacting with
the user immediately. The hardware thread receives the instructions from the user
thread and starts directing the machine immediately. Both threads use a common

object to communicate, which holds the current design being processed.
The following pseudocode shows this design:

public void userLoop () {
while (true) {
// Get shape from user
// Calculate machine steps from shape
// Modify common object with new machine steps

748 Chapter 9: Threads

}

public void hardwareLoop () {
while (true) {
// Get steps from common object
// Send steps to hardware

The problem now is to get the hardware thread to process the machine steps as
soon as they are available. Also, the user thread should not modify them until they
have all been sent to the hardware. The solution is to use wait () and notify (),
and also to synchronize some of the code.

The methods wait () and notify (), remember, are instance methods of Object.
In the same way that every object has a lock, every object can have a list of threads
that are waiting for a signal (a notification) from the object. A thread gets on
this waiting list by executing the wait () method of the target object. From that
moment, it doesn't execute any further instructions until the notify () method of
the target object is called. If many threads are waiting on the same object, only one
will be chosen (in no guaranteed order) to proceed with its execution. If there are
no threads waiting, then no particular action is taken. Let's take a look at some real
code that shows one object waiting for another object to notify it (take note, it is
somewhat complex):

1. class Threada (

2. public static void main(String [] args) {

3. ThreadB b = new ThreadB() ;

4. b.start () ;

5.

6. synchronized (b)

7. try {

8. System.out.println("Waiting for b to complete...");
9. b.wait () ;
10 } catch (InterruptedException e) {}
11. System.out.println("Total is: " + b.total);
12. }
13. }
14 }
15
16 class ThreadB extends Thread ({
17 int total;

Thread Interaction (Exam Objective 4.4) 749

18.

19. public void run()

20. synchronized (this)

21. for (int i=0;i<100;i++)
22. total += 1i;

23. }

24. notify () ;

25. }

26. }

27. '}

This program contains two objects with threads: ThreadA contains the main
thread and ThreadB has a thread that calculates the sum of all numbers from 0
through 99. As soon as line 4 calls the start () method, ThreadA will continue
with the next line of code in its own class, which means it could get to line 11
before ThreadB has finished the calculation. To prevent this, we use the wait ()
method in line 9.

Notice in line 6 the code synchronizes itself with the object b—this is because in
order to call wait () on the object, Thread A must own a lock on b. For a thread to
call wait () or notify (), the thread has to be the owner of the lock for that object.
When the thread waits, it temporarily releases the lock for other threads to use, but
it will need it again to continue execution. It's common to find code like this:

synchronized (anotherObject) { // this has the lock on anotherObject

try {
anotherObject.wait () ;
// the thread releases the lock and waits
// To continue, the thread needs the lock,
// so it may be blocked until it gets it.
} catch(InterruptedException e) {}

The preceding code waits until notify () is called on anotherobject.

synchronized (this) { notify(); }

This code notifies a single thread currently waiting on the this object. The
lock can be acquired much earlier in the code, such as in the calling method.
Note that if the thread calling wait () does not own the lock, it will throw an
IllegalMonitorStateException. This exception is not a checked exception,

750 Chapter9: Threads

so you don't have to catch it explicitly. You should always be clear whether a thread
has the lock of an object in any given block of code.

Notice in lines 7-10 there is a try/catch block around the wait () method.
A waiting thread can be interrupted in the same way as a sleeping thread, so you
have to take care of the exception:

try {
wait () ;

} catch(InterruptedException e) {
// Do something about it

In the fabric example, the way to use these methods is to have the hardware
thread wait on the shape to be available and the user thread to notify after it has
written the steps. The machine steps may comprise global steps, such as moving the
required fabric to the cutting area, and a number of substeps, such as the direction
and length of a cut. As an example they could be

int fabricRoll;

int cuttingSpeed;
Point startingPoint;
float[] directions;
float [] lengths;
etc. .

[t is important that the user thread does not modify the machine steps while the
hardware thread is using them, so this reading and writing should be synchronized.
The resulting code would look like this:

class Operator extends Thread {
public void run()
while (true) {
// Get shape from user
synchronized (this) {
// Calculate new machine steps from shape
notify () ;

}
}

class Machine extends Thread ({
Operator operator; // assume this gets initialized

Thread Interaction (Exam Objective 4.4) 7§ |

public void run() {
while (true) {
synchronized(operator){

try {

operator.wait () ;
} catch(InterruptedException ie) {}
// Send machine steps to hardware

The machine thread, once started, will immediately go into the waiting state and
will wait patiently until the operator sends the first notification. At that point it is
the operator thread that owns the lock for the object, so the hardware thread gets
stuck for a while. It's only after the operator thread abandons the synchronized
block that the hardware thread can really start processing the machine steps.

While one shape is being processed by the hardware, the user may interact
with the system and specify another shape to be cut. When the user is finished
with the shape and it is time to cut it, the operator thread attempts to enter the
synchronized block, maybe blocking until the machine thread has finished with
the previous machine steps. When the machine thread has finished, it repeats the
loop, going again to the waiting state (and therefore releasing the lock). Only then
can the operator thread enter the synchronized block and overwrite the machine
steps with the new ones.

Having two threads is definitely an improvement over having one, although in
this implementation there is still a possibility of making the user wait. A further
improvement would be to have many shapes in a queue, thereby reducing the
possibility of requiring the user to wait for the hardware.

There is also a second form of wait () that accepts a number of milliseconds
as a maximum time to wait. If the thread is not interrupted, it will continue
normally whenever it is notified or the specified timeout has elapsed. This normal
continuation consists of getting out of the waiting state, but to continue execution it
will have to get the lock for the object:

synchronized(a){ // The thread gets the lock on 'a'
a.wait (2000); // Thread releases the lock and waits for notify
// only for a maximum of two seconds, then goes back to Runnable
// The thread reacquires the lock

// More instructions here

7572 Chapter 9: Threads

Jatch
When the wait () method is invoked on an object, the thread executing

that code gives up its lock on the object immediately. However, when notify () is called,
that doesn’t mean the thread gives up its lock at that moment. If the thread is still
completing synchronized code, the lock is not released until the thread moves out of
synchronized code. So just because notify () is called doesn’t mean the lock becomes
available at that moment.

Using notifyAll() When Many Threads May Be Waiting

In most scenarios, it's preferable to notify all of the threads that are waiting on a
particular object. If so, you can use notifyall () on the object to let all the threads
rush out of the waiting area and back to runnable. This is especially important if you
have several threads waiting on one object, but for different reasons, and you want
to be sure that the right thread (along with all of the others) gets notified.

notifyAll(); // Will notify all waiting threads

All of the threads will be notified and start competing to get the lock. As the lock
is used and released by each thread, all of them will get into action without a need
for further notification.

As we said earlier, an object can have many threads waiting on it, and using
notify () will affect only one of them. Which one, exactly, is not specified and
depends on the JVM implementation, so you should never rely on a particular
thread being notified in preference to another.

In cases in which there might be a lot more waiting, the best way to do this is by
using notifyall (). Let's take a look at this in some code. In this example, there is
one class that performs a calculation and many readers that are waiting to receive
the completed calculation. At any given moment many readers may be waiting.

class Reader extends Thread ({
Calculator c;

public Reader (Calculator calc) {
c = calc;

g W N

Using notifyAll() When Many Threads May Be Waiting (Exam Objective 44) 7§ 3

6. }
7.
8. public void run() {
9. synchronized(c) {
10. try {
11. System.out.println("Waiting for calculation...");
12. c.wait () ;
13. } catch (InterruptedException e) {}
14. System.out.println("Total is: " + c.total);
15. }
16. }
17.
18. public static void main(String [] args)
19. Calculator calculator = new Calculator();
20. new Reader (calculator) .start() ;
21. new Reader (calculator) .start () ;
22. new Reader (calculator) .start () ;
23. calculator.start () ;
24. }
25. }
26.
27. class Calculator extends Thread ({
28. int total;
29.
30. public void run() {
31. synchronized (this)
32. for (int i=0;1<100;1i++)
33. total += 1i;
34. }
35. notifyAll () ;
36. }
37. }
38. |}

The program starts three threads that are all waiting to receive the finished
calculation (lines 18-24), and then starts the calculator with its calculation. Note
that if the run () method at line 30 used notify () instead of notifyall (), only
one reader would be notified instead of all the readers.

Using wait() in a Loop

Actually both of the previous examples (Machine/Operator and Reader/Calculator)
had a common problem. In each one, there was at least one thread calling wait (),
and another thread calling notify () or notifyall (). This works well enough

7584 Chapter9: Threads

as long as the waiting threads have actually started waiting before the other thread
executes the notify () or notifyall (). But what happens if, for example, the
Calculator runs first and calls notify () before the Readers have started waiting?
This could happen, since we can't guarantee what order the different parts of the
thread will execute in. Unfortunately, when the Readers run, they just start waiting
right away. They don't do anything to see if the event they're waiting for has already
happened. So if the Calculator has already called notifyall (), it's not going to
call notifyall () again—and the waiting Readers will keep waiting forever. This
is probably not what the programmer wanted to happen. Almost always, when

you want to wait for something, you also need to be able to check if it has already
happened. Generally the best way to solve this is to put in some sort of loop that
checks on some sort of conditional expressions, and only waits if the thing you're
waiting for has not yet happened. Here's a modified, safer version of the earlier
fabric-cutting machine example:

class Operator extends Thread {
Machine machine; // assume this gets initialized
public void run() {
while (true) {
Shape shape = getShapeFromUser () ;
MachineInstructions job =
calculateNewInstructionsFor (shape) ;
machine.addJdob (job) ;
}
}
}

The operator will still keep on looping forever, getting more shapes from users,
calculating new instructions for those shapes, and sending them to the machine.
But now the logic for notify () has been moved into the addJob () method in the
Machine class:

class Machine extends Thread ({
List<MachineInstructions> jobs =
new ArrayList<MachineInstructionss () ;

public void addJob (MachineInstructions job)
synchronized (jobs) ({
jobs.add (job) ;
jobs.notify () ;

Using notifyAll() When Many Threads May Be Waiting (Exam Objective 44) 78§

}
}

public void run()
while (true) ({
synchronized (jobs)
// wait until at least one job is available
while (jobs.isEmpty()) {

try {
jobs.wait () ;
} catch (InterruptedException ie) { }

}

// If we get here, we know that jobs is not empty
MachineInstructions instructions = jobs.remove (0) ;
// Send machine steps to hardware

A machine keeps a list of the jobs it's scheduled to do. Whenever an operator
adds a new job to the list, it calls the addgob () method and adds the new job to
the list. Meanwhile the run () method just keeps looping, looking for any jobs on
the list. If there are no jobs, it will start waiting. If it's notified, it will stop waiting
and then recheck the loop condition: is the list still empty? In practice this double-
check is probably not necessary, as the only time a notify () is ever sent is when a
new job has been added to the list. However, it's a good idea to require the thread to
recheck the isEmpty () condition whenever it's been woken up, because it's possible
that a thread has accidentally sent an extra notify () that was not intended.
There's also a possible situation called spontaneous wakeup that may exist in some
situations—a thread may wake up even though no code has called notify ()
ornotifyall (). (At least, no code you know about has called these methods.
Sometimes the JVM may call notify () for reasons of its own, or code in some other
class calls it for reasons you just don't know.) What this means is, when your thread
wakes up from a wait (), you don't know for sure why it was awakened. By putting
the wait () method in a while loop and re-checking the condition that represents
what we were waiting for, we ensure that whatever the reason we woke up, we will
re-enter the wait () if (and only if) the thing we were waiting for has not happened
yet. In the Machine class, the thing we were waiting for is for the jobs list to not be
empty. If it's empty, we wait, and if it's not, we don't.

75856 Chapter9: Threads

Note also that both the run () method and the addJob () method synchronize
on the same object—the jobs list. This is for two reasons. One is because we're
calling wait () and notify () on this instance, so we need to synchronize in order
to avoid an Illegal ThreadState exception. The other reason is, the data in the jobs
list is changeable data stored in a field that is accessed by two different threads. We
need to synchronize in order to access that changeable data safely. Fortunately, the
same synchronized blocks that allow us to wait () and notify () also provide
the required thread safety for our other access to changeable data. In fact this is a
main reason why synchronization is required to use wait () and notify () in the
first place—you almost always need to share some mutable data between threads
at the same time, and that means you need synchronization. Notice that the
synchronized block in addJob () is big enough to also include the call to
jobs.add (job) —which modifies shared data. And the synchronized block in
run () is large enough to include the whole while loop—which includes the call to
jobs.isEmpty (), which accesses shared data.

The moral here is that when you use wait () and notify () or notifyall (),
you should almost always also have a while loop around the wait () that checks a
condition and forces continued waiting until the condition is met. And you should
also make use of the required synchronization for the wait () and notify () calls,
to also protect whatever other data you're sharing between threads. If you see code
which fails to do this, there's usually something wrong with the code—even if you
have a hard time seeing what exactly the problem is.

Match
The methods wait () ,notify (), and notifyall () are methods of only

java.lang.Object, not of java.lang.Thread or java.lang.Runnable. Be sure you know which
methods are defined in Thread, which in Object, and which in Runnable (just run (), so

that’s an easy one). Of the key methods in Thread, be sure you know which are static—
sleep () and yield (), and which are not static—join() and start ().Table 9-2 lists the
key methods you’ll need to know for the exam, with the static methods shown in italics.

Certification Summary 787

Key Thread Methods

Class Object Class Thread Interface Runnable
wait () start() run()

notify() yield()

notifyAll() sleep()

join()

CERTIFICATION SUMMARY

This chapter covered the required thread knowledge you'll need to apply on the
certification exam. Threads can be created by either extending the Thread class or
implementing the Runnable interface. The only method that must be overridden in
the Runnable interface is the run () method, but the thread doesn't become a thread
of execution until somebody calls the Thread object's start () method. We also
looked at how the s1eep () method can be used to pause a thread, and we saw that
when an object goes to sleep, it holds onto any locks it acquired prior to sleeping.

We looked at five thread states: new, runnable, running, blocked/waiting/sleeping,
and dead. You learned that when a thread is dead, it can never be restarted even if
it's still a valid object on the heap. We saw that there is only one way a thread can
transition to running, and that's from runnable. However, once running, a thread
can become dead, go to sleep, wait for another thread to finish, block on an object's
lock, wait for a notification, or return to runnable.

You saw how two threads acting on the same data can cause serious problems
(remember Lucy and Fred's bank account?). We saw that, to let one thread execute
a method, but prevent other threads from running the same object's method, we use
the synchronized keyword. To coordinate activity between different threads, use
the wait (), notify (), and notifyall () methods.

7588 Chapter9: Threads

TWO-MINUTE DRILL

Here are some of the key points from each certification objective in this chapter.
Photocopy it and sleep with it under your pillow for complete absorption.

Defining, Instantiating, and Starting Threads (Objective 4.1)

a

(=)

Threads can be created by extending Thread and overriding the

public void run () method.

Thread objects can also be created by calling the Thread constructor that
takes a Runnable argument. The Runnable object is said to be the target of
the thread.

You can call start () on a Thread object only once. If start () is called
more than once on a Thread object, it will throw a RuntimeException.

[t is legal to create many Thread objects using the same Runnable object as
the target.

When a Thread object is created, it does not become a thread of execution
until its start () method is invoked. When a Thread object exists but hasn't
been started, it is in the new state and is not considered alive.

Transitioning Between Thread States (Objective 4.2)

a
a

Q

Once a new thread is started, it will always enter the runnable state.

The thread scheduler can move a thread back and forth between the
runnable state and the running state.

For a typical single-processor machine, only one thread can be running at a
time, although many threads may be in the runnable state.

There is no guarantee that the order in which threads were started
determines the order in which they'll run.

There's no guarantee that threads will take turns in any fair way. It's up

to the thread scheduler, as determined by the particular virtual machine
implementation. If you want a guarantee that your threads will take turns
regardless of the underlying JVM, you can use the sleep () method. This
prevents one thread from hogging the running process while another thread
starves. (In most cases, though, yield () works well enough to encourage
your threads to play together nicely.)

A running thread may enter a blocked/waiting state by a wait (), sleep (),
or join () call.

Q

Two-Minute Drill 759

A running thread may enter a blocked/waiting state because it can't acquire
the lock for a synchronized block of code.

When the sleep or wait is over, or an object's lock becomes available, the
thread can only reenter the runnable state. It will go directly from waiting to
running (well, for all practical purposes anyway).

A dead thread cannot be started again.

Sleep,Yield, and Join (Objective 4.2)

a

Q

Sleeping is used to delay execution for a period of time, and no locks are
released when a thread goes to sleep.

A sleeping thread is guaranteed to sleep for at least the time specified in

the argument to the sleep () method (unless it's interrupted), but there is
no guarantee as to when the newly awakened thread will actually return to
running.

The sleep () method is a static method that sleeps the currently executing
thread's state. One thread cannot tell another thread to sleep.

The setPriority () method is used on Thread objects to give threads

a priority of between 1 (low) and 10 (high), although priorities are not
guaranteed, and not all JVMs recognize 10 distinct priority levels—some
levels may be treated as effectively equal.

If not explicitly set, a thread's priority will have the same priority as the
priority of the thread that created it.

The yield () method may cause a running thread to back out if there are
runnable threads of the same priority. There is no guarantee that this will
happen, and there is no guarantee that when the thread backs out there

will be a different thread selected to run. A thread might yield and then
immediately reenter the running state.

The closest thing to a guarantee is that at any given time, when a thread

is running it will usually not have a lower priority than any thread in the
runnable state. If a low-priority thread is running when a high-priority thread
enters runnable, the JVM will usually preempt the running low-priority
thread and put the high-priority thread in.

When one thread calls the join () method of another thread, the currently
running thread will wait until the thread it joins with has completed. Think
of the join() method as saying, "Hey thread, I want to join on to the end
of you. Let me know when you're done, so I can enter the runnable state."

760 Chapter9: Threads

Concurrent Access Problems and Synchronized Threads (Obj. 4.3)

Qa

Q

synchronized methods prevent more than one thread from accessing an
object's critical method code simultaneously.

You can use the synchronized keyword as a method modifier, or to start a
synchronized block of code.

To synchronize a block of code (in other words, a scope smaller than the
whole method), you must specify an argument that is the object whose lock
you want to synchronize on.

While only one thread can be accessing synchronized code of a particular
instance, multiple threads can still access the same object's unsynchronized code.
When a thread goes to sleep, its locks will be unavailable to other threads.
static methods can be synchronized, using the lock from the
java.lang.Class instance representing that class.

Communicating with Objects by Waiting and Notifying (Obj. 4.4)

a

The wait () method lets a thread say, "there's nothing for me to do now, so
put me in your waiting pool and notify me when something happens that I
care about." Basically, a wait () call means "wait me in your pool," or "add
me to your waiting list."

The notify () method is used to send a signal to one and only one of the
threads that are waiting in that same object's waiting pool.

The notify () method can NOT specify which waiting thread to notify.
The method notifyall () works in the same way as notify (), only it sends
the signal to all of the threads waiting on the object.

All three methods—wait (), notify (), and notifyAll () —must be

called from within a synchronized context! A thread invokes wait () or
notify () on a particular object, and the thread must currently hold the lock
on that object.

Deadlocked Threads (Objective 4.3)

a

a

a

Deadlocking is when thread execution grinds to a halt because the code is
waiting for locks to be removed from objects.

Deadlocking can occur when a locked object attempts to access another
locked object that is trying to access the first locked object. In other words,
both threads are waiting for each other's locks to be released; therefore, the
locks will never be released!

Deadlocking is bad. Don't do it.

Self Test 76 1

SELFTEST

The following questions will help you measure your understanding of the material presented in this
chapter. If you have a rough time with some of these at first, don't beat yourself up. Some of these
questions are long and intricate, expect long and intricate questions on the real exam too!

I. The following block of code creates a Thread using a Runnable target:

Runnable target = new MyRunnable () ;
Thread myThread = new Thread (target) ;

Which of the following classes can be used to create the target, so that the preceding code
compiles correctly?

A. public class MyRunnable extends Runnable{public void run(){}}

B. public class MyRunnable extends Object{public void run(){}}
C. public class MyRunnable implements Runnable{public void run(){}}
D. public class MyRunnable implements Runnable{void run(){}}
E. public class MyRunnable implements Runnable{public void start(){}}
2. Given:
3. class MyThread extends Thread ({
4. public static void main(String [] args) {
5. MyThread t = new MyThread() ;
6. Thread x = new Thread(t) ;
7. x.start () ;
8. }
9. public void run() {
10. for(int i=0;i<3;++1i)
11. System.out.print (i + "..");
12. }
13. }
14. |}

What is the result of this code?
A. Compilation fails

B. 1.2.3.
C. 0.1..2.3.
D. 0.1..2..

E. An exception occurs at runtime

762 Chapter 9: Threads

3. Given:

3. class Test {

4. public static void main(String [] args) {
5. printAll (args) ;

6. }

7. public static void printAll(String[] lines) {
8. for(int i=0;i<lines.length;i++) {

9. System.out.println(lines[i]) ;
10. Thread.currentThread () .sleep(1000) ;
11. }
12. }
13. }

The static method Thread.currentThread () returns a reference to the currently executing

Thread object. What is the result of this code?
A. Each String in the array 1ines will output, with a 1-second pause between lines

B. Each String in the array 1ines will output, with no pause in between because this method
is not executed in a Thread

C. Each String in the array 1ines will output, and there is no guarantee there will be a pause
because currentThread () may not retrieve this thread

D. This code will not compile

E. Each String in the 1ines array will print, with at least a one-second pause between lines

4. Assume you have a class that holds two private variables: a and b. Which of the following
pairs can prevent concurrent access problems in that class? (Choose all that apply.)

A. public int read() {return a+b;}
public void set(int a, int b){this.a=a;this.b=b;}

B. public synchronized int read() {return a+b;}
public synchronized void set (int a, int b){this.a=a;this.b=b;}

C. public int read() {synchronized(a) {return a+b;}}
public void set (int a, int b){synchronized(a){this.a=a;this.b=b;}}

{
D. public int read() {synchronized(a) {return a+b;}}
public void set(int a, int b) {synchronized(b) {this.a=a;this.b=b;}}

E. public synchronized(this) int read() {return a+b;}
public synchronized(this) void set (int a, int b){this.a=a;this.b=b;}

F public int read() {synchronized(this) {return a+b;}}
public void set (int a, int b){synchronized(this){this.a=a;this.b=b;}}

5.

Self Test 763

Given:

1. public class WaitTest {

2. public static void main(String [] args) ({
3. System.out.print ("1 ");

4., synchronized(args){

5. System.out.print ("2 ") ;

6. try {

7. args.wait () ;

8. }

9. catch(InterruptedException e) {}
10. }
11. System.out.print ("3 ") ;
12. }
13. }

What is the result of trying to compile and run this program?

A. It fails to compile because the I1legalMonitorStateException of wait () is not dealt
with in line 7

12

At runtime, it throws an T1legalMonitorStateException when trying to wait

Mmoo w®

It will fail to compile because it has to be synchronized on the this object

Assume the following method is properly synchronized and called from a thread A on an object B:

wait (2000) ;

After calling this method, when will the thread A become a candidate to get another turn at
the CPU?

A. After object B is notified, or after two seconds

B. After the lock on B is released, or after two seconds
C. Two seconds after object B is notified
D

Two seconds after lock B is released

764 Chapter 9: Threads

7. Which are true? (Choose all that apply.)
A. The notifyall () method must be called from a synchronized context
To call wait (), an object must own the lock on the thread
The notify () method is defined in class java.lang.Thread
When a thread is waiting as a result of wait (), it release its lock

The notify () method causes a thread to immediately release its lock

mmoon®

The difference between notify () and notifyall () is that notifyall () notifies all
waiting threads, regardless of the object they're waiting on

8. Given the scenario: This class is intended to allow users to write a series of messages, so that
each message is identified with a timestamp and the name of the thread that wrote the message:

public class Logger {

private StringBuilder contents = new StringBuilder() ;

public void log(String message) {
contents.append (System.currentTimeMillis()) ;
contents.append(": ") ;
contents.append (Thread.currentThread () .getName ()) ;
contents.append (message) ;
contents.append ("\n") ;

}

public String getContents() { return contents.toString(); }

How can we ensure that instances of this class can be safely used by multiple threads?
This class is already thread-safe

Replacing stringBuilder with StringBuffer will make this class thread-safe
Synchronize the 1og () method only

Synchronize the getcontents () method only

Synchronize both 1og () and getContents ()

Mmoo QNw®»

This class cannot be made thread-safe

Self Test 7658

9. Given:

public static synchronized void main(String[] args) throws
InterruptedException {

Thread t = new Thread() ;

t.start () ;

System.out.print ("X") ;

t.wait (10000) ;

System.out.print ("Y") ;

What is the result of this code?

A. It prints X and exits
B. It prints x and never exits
C. It prints xv and exits almost immeditately
D. It prints xy with a 10-second delay between x and v
E. It prints xy with a 10000-second delay between x and v
F. The code does not compile
G. An exception is thrown at runtime
10. Given:

class MyThread extends Thread ({
MyThread () {
System.out.print (" MyThread") ;

}

public void run() {
System.out.print (" bar");

}

public void run(String s) {
System.out.print (" baz") ;
}

}

public class TestThreads {
public static void main (String [] args) {
Thread t = new MyThread() ({
public void run() {
System.out.print (" foo") ;
}

Vi

t.start () ;

I

766 Chapter9: Threads

What is the result?

A. foo

B. MyThread foo

C. MyThread bar

D. foo bar

E. foo bar baz

F bar foo

G. Compilation fails

H. An exception is thrown at runtime
1l. Given:

public class ThreadDemo {

synchronized void a() { actBusy(); }
static synchronized void b() { actBusy(); }
static void actBusy() {

try {

Thread.sleep(1000) ;
} catch (InterruptedException e) {}
}
public static void main(Stringl[] args)
final ThreadDemo x = new ThreadDemo () ;
final ThreadDemo y = new ThreadDemo () ;

Runnable runnable = new Runnable() {
public void run() {

int option = (int) (Math.random() * 4);

switch (option) {
case 0: x.a(); break;
case 1: x.b(); break;
case 2: y.a(); break;
case 3: y.b(); break;

1
}i
Thread threadl = new Thread (runnable) ;
Thread thread2 = new Thread (runnable) ;
threadl.start () ;
thread2.start () ;

Self Test 767

Which of the following pairs of method invocations could NEVER be executing at the same time?

(Choose all that apply.)

A. x.a() in threadil, and x.a() in thread2
B. x.a() in threadl, and x.b() in thread2
C. x.a() in threadl, and y.a() in thread2
D. x.a() in threadl, and y.b() in thread2
E. x.b() in threadl, and x.a() in thread2
F. x.b() in threadl, and x.b() in thread2
G. x.b() in threadl, and y.a() in thread2
H. x.b() in threadl, and y.b() in thread2

12. Given:

public class TwoThreads
static Thread laurel, hardy;
public static void main(String[] args) {

laurel = new Thread()
public void run()
System.out.println ("A") ;
try {

hardy.sleep(1000) ;
} catch (Exception e) {
System.out.println ("B") ;
!

System.out.println("C") ;

}
Vi

hardy = new Thread() {

public void run() {
System.out.println ("D") ;
try {

laurel.wait () ;
} catch (Exception e) {
System.out.println ("E") ;
!

System.out.println ("F") ;
}
Vi
laurel.start () ;
hardy.start () ;

768 Chapter 9: Threads

Which letters will eventually appear somewhere in the output? (Choose all that apply.)
A

The answer cannot be reliably determined

IoTmUONw®>
Hom O Q W

The code does not compile

13. Given:

3. public class Starter implements Runnable {

4. void go(long id) {

5. System.out.println (id) ;

6. }

7. public static void main(Stringl[] args)

8. System.out.print (Thread.currentThread () .getId() + " ");
9. // insert code here
10. }
11. public void run() { go(Thread.currentThread().getId()); }
12. }

And given the following five fragments:

I. new Starter () .run();

II. new Starter().start();

ITII. new Thread (new Starter()) ;

IV. new Thread(new Starter()).run();
V. new Thread (new Starter()) .start();

When the five fragments are inserted, one at a time at line 9, which are true? (Choose all that apply.)
All five will compile

Only one might produce the output 4 4

Only one might produce the output 4 2

Exactly two might produce the output 4 4

Exactly two might produce the output 4 2

Exactly three might produce the output 4 4

OmMmoN®»

Exactly three might produce the output 4 2

Self Test 769

14. Given:

3. public class Leader implements Runnable {
4. public static void main(Stringl[] args) {
5. Thread t = new Thread(new Leader()) ;
6. t.start () ;
7. System.out.print ("ml ") ;
8. t.join();
9. System.out.print ("m2 ") ;

10. }

11. public void run() {

12. System.out.print ("rl ") ;

13. System.out.print ("r2 ") ;

14. }

15. }

Which are true? (Choose all that apply.)

A. Compilation fails
B. The output could be r1 r2 m1 m2
C. The output could be m1 m2 r1 r2
D. The output could be m1 r1 r2 m2
E. The(nwputcoukibeml rl m2 r2
F. An exception is thrown at runtime
15. Given:
3. class Dudes
4. static long flag = 0;
5. // insert code here
6. if (flag == 0) flag = id;
7. for(int x = 1; x < 3; x++) {
8. if (flag == id) System.out.print("yo ");
9. else System.out.print ("dude ") ;
10. }
11. }
12. }
13. public class DudesChat implements Runnable {
14. static Dudes d;
15. public static void main(String[] args) {
16. new DudesChat () .go() ;
17. }
18. void go() {

19. d = new Dudes() ;

770 Chapter 9: Threads

20. new Thread (new DudesChat ()) .start () ;
21. new Thread (new DudesChat ()) .start () ;
22. }

23. public void run() {

24. d.chat (Thread.currentThread () .getId()) ;
25. }

26. }

And given these two fragments:

I. synchronized void chat (long id) {
II. void chat (long id)

When fragment [or fragment Il is inserted at line 5, which are true? (Choose all that apply.)

A. An exception is thrown at runtime
B. With fragment I, compilation fails
C. With fragment Il,, compilation fails
D. With fragment I, the output could be yo dude dude yo
E. With fragment I, the output could be dude dude yo yo
F. With fragment II, the output could be yo dude dude yo
16. Given:
3. class Chicks f{
4. synchronized void yack(long id) ({
5. for(int x = 1; x < 3; x++) {
6. System.out.print (id + " ");
7. Thread.yield () ;
8. }
9. 1}
10. }
11. public class ChicksYack implements Runnable {
12. Chicks c;
13. public static void main(String[] args) {
14. new ChicksYack() .go() ;
15. }
16. void go() {
17. c = new Chicks() ;
18. new Thread (new ChicksYack()) .start();
19. new Thread (new ChicksYack()) .start();
20. }

21. public void run() {

Self Test F7 1

22. c.yack (Thread.currentThread () .getId()) ;
23. }
24. }

Which are true? (Choose all that apply.)

A. Compilation fails

B. The output couldbe4 4 2 3

C. Theoutput couldbe4 4 2 2

D. The outputcouldbe4 4 4 2

E. Theoutputcouldbe2 2 4 4

F An exception is thrown at runtime

17. Given:

3. public class Chess implements Runnable {
4. public void run() {
5. move (Thread.currentThread () .getId()) ;
6. }
7. // insert code here
8. System.out.print (id + " ");
9. System.out.print(id + " ");
10. }
11. public static void main(String[] args) {
12. Chess ch = new Chess () ;
13. new Thread (ch) .start () ;
14. new Thread (new Chess()) .start () ;
15. }
16. }

And given these two fragments:

I. synchronized void move (long id)
II. void move(long id) {

When either fragment I or fragment Il is inserted at line 7, which are true? (Choose all that apply.)
A. Compilation fails

With fragment I, an exception is thrown

With fragment I, the output could be 4 2 4 2

With fragment I, the output couldbe 4 4 2 3

moOow

With fragment II, the output could be 2 4 2 4

772 Chapter9: Threads

SELFTEST ANSWERS

I. The following block of code creates a Thread using a Runnable target:

Runnable target = new MyRunnable () ;
Thread myThread = new Thread (target) ;

Which of the following classes can be used to create the target, so that the preceding code
compiles correctly?

A. public class MyRunnable extends Runnable{public void run() {}}

B. public class MyRunnable extends Object{public void run(){}}

C. public class MyRunnable implements Runnable{public void run() {}}
D. public class MyRunnable implements Runnable{void run(){}}

E. public class MyRunnable implements Runnable{public void start(){}}
Answer:

M Cis correct. The class implements the Runnable interface with a legal run () method.

[Xl A is incorrect because interfaces are implemented, not extended. B is incorrect because
even though the class has a valid public void run() method, it does not implement
the Runnable interface. D is incorrect because the run () method must be public. E is
incorrect because the method to implement is run (), not start (). (Objective 4.1)

2. Given:
3. class MyThread extends Thread ({
4. public static void main(String [] args) {
5. MyThread t = new MyThread() ;
6. Thread x = new Thread(t) ;
7. x.start () ;
8. }
9. public void run() {
10. for(int i=0;i<3;++1) {
11. System.out.print (i + "..");

2.})}

Self Test Answers F'7 3

What is the result of this code?

A. Compilation fails

B. 1.2.3.

C. 0.1..2.3..

D. 0.1.2.

E. An exception occurs at runtime

Answer:

4 D is correct. The thread MyThread will start and loop three times (from O to 2).

Xl A is incorrect because the Thread class implements the Runnable interface; therefore, in
line 5, Thread can take an object of type Thread as an argument in the constructor (this is
NOT recommended). B and C are incorrect because the variable 1 in the for loop starts
with a value of 0 and ends with a value of 2. E is incorrect based on the above. (Obj. 4.1)

Given:

3. class Test {

4. public static void main(String [] args) ({

5. printAll (args) ;

6. }

7. public static void printAll (String[] lines) {

8. for(int i=0;i<lines.length;i++)

9. System.out.println(lines[i]) ;
10. Thread.currentThread () .sleep(1000) ;
1.} o} o}

The static method Thread.currentThread () returns a reference to the currently executing

Thread object. What is the result of this code?

A.
B.

Each String in the array 1ines will print, with exactly a 1-second pause between lines

Each String in the array 1ines will print, with no pause in between because this method is
not executed in a Thread

Each String in the array 1ines will print, and there is no guarantee there will be a pause
because currentThread () may not retrieve this thread

This code will not compile

Each String in the 1ines array will print, with at least a one-second pause between lines

774 Chapter9: Threads

Answer:

D is correct. The sleep () method must be enclosed in a try/catch block, or the method
printAll () must declare it throws the InterruptedException.

X E is incorrect, but it would be correct if the InterruptedException was dealt with (A is
too precise). B is incorrect (even if the InterruptedException was dealt with) because
all Java code, including the main () method, runs in threads. C is incorrect. The sleep ()
method is static, it always affects the currently executing thread. (Objective 4.2)

4. Assume you have a class that holds two private variables: a and b. Which of the following
pairs can prevent concurrent access problems in that class? (Choose all that apply.)
A. public int read() {return a+b;}
public void set(int a, int b){this.a=a;this.b=b;}
B. public synchronized int read() {return a+b;}
public synchronized void set(int a, int b){this.a=a;this.b=b;}
C. public int read() {synchronized(a) {return a+b;}}
public void set(int a, int b) {synchronized(a) {this.a=a;this.b=b;}}
D. public int read() {synchronized(a) {return a+b;}}
public void set(int a, int b) {synchronized(b) {this.a=a;this.b=b;}}
E. public synchronized(this) int read() {return a+b;}
public synchronized(this) void set (int a, int b) this.a:a;this.b:b;}

{
F public int read() {synchronized(this) {return a+b;}}
public void set(int a, int b) {synchronized(this){this.a=a;this.b=b;}}

Answer:

B and F are correct. By marking the methods as synchronized, the threads will get the
lock of the this object before proceeding. Only one thread will be setting or reading at any
given moment, thereby assuring that read () always returns the addition of a valid pair.

Xl A is incorrect because it is not synchronized; therefore, there is no guarantee that the
values added by the read () method belong to the same pair. C and D are incorrect; only
objects can be used to synchronize on. E fails— it is not possible to select other objects
(even this) to synchronize on when declaring a method as synchronized. (Obj. 4.3)

5. Given:
1. public class WaitTest ({
2. public static void main(String [] args) {
3. System.out.print ("1 ") ;
4. synchronized (args) {

Self Test Answers ZF7 8

5. System.out.print ("2 ") ;
6. try {

7 args.wait () ;

8 }

9. catch(InterruptedException e) {}
10. }
11. System.out.print ("3 ");
12. } }

What is the result of trying to compile and run this program?

A. It fails to compile because the T11egalMonitorStateException of wait () is not dealt
with in line 7

B. 123

C. 13

D. 12

E. Atruntime, it throws an T1legalMonitorStateException when trying to wait

F It will fail to compile because it has to be synchronized on the this object

Answer:

@ D is correct. 1 and 2 will be printed, but there will be no return from the wait call because
no other thread will notify the main thread, so 3 will never be printed. It's frozen at line 7.

Xl A is incorrect; I1legalMonitorStateException is an unchecked exception. B and C

are incorrect; 3 will never be printed, since this program will wait forever. E is incorrect
because I1legalMonitorStateException will never be thrown because the wait ()

is done on args within a block of code synchronized on args. F is incorrect because any
object can be used to synchronize on and this and static don't mix. (Objective 4.4)

Assume the following method is properly synchronized and called from a thread A on an object B:

wait (2000) ;

After calling this method, when will the thread A become a candidate to get another turn at
the CPU?

A

B.
C.
D

After object B is notified, or after two seconds
After the lock on B is released, or after two seconds

Two seconds after object B is notified

Two seconds after lock B is released

776 Chapter9: Threads

Answer:
A is correct. Either of the two events will make the thread a candidate for running again.

X B is incorrect because a waiting thread will not return to runnable when the lock is
released, unless a notification occurs. C is incorrect because the thread will become a
candidate immediately after notification. D is also incorrect because a thread will not come
out of a waiting pool just because a lock has been released. (Objective 4.4)

7. Which are true? (Choose all that apply.)

The notifyall () method must be called from a synchronized context
To call wait (), an object must own the lock on the thread

The notify () method is defined in class java.lang.Thread

When a thread is waiting as a result of wait (), it release its lock

The notify () method causes a thread to immediately release its lock

mmoOo®»

The difference between notify () and notifyall () is that notifyall () notifies all
waiting threads, regardless of the object they're waiting on

Answer:

A is correct because notifyall () (and wait () and notify ()) must be called from within
a synchronized context. D is a correct statement.

X B is incorrect because to call wait (), the thread must own the lock on the object that
wait () is being invoked on, not the other way around. C is wrong because notify () is
defined in java.lang.0Object. E is wrong because notify () will not cause a thread to
release its locks. The thread can only release its locks by exiting the synchronized code. F is
wrong because notifyall () notifies all the threads waiting on a particular locked object,
not all threads waiting on any object. (Objective 4.4)

8. Given the scenario: This class is intended to allow users to write a series of messages, so that
each message is identified with a timestamp and the name of the thread that wrote the message:

public class Logger {
private StringBuilder contents = new StringBuilder () ;
public void log(String message) {
contents.append (System.currentTimeMillis ()) ;
contents.append(": ") ;
contents.append (Thread.currentThread () .getName ()) ;

Self Test Answers F77

contents.append (message) ;
contents.append ("\n") ;

}

public String getContents() { return contents.toString(); }

}

How can we ensure that instances of this class can be safely used by multiple threads?
This class is already thread-safe

Replacing stringBuilder with stringBuffer will make this class thread-safe
Synchronize the 10g () method only

Synchronize the getCcontents () method only

Synchronize both 1og () and getcontents ()

mmoOo® >

This class cannot be made thread-safe

Answer:

4 E is correct. Synchronizing the public methods is sufficient to make this safe, so F is false.
This class is not thread-safe unless some sort of synchronization protects the changing data.

& B is not correct because although a stringBuffer is synchonized internally, we call
append () multiple times, and nothing would prevent two simultaneous 1og () calls from mix-
ing up their messages. C and D are not correct because if one method remains unsynchro-
nized, it can run while the other is executing, which could result in reading the contents
while one of the messages is incomplete, or worse. (You don't want to call getString () on
the StringBuffer as it's resizing its internal character array.) (Objective 4.3)

9. Given:

public static synchronized void main (String[] args) throws
InterruptedException {

Thread t = new Thread() ;

t.start () ;

System.out.print ("X") ;

t.wait (10000) ;

System.out.print ("Y") ;

}
What is the result of this code?
A. It prints x and exits
B. It prints x and never exits

C. It prints x¥ and exits almost immeditately

778 Chapter9: Threads

It prints Xy with a 10-second delay between x and Y

The code does not compile

D.
E. It prints xy with a 10000-second delay between x and ¥
F
G. An exception is thrown at runtime

Answer:

G is correct. The code does not acquire a lock on t before calling t.wait (), so it throws an
IllegalMonitorStateException. The method is synchronized, but it's not synchronized
on t so the exception will be thrown. If the wait were placed inside a synchronized (t)
block, then the answer would have been D.

X A, B, C, D, E, and F are incorrect based the logic described above. (Objective 4.2)

Given:
class MyThread extends Thread {
MyThread () {
System.out.print (" MyThread") ;
}
public void run() { System.out.print (" bar"); }
public void run(String s) { System.out.print (" baz"); }
}
public class TestThreads
public static void main (String [] args) ({
Thread t = new MyThread() ({
public void run() { System.out.print(" foo"); }
}i
t.start () ;
b}
What is the result?
A. foo
B. MyThread foo
C. MyThread bar
D. foo bar
E. foo bar baz
F bar foo
G. Compilation fails
H. An exception is thrown at runtime

Self Test Answers T 79

Answer:

M B is correct. The first line of main we're constructing an instance of an anonymous inner
class extending from MyThread. So the MyThread constructor runs and prints MyThread.
Next, main () invokes start () on the new thread instance, which causes the overridden
run () method (the run () method in the anonymous inner class) to be invoked.

A, C, D, E, E G and H are incorrect based on the logic described above. (Objective 4.1)

Il1. Given:

public class ThreadDemo {

synchronized void a() { actBusy(); }
static synchronized void b() { actBusy(); }
static void actBusy ()

try { Thread.sleep(1000); }
catch (InterruptedException e) {}
}
public static void main(String[] args) {
final ThreadDemo x = new ThreadDemo () ;
final ThreadDemo y = new ThreadDemo () ;
Runnable runnable = new Runnable()
public void run() {
int option = (int) (Math.random() * 4);
switch (option) {

case 0: x.al(); break;
case 1: x.b(); break;
case 2: y.al(); break;
case 3: y.b(); break;

bl
}i

Thread threadl = new Thread (runnable) ;
Thread thread2 = new Thread (runnable) ;
threadl.start () ;
thread2.start () ;

ol

Which of the following pairs of method invocations could NEVER be executing at the same time?
(Choose all that apply.)

A. x.a() in threadil, and x.a() in thread2
B. x.a() in threadl, and x.b() in thread2

C. x.a() in threadl, and y.a() in thread2

780 Chapter9: Threads

x.a() in threadl, and y.b() in thread2
x.b() in threadl, and x.a() in thread2
in threadl, and x.b() in thread2

x.b() in threadl, and y.a() in thread2

T ommoQ
b
o

x.b() in threadl, and y.b() in thread2

Answer:

A, E and H. A is a right answer because when synchronized instance methods are called
on the same instance, they block each other. F and H can't happen because synchronized
static methods in the same class block each other, regardless of which instance was used
to call the methods. (An instance is not required to call static methods; only the class.)

& C could happen because synchronized instance methods called on different instances
do not block each other. B, D, E, and G could all happen because instance methods and
static methods lock on different objects, and do not block each other. (Objective 4.3)

12. Given:

public class TwoThreads
static Thread laurel, hardy;
public static void main(Stringl[] args)
laurel = new Thread() ({
public void run() {
System.out.println ("A") ;
try {
hardy.sleep(1000) ;
} catch (Exception e) ({
System.out.println ("B") ;

}
System.out.println("C") ;
}
}i
hardy = new Thread() {
public void run() {
System.out.println("D") ;
try {

laurel.wait () ;
} catch (Exception e) ({
System.out.println ("E") ;
}

System.out.println ("F") ;

Self Test Answers 78 |

!
i
laurel.start () ;
hardy.start () ;

Which letters will eventually appear somewhere in the output? (Choose all that apply.)
A

The answer cannot be reliably determined

IommoQw®>
HoH g QW

The code does not compile

Answer:

M A, C, D, E, and F are correct. This may look like 1aurel and hardy are battling to cause
the other to sleep () or wait ()—but that's not the case. Since sleep () isa static
method, it affects the current thread, which is 1aurel (even though the method is invoked
using a reference to hardy). That's misleading but perfectly legal, and the Thread 1aurel
is able to sleep with no exception, printing A and ¢ (after a 1-second delay). Meanwhile
hardy tries to call 1aurel.wait () —but hardy has not synchronized on laurel, so
calling 1aurel .wait () immediately causes an I1legalMonitorStateException, and so
hardy prints D, E, and F. Although the order of the output is somewhat indeterminate (we
have no way of knowing whether a is printed before D, for example) it is guaranteed that a,
C, D, E, and F will all be printed in some order, eventually—so G is incorrect.

B, G, and H are incorrect based on the above. (Objective 4.4)

13. Given:
3. public class Starter implements Runnable {
4. void go(long id) {
5. System.out.println (id) ;
6. }
7. public static void main(String[] args) {
8. System.out.print (Thread.currentThread () .getId() + " ");
9. // insert code here

782 Chapter 9: Threads

10. }
11. public void run() { go(Thread.currentThread().getId()); }
12. }

And given the following five fragments:

I. new Starter () .run();

IT. new Starter().start();

IIT. new Thread(new Starter());

IV. new Thread(new Starter()) .run();
V. new Thread (new Starter()).start();

When the five fragments are inserted, one at a time at line 9, which are true? (Choose all that apply.)

A. All five will compile

B. Only one might produce the output 4 4

C. Only one might produce the output 4 2

D. Exactly two might produce the output 4 4
E. Exactly two might produce the output 4 2
F Exactly three might produce the output 4 4
G. Exactly three might produce the output 4 2
Answer:

C and D are correct. Fragment [doesn't start a new thread. Fragment II doesn't compile.
Fragment III creates a new thread but doesn't start it. Fragment IV creates a new thread
and invokes run () directly, but it doesn’t start the new thread. Fragment V creates and
starts a new thread.

X A, B, E, E and G are incorrect based on the above. (Objective 4.1)

14. Given:
3. public class Leader implements Runnable {
4. public static void main(Stringl[] args)
5. Thread t = new Thread(new Leader()) ;
6. t.start () ;
7. System.out.print ("ml ") ;
8. t.join() ;
9. System.out.print ("m2 ") ;
10. }

Self Test Answers 783

11. public void run()

12. System.out.print ("rl ") ;
13. System.out.print ("r2 ") ;
14. }

15. }

Which are true? (Choose all that apply.)
Compilation fails

The output could be r1 r2 m1 m2
The output could be m1 m2 r1 r2
The output could be m1 r1 r2 m2
The output could be m1 r1 m2 r2

mmoOo®»

An exception is thrown at runtime

Answer:

A is correct. The join () must be placed in a try/catch block. If it were, answers B and
D would be correct. The join () causes the main thread to pause and join the end of the
other thread, meaning "m2" must come last.

& B, C, D, E, and F are incorrect based on the above. (Objective 4.2)

15. Given:

3. class Dudes ({

4 static long flag = 0;

5. // insert code here

6. if (flag == 0) flag = id;
7 for(int x = 1; x < 3; x++) {
8

. if (flag == id) System.out.print("yo ");
9. else System.out.print ("dude ") ;
10. }
11. }
12. }
13. public class DudesChat implements Runnable
14. static Dudes d;
15. public static void main(Stringl[] args) {
16. new DudesChat () .go() ;
17. }
18. void go() {

19. d = new Dudes() ;

784 Chapter 9: Threads

20. new Thread (new DudesChat ()) .start () ;
21. new Thread (new DudesChat ()) .start () ;
22. }

23. public void run() {

24. d.chat (Thread.currentThread () .getId()) ;
25. }

26. }

And given these two fragments:

I. synchronized void chat (long id) {
II. void chat (long id)

When fragment [or fragment Il is inserted at line 5, which are true? (Choose all that apply.)
An exception is thrown at runtime

With fragment I, compilation fails

With fragment I, compilation fails

With fragment I, the output could be yo dude dude yo

With fragment I, the output could be dude dude yo yo

mmogN®»

With fragment II, the output could be yo dude dude yo

Answer:

F is correct. With fragment I, the chat method is synchronized, so the two threads can't
swap back and forth. With either fragment, the first output must be yo.

X A, B, C, D, and E are incorrect based on the above. (Objective 4.3)

16. Given:
3. class Chicks ({
4. synchronized void yack(long id) {
5. for(int x = 1; x < 3; x++) {
6. System.out.print (id + " ");
7. Thread.yield() ;
8. }
9. }
10. }
11. public class ChicksYack implements Runnable {
12. Chicks c;
13. public static void main(String[] args) {
14. new ChicksYack() .go() ;

15. }

Self Test Answers 788

16. void go() {

17. ¢ = new Chicks();

18. new Thread (new ChicksYack()) .start () ;
19. new Thread (new ChicksYack()) .start () ;
20. }

21. public void run()

22. c.yack (Thread.currentThread () .getId()) ;
23. }

24. }

Which are true? (Choose all that apply.)
Compilation fails
The output could be 4

4
The output could be 4 4
The output could be 4 4

2

2 3
2 2
4 2
The output could be 2 2 4 4

mmogow >

An exception is thrown at runtime

Answer:

1 Fis correct. When run () is invoked, it is with a new instance of ChicksYack and c has
not been assigned to an object. If ¢ were static, then because yack is synchronized, answers
C and E would have been correct.

X A, B, C, D, and E are incorrect based on the above. (Objective 4.3)

17. Given:
3. public class Chess implements Runnable {
4. public void run()
5. move (Thread.currentThread () .getId()) ;
6. }
7. // insert code here
8. System.out.print (id + " ");
9. System.out.print (id + " ");
10. }
11. public static void main(Stringl[] args) {
12. Chess ch = new Chess() ;
13. new Thread(ch) .start () ;
14 . new Thread (new Chess()) .start () ;
15. }

16. }

786 Chapter9: Threads

And given these two fragments:

I. synchronized void move (long id) {
II. void move(long id) {

When either fragment I or fragment Il is inserted at line 7, which are true? (Choose all that apply.)

A. Compilation fails

B. With fragment I, an exception is thrown

C. With fragment I, the output could be 4 2 4 2
D. With fragment I, the output could be 4 4 2 3
E. With fragment II, the output could be 2 4 2 4
Answer:

C and E are correct. E should be obvious. C is correct because even though move () is
synchronized, in this case two different objects are invoking it.

A, B, and D are incorrect based on the above. (Objective 4.3)

Exercise Answers 787

EXERCISE ANSWERS

Exercise 9-1: Creating a Thread and Putting It to Sleep

The final code should look something like this:

class TheCount extends Thread {
public void run() {
for(int i = 1;i<=100;++1i) {
System.out.print(i + " ");
if(i % 10 == 0) System.out.println("Hahaha") ;
try { Thread.sleep(1000); }
catch (InterruptedException e) {}

}

!

public static void main(String [] args) {
new TheCount () .start () ;

!

Exercise 9-2: Synchronizing a Block of Code

Your code might look something like this when completed:

class InSync extends Thread ({
StringBuffer letter;
public InSync(StringBuffer letter) { this.letter = letter; }
public void run()
synchronized (letter) { // #1
for(int 1 = 1;i<=100;++1) System.out.print (letter);
System.out.println() ;
char temp = letter.charAt (0);

++temp; // Increment the letter in StringBuffer:
letter.setCharAt (0, temp) ;
} /] #2
}
public static void main(String [] args) {
StringBuffer sb = new StringBuffer ("A");
new InSync(sb).start(); new InSync(sb).start();

new InSync (sb).start();

}
}

Just for fun, try removing lines 1 and 2 then run the program again. It will be
unsynchronized—watch what happens.

