
CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10
Blind Folio 789

10
Development

Certification Objectives

	

	
l Use Packages and Imports

	 l Determine Runtime Behavior 	
 for Classes and Command-Lines

	 l Use Classes in JAR Files	

	

	

 l Use Classpaths to	
 Compile Code	
		
3 Two-Minute Drill

 Q&A Self Test

ch10.indd 789 5/8/08 4:04:18 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

790  Chapter 10:   Development

You want to keep your classes organized. You need to have powerful ways for your classes
to find each other. You want to make sure that when you're looking for a particular class
you get the one you want, and not another class that happens to have the same name. In

this chapter we'll explore some of the advanced capabilities of the java and javac commands. We'll
revisit the use of packages in Java, and how to search for classes that live in packages.

CERTIFICATION OBJECTIVEs

Using the javac and java Commands
(Exam Objectives 7.1, 7.2, and 7.5)

7.1  Given a code example and a scenario, write code that uses the appropriate access
modifiers, package declarations, and import statements to interact with (through access or
inheritance) the code in the example.

7.2  Given an example of a class and a command-line, determine the expected runtime
behavior.

7.5  Given the fully-qualified name of a class that is deployed inside and/or outside a JAR
file, construct the appropriate directory structure for that class. Given a code example and a
classpath, determine whether the classpath will allow the code to compile successfully.
 
So far in this book, we've probably talked about invoking the javac and java
commands about 1000 times; now we're going to take a closer look.

Compiling with javac
The javac command is used to invoke Java's compiler. In Chapter 5 we talked
about the assertion mechanism and when you might use the -source option when
compiling a file. There are many other options you can specify when running javac,
options to generate debugging information or compiler warnings for example. For
the exam, you'll need to understand the -classpath and -d options, which we'll
cover in the next few pages. Here's the structural overview for javac:

javac [options] [source files]

ch10.indd 790 5/8/08 4:04:18 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

There are additional command-line options called @argfiles, but you won't
need to study them for the exam. Both the [options] and the [source files]
are optional parts of the command, and both allow multiple entries. The following
are both legal javac commands:

javac -help
javac -classpath com:. -g Foo.java Bar.java

The first invocation doesn't compile any files, but prints a summary of valid
options. The second invocation passes the compiler two options (-classpath,
which itself has an argument of com:. and -g), and passes the compiler two .java
files to compile (Foo.java and Bar.java). Whenever you specify multiple options
and/or files they should be separated by spaces.

Compiling with -d
By default, the compiler puts a .class file in the same directory as the .java source
file. This is fine for very small projects, but once you're working on a project of any
size at all, you'll want to keep your .java files separated from your .class files.
(This helps with version control, testing, deployment...) The -d option lets you tell
the compiler in which directory to put the .class file(s) it generates (d is for  
destination). Let's say you have the following directory structure:

myProject
 |
 |--source
 | |
 | |-- MyClass.java
 |
 |-- classes
 |
 |--

The following command, issued from the myProject directory, will compile
MyClass.java and put the resulting MyClass.class file into the classes
directory. (Note: This assumes that MyClass does not have a package statement;
we'll talk about packages in a minute.)

cd myProject
javac -d classes source/MyClass.java

Compiling with javac (Exam Objective 7.2)�  791

ch10.indd 791 5/8/08 4:04:19 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

This command also demonstrates selecting a .java file from a subdirectory of the
directory from which the command was invoked. Now let's take a quick look at how
packages work in relationship to the -d option.

Suppose we have the following .java file in the following directory structure:

package com.wickedlysmart;
public class MyClass { }

myProject
 |
 |--source
 | |
 | |--com
 | |
 | |--wickedlysmart
 | |
 | |--MyClass.java
 |
 |--classes
 | |
 | |--com
 | |
 | |--wickedlysmart
 | |
 | |-- (MyClass.class goes here)

If you were in the source directory, you would compile MyClass.java and put
the resulting MyClass.class file into the classes/com/wickedlysmart directory
by invoking the following command:

javac -d ../classes com/wickedlysmart/MyClass.java

This command could be read: "To set the destination directory, cd back to
the myProject directory then cd into the classes directory, which will be your
destination. Then compile the file named MyClass.java. Finally, put the resulting
MyClass.class file into the directory structure that matches its package, in this
case, classes/com/wickedlysmart." Because MyClass.java is in a package,  
the compiler knew to put the resulting .class file into the  
classes/com/wickedlysmart directory.

792  Chapter 10:   Development

ch10.indd 792 5/8/08 4:04:19 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

Somewhat amazingly, the javac command can sometimes help you out by
building directories it needs! Suppose we have the following:

package com.wickedlysmart;
public class MyClass { }

myProject
 |
 |--source
 | |
 | |--com
 | |
 | |--wickedlysmart
 | |
 | |--MyClass.java
 |
 |--classes
 | |

And the following command (the same as last time):

javac -d ../classes com/wickedlysmart/MyClass.java

In this case, the compiler will build two directories called com and 
com/wickedlysmart in order to put the resulting MyClass.class file into the
correct package directory (com/wickedlysmart/) which it builds within the
existing .../classes directory.

The last thing about -d that you'll need to know for the exam is that if the
destination directory you specify doesn't exist, you'll get a compiler error. If, in the
previous example, the classes directory did NOT exist, the compiler would say
something like:

java:5: error while writing MyClass: classes/MyClass.class (No
such file or directory)

Launching Applications with java
The java command is used to invoke the Java virtual machine. In Chapter 5 we
talked about the assertion mechanism and when you might use flags such as -ea or
-da when launching an application. There are many other options you can specify

Launching Applications with java (Exam Objective 7.2)  793

ch10.indd 793 5/8/08 4:04:19 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

when running the java command, but for the exam, you'll need to understand
the -classpath (and its twin -cp) and -D options, which we'll cover in the next
few pages. In addition, it's important to understand the structure of this command.
Here's the overview:

java [options] class [args]

The [options] and [args] parts of the java command are optional, and they
can both have multiple values. You must specify exactly one class file to execute, and
the java command assumes you're talking about a .class file, so you don't specify
the .class extension on the command line. Here's an example:

java -DmyProp=myValue MyClass x 1

Sparing the details for later, this command can be read as "Create a system
property called myProp and set its value to myValue. Then launch the file named
MyClass.class and send it two String arguments whose values are x and 1."

Let's look at system properties and command-line arguments more closely.

Using System Properties
Java 5 has a class called java.util.Properties that can be used to access a
system's persistent information such as the current versions of the operating system,
the Java compiler, and the Java virtual machine. In addition to providing such
default information, you can also add and retrieve your own properties. Take a look
at the following:

import java.util.*;
public class TestProps {
 public static void main(String[] args) {
 Properties p = System.getProperties();
 p.setProperty("myProp", "myValue");
 p.list(System.out);
 }
}

If this file is compiled and invoked as follows:

java -DcmdProp=cmdVal TestProps

You'll get something like this: 

794  Chapter 10:   Development

ch10.indd 794 5/8/08 4:04:20 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

...
os.name=Mac OS X
myProp=myValue
...
java.specification.vendor=Sun Microsystems Inc.
user.language=en
java.version=1.5.0_02
...
cmdProp=cmdVal
...

where the . . . represent lots of other name=value pairs. (The name and value are
sometimes called the key and the property.) Two name=value properties were added
to the system's properties: myProp=myValue was added via the setProperty
method, and cmdProp=cmdVal was added via the -D option at the command line.
When using the -D option, if your value contains white space the entire value
should be placed in quotes like this:

java -DcmdProp="cmdVal take 2" TestProps

Just in case you missed it, when you use -D, the name=value pair must follow
immediately, no spaces allowed.

The getProperty() method is used to retrieve a single property. It can be
invoked with a single argument (a String that represents the name (or key)), or it
can be invoked with two arguments, (a String that represents the name (or key),
and a default String value to be used as the property if the property does not already
exist). In both cases, getProperty() returns the property as a String.

Handling Command-Line Arguments
Let's return to an example of launching an application and passing in arguments
from the command line. If we have the following code:

public class CmdArgs {
 public static void main(String[] args) {
 int x = 0;
 for(String s : args)
 System.out.println(x++ + " element = " + s);
 }
}

Launching Applications with java (Exam Objective 7.2)  795

ch10.indd 795 5/8/08 4:04:20 PM

796  Chapter 10:   Development

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

compiled and then invoked as follows

java CmdArgs x 1

the output will be

0 element = x
1 element = 1

Like all arrays, args index is zero based. Arguments on the command line
directly follow the class name. The first argument is assigned to args[0], the second
argument is assigned to args[1], and so on.

Finally, there is some flexibility in the declaration of the main() method that
is used to start a Java application. The order of main()'s modifiers can be altered
a little, the String array doesn't have to be named args, and as of Java 5 it can be
declared using var-args syntax. The following are all legal declarations for main():

static public void main(String[] args)
public static void main(String... x)
static public void main(String bang_a_gong[])

Searching for Other Classes
In most cases, when we use the java and javac commands, we want these
commands to search for other classes that will be necessary to complete the
operation. The most obvious case is when classes we create use classes that Sun
provides with J2SE (now sometimes called Java SE), for instance when we use classes
in java.lang or java.util. The next common case is when we want to compile a
file or run a class that uses other classes that have been created outside of what Sun
provides, for instance our own previously created classes. Remember that for any
given class, the java virtual machine will need to find exactly the same supporting
classes that the javac compiler needed to find at compilation time. In other words,
if javac needed access to java.util.HashMap then the java command will need
to find java.util.HashMap as well.

Both java and javac use the same basic search algorithm: 

1. �They both have the same list of places (directories) they search, to look  
for classes.

ch10.indd 796 5/8/08 4:04:20 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

2.	 They both search through this list of directories in the same order.

3.	 As soon as they find the class they're looking for, they stop searching for that
class. In the case that their search lists contain two or more files with the
same name, the first file found will be the file that is used.

4.	 The first place they look is in the directories that contain the classes that
come standard with J2SE.

5.	 The second place they look is in the directories defined by classpaths.

6.	 Classpaths should be thought of as "class search paths." They are lists of
directories in which classes might be found.

7.	� There are two places where classpaths can be declared:  
A classpath can be declared as an operating system environment variable.
The classpath declared here is used by default, whenever java or javac are
invoked.  
A classpath can be declared as a command-line option for either java or
javac. Classpaths declared as command-line options override the classpath declared
as an environment variable, but they persist only for the length of the invocation.

Declaring and Using Classpaths
Classpaths consist of a variable number of directory locations, separated by  
delimiters. For Unix-based operating systems, forward slashes are used to  
construct directory locations, and the separator is the colon (:). For example:

-classpath /com/foo/acct:/com/foo

specifies two directories in which classes can be found: /com/foo/acct and  
/com/foo. In both cases, these directories are absolutely tied to the root of the file
system, which is specified by the leading forward slash. It's important to remember
that when you specify a subdirectory, you're NOT specifying the directories above it.
For instance, in the preceding example the directory /com will NOT be searched.

Searching for Other Classes (Exam Objective 7.5)  797

ch10.indd 797 5/8/08 4:04:20 PM

798  Chapter 10:   Development

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

A very common situation occurs in which java or javac complains that it can't
find a class file, and yet you can see that the file is IN the current directory! When
searching for class files, the java and javac commands don't search the current
directory by default. You must tell them to search there. The way to tell java or
javac to search in the current directory is to add a dot (.) to the classpath:

-classpath /com/foo/acct:/com/foo:.

This classpath is identical to the previous one EXCEPT that the dot (.) at the end
of the declaration instructs java or javac to also search for class files in the current
directory. (Remember, we're talking about class files—when you're telling javac
which .java file to compile, javac looks in the current directory by default.)

It's also important to remember that classpaths are searched from left to right.
Therefore in a situation where classes with duplicate names are located in several
different directories in the following classpaths, different results will occur:

-classpath /com:/foo:.

is not the same as

-classpath .:/foo:/com

Finally, the java command allows you to abbreviate -classpath with -cp. The
Java documentation is inconsistent about whether the javac command allows the
-cp abbreviation. On most machines it does, but there are no guarantees.

Most of the path-related questions on the exam will use Unix conventions.
If you are a Windows user, your directories will be declared using backslashes (\) and the
separator character you use will be a semicolon (;). But again, you will NOT need any
shell-specific knowledge for the exam.

ch10.indd 798 5/8/08 4:04:21 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

Packages and Searching
When you start to put classes into packages, and then start to use classpaths to find
these classes, things can get tricky. The exam creators knew this, and they tried
to create an especially devilish set of package/classpath questions with which to
confound you. Let's start off by reviewing packages. In the following code:

package com.foo;
public class MyClass { public void hi() { } }

we're saying that MyClass is a member of the com.foo package. This means that
the fully qualified name of the class is now com.foo.MyClass. Once a class is in
a package, the package part of its fully qualified name is atomic—it can never be
divided. You can't split it up on the command line, and you can't split it up in an
import statement.

Now let's see how we can use com.foo.MyClass in another class:

package com.foo;
public class MyClass { public void hi() { } }

And in another file:

import com.foo.MyClass; // either import will work
import com.foo.*;

public class Another {
 void go() {
 MyClass m1 = new MyClass(); // alias name
 com.foo.MyClass m2 = new com.foo.MyClass(); // full name
 m1.hi();
 m2.hi();
 }
}

It's easy to get confused when you use import statements. The preceding code
is perfectly legal. The import statement is like an alias for the class's fully qualified
name. You define the fully qualified name for the class with an import statement (or
with a wildcard in an import statement of the package). Once you've defined the
fully qualified name, you can use the "alias" in your code—but the alias is referring
back to the fully qualified name.

Searching for Other Classes (Exam Objective 7.5)  799

ch10.indd 799 5/8/08 4:04:22 PM

800  Chapter 10:   Development

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

Now that we've reviewed packages, let's take a look at how they work in
conjunction with classpaths and command lines. First we'll start off with the idea
that when you're searching for a class using its fully qualified name, that fully
qualified name relates closely to a specific directory structure. For instance, relative
to your current directory, the class whose source code is

package com.foo;
public class MyClass { public void hi() { } }

would have to be located here:

com/foo/MyClass.class

In order to find a class in a package, you have to have a directory in your classpath
that has the package's leftmost entry (the package's "root") as a subdirectory.

This is an important concept, so let's look at another example:

import com.wickedlysmart.Utils;
class TestClass {
 void doStuff() {
 Utils u = new Utils(); // simple name
 u.doX("arg1", "arg2");
 com.wickedlysmart.Date d =
 new com.wickedlysmart.Date(); // full name
 d.getMonth("Oct");
 }
}

In this case we're using two classes from the package com.wickedlysmart. For
the sake of discussion we imported the fully qualified name for the Utils class,
and we didn't for the Date class. The only difference is that because we listed
Utils in an import statement, we didn't have to type its fully qualified name
inside the class. In both cases the package is com.wickedlysmart. When it's time
to compile or run TestClass, the classpath will have to include a directory with
the following attributes:

n	 A subdirectory named com (we'll call this the "package root" directory)

n	 A subdirectory in com named wickedlysmart

n	 Two files in wickedlysmart named Utils.class and Date.class

ch10.indd 800 5/8/08 4:04:22 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

Finally, the directory that has all of these attributes has to be accessible (via a
classpath) in one of two ways:

	 1.	 The path to the directory must be absolute, in other words, from the root  
 (the file system root, not the package root).

 or

	 2. The path to the directory has to be correct relative to the current directory.

Relative and Absolute Paths
A classpath is a collection of one or more paths. Each path in a classpath is either
an absolute path or a relative path. An absolute path in Unix begins with a forward
slash (/) (on Windows it would be something like c:\). The leading slash indicates
that this path is starting from the root directory of the system. Because it's starting
from the root, it doesn't matter what the current directory is—a directory's absolute
path is always the same. A relative path is one that does NOT start with a slash. Here's
an example of a full directory structure, and a classpath:

/ (root)
 |
 |--dirA
 |
 |-- dirB
 |
 |--dirC

-cp dirB:dirB/dirC

In this example, dirB and dirB/dirC are relative paths (they don't start with a
slash /). Both of these relative paths are meaningful only when the current directory
is dirA. Pop Quiz! If the current directory is dirA, and you're searching for class
files, and you use the classpath described above, which directories will be searched?

dirA? dirB? dirC?

Too easy? How about the same question if the current directory is the root (/)?
When the current directory is dirA, then dirB and dirC will be searched, but not

Searching for Other Classes (Exam Objective 7.5)  801

ch10.indd 801 5/8/08 4:04:22 PM

802  Chapter 10:   Development

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

dirA (remember, we didn't specify the current directory by adding a dot (.) to the
classpath). When the current directory is root, since dirB is not a direct subdirectory
of root, no directories will be searched. Okay, how about if the current directory
is dirB? Again, no directories will be searched! This is because dirB doesn't have
a subdirectory named dirB. In other words, Java will look in dirB for a directory
named dirB (which it won't find), without realizing that it's already in dirB.

Let's use the same directory structure and a different classpath:

/ (root)
 |
 |--dirA
 |
 |-- dirB
 |
 |--dirC

-cp /dirB:/dirA/dirB/dirC

In this case, what directories will be searched if the current directory is dirA?
How about if the current directory is root? How about if the current directory is
dirB? In this case, both paths in the classpath are absolute. It doesn't matter what
the current directory is; since absolute paths are specified the search results will
always be the same. Specifically, only dirC will be searched, regardless of the current
directory. The first path (/dirB) is invalid since dirB is not a direct subdirectory of
root, so dirB will never be searched. And, one more time, for emphasis, since dot (.)
is not in the classpath, the current directory will only be searched if it happens to be
described elsewhere in the classpath (in this case, dirC).

CERTIFICATION OBJECTIVE

JAR Files (Objective 7.5)
7.5  Given the fully-qualified name of a class that is deployed inside and/or outside a JAR
file, construct the appropriate directory structure for that class. Given a code example and  
a classpath, determine whether the classpath will allow the code to compile successfully.

ch10.indd 802 5/8/08 4:04:22 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

JAR Files and Searching
Once you've built and tested your application, you might want to bundle it up so
that it's easy to distribute and easy for other people to install. One mechanism that
Java provides for these purposes is a JAR file. JAR stands for Java Archive. JAR files
are used to compress data (similar to ZIP files) and to archive data.

Here��� '�� s an application with classes in different packages:

test
 |--UseStuff.java
 |--ws
 |--(create MyJar.jar here)
 |--myApp
 |--utils
 | |--Dates.class (package myApp.utils;)
 |--engine
 |--rete.class (package myApp.engine;)
 |--minmax.class " "

You can create a single JAR file that contains all of the files in myApp, and also
maintains myApp's directory structure. Once this JAR file is created, it can be moved
from place to place, and from machine to machine, and all of the classes in the JAR
file can be accessed, via classpaths, by java and javac, without ever unJARing the
JAR file. Although you won't need to know how to make JAR files for the exam,
let's make the current directory ws, and then make a JAR file called MyJar.jar:

cd ws
jar -cf MyJar.jar myApp

The jar command will create a JAR file called MyJar.jar and it will contain the
myApp directory and myApp's entire subdirectory tree and files. You can look at the
contents of the JAR file with the next command (this isn't on the exam either):

jar -tf MyJar.jar

(which produces something like)

META-INF/
META-INF/MANIFEST.MF
myApp/
myApp/.DS_Store
myApp/utils/

JAR Files and Searching (Exam Objective 7.5)  803

ch10.indd 803 5/8/08 4:04:23 PM

804  Chapter 10:   Development

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

myApp/utils/Dates.class
myApp/engine/
myApp/engine/rete.class
myApp/engine/minmax.class

Back to exam stuff. Finding a JAR file using a classpath is similar to finding a
package file in a classpath. The difference is that when you specify a path for a JAR
file, you must include the name of the JAR file at the end of the path. Let's say you want
to compile UseStuff.java in the test directory, and UseStuff.java needs access
to a class contained in myApp.jar. To compile UseStuff.java say

cd test

javac -classpath ws/myApp.jar UseStuff.java

Compare the use of the JAR file to using a class in a package. If UseStuff.java
needed to use classes in the myApp.utils package, and the class was not in a JAR,
you would say

cd test

javac -classpath ws UseStuff.java

Remember when using a classpath, the last directory in the path must be the
super-directory of the root directory for the package. (In the preceding example,
myApp is the root directory of the package myApp.utils.) Notice that myApp can be
the root directory for more than one package (myApp.utils and myApp.engine),
and the java and javac commands can find what they need across multiple peer
packages like this. So, if ws is on the classpath and ws is the super-directory of myApp,
then classes in both the myApp.utils and myApp.engine packages will be found.

Here are some rules concerning the structure of JAR files:

n ���� ������������������������ The jar command creates the META-INF directory automatically.
n ���� ������������������������ The jar command creates the MANIFEST.MF file automatically.
n ���� ��������������� ������������������������������ The jar command won’t place any of your files in META-INF/.
n �� As you can see above, the exact tree structure is represented.
n  java and javac will use the JAR like a normal directory tree.

ch10.indd 804 5/8/08 4:04:23 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

Using .../jre/lib/ext with JAR files
When you install Java, you end up with a huge directory tree of Java-related
stuff, including the JAR files that contain the classes that come standard with
J2SE. As we discussed earlier, java and javac have a list of places that they
access when searching for class files. Buried deep inside of your Java directory
tree is a subdirectory tree named jre/lib/ext. If you put JAR files into the ext
subdirectory, java and javac can find them, and use the class files they contain.
You don't have to mention these subdirectories in a classpath statement—searching
this directory is a function that's built right into Java. Sun recommends, however,
that you use this feature only for your own internal testing and development, and
not for software that you intend to distribute.

When you use an import statement you are declaring only one package.
When you say import java.util.*; you are saying "Use the short name for all of the
classes in the java.util package." You’re NOT getting the java.util.jar classes or
java.util.regex packages! Those packages are totally independent of each other; the
only thing they share is the same "root" directory, but they are not the same packages. As
a corollary, you can’t say import java.*; in the hopes of importing multiple packages
—just remember, an import statement can import only a single package.

It’s possible to create environment variables that provide an alias for long
classpaths. The classpath for some of the JAR files in J2SE can be quite long, and so it’s
common for such an alias to be used when defining a classpath. If you see something like
JAVA_HOME or $JAVA_HOME in an exam question it just means "That part of the absolute
classpath up to the directories we’re specifying explicitly." You can assume that the
JAVA_HOME literal means this, and is pre-pended to the partial classpath you see.

JAR Files and Searching (Exam Objective 7.5)  805

ch10.indd 805 5/8/08 4:04:23 PM

806  Chapter 10:   Development

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

CERTIFICATION OBJECTIVE

Using Static Imports (Exam Objective 7.1)
7.1  Given a code example and a scenario, write code that uses the appropriate access
modifiers, package declarations, and import statements to interact with (through access or
inheritance) the code in the example.

Note: In Chapter 1 we covered most of what's defined in this objective, but we saved
static imports for this chapter.

Static Imports
We've been using import statements throughout the book. Ultimately, the only
value import statements have is that they save typing and they can make your code
easier to read. In Java 5, the import statement was enhanced to provide even greater
keystroke-reduction capabilities…although some would argue that this comes at the
expense of readability. This new feature is known as static imports. Static imports can
be used when you want to use a class's static members. (You can use this feature on
classes in the API and on your own classes.) Here's a "before and after" example:

Before static imports:

public class TestStatic {
 public static void main(String[] args) {
 System.out.println(Integer.MAX_VALUE);
 System.out.println(Integer.toHexString(42));
 }
}

After static imports:

import static java.lang.System.out; // 1
import static java.lang.Integer.*; // 2
public class TestStaticImport {
 public static void main(String[] args) {
 out.println(MAX_VALUE); // 3
 out.println(toHexString(42)); // 4
 }
}

ch10.indd 806 5/8/08 4:04:24 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

Both classes produce the same output:

2147483647

2a

Let's look at what's happening in the code that's using the static import feature:

1.	 Even though the feature is commonly called "static import" the syntax MUST
be import static followed by the fully qualified name of the static member
you want to import, or a wildcard. In this case we're doing a static import on the
System class's out object.

2.	 In this case we might want to use several of the static members of the  
java.lang.Integer class. This static import statement uses the wildcard to say,
"I want to do static imports of ALL the static members in this class."

3.	 Now we're finally seeing the benefit of the static import feature! We didn't have to
type the System in System.out.println! Wow! Second, we didn't have to type
the Integer in Integer.MAX_VALUE. So in this line of code we were able to use
a shortcut for a static method AND a constant.

4.	 Finally, we do one more shortcut, this time for a method in the Integer class.

We've been a little sarcastic about this feature, but we're not the only ones. We're
not convinced that saving a few keystrokes is worth possibly making the code a little
harder to read, but enough developers requested it that it was added to the language.

Here are a couple of rules for using static imports:

n	 You must say import static; you can't say static import.

n	 Watch out for ambiguously named static members. For instance, if you do
a static import for both the Integer class and the Long class, referring to
MAX_VALUE will cause a compiler error, since both Integer and Long have
a MAX_VALUE constant, and Java won't know which MAX_VALUE you're refer-
ring to.

n	 You can do a static import on static object references, constants (remember
they're static and final), and static methods.

Static Imports (Exam Objective 7.1)  807

ch10.indd 807 5/8/08 4:04:24 PM

808  Chapter 10:   Development

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

CERTIFICATION SUMMARY
We started by exploring the javac command more deeply. The -d option allows you
to put class files generated by compilation into whatever directory you want to. The
-d option lets you specify the destination of newly created class files.

Next we talked about some of the options available through the java application
launcher. We discussed the ordering of the arguments java can take, including
[options] class [args]. We learned how to query and update system properties
in code and at the command line using the -D option.

The next topic was handling command-line arguments. The key concepts are that
these arguments are put into a String array, and that the first argument goes into
array element 0, the second argument into array element 1, and so on.

We turned to the important topic of how java and javac search for other
class files when they need them, and how they use the same algorithm to find
these classes. There are search locations predefined by Sun, and additional search
locations, called classpaths that are user defined. The syntax for Unix classpaths is
different than the syntax for Windows classpaths, and the exam will tend to use
Unix syntax.

The topic of packages came next. Remember that once you put a class into a
package, its name is atomic—in other words, it can't be split up. There is a tight
relationship between a class's fully qualified package name and the directory
structure in which the class resides.

JAR files were discussed next. JAR files are used to compress and archive data.
They can be used to archive entire directory tree structures into a single JAR file.
JAR files can be searched by java and javac.

We finished the chapter by discussing a new Java 5 feature, static imports. This is
a convenience-only feature that reduces keying long names for static members in
the classes you use in your programs.

ch10.indd 808 5/8/08 4:04:24 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

Two-Minute Drill

Here are the key points from this chapter.

Using javac and java (Objective 7.2)

q	 Use -d to change the destination of a class file when it's first generated by the
javac command.

q	 The -d option can build package-dependent destination classes on-the-fly if
the root package directory already exists.

q	 Use the -D option in conjunction with the java command when you want to
set a system property.

q	 System properties consist of name=value pairs that must be appended directly
behind the -D, for example, java -Dmyproperty=myvalue.

q	 Command-line arguments are always treated as Strings.

q	 The java command-line argument 1 is put into array element 0, argument 2
is put into element 1, and so on.

Searching with java and javac (Objective 7.5)

q	 Both java and javac use the same algorithms to search for classes.

q	 Searching begins in the locations that contain the classes that come standard
with J2SE.

q	 Users can define secondary search locations using classpaths.

q	 Default classpaths can be defined by using OS environment variables.

q	 A classpath can be declared at the command line, and it overrides the default
classpath.

q	 A single classpath can define many different search locations.

q	 In Unix classpaths, forward slashes (/) are used to separate the directories
that make up a path. In Windows, backslashes (\) are used.

3

Two-Minute Drill  809

ch10.indd 809 5/8/08 4:04:25 PM

810  Chapter 10:   Development

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

q	 In Unix, colons (:) are used to separate the paths within a classpath. In Win-
dows, semicolons (;) are used.	

q	 In a classpath, to specify the current directory as a search location, use a dot (.)

q	 In a classpath, once a class is found, searching stops, so the order of locations
to search is important.

Packages and Searching (Objective 7.5)

q	 When a class is put into a package, its fully qualified name must be used.

q	 An import statement provides an alias to a class's fully qualified name.

q	 In order for a class to be located, its fully qualified name must have a tight
relationship with the directory structure in which it resides.

q	 A classpath can contain both relative and absolute paths.

q	 An absolute path starts with a / or a \.

q	 Only the final directory in a given path will be searched.

JAR Files (Objective 7.5)

q	 An entire directory tree structure can be archived in a single JAR file.

q	 JAR files can be searched by java and javac.

q	 When you include a JAR file in a classpath, you must include not only the
directory in which the JAR file is located, but the name of the JAR file too.

q	 For testing purposes, you can put JAR files into .../jre/lib/ext, which is
somewhere inside the Java directory tree on your machine.

Static Imports (Objective 7.1)

q	 You must start a static import statement like this: import static

q	 You can use static imports to create shortcuts for static members (static
variables, constants, and methods) of any class.

ch10.indd 810 5/8/08 4:04:25 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

Self Test
	 1.	 Given:

1. // insert code here
2. class StatTest {
3. public static void main(String[] args) {
4. System.out.println(Integer.MAX_VALUE);
5. }
6. }

		 Which, inserted independently at line 1, compiles? (Choose all that apply.)

	 	 A.	 import static java.lang;

		 B.	 import static java.lang.Integer;

		 C.	 import static java.lang.Integer.*;

		 D.	 import static java.lang.Integer.*_VALUE;

		 E.	 import static java.lang.Integer.MAX_VALUE;

		 F.	 None of the above statements are valid import syntax

	 2.	 Given:

import static java.lang.System.*;
class _ {
 static public void main(String... __A_V_) {
 String $ = "";
 for(int x=0; ++x < __A_V_.length;)
 $ += __A_V_[x];
 out.println($);
 }
}

		 And the command line:

java _ - A .

		 What is the result?

	 	 A.	 -A

		 B.	 A

		 C.	 -A

Self Test  811

ch10.indd 811 5/8/08 4:04:26 PM

812  Chapter 10:   Development

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

		 D.	 _A

		 E.	 _-A

		 F.	 Compilation fails

		 G.	 An exception is thrown at runtime

	 3.	 Given the default classpath:

/foo

		 And this directory structure:

foo
 |
 test
 |
 xcom
 |--A.class
 |--B.java

		 And these two files:

package xcom;
public class A { }

package xcom;
public class B extends A { }

		 Which allows B.java to compile? (Choose all that apply.)

	 	 A.	 Set the current directory to xcom then invoke
 javac B.java

		 B.	 Set the current directory to xcom then invoke
 javac -classpath . B.java

		 C.	 Set the current directory to test then invoke
 javac -classpath . xcom/B.java

		 D.	 Set the current directory to test then invoke
 javac -classpath xcom B.java

		 E.	 Set the current directory to test then invoke
 javac -classpath xcom:. B.java

ch10.indd 812 5/8/08 4:04:26 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

	 4.	 Given two files:

a=b.java
c_d.class

		 Are in the current directory, which command-line invocation(s) could complete without error?
(Choose all that apply.)

	 	 A.	 java -Da=b c_d

		 B.	 java -D a=b c_d

		 C.	 javac -Da=b c_d

		 D.	 javac -D a=b c_d

	 5.	 If three versions of MyClass.java exist on a file system:

Version 1 is in /foo/bar
Version 2 is in /foo/bar/baz
Version 3 is in /foo/bar/baz/bing

		 And the system's classpath includes:

/foo/bar/baz

		 And this command line is invoked from /foo

java -classpath /foo/bar/baz/bing:/foo/bar MyClass.java

		 Which version will be used by java?

	 	 A.	 /foo/MyClass.java

		 B.	 /foo/bar/MyClass.java

		 C.	 /foo/bar/baz/MyClass.java

		 D.	 /foo/bar/baz/bing/MyClass.java

		 E.	 The result is not predictable

Self Test  813

ch10.indd 813 5/8/08 4:04:27 PM

814  Chapter 10:   Development

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

	 6.	 Given two files:

 1. package pkgA;
 2. public class Foo {
 3. int a = 5;
 4. protected int b = 6;
 5. }

 1. package pkgB;
 2. import pkgA.*;
 3. public class Fiz extends Foo {
 4. public static void main(String[] args) {
 5. Foo f = new Foo();
 6. System.out.print(" " + f.a);
 7. System.out.print(" " + f.b);
 8. System.out.print(" " + new Fiz().a);
 9. System.out.println(" " + new Fiz().b);
10. }
11. }

		 What is the result? (Choose all that apply.)

		 A.	 5 6 5 6

		 B.	 5 6 followed by an exception
		 C.	 Compilation fails with an error on line 6
		 D.	 Compilation fails with an error on line 7
		 E.	 Compilation fails with an error on line 8

		 F.	 Compilation fails with an error on line 9

	 7.	 Given:

 3. import java.util.*;
 4. public class Antique {
 5. public static void main(String[] args) {
 6. List<String> myList = new ArrayList<String>();
 7. assert (args.length > 0);
 8. System.out.println("still static");
 9. }
10. }

ch10.indd 814 5/8/08 4:04:27 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

		 Which sets of commands (javac followed by java) will compile and run without exception or
error? (Choose all that apply.)

		 A.	 javac Antique.java
 java Antique

		 B.	 javac Antique.java
 java -ea Antique

		 C.	 javac -source 6 Antique.java
 java Antique

		 D.	 javac -source 1.4 Antique.java
 java Antique

		 E.	 javac -source 1.6 Antique.java

 java -ea Antique

	 8.	 Given:

 3. import java.util.*;
 4. public class Values {
 5. public static void main(String[] args) {
 6. Properties p = System.getProperties();
 7. p.setProperty("myProp", "myValue");
 8. System.out.print(p.getProperty("cmdProp") + " ");
 9. System.out.print(p.getProperty("myProp") + " ");
10. System.out.print(p.getProperty("noProp") + " ");
11. p.setProperty("cmdProp", "newValue");
12. System.out.println(p.getProperty("cmdProp"));
13. }
14. }

		 And given the command line invocation:

java -DcmdProp=cmdValue Values

		 What is the result?

		 A.	 null myValue null null

		 B.	 cmdValue null null cmdValue

		 C.	 cmdValue null null newValue

		 D.	 cmdValue myValue null cmdValue

		 E.	 cmdValue myValue null newValue

		 F.	 An exception is thrown at runtime

Self Test  815

ch10.indd 815 5/8/08 4:04:27 PM

816  Chapter 10:   Development

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

	 9.	 Given the following directory structure:

x-|
 |- FindBaz.class
 |
 |- test-|
 |- Baz.class
 |
 |- myApp-|
 |- Baz.class

		 And given the contents of the related .java files:

 1. public class FindBaz {
 2. public static void main(String[] args) { new Baz(); }
 3. }

		 In the test directory:

 1. public class Baz {
 2. static { System.out.println("test/Baz"); }
 3. }

		 In the myApp directory:

 1. public class Baz {
 2. static { System.out.println("myApp/Baz"); }
 3. }

		 If the current directory is x, which invocations will produce the output "test/Baz"?  
(Choose all that apply.)

		 A.	 java FindBaz

		 B.	 java -classpath test FindBaz

		 C.	 java -classpath .:test FindBaz

		 D.	 java -classpath .:test/myApp FindBaz

		 E.	 java -classpath test:test/myApp FindBaz

		 F.	 java -classpath test:test/myApp:. FindBaz

		 G.	 java -classpath test/myApp:test:. FindBaz

ch10.indd 816 5/8/08 4:04:28 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

	10.	 Given the following directory structure:

test-|
 |- Test.java
 |
 |- myApp-|
 |- Foo.java
 |
 |- myAppSub-|
 |- Bar.java

		 If the current directory is test, and you create a .jar file by invoking this,

jar -cf MyJar.jar myApp

		 then which path names will find a file in the .jar file? (Choose all that apply.)

		 A.	 Foo.java

		 B.	 Test.java

		 C.	 myApp/Foo.java

		 D.	 myApp/Bar.java

		 E.	 META-INF/Foo.java

		 F.	 META-INF/myApp/Foo.java

		 G.	 myApp/myAppSub/Bar.java

	11.	 Given the following directory structure:

test-|
 |- GetJar.java
 |
 |- myApp-|
 |-Foo.java

		 And given the contents of GetJar.java and Foo.java:

 3. public class GetJar {
 4. public static void main(String[] args) {
 5. System.out.println(Foo.d);
 6. }
 7. }

Self Test  817

ch10.indd 817 5/8/08 4:04:28 PM

818  Chapter 10:   Development

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

 3. package myApp;
 4. public class Foo { public static int d = 8; }

		 If the current directory is test, which set(s) of commands will successfully compile the two .java
files and produce the output 8? (Choose all that apply.)

		 A.	 javac myApp/Foo.java
 // put into "test" a jar file that contains myApp/Foo.class
 javac -classpath MyJar.jar GetJar.java
 java GetJar

		 B.	 javac myApp/Foo.java
 // put into "test" a jar file that contains myApp/Foo.class
 javac MyJar.jar GetJar.java
 java GetJar

		 C.	 javac myApp/Foo.java
 // put into "test" a jar file that contains myApp/Foo.class
 javac -classpath MyJar.jar GetJar.java
 java -classpath MyJar.jar GetJar

		 D.	 javac myApp/Foo.java
 // put into "test" a jar file that contains myApp/Foo.class
 javac MyJar.jar GetJar.java

 java -classpath MyJar.jar GetJar

	12.	 Given the following directory structure:

x-|
 |- GoDeep.class
 |
 |- test-|
 |- MyJar.jar
 |
 |- myApp-|
 |-Foo.java
 |-Foo.class

		 And given the contents of GetJar.java and Foo.java:

 3. public class GoDeep {
 4. public static void main(String[] args) {
 5. System.out.println(myApp.Foo.d);
 6. }
 7. }

ch10.indd 818 5/8/08 4:04:28 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

 3. package myApp;
 4. public class Foo { public static int d = 8; }

		 And MyJar.jar contains the following entry:

myApp/Foo.class

		 If the current directory is x, which commands will successfully execute GoDeep.class and
produce the output 8? (Choose all that apply.)

		 A.	 java GoDeep

		 B.	 java -classpath . GoDeep

		 C.	 java -classpath test/MyJar.jar GoDeep

		 D.	 java GoDeep -classpath test/MyJar.jar

		 E.	 java GoDeep -classpath test/MyJar.jar:.

		 F.	 java -classpath .:test/MyJar.jar GoDeep

		 G.	 java -classpath test/MyJar.jar:. GoDeep

Self Test�  819

ch10.indd 819 5/8/08 4:04:28 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

Self Test ANSWERS
	 1.	 Given:

1. // insert code here
2. class StatTest {
3. public static void main(String[] args) {
4. System.out.println(Integer.MAX_VALUE);
5. }
6. }

		 Which, inserted independently at line 1, compiles? (Choose all that apply.)

	 	 A.	 import static java.lang;

		 B.	 import static java.lang.Integer;

		 C.	 import static java.lang.Integer.*;

		 D.	 import static java.lang.Integer.*_VALUE;

		 E.	 import static java.lang.Integer.MAX_VALUE;

		 F.	 None of the above statements are valid import syntax

Answer:

	 	 ® 3  ��C and E are correct syntax for static imports. Line 4 isn't making use of static imports,
so the code will also compile with none of the imports.

		 ®̊ 	 A, B, D, and F are incorrect based on the above. (Objective 7.1)

	 2.	 Given:

import static java.lang.System.*;
class _ {
 static public void main(String... __A_V_) {
 String $ = "";
 for(int x=0; ++x < __A_V_.length;)
 $ += __A_V_[x];
 out.println($);
 }
}

820  Chapter 10:   Development

ch10.indd 820 5/8/08 4:04:29 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

		 And the command line:

java _ - A .

		 What is the result?

	 	 A.	 -A

		 B.	 A

		 C.	 -A

		 D.	 _A

		 E.	 _-A

		 F.	 Compilation fails

		 G.	 An exception is thrown at runtime

Answer:
	 	 ® 3  ��B is correct. This question is using valid (but inappropriate and weird) identifiers, static

imports, var-args in main(), and pre-incrementing logic.
	 	 ®̊ 	� A, C, D, E, F, and G are incorrect based on the above. (Objective 7.2)

	 3.	 Given the default classpath:

/foo

		 And this directory structure:

foo
 |
 test
 |
 xcom
 |--A.class
 |--B.java

		 And these two files:

package xcom;
public class A { }

package xcom;

public class B extends A { }

Self Test Answers  821

ch10.indd 821 5/8/08 4:04:29 PM

822  Chapter 10:   Development

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

		 Which allows B.java to compile? (Choose all that apply.) 

	 	 A.	 Set the current directory to xcom then invoke
 javac B.java

		 B.	 Set the current directory to xcom then invoke
 javac -classpath . B.java

		 C.	 Set the current directory to test then invoke
 javac -classpath . xcom/B.java

		 D.	 Set the current directory to test then invoke
 javac -classpath xcom B.java

		 E.	 Set the current directory to test then invoke
 javac -classpath xcom:. B.java

Answer:

	 	 ® 3  �C is correct. In order for B.java to compile, the compiler first needs to be able to find
B.java. Once it's found B.java it needs to find A.class. Because A.class is in the
xcom package the compiler won't find A.class if it's invoked from the xcom directory.
Remember that the -classpath isn't looking for B.java, it's looking for whatever classes
B.java needs (in this case A.class).

	 	 ®̊ 	� A, B, and D are incorrect based on the above. E is incorrect because the compiler can't
find B.java. (Objective 7.2)

	 4.	 Given two files:

a=b.java
c_d.class

		 Are in the current directory, which command-line invocation(s) could complete without error?
(Choose all that apply.)

	 	 A.	 java -Da=b c_d

		 B.	 java -D a=b c_d

		 C.	 javac -Da=b c_d

		 D.	 javac -D a=b c_d

ch10.indd 822 5/8/08 4:04:30 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

Answer:
	 	 ® 3  ��A is correct. The -D flag is NOT a compiler flag, and the name=value pair that is  

associated with the -D must follow the -D with no spaces.
	 	 ®̊ 	� B, C, and D are incorrect based on the above. (Objective 7.2)

	 5.	 If three versions of MyClass.java exist on a file system:

Version 1 is in /foo/bar
Version 2 is in /foo/bar/baz
Version 3 is in /foo/bar/baz/bing

		 And the system's classpath includes:

/foo/bar/baz

		 And this command line is invoked from /foo

java -classpath /foo/bar/baz/bing:/foo/bar MyClass.java

		 Which version will be used by java?

	 	 A.	 /foo/MyClass.java

		 B.	 /foo/bar/MyClass.java

		 C.	 /foo/bar/baz/MyClass.java

		 D.	 /foo/bar/baz/bing/MyClass.java

		 E.	 The result is not predictable.

Answer:
	 	 ®̊ 	� D is correct. A -classpath included with a java invocation overrides a system classpath.

When java is using any classpath, it reads the classpath from left to right, and uses the  
first match it finds.

		 ®̊ 	� A, B, C, and E are incorrect based on the above. (Objective 7.5)

Self Test Answers  823

ch10.indd 823 5/8/08 4:04:30 PM

824  Chapter 10:   Development

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

	 6.	 Given two files:

 1. package pkgA;
 2. public class Foo {
 3. int a = 5;
 4. protected int b = 6;
 5. }

 1. package pkgB;
 2. import pkgA.*;
 3. public class Fiz extends Foo {
 4. public static void main(String[] args) {
 5. Foo f = new Foo();
 6. System.out.print(" " + f.a);
 7. System.out.print(" " + f.b);
 8. System.out.print(" " + new Fiz().a);
 9. System.out.println(" " + new Fiz().b);
10. }
11. }

		 What is the result? (Choose all that apply.)

		 A.	 5 6 5 6

		 B.	 5 6 followed by an exception
		 C.	 Compilation fails with an error on line 6
		 D.	 Compilation fails with an error on line 7
		 E.	 Compilation fails with an error on line 8

		 F.	 Compilation fails with an error on line 9

Answer:
	 	 ® 3  ��C, D, and E are correct. Variable a (default access) cannot be accessed from outside the

package. Since variable b is protected, it can be accessed only through inheritance.

		 ®̊ 	� A, B, and F are incorrect based on the above. (Objectives 1.1, 7.1)

	 7.	 Given:

 3. import java.util.*;
 4. public class Antique {
 5. public static void main(String[] args) {
 6. List<String> myList = new ArrayList<String>();

ch10.indd 824 5/8/08 4:04:30 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

 7. assert (args.length > 0);
 8. System.out.println("still static");
 9. }
10. }

		 Which sets of commands (javac followed by java) will compile and run without exception or
error? (Choose all that apply.)

		 A.	 javac Antique.java
 java Antique

		 B.	 javac Antique.java
 java -ea Antique

		 C.	 javac -source 6 Antique.java
 java Antique

		 D.	 javac -source 1.4 Antique.java
 java Antique

		 E.	 javac -source 1.6 Antique.java

 java -ea Antique

Answer:
	 	 ® 3  ��A and C are correct. If assertions (which were first available in Java 1.4) are enabled, an

AssertionError will be thrown at line 7.

		 ®̊ 	� D is incorrect because the code uses generics, and generics weren't introduced until Java 5.
B and E are incorrect based on the above. (Objective 7.2)

	 8.	 Given:

 3. import java.util.*;
 4. public class Values {
 5. public static void main(String[] args) {
 6. Properties p = System.getProperties();
 7. p.setProperty("myProp", "myValue");
 8. System.out.print(p.getProperty("cmdProp") + " ");
 9. System.out.print(p.getProperty("myProp") + " ");
10. System.out.print(p.getProperty("noProp") + " ");
11. p.setProperty("cmdProp", "newValue");
12. System.out.println(p.getProperty("cmdProp"));
13. }
14. }

Self Test Answers  825

ch10.indd 825 5/8/08 4:04:31 PM

826  Chapter 10:   Development

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

		 And given the command line invocation:

java -DcmdProp=cmdValue Values

		 What is the result?

		 A.	 null myValue null null

		 B.	 cmdValue null null cmdValue

		 C.	 cmdValue null null newValue

		 D.	 cmdValue myValue null cmdValue

		 E.	 cmdValue myValue null newValue

		 F.	 An exception is thrown at runtime

Answer:
	 	 ® 3  ��E is correct. System properties can be set at the command line, as indicated correctly in  

the example. System properties can also be set and overridden programmatically.

		 ®̊ 	� A, B, C, D, and F are incorrect based on the above. (Objective 7.2)

	 9.	 Given the following directory structure:

x-|
 |- FindBaz.class
 |
 |- test-|
 |- Baz.class
 |
 |- myApp-|
 |- Baz.class

		 And given the contents of the related .java files:

 1. public class FindBaz {
 2. public static void main(String[] args) { new Baz(); }
 3. }

		 In the test directory:

 1. public class Baz {
 2. static { System.out.println("test/Baz"); }
 3. }

ch10.indd 826 5/8/08 4:04:31 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

		 In the myApp directory:

 1. public class Baz {
 2. static { System.out.println("myApp/Baz"); }
 3. }

		 If the current directory is x, which invocations will produce the output "test/Baz"? (Choose
all that apply.)

		 A.	 java FindBaz

		 B.	 java -classpath test FindBaz

		 C.	 java -classpath .:test FindBaz

		 D.	 java -classpath .:test/myApp FindBaz

		 E.	 java -classpath test:test/myApp FindBaz

		 F.	 java -classpath test:test/myApp:. FindBaz

		 G.	 java -classpath test/myApp:test:. FindBaz

Answer:
	 	 ® 3  ��C and F are correct. The java command must find both FindBaz and the version of

Baz located in the test directory. The "." finds FindBaz, and "test" must come before
"test/myApp" or java will find the other version of Baz. Remember the real exam will
default to using the Unix path separator.

		 ®̊ 	� A, B, D, E, and G are incorrect based on the above. (Objective 7.2)

	10.	 Given the following directory structure:

test-|
 |- Test.java
 |
 |- myApp-|
 |- Foo.java
 |
 |- myAppSub-|
 |- Bar.java

		 If the current directory is test, and you create a .jar file by invoking this,

jar -cf MyJar.jar myApp

Self Test Answers  827

ch10.indd 827 5/8/08 4:04:31 PM

828  Chapter 10:   Development

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

		 then which path names will find a file in the .jar file? (Choose all that apply.)

		 A.	 Foo.java

		 B.	 Test.java

		 C.	 myApp/Foo.java

		 D.	 myApp/Bar.java

		 E.	 META-INF/Foo.java

		 F.	 META-INF/myApp/Foo.java

		 G.	 myApp/myAppSub/Bar.java

Answer:
	 	 ® 3  ��C and G are correct. The files in a .jar file will exist within the same exact directory tree

structure in which they existed when the .jar was created. Although a .jar file will contain
a META-INF directory, none of your files will be in it. Finally, if any files exist in the
directory from which the jar command was invoked, they won’t be included in the  
.jar file by default.

		 ®̊  �A, B, D, E, and F are incorrect based on the above. (Objective 7.5)

	11.	 Given the following directory structure:

test-|
 |- GetJar.java
 |
 |- myApp-|
 |-Foo.java

		 And given the contents of GetJar.java and Foo.java:

 3. public class GetJar {
 4. public static void main(String[] args) {
 5. System.out.println(Foo.d);
 6. }
 7. }

 3. package myApp;
 4. public class Foo { public static int d = 8; }

ch10.indd 828 5/8/08 4:04:32 PM

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

		 If the current directory is test, which set(s) of commands will successfully compile the two .java
files and produce the output 8? (Choose all that apply.)

		 A.	 javac myApp/Foo.java
 // put into "test" a jar file that contains myApp/Foo.class
 javac -classpath MyJar.jar GetJar.java
 java GetJar

		 B.	 javac myApp/Foo.java
 // put into "test" a jar file that contains myApp/Foo.class
 javac MyJar.jar GetJar.java
 java GetJar

		 C.	 javac myApp/Foo.java
 // put into "test" a jar file that contains myApp/Foo.class
 javac -classpath MyJar.jar GetJar.java
 java -classpath MyJar.jar GetJar

		 D.	 javac myApp/Foo.java
 // put into "test" a jar file that contains myApp/Foo.class
 javac MyJar.jar GetJar.java

 java -classpath MyJar.jar GetJar

Answer:
	 	 ® 3  ��A is correct. Given the current directory and where the necessary files are located, these  

are the correct command line syntaxes.

		 ®̊ 	� B, C, and D use incorrect syntax for either java and/or javac. (Objective 7.5)

	12.	 Given the following directory structure:

x-|
 |- GoDeep.class
 |
 |- test-|
 |- MyJar.jar
 |
 |- myApp-|
 |-Foo.java
 |-Foo.class

Self Test Answers  829

ch10.indd 829 5/8/08 4:04:32 PM

830  Chapter 10:   Development

CertPrs8/Java 6 Cert. Study Guide/Sierra-Bates/159106-0/Chapter 10

		 And given the contents of GetJar.java and Foo.java:

 3. public class GoDeep {
 4. public static void main(String[] args) {
 5. System.out.println(myApp.Foo.d);
 6. }
 7. }

 3. package myApp;
 4. public class Foo { public static int d = 8; }

		 And MyJar.jar contains the following entry:

myApp/Foo.class

		 If the current directory is x, which commands will successfully execute GoDeep.class and
produce the output 8? (Choose all that apply.)

		 A.	 java GoDeep

		 B.	 java -classpath . GoDeep

		 C.	 java -classpath test/MyJar.jar GoDeep

		 D.	 java GoDeep -classpath test/MyJar.jar

		 E.	 java GoDeep -classpath test/MyJar.jar:.

		 F.	 java -classpath .:test/MyJar.jar GoDeep

		 G.	 java -classpath test/MyJar.jar:. GoDeep

Answer:
	 	 ® 3  ��F and G are correct. The java command must find both GoDeep and Foo, and the  

-classpath option must come before the class name. Note, the current directory  
(.), in the classpath can be searched first or last.

		 ®̊ 	� A, B, C, D, and E are incorrect based on the above. (Objective 7.5)

ch10.indd 830 5/8/08 4:04:32 PM

