
CERTIFICATION OBJECTIVES

1
The Servlet Model

 • HTTP Methods

 • Form Parameters

 • Requests

 • Responses

 • Servlet Life Cycle

 ✓ Two-Minute Drill

 Q&A Self Test

2 Chapter 1: The Servlet Model

We go to the fi rst topics in the Sun Certifi cation for Web Component Developers.
This chapter begins outside the formal world of Java and J2EE, for you’re going to
need to know something about the primary “inputs” to a web application: HTTP

methods. And because the information carried from HTTP methods is mostly carried from web
pages, the exam requires you to know a little about HTML syntax, which we’ll cover here. Then
we’ll begin to open up the core exam topics of HTTP requests and responses: how these are
decomposed and composed inside a J2EE web application.

CERTIFICATION OBJECTIVE

HTTP Methods (Exam Objective 1.1)
For each of the HTTP Methods (such as GET, POST, HEAD), describe the purpose
of the method and the technical characteristics of the HTTP Method protocol, list triggers
that might cause a Client (usually a Web browser) to use the method and identify the
HttpServlet method that corresponds to the HTTP Method.

Because you are studying for Sun’s Web Component exam, it will come as no surprise
to you that you need to know something about the main protocol underlying web
communication: HTTP. No huge expertise is required. You don’t have to be any kind
of networking expert or even know what TCP/IP stands for. However, you will need
some grasp of the “big seven” HTTP methods —and, in particular, how these relate
to J2EE and to the Web. The designers of the exam succeed in targeting just those
areas that are also essential for becoming effective in your real-life web application
developments.

HTTP
HTTP is a simple request /response protocol. A client — often (but not exclusively)
a web browser — sends a request, which consists of an HTTP method and supple-
mentary data. The HTTP server sends back a response —a status code indicating
what happened with the request, and (typically) data targeted by the request. Once
the request and response have happened, the conversation is over; the client and
server don’t remain connected. When you use a web browser to fi ll up your shopping

cart, what’s mostly happening is a series of lapses in a protracted conversation. This
situation makes life much more effi cient for the server (it doesn’t have to keep its
attention focused on you for much of the time); how it manages not to forget your
identity is a subject covered in Chapter 4.

An HTTP Request and Response
Let’s take a look at an HTTP request at work. There are strict rules about how the
request is made up, defi ned by the World Wide Web consortium in a “Request for
Comments” (RFC) document. Actually, the time for commenting on this version of
the HTTP standard is long past, so you can regard RFC 2616 (defi ning HTTP/1.1)
as an absolute yardstick.

A request consists of a request line, some request headers, and an (optional) mes-
sage body. The request line contains three things:

■ The HTTP method

■ A pointer to the resource requested, in the form of a “URI”

■ The version of the HTTP protocol employed in the request

Therefore, a typical request line might look like this:

GET http://www.osborne.com/index.html HTTP/1.1

A carriage return / line feed concludes the request line. After this come request
headers in the form — name: value (the name of the request header, followed by
a colon and space, followed by the value). Here are some examples:

Accept: image/*, application/vnd.ms-excel, */*
Accept-Language: en-gb
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)
Host: www.osborne.com
Connection: Keep-Alive

We’ll explore the meaning of one or two of these headers a bit later. A blank
line must follow the last request header and, after that, the request body —if there
is one (there doesn’t have to be). The request body can contain pretty much any-
thing, from a set of parameters and values attaching to an HTML form, to an entire
image fi le you intend to upload to the target URL.

HTTP Methods (Exam Objective 1.1) 3

4 Chapter 1: The Servlet Model

Having sent the request, you can expect a response. The construction of the
response is very similar to that of the request. Here’s an example:

HTTP/1.0 200 OK
Connection: Close
Date: Fri, 02 May 2003 15:30:30 GMT
Set-Cookie: PREF=ID=1b4a0990016089fe:LD=en:TM=1051889430:
LM=1051889430:
S=JbQnlaabQb0I0KxZ; expires=Sun, 17-Jan-2038 19:14:07 GMT;
path=/; domain=.google.co.uk
Cache-control: private
Content-Type: text/html
Server: GWS/2.0
[BLANK LINE]
"<html><head><meta HTTP-EQUIV="content-type" CONTENT="text/html;
 charset=UTF-8"><title>Google Search: MIME </title>
 etc. etc. rest of web page

The response line also has three parts. First is the HTTP version actually used,
refl ected back to the client. Next is a response code (200 denotes success; you’ll
already know 404, page not found). After that is a brief description of the response
code. A carriage return / line feed denotes the end of the response line.

Response header lines follow, similar in format to request headers, although
the actual headers themselves are likely to be a bit different. We’ll explore some
of these later in the chapter. Finally, separated from the headers by a blank line, is
the response body. In the example, you can see the beginning of a web page being
returned. Figure 1-1 shows the request /response interchange graphically.

The “Big Seven” HTTP Methods
The most fundamental request method is GET, which simply means “I want this
resource from this server, so kindly return it to my browser.” Whenever you type an
address line in your browser and press go, or click an underlined link on a web page,
it’s a GET method that is generated in the request behind the covers. However,

You won’t be tested on
the valid construction of HTTP messages,
though you might fi nd questions that

expect you to know the effect of setting
certain request headers. We’ll meet these
in the “Requests” section of this chapter.

GET is not the only HTTP method. Six others are sanctioned by Internet Standards
Bodies: POST, HEAD, OPTIONS, TRACE, PUT, and DELETE — these, together
with GET, constitute the “big seven” mentioned in the heading.

There are other pretenders to the ranks of HTTP methods beyond the big seven.
CONNECT is offi cially listed in the RFC, but it is essentially reserved for future
use and won’t be further discussed in this book. Other methods have some limited
support outside the offi cial sanction of the RFC, and these may have full or lim-
ited support on some servers. Yet others are defi ned in other RFCs —for example,
RFC2518, which defi nes HTTP extensions for web authoring (WebDAV). On serv-
ers that support this approach, you’ll fi nd methods such as PROPFIND, LOCK, and
MOVE. However — to come back to basics —methods other than the “big seven”
don’t impinge on the standard servlet way of doing things and so don’t fi gure on the
SCWCD exam.

Let’s examine each of the big seven methods in turn.

GET We’ve already said quite a bit about the GET method. It’s meant to be a
“read-only” request for information from a server. The server might respond with a
static web page, an image, or a media fi le — or run a servlet and build up a dynamic
web page, drawing on database and other information. The three standard triggers
for a GET request (in the confi nes of a standard browser) are

■ Typing into the address line of the browser and pressing go

■ Clicking on a link in a web page

■ Pressing the submit button in an HTML <form> whose method is set to GET

The importance of an HTML <form> (this subject gets full treatment in the “Form
Parameters” section of the chapter) is the ability to pass parameters along with the

GET http://www.osborne.com/index.html HTTP/1.1
Accept: */*
Host: www.osborne.com

HTTP/1.1 200 OK
Accept: */*
Date: Fri, 02 May 2003 15:30:30 GMT
Content-Type: text /html

<html><head><title>Welcome to Osborne Books</title> etc.

HTTP request
HTTP response

Client
Server

FIGURE 1-1

A Request /
Response
Interchange

HTTP Methods (Exam Objective 1.1) 5

6 Chapter 1: The Servlet Model

request. With a GET requested, these parameters are appended to the URL. Let’s look
at a true-life example, taken from a well-known dictionary web site (http://www
.dictionary.com). On the home page, I type in the word I want to look up (“idem-
potent”) in the one-fi eld form provided, which uses the GET method. Pressing sub-
mit generates and executes the following request on the address line of my browser:

http://dictionary.reference.com/search?q=idempotent

Everything up to and including the word “search” is the standard URL —I am
wanting to run the HTTP method GET for the “search” resource found on the
computer hosting the dictionary.reference.com domain. The question mark intro-
duces the query string (in other words, the parameter list). The name of the param-
eter is q, and — separated from the name by the equal sign —is the parameter’s
value, “idempotent.”

POST The next most usual method is POST. This is again triggered from forms
in browsers, this time when the form method is itself set to POST. When compared
with GET, the main difference with POST is one of intent. Usually, a POSTed form
is intended to change something on the target server —add a registration, make a
booking, transfer some funds —an action that is likely to result in a database update
(or something of equal seriousness). Whereas GET is intended as read-only, POST is
for add/update/delete operations.

This discussion leads us to an important word, the one cited in the dictionary
example: “idempotent.” An idempotent request is meant to have the same result no
matter how many times it is executed. So a request to look up a word in a dictionary
changes nothing: The request can be executed again and again with the same result.
That feature makes it idempotent. However, a request to transfer funds mustn’t be
repeated casually, for obvious reasons. Such a request can’t be classifi ed as idem-
potent. Each HTTP method is classifi ed as being idempotent or not —and you’re
probably ahead of me in realizing that GET is supposed to be idempotent, whereas
POST most defi nitely is not. Of course, that’s how things are meant to be, but there
is no absolute guarantee that any given GET request won’t have irreversible side
effects. However, the outcome depends on what the server program that receives
the GET request actually does with it. Equally, a POST request may not result in
an update — though that’s generally less serious. However, by and large, GET and
POST methods obey idempotency rules, and it goes without saying that your web
applications should observe them.

Although as a web surfer you won’t typically be aware when you’re executing a
GET and when a POST, there are some practical as well as philosophical differences.

When there are parameters with a POST request, they are put into the request body,
not appended on to the query string of the URL, as for GET. This situation has two
benefi ts:

■ A URL is limited in length. The offi cial line of RFC 2616 (the HTTP 1.1 spe-
cifi cation) is not to impose a length limit: Servers should be able to handle any-
thing. However, the authors of the specifi cation are realistic enough to declare
some caveats, especially with regard to browsers: The specifi cation points out that
some older models are limited to 255 characters for URL length. Even at the time
of writing, Microsoft’s Internet Explorer browser allows only 2,083 characters for
the URL —much more generous than 255, but still not limitless. By contrast,
the request body is as long as you want it to be (megabytes, if necessary) and is
limited in practical terms only by the bandwidth of your Internet connection.

■ Putting parameters into the URL is very visible and public and is usually recorded
by the “history”-keeping nature of most browsers. It’s much more private (though
still not wholly secure) to pass parameters in the request body.

Indeed, POST isn’t just for passing simple name/value parameter pairs. You can use
the POST method to upload whole text or binary fi les in the request body (in which
case, it is acting a lot like the PUT request, which we’ll examine a bit later).

HEAD The HEAD method is identical to the GET method except for one im-
portant respect: It doesn’t return a message body. However, all the response headers
should be present just as if a GET had been executed, and these contain a great deal
of information about the resource (content length, when the resource was last modi-
fi ed, and the MIME type of the fi le, to name three of the more straightforward pieces
of information available). These data are often called “meta-information.” Using the
HEAD method is an economical way of checking that a resource is valid and acces-
sible, or that it hasn’t been recently updated —if all you’re doing is some checking
on the state of the resource, why bother to bring the whole thing back to your local
machine?

OPTIONS The OPTIONS method is even more minimal than HEAD. Its sole
purpose, pretty much, is to tell the requester what HTTP methods can be executed
against the URL requested. So, for example, if I target the following URL on the
McGraw-Hill web site:

http://www.mcgrawhill.com/about/about.html

HTTP Methods (Exam Objective 1.1) 7

8 Chapter 1: The Servlet Model

I’m told I can target the GET and HEAD options for this web page. This seems
fair — there’s certainly no reason to permit the execution of more dangerous meth-
ods (such as PUT or DELETE) on this URL. As an aside — the information on
allowed methods is squirreled away in the values of one of the response header fi elds,
whose key is Allow. This subject will be covered in the “Responses” section of this
chapter.

PUT The object of the PUT method is to take a client resource (typically, a fi le)
and put it in a location on a server as specifi ed in the URL of the request. If there’s
anything already on the server in that location, then tough luck—a PUT will oblit-
erate it, overwriting the current contents of the URL with the fi le it is uploading.
You can determine from the response codes you get back (and more on these later)
whether the resource was replaced (typically, response code 200) or created for the
fi rst time (response code 201).

I mentioned earlier that a POST can do the same work of uploading a fi le, and
many other things besides. What is the difference between POST and PUT in this
capacity? It’s the fact that PUT works directly on the URL given in the request.
PUT is not supposed to do anything clever, such as put the uploaded fi le in the
request somewhere different. However, that is the prerogative of POST. The object
URL of a POST method is usually a clever program (in our case, probably a Java
servlet), which can do whatever it pleases with the uploaded resource, including put-
ting it in some other location. Indeed, the program is almost certain to put uploaded
fi les in another location, for to put the fi le in its own URL slot would mean over-
writing itself! So, in summary, a PUT does direct fi le replacement (and so is rather
like using FTP), but a POST can be much more subtle.

DELETE DELETE is the direct counterpart of PUT: It causes the server to delete
the contents of the target URL —if not permanently, then by moving the resource
there to an inaccessible location. A server has the right to delay its response to a
DELETE method, as long as it responds later. A response code of 200 (OK) indicates
that the deed has been done; 202 (accepted) means that the request has been ac-
cepted and will be acted on later.

TRACE Finally, the TRACE method exists because a request over HTTP is un-
likely to go directly to the target host machine that actually holds the resource you
require. The nature of the Internet is to pass a request from computer to computer
in a long chain. Some request headers may be rewritten in transit along this chain.
The purpose of TRACE is to return the request back to the requester in the state it

was in at the point where it reached the last computer in the chain. As you might
guess, the primary reason for doing so is to debug some problem that you attribute
to request header change.

Idempotency and Safety
Let’s return to the idea of idempotency, which we fi rst came across on contrasting
the scope of the GET and POST methods. We saw that GET requests should be
idempotent and that POST methods are not. The other concept to introduce you
to is safety. GET, TRACE, OPTIONS, and HEAD should leave nothing changed,
and so are safe. Even if a GET request has irreversible side effects, a user should not
be held responsible for them. Therefore, from a user perspective, the methods are
safe. PUT, DELETE, and POST are inherently not safe: They do cause changes, and
a user can be held accountable for executing these methods against the server.

What about idempotency? The safe methods are inherently idempotent because
they don’t (or shouldn’t) change anything that would change the results when run-
ning the method again. Surprisingly, PUT is considered idempotent as well—
because even if you run the same PUT request (uploading the same fi le to the same
URL) repeatedly, the net result is always the same. The same reasoning applies to
DELETE. The following illustration shows the methods grouped according to safety
and idempotency.

Idempotent

PUT

DELETE

POST

 GET
HAND
 OPTIONS

TRACE

Safe

HTTP Methods (Exam Objective 1.1) 9

10 Chapter 1: The Servlet Model

Most web browsers don’t have the capability of executing all of the “big seven”
methods. Most limit their execution to GET and POST, as directed by the web page
currently loaded. However, you’ll meet a browser in the fi rst exercise at the end of
this section that —although cosmetically challenged —gives you the opportunity to
try out all seven methods.

What Does This Discussion Have to Do with Java?
Now that you have a good grasp of HTTP methods, the question is “What does
any of this have to do with Enterprise Java?” There is clearly a diverse world of web
servers out there that understand HTTP methods and respond to them. For its part,
Enterprise Java defi nes the concept of the servlet—a Java program written to a strict
(but small) set of standards that can deal with HTTP (and other) requests and send
back dynamic responses to client browsers.

Normal web servers are good at dealing with static document requests —web
pages, images, and sundry other fi les that don’t change. (Their authors may up-
date the pages from time to time, but the point is that the pages don’t change or
get created in mid-request.) Web servers didn’t take very long to develop dynamic
features —capabilities to run programs or server-side scripts on receipt of an HTTP
request — rather than simply returning a static document. These techniques fre-
quently came under the heading of “common gateway interface” (CGI).

CGI has been very useful, but not without problems, the greatest of these be-
ing performance. The original CGI model demanded a heavyweight process on the
web-serving host machine for each request made. Furthermore, this process would
die once the request was completed. This was not a sustainable or scalable approach
for web applications of any size, as the startup and shutdown of a process are heavy
operations for most machines, often outweighing the “grunt” needed to get the real
work done! Consequently, better models quickly followed. These included FastCGI,
which has the benefi t of keeping processes alive —usually, one for each different
server-side program that your server supports. And there are many other alterna-
tives —Active Server Pages (ASP), PHP, mod_Perl, and ColdFusion — to name
some main players. All vary in their characteristics, such as which web servers sup-
port them and how effi cient they are.

It’s beyond the scope of this book to do any more than take this cursory glance
at the differing technologies. After all, we’re here to learn the Enterprise Java way
of “doing CGI.” So I will stop short of claiming that Java is better than the alterna-
tives listed. I’ll simply say that it offers a simple and elegant way of getting the job
done and that it has other benefi ts. The structure of a Java web server is shown in

Figure 1-2. You can see that the web server contains a running JVM—a single run-
ning process on the host machine. Because Java is a multithreaded language, many
threads can be set running within a single process. Many servlet-servicing threads
run side by side in a pool. If the request is for a servlet, it doesn’t matter which
thread is selected —any thread can run any servlet (as well as doing normal web
server stuff, such as returning static HTML fi les). It’s not like FastCGI, in which a
process is tied to one particular program.

Of course, a web server designed to support servlets is written to stringent speci-
fi cations in order to provide support for the many things we describe in this book.
Tomcat is one such server —an open source Java web server from the Apache
Jakarta Project (http://jakarta.apache.org /tomcat). Tomcat is described as the offi -
cial reference implementation for Java Servlet and JavaServer Page technologies,
so it’s the one I encourage you to use in the practical exercises and labs throughout
this book—you can pretty much guarantee it will do exactly what the specifi cations
say it should do. From the point of view of SCWCD exam readiness, this server is
exactly what you require —it’s easy to believe something about servlets as true that
turns out to be a quirk of a server that doesn’t quite support the specifi cation as it
should.

Tomcat is perfectly capable of working as a stand-alone web server that hap-
pens to run servlets. That’s the mode we’ll use it in throughout the practical
exercises in this book. However, Tomcat doesn’t really set itself up to be a
“one-stop shop” for all your web serving needs. It describes itself as a servlet
and JSP container—that is, a piece of software for running servlets (and

Web server

http://www.osborne.com/SomeServlet

http://www.osborne.com/SomeServlet

http://www.osborne.com/SomeServlet

http://www.osborne.com/SomeServlet

http://www.osborne.com/SomeServlet

http://www.osborne.com/SomeServlet

Servlet container JVM

Single instance
of SomeServlet

Multiple
threads

Concurrent requests for same servlet

FIGURE 1-2

A Java Web Server

HTTP Methods (Exam Objective 1.1) 11

12 Chapter 1: The Servlet Model

JavaServer pages). The most usual arrangement in a production environment
is to have an industrial-strength web server separate from the servlet con-
tainer. A typical open source combination is the Apache HTTP server (http://
httpd.apache.org/), the most popular web server on the Internet, with Tomcat
as the servlet container plug-in. The Apache HTTP server is great for serving
up static content (such as images from image libraries), as well as being highly
confi gurable for security and robustness. Whenever it encounters a request
for a servlet that it cannot deal with, it hands this on to the Tomcat servlet
container. There are also many commercial combinations of web servers and
servlet containers, such as IBM’s HTTP Server together with IBM’s WebSphere
Application Server. The following illustration shows how a web server and a
servlet container cooperate.

http://www.osborne.com/someImage.jpg

http://www.osborne.com/SomeServlet

someImage.jpg

Tomcat

SomeServlet

Apache

Server

We return to servlets. What happens when a request for a servlet reaches the
Tomcat servlet container? That’s easy. If the HTTP method is GET, the servlet con-
tainer will attempt to run a method called doGet() in the target servlet. If POST,
then the method is doPost(). OPTIONS prompts doOptions()—it’s an easy
pattern to grasp.

We’ll get to actually writing servlets a bit later in the chapter. Suffi ce to say two
things for now:

 1. You typically extend the existing javax.servlet.http.HttpServlet class.

 2. You override at least one of the methods we’ve described: almost always
doGet(), doPost(), or both, and sometimes doPut() or doDelete().

ON THE CD

If your servlet is hit by an OPTIONS, TRACE, or HEAD request, the existing
implementation of the doOptions(), doTrace(), and doHead() methods in
HttpServlet should suffi ce, so you rarely if ever override these methods.

All of these methods receive two parameters —Java objects that wrapper up the
HTTP request and response. These are of type javax.servlet.HttpServletRequest and
javax.servlet.HttpServletResponse, respectively. These make it easy (in Java terms)
to extract information from the request and write content to the response. No low-
level knowledge about formatting is required. After doing an exercise on the prin-
ciples learned in this section of the book, we’ll spend the next two sections learning
about these two fundamental servlet classes.

EXERCISE 1-1

Custom Browser for Learning HTTP Methods
This exercise uses a browser specifi cally designed to show the use of the various
HTTP methods. Unlike the common full-fl edged models (Netscape, Mozilla, In-
ternet Explorer), which render web pages prettily and shield you from so much, my
browser exposes you to the dirty underbelly of HTTP.

You won’t write any code in this exercise. However, you will deploy a web appli-
cation (even though you won’t offi cially learn about this until Chapter 2). You’ll be
doing this a lot through the various exercises — the instructions are in Appendix B.
In this case, the web application fi le is called ex0101.war, and you’ll fi nd it on the
accompanying CD in directory sourcecode/ch01. The instructions in the appendix
also take you through starting up Tomcat, the Java-aware web server that underpins
the exercises in this book.

Using the Custom Browser for Learning HTTP Methods

 1. Start up a command prompt.

 2. Change to directory <TOMCAT INSTALLATION DIRECTORY>/webapps/
ex0101/ WEB-INF/classes.

 3. Execute the command: java uk.co.jbridge.httpclient.User
Interface. If you get a rude message (such as “java” not recognized as a
command), then you need to ensure that the J2SDK commands (in <J2SDK
INSTALLATION DIRECTORY>/bin) are in your system path.

HTTP Methods (Exam Objective 1.1) 13

14 Chapter 1: The Servlet Model

 4. If successful, you’ll see a graphical user interface as illustrated below. There’s
an area at the top where you can type in a URL —equivalent to the address
line in popular browsers. Beneath this is a drop-down list where you can
select the HTTP method to execute. Beneath this is a text fi eld where you
can type some text to associate with an HTTP POST request. Under that
is a display area —by using the browser button to the right of this, you can
select a fi le from your fi le system and then execute the HTTP PUT method
to upload the fi le to the area of your web server’s directory structure targeted
by the URL. The button underneath this —Execute HTTP Request —will do
exactly that when pressed, using the parameters as you have set them above.
The area beneath the button is tabbed, and it displays the result of execut-

ing the HTTP request. The fi rst tab —Request Headers — shows information
sent from the browser to the server (we learn about request headers in the
next section). The second tab —Response Headers — shows information sent
back from the server to the browser (we explore valid values for these later in
the chapter). The third tab shows the response body — the resource retrieved
from the server. If this is a web page, it is displayed as the underlying HTML.

 5. Note that what you’ve done here is to start a plain old Java application —
using the java command on a class with a main() method. As it happens,
the code resides in the same place as the code for the web application it will
communicate with (in a few steps), but that’s just a coincidence. If you prefer,
place all the classes from the package uk.co.jbridge.httpclient in a completely
separate location on your machine and run the browser from there instead.

Executing Safe Methods (GET, HEAD, OPTIONS, TRACE)

 6. In the browser, change the text in the URL fi eld to say http://localhost:
8080/ex0101/index.jsp. Leave the HTTP method as the default GET,
and press the Execute HTTP Method button. This will invoke a very simple
web page. Take a look at the request headers. The request headers are set up
within the user interface program. “User-Agent” describes the type of client —
usually one that derives from the Mozilla browser. “Accept-Language” indi-
cates the (human) languages the client would prefer to see in any requested
web pages. “Accept” indicates the fi le types the client can deal with, using
standard MIME abbreviations (you learn more MIME in Chapter 2).

 7. Now take a look at the response headers. These may vary depending on your
server setup — the accompanying illustration shows you what I see.

 Date refl ects the date the requested resource was last changed. Server shows
some version and type information about the web server software, in this case
Tomcat. Content-Type shows the MIME type of the information returned —
in this case, plain HTML text. Finally, Transfer-Encoding shows how the

HTTP Methods (Exam Objective 1.1) 15

16 Chapter 1: The Servlet Model

response message is parceled up —“chunked”— to help the browser interpret
the contents.

 8. Repeat the above exercise for the other safe HTTP methods. The browser
gives a clear indication about which methods are safe and which are not. Try
the safe methods on a range of other public URLs (e.g., http://www.osborne
.com —you must type in the complete address). Note the different response
headers you get back.

Executing Unsafe Methods (POST, PUT, DELETE)

 9. The unsafe methods are POST, PUT, and DELETE. Nearly any browser will
POST. This browser is set up to POST a line of text, which you can type into
a fi eld. The exercise comes with a corresponding servlet that will accumulate
all the lines you type into this fi eld and then display them on a web page.

 10. Enter http://localhost:8080/ex0101/PostServlet in the browser’s
URL fi eld. Change the HTTP method to POST, and type any text you like
in the Text to POST fi eld. Click the Execute HTTP Request button (which
should have turned red to indicate an unsafe method). Click the Response
Body tab —you should see some simple HTML with the text you typed in
the middle.

 11. Write some different text in the Text to POST fi eld, and click the Execute
HTTP Request button again. This time, in the Response Body tab you should
see both the original text you typed, plus the latest text. (To avoid losing text
between HTTP requests, the text is appended to a fi le called postData.txt —
you can fi nd this in the ex0101 context directory for the web application.)

 12. Now we’ll try using the browser to PUT a fi le in your web application direc-
tory structure. Change the URL fi eld to say http://localhost:8080/
ex0101/myFile.txt. Change the HTTP method to PUT. In the File to
PUT fi eld, use the Browse... button to select any text (.txt) fi le on your fi le
system (preferably outside of any directory structure to do with your web
applications). Now click the Execute HTTP Request button. Check in the
web application subdirectory (ex0101)—you should fi nd a fi le called myFile
.txt, whose contents should be the same as the fi le you selected as the “fi le
to PUT.”

 13. The above attempt to PUT a fi le may fail under Tomcat with a 403 response
code: forbidden. By default, Tomcat blocks HTTP methods (such as PUT and
DELETE) that alter the structure of a web application. Under these circum-

stances, you will need to fi nd the fi le web.xml in <TOMCAT-INSTALL-
DIRECTORY>/conf. Edit this with a text editor, and insert the lines in
bold below:

 <servlet>
 <servlet-name>default</servlet-name>
 <servlet-class>
 org.apache.catalina.servlets.DefaultServlet
 </servlet-class>
 <init-param>
 <param-name>debug</param-name>
 <param-value>0</param-value>
 </init-param>
 <init-param>
 <param-name>readonly</param-name>
 <param-value>false</param-value>
 </init-param>
 <init-param>
 <param-name>listings</param-name>
 <param-value>true</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

What you have done here is to add an initialization parameter to a servlet,
which usefully anticipates the work we’ll do in Chapter 2. In this case, you’ve
added an initialization parameter to one of Tomcat’s own servlets — the de-
fault servlet —which is used to process requests when the URL requested is
not otherwise mapped to a resource in a web application. By setting readonly
to false, you are saying that the PUT and DELETE methods will be permit-
ted. You must restart the Tomcat server after making this change. If you’re using
another server to perform the exercises in this book, you’re on your own, but
be aware that many servers block PUT and DELETE methods by default, and
you may have to do some digging in your server documentation to fi nd out
how to enable them.

 14. Now try using the browser to delete the fi le you have just PUT in your web
application. Leave the URL as is (http://localhost:8080/ex0101/
myFile.txt), but change the HTTP method to DELETE. Click execute
http request. You may get a strange response code (204: No Content), but
you should fi nd if you look in the web application directory structure that
the fi le has disappeared.

HTTP Methods (Exam Objective 1.1) 17

18 Chapter 1: The Servlet Model

 15. That concludes the exercise. Bask in the comfortable knowledge that you
have exercised more HTTP methods than most people get to do in a career
of working with web servers!

CERTIFICATION OBJECTIVE

Form Parameters (Exam Objective 1.2)
Using the HttpServletRequest interface, write code to retrieve HTML form parameters
from the request.

Now that you have seen the connection working between a client and a servlet,
we can turn our attention to the Java code. We’re going to explore one of the most
fundamental aspects: getting information from an HTTP request and using that
within our servlet. It’s possible to attach parameters to an HTTP request as a series
of name/value pairs. These travel in the request body or the URL —it’s even pos-
sible to type parameter names and values directly into a browser’s address line (if you
know what you’re doing!). More usually, though, information destined for a request
is collected in an HTML form embedded within a web page. The user types in data,
and the browser sorts out how to format the HTTP request appropriately so that the
parameters are included. Consequently, we’ll need to explore HTML form construc-
tion —for the exam, you’ll be expected to understand HTML well enough to predict
the parameters that will arise from a given web page. Then we’ll see the range of
APIs for teasing out the parameters from the request on arrival in the servlet.

HTML Forms
HTML forms are very easy to construct and use. You use the <form> tag and place
the screen controls you need before the closing </form> tag. That said, a range of
graphical components (often called form controls, sometimes called “widgets”) are
supported within a web page, and you need to understand them all. These are mainly
provided to allow for the user to input data and then to submit these data to the

server in the form of parameter name/value pairs. Most form controls are defi ned
using the <input> tag with a variety of attributes, but you’ll need to understand the
<select> and <textarea> tags as well.

The Form Itself (<form>)
A form is defi ned on a web page starting with the opening tag <form> and ending
with the closing tag </form>. The opening tag has a number of attributes, but only
two of them have real signifi cance to web application operation. A typical form
opening tag might look like this:

<form action="someServlet" method="POST">

Most browsers tolerate wide syntactic variety —you’ll probably fi nd that

<form action=someServlet method=POST>

or

<FORM ACTION = 'someServlet' METHOD = 'POST'>

works just as well. The essentials are that

■ The tag begins with “<” and fi nishes with “>.”

■ The name of the tag is form (lowercase preferred), which comes immediately after
the “<.”

■ At least one attribute is present in the tag —action—whose value contains some
target resource in the web application.

■ Each attribute is separated from its neighbor (or the tag name, form) by at least
one space.

■ The attribute name is followed (usually immediately) by the equal sign (“=”),
which is followed (again, usually immediately) by the attribute value. The correct
form is to surround the value with double quotes.

Fortunately, you’re not being tested on what constitutes well-formed HTML,
which demands a book in its own right. What you really need to know is the inter-
action between a <form> defi nition and a web application, as determined by the
action and method attributes.

Form Parameters (Exam Objective 1.2) 19

20 Chapter 1: The Servlet Model

■ The value for action, as we noted above, denotes some target resource in the web
application. This target is most often a dynamic resource, such as a servlet or JSP.
However, no rule says that it has to be: Static resources can be the target of an
action as well.

■ The value for method denotes the HTTP method to execute. The default (if this
attribute is missed out) is to execute an HTTP GET when the form is submitted.
Most typically, you use this attribute to specify that the method is POST (this has
advantages for parameter sending, which we will discuss soon).

The path for the action parameter obeys the rules that apply for any web page link.
Suppose you call the web page containing the form with the following URL:

http://localhost:8080/ex0101/index.jsp

And the form tag within index.jsp looks like this:

<form action="someServlet">

Then when you submit the form, the browser will assume that someServlet resides in
the same place as index.jsp. So the full URL for the request will be

http://localhost:8080/ex0101/someServlet

If — on the other hand —your path begins with a slash:

<form action="/someServlet">

Then the browser will assume the path begins at the root location for the specifi ed
host, in this case http:// localhost:8080. Hence, the full URL would look like this:

http://localhost:8080/someServlet

It’s important to distinguish this behavior from paths constructed within servlet
code, as we’ll discover in Chapter 2.

There can be more than one form on the same web page. However, only one
can be submitted at once. This technique can be useful if you are dealing with
multiple rows in an HTML table. If your application allows you to operate on
only one row at once, it can save a lot of data passing on the network to have
a form associated with each row.

Single Line Form Controls
Most form controls for data input are controlled through HTML’s <input> tag.
By varying the value for the type attribute, a wide range of fi eld types are available.
Figure 1-3 shows three of those — those that are dedicated to holding a single line
of text. One —being a hidden fi eld —is invisible!

Common to all <input> tags, whatever their type, is the name attribute. When
form control data are passed to the server, the name attribute supplies the param-
eter name. The value attribute supplies the parameter value. This doesn’t have to
be included in the HTML for the form because whatever the user types in or selects
will become the value for a control’s value attribute. However, it can be used within
HTML to supply a default value for a fi eld. You’ll see these attributes at work in the
following defi nitions.

<input type="text" /> This control allows a user to input a single line
of text. The size attribute specifi es the width of the text fi eld in characters. The
maxlength attribute controls the maximum number of characters that a user can type
into the text fi eld. The following HTML defi nition generated the fi eld with the label
“User” in Figure 1-3:

<input type="text" name="user" size="10" maxlength="5" />

This defi nition sets up a fi eld whose name is “user.” The width of the fi eld as dis-
played is ten characters, but the user will be allowed to input only fi ve characters.
Suppose I type “David” into the fi eld; when I press the submit button on my form,
a parameter name/value pair will be sent in the form user=David.

<input type="password" /> The password input type works just like text.
The only difference is that a browser should mask the characters typed in by the
user. The following HTML defi nition generated the fi eld with the label “Password”
in Figure 1-3:

<input type="password" name="password" size="10" maxlength="5" />

FIGURE 1-3

<input> Types
for Data Input

Form Parameters (Exam Objective 1.2) 21

22 Chapter 1: The Servlet Model

Assuming I type in “wells” as the password, the parameter passed to a server will be
password=wells.

<input type="hidden" /> The hidden input type is not available for user
input. As its name implies, such a form control is hidden —invisible as rendered
by the browser. You see only the contents of a hidden fi eld if you view the HTML
source of the web page. A hidden form control can be useful in two ways:

 1. A servlet can write values to hidden fi elds. These may not be directly useful
(and hence not visible) to the user of the web page that the servlet generates.
However, when the user requests the next servlet in the chain (by clicking a
button on the web page), these values may be useful as parameters to the next
servlet. It’s one approach to “session control” (answering such questions as
“What’s in my shopping cart?”).

 2. Script running within the web page can set the hidden values. This could be
contingent on anything —a mouse movement, a keyboard press, an action
taken in an applet or a Flash control, or even the selection of a value in some
other control.

The following HTML defi nition generated the invisibly present “hiddenInfo” fi eld in
Figure 1-3:

<input type="hidden" name="hiddenInfo" value="Discrete Information" />

Parameter construction is no different: hiddenInfo=Discrete Information will be passed
to the server.

Multiple Choice Form Controls
Often, instead of allowing direct text input, it’s better to have groups and lists of
predefi ned choices in your user interface. You have several ways to achieve this —
two still using the <input> tag and one using the entirely separate <select> tag.
Figure 1-4 shows each of these in a browser screenshot.

<input type="checkbox" /> Use checkbox to put one or more small boxes
on screen. By clicking on these, the user ticks or “checks” the corresponding value to
denote that it is selected — so in Figure 1-4, the musicians Beethoven and Schubert
are selected. Let’s look at the HTML used to set up the fi elds:

<input type="checkbox"
 name="musicians" value="MOZRT" />Mozart

<input type="checkbox"
 name="musicians" value="BTHVN" />Beethoven

<input type="checkbox"
 name="musicians" value="SCHBT" />Schubert

Note that all these checkboxes share a name in common: musicians. There is no
technical necessity for this —every checkbox can have an independent name.
However, it is the usual convention when the checkboxes are closely related.

This is our fi rst example of a parameter with multiple values. If you make the
choices shown in Figure 1-4 (and press the submit button on the form), the param-
eter string generated from this set of checkboxes will look like this:

musicians=BTHVN&musicians=SCHBT

There are two issues to note: Only the checked values make it to the parameter
string (that’s how you know which ones are chosen). Also, it’s the value of the
attribute value that is passed through on the right-hand side of the equal sign. That’s
no different from the way other <input> types work—it’s just that for regular “text”
fi elds, the value attribute isn’t necessarily set up in the HTML.

We’ll see a bit later in this section that servlet code has no issues when dealing
with multiple values for the same parameter name.

Should you wish to set up some of your checkboxes as already selected, you can,
using the HTML syntax (in bold) below:

<input type="checkbox"
 name="musicians" value="BTHVN"
 checked="checked" />Beethoven

FIGURE 1-4

Multiple Choice
Form Controls

Form Parameters (Exam Objective 1.2) 23

24 Chapter 1: The Servlet Model

It’s actually suffi cient to write the attribute name (checked) alone, but I am giving
you the benefi t of full XHTML syntax, which you should of course strive for. There’s
nothing stopping the user unselecting a checkbox defi ned in this way, which pre-
vents the value being passed through as a parameter.

<input type="radio" /> The construction of radio buttons is very similar.
This time, however, the choice made is mutually exclusive. Also, the name attribute
is crucial to tying together a group of radio buttons. Here’s the HTML that creates
the radio button example shown in Figure 1-4:

<INPUT type="radio" name="volume" value="HIGH" />High Volume

<INPUT type="radio" name="volume"
 value="MED" checked="checked" />Medium Volume

<INPUT type="radio" name="volume"
 value="LOW" checked="checked" />Low Volume

The name attribute is set to “volume” for each of the three choices. The value attri-
bute is set appropriately, and as for checkboxes, you will need to place some adjacent
regular text (e.g., “High Volume”) to act as a label; otherwise, the radio button ap-
pears without any choice description. As shown, there are two radio buttons “pre-
selected” using the checked=“checked” syntax. However, only one choice is possible.
The browser resolves this by letting the last one marked as checked (in this case,
“Low Volume”) take precedence. So unless the user makes a choice here, the param-
eter string passed through will be volume=LOW.

The <select> tag Finally in this “multiple choice” array of form controls, we
consider an entirely separate tag: <select>. This control allows you to set up a list
of values to choose from in a web page — the style is either a pop-up menu or a scrol-
lable list. There are two “modes” for this control: The user is either restricted to one
choice from the list or has multiple choices from the list. Both sorts are illustrated in
Figure 1-5. Let’s consider the HTML for the single-choice, pop-up menu fi rst:

<select name="Countries">
 <option value="FR">France</option>
 <option value="GB" selected>Great Britain</option>
 <option value="DK">Denmark</option>
</select>

This time, there is an outer tag beginning with <select> and closing with
</select>. The opening tag has a name attribute, which will form the parameter

name —in this case, “Countries.” Within the <select> are nested the predefi ned
list choices, each in an individual <option> tag. The user-visible text goes between
the opening <option> and closing </option>; the value passed in the parameter is
expressed as the value attribute of the opening <option> tag. In order to preselect an
item in the list, the attribute selected is added to the opening <option> tag. So the
parameter string looks like this: Countries=GB.

The alternative form of <select> is very similar, apart from the presence of the
attribute name multiple in the opening <select> tag. It’s illustrated in the lower
part of Figure 1-5. Here’s our list of countries again, but now you can choose more
than one:

<select name="Countries" size="5" multiple>
 <option value="FR" selected>France</option>
 <option value="GB">Great Britain</option>
 <option value="DK" selected>Denmark</option>
 <option value="BE">Belgium</option>
 <option value="CX">Christmas Island</option>
 <option value="CO">Colombia</option>
</select>

This time, France and Denmark are preselected. It’s a good idea to use the size at-
tribute. At least with the browser I’m using, setting this to the same value as the
number of <option> elements gives you a box with all the options shown. When
the size value is less than the number of options, you get a scrolling region that dis-
plays as many rows as you specify in the size attribute. So in the example above, you
need to scroll down to see Colombia. Leaving the size attribute out altogether allows
the browser to impose its own rules, which may or may not give the effect you want.
If the user leaves the above preselections unaltered, the parameter string passed
through is Countries=FR&Countries=DK.

FIGURE 1-5

Select Tag

Form Parameters (Exam Objective 1.2) 25

26 Chapter 1: The Servlet Model

Multiple Lines of Text
Should one line of text be insuffi cient, and should you want your user to be able to
type in an essay (or at least a multiline comment), you can resort to the <textarea>
tag. This has an opening tag and an ending tag —you can put any text you like be-
tween the tags. This text will display in the middle of an editing box. The user can
overtype or add to any text already there, and this constitutes the value of the pa-
rameter passed back to the server. The opening <textarea> tag has three attributes
of consequence:

■ name—as elsewhere, the parameter name

■ rows— the number of visible lines (a scroll bar activates when access to further
rows is needed)

■ cols— the number of characters to displayed across the width of the area (based
on an average-width character)

Another attribute —wrap — offers some fl exibility in the treatment of carriage
return and line feed characters, introduced either by the user pressing the enter key
or the browser wrapping the text. There is no HTML standard for this attribute,
and implementations vary slightly from browser to browser. All you need to know
for practical purposes is that your servlet code should be able to deal with carriage
return and line feed characters within the body of the text returned.

Figure 1-6 shows a text area, and below is the HTML that produced it:

<TEXTAREA name="notes" rows="5" cols="35">
 This is the area for sleeve notes about the music
 you are listening to.
 Overtype with your own text.
</TEXTAREA>

The parameter string passed back from this text area (from Internet Explorer) bears
some attention:

notes=This+is+the+area+for+sleeve+notes+about+the+music+you+are+listening+to.%0
D%0A%09%09++Overtype+this+area+with+your+own+text.

FIGURE 1-6

A Text Area

Most browsers have a horror of embedded white space in their parameter strings. In-
ternet Explorer here substitutes a + for the space character (%20 is sometimes seen
instead). Substitutes are also made for “non-typeable” characters. %0D and %0A are
hex representations of the line feed and carriage return characters, and %09 is the
horizontal tab. This refl ects the fact that the full HTML source was set up in a text
editor that inserted exactly those characters.

You’ve seen how you can
get multiple values associated with a re-
lated group of form controls—checkboxes
all sharing the same name, for example.
However, there is nothing illegal about
entirely separate form controls sharing

the same name. You can have, say, a check-
box, a set of radio buttons, and a text fi eld
that all share the same name—and so give
rise to multiple values for the same param-
eter name when retrieved in the target
servlet code.

Buttons
Now that we’ve surveyed all the form controls that allow data input or selection, let’s
consider other actions you can take with your form. Most especially, we need to know
how to submit the data that our user has so generously supplied! For this and other
actions triggered by buttons, we return to the <input> tag. There are three types: sub-
mit, reset, and button. They are no different in appearance; Figure 1-7 shows examples.

<input type="submit" /> The purpose of an input tag whose type is sub-
mit is to send the form data to the URL designated by the action attribute of the
opening <form> tag. To defi ne it, no more is required than defi ning the type:

<input type="submit" />

FIGURE 1-7

Buttons within an
HTML Form

Form Parameters (Exam Objective 1.2) 27

28 Chapter 1: The Servlet Model

However, it is quite usual to supply the value attribute, which allows you to defi ne
your own text on the button. If you supply a name attribute as well, then the name/
value data for the submit button are passed just like any other parameter as part of the
submitted form data. The HTML below defi nes the submit button seen in Figure 1-7:

<input type="submit" name="formSubmission" value="Send Details" />

It gives rise to parameter data like this: formSubmission=Send+Details.

<input type="reset" /> When an input tag is a reset type, the resulting
button doesn’t send form data. No request is made to the server. Instead, it’s a request
to the client browser to reset all the values within the form to the way they were
when the page was fi rst loaded —in other words, to scrap any user input since that
point. You can regard it as an all-or-nothing “undo” facility. Again, you can supply
a name attribute and have the button name/value passed as a parameter (though
it’s hard to fi nd a good reason for doing this). The reset button in Figure 1-7 has the
following HTML defi nition:

<INPUT type="reset" value="Reset Fields" />

<input type="button" /> Slightly confusingly, there is a third type of but-
ton whose type is —well—button. Surely the other two types were buttons as well?
It’s best to think of type button as defi ning a “custom button,” which is connected to
some sort of script within your page. You typically harness this by defi ning an onclick
attribute within the input tag and making the value correspond to some JavaScript
function. The JavaScript function can do pretty much anything —up to and in-
cluding submission of the form. More usually, functions defi ne themselves to effects
within the browser, such as changing which form control has focus or validating the
contents of a fi eld. Here’s a fairly trivial example that uses a custom button to take
the contents of a text-type input fi eld and place the contents in a hidden fi eld. It
uses a simple message dialog to display the old and new values of the hidden fi eld.
Here’s the script, contained in the <head> section of the enclosing HTML page:

<head>
 <title>Welcome</title>
 <script language="JavaScript">
 <!--
 function setAndDisplayHiddenField() {
 hiddenField = document.getElementById("hiddenInfo");
 alert("Current Value Of Hidden Field: " + hiddenField.value);

 hiddenField.value = document.getElementById("inputToHidden").value;
 alert("New Value Of Hidden Field: " + hiddenField.value);
 }
 -->
 </script>
</head>

The button that summons this script is illustrated in Figure 1-7 and has the follow-
ing HTML defi nition:

<INPUT type="button" value="Update Field Data"
onclick="setAndDisplayHiddenField();" />

Note that if you’re trying this script for yourself, you’ll need a hidden fi eld named
“hiddenInfo” and a text fi eld named “inputToHidden” to make it work. Type
text into “inputToHidden,” press the button, and the value will be transferred
to “hiddenInfo”— the message dialogs will prove this to you.

When all is said and done, JavaScript is well “off topic” for the SCWCD but
has a nasty habit of creeping into the day-to-day headaches of a web application
developer.

Retrieving Parameters
Now that you have mastered HTML form controls, and understand the parameter
data generated from them, we can move to the server side. Our fi rst proper look at
servlet code will examine the issue of retrieving parameter data. This is usually the
fi rst and most vital step in any web application —getting hold of what a user has
supplied.

Servlet APIs for Parameters
Parameters are part of an HTTP request. However, they are regarded as so funda-
mental to servlet workings that the APIs to retrieve them are found on javax.servlet
.ServletRequest, the parent interface for javax.servlet.http.HttpServletRequest in-
terface (which you might consider a more likely home). Your servlet engine provides
a class implementing the HttpServletRequest interface, and it passes an instance
of this as a parameter to whichever of a servlet’s doXXX() methods is targeted by
an HTTP request. The HttpServletRequest object encapsulates information in the
request, providing APIs to make it easy to access this information. Since HttpServlet
Request inherits from ServletRequest, any implementing class must provide the
ServletRequest methods as well, and these include methods for parameter access.

Form Parameters (Exam Objective 1.2) 29

30 Chapter 1: The Servlet Model

When you know the name of a parameter, and can guarantee a single value back
from the form, then the easiest API to use is ServletRequest.getParameter
(String parmName). This returns a String representing the parameter value, or
null if the parameter doesn’t exist.

However, we’ve already seen that parameters can have the same name and
multiple values. When you are after a specifi c parameter and know the name,
your best bet is to use the ServletRequest.getParameterValues(String
parmName) method. This returns a String array with all values present, or null if
no value exists for the parameter name. If this array has a length of 1, this indicates
that there was only one value. Can you predict anything about the order of the
values? In practice, the order appears to refl ect the left-to-right, top-to-bottom oc-
currence of the values within the form controls. However, the servlet specifi cation
is silent on this question. All you can guarantee is that parameters in the query
string (associated with the URL) should be placed before parameters in a POST re-
quest body. This isn’t greatly informative, for mostly you only get one or the other —
parameters placed in the query string by a GET request, or parameters embedded
in the request body by a POST request. However, you might encounter this sort of
form declaration:

<form action="servlets/MyServlet?myparm=thisfirst" method="post">

This uses the POST method —which will put form parameters in the request
body —but also specifi es a parameter in a query string in addition.

The one other guarantee on offer is that the parameter value returned by
getParameter() must be the fi rst value in the array returned by getParameter
Values().

When you want to fi nd out about all the parameters in a request, you have two
options:

In the heat of web applica-
tion programming, you’re unlikely to care
very much whether a method originates
from HttpServletRequest or the parent
ServletRequest interface. Unfortunately,

the exam does include questions that tar-
get knowledge of origin interfaces—there’s
no real option but to commit the methods
on HttpServletRequest and ServletRequest
to memory prior to taking the exam.

■ ServletRequest.getParameterNames(), returning an Enumeration of
String objects representing the names of all the parameters in the request. There’s
only one occurrence of any given name; however, many form controls share that
name. Should no parameters be passed, the Enumeration is empty. To get hold of
corresponding values, each parameter name retrieved from the Enumeration can
be plugged into either of the getParameter() or getParameterValues()
methods discussed above.

■ ServletRequest.getParameterMap(), returning a java.util.Map object,
where the keys in the map are of type String (and represent each unique para-
meter name) and the values in the map of type String array (representing the
values for the parameter). Though the API documentation doesn’t come clean
on what should apply, my Tomcat implementation returns an empty Map if there
are no parameters present —which makes sense and matches the behavior of
getParameterNames(). The map returned is immutable. That means that if
you try yourself to put() key/value pairs in the Map retrieved from this method,
you will be told in no uncertain terms that this isn’t appropriate behavior (Illegal
StateException for Tomcat 5). This is right and proper —you shouldn’t be adding
to the list of genuine parameters. There are plenty of other mechanisms for stor-
ing data with the request, and other scopes that we meet in Chapter 2.

Getting at Parameters the Hard Way
Actually, there is an alternative way to get at POSTed parameters. You can read the
request body directly by using ServletRequest.getReader() or ServletRequest
.getInputStream(). It’s then up to you to examine the resulting character or input
stream for name/value pairs separated by ampersands. This process is not that hard,
as you can see from the code below:

protected void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.write("<html><head></head><body>");
 BufferedReader reader = new BufferedReader(new InputStreamReader(

request.getInputStream()));
 String line;
 while ((line = reader.readLine()) != null) {
 StringTokenizer st = new StringTokenizer(line, "&");

Form Parameters (Exam Objective 1.2) 31

32 Chapter 1: The Servlet Model

 while (st.hasMoreTokens()) {
 out.write("<br /" + st.nextToken());
 }
 }
 out.write("</body></html>");
}

This code uses a BufferedReader to work through the lines in the POSTed body. A
StringTokenizer breaks down the input by splitting out the text between ampersands
(which should delimit each name/value pair, internally separated by an equal sign).
The servlet simply writes out each name/value pair to a new line on the web page.
Note in this approach how multivalued attributes are written out many times. Sup-
pose a web page submits a list of countries from a multiselect <select> form control
named “Countries.” The output from the servlet code above might look like this:

Countries=GB
Countries=DK
Countries=FR

Should you attempt to use getInputStream() after you have used getReader(),
you are likely to get a message such as the one below:

java.lang.IllegalStateException: getReader() has already been
 called for this request

The reverse holds equally true —don’t call getReader() after getInputStream().
These methods can blow up in other ways: with a straight IOException (if some-
thing goes wrong with the input /output process) or —for getReader() only —with
an UnsupportedEncodingException if the character set encoding used is not sup-
ported on the platform, and the text therefore remains un-encodeable.

You won’t often want to mess directly with the POST data; after all, it’s much
easier to use the getParameter* methods. However, there are occasions when
you might want or even need to. This is when a POST request is being used to
upload a fi le, usually in conjunction with an HTML <input> type we didn’t
explore in our form control review. The following tag—<input type
="file" name="fileForUpload" />—creates a button and a text
fi eld in your browser. The button can be used to launch a “choose fi le” type
dialog allowing you to browse your local fi le system—the result of the choice
is stored in the text fi eld. When you submit the form, the chosen fi le is up-
loaded in the post body. The servlet code that receives the fi le (or fi les—a

ON THE CD

single form can have several input elements where the type is “fi le”) and does
something with it that is not trivial—you can fi nd a fabulous implementation
(complete with source code) at http://www.servlets.com/cos.

Conceptually, the data
from a POSTed form are transferred to
a “parameter set” and, once there, are
available to convenience methods such as
getParameter(). The conditions for the
data to be present in the set are as follows:
The request follows the HTTP or HTTPS
protocol, using the POST method. The
content type for the request (as declared
in the Content-Type request header) must
have a value of “application/x-www-form-
urlencoded.” Finally, a call must be made
to one of the getParameter* convenience
methods: The fi rst such call causes the
transfer. Once data have been transferred
to the parameter set, you must not use
the request’s getInputStream() or

getReader() to get hold of the param-
eters. Although you may not get any ex-
ception, the servlet specifi cation promises
unpredictable results, and this is borne out
by practical experimentation. The reverse
is also true; a call to a getParameter*
method is unlikely to do you much good
if the request body has been treated as a
raw byte or character stream.

There’s an alternative way to get at
parameters that are sent in a GET request.
That’s with the HttpServletRequest
.getQueryString() method. This
returns the raw data following the question
mark (if present) in a URL—you’ll fi nd
a discussion of this in Chapter 3, in the
“Forwarding” section.

EXERCISE 1-2

Form Parameters
In this exercise, you’ll construct an HTML form containing a number of controls.
Then you’ll write a servlet to receive the parameters from the form and display the
choices made on a web page.

This exercise is the fi rst of many that follow a similar pattern, described in Ap-
pendix B. Most exercises and labs exist as unique “web applications” in their own
right. Full instructions are provided in Appendix B, and a solution (which you can
deploy and look at independently) is included in the CD supplied with the book.
The unique directory for this exercise is ex0102, and you’ll need to create that (to-
gether with a directory structure underneath it, as described in Appendix B).

Form Parameters (Exam Objective 1.2) 33

34 Chapter 1: The Servlet Model

The solution is on the CD in the fi le sourcecode/ch01/ex0102.war—check there if
you get stuck. Instructions for deploying the solution WAR fi le are also in Appendix B.

Write the HTML Form

 1. Create an HTML fi le in directory ex0102 called weather.html.

 2. Create a form on the page whose method is POST and whose action is
“Weather.” All the remaining instructions for the HTML form pertain to
controls that should come between the opening and closing <form> tags.

 3. Create an input fi eld (with a type of “text”) for the name of the person ob-
serving the weather.

 4. Create an input fi eld (with a type of “password”) for the observer’s password.

 5. Create a hidden input fi eld containing any information you like.

 6. Create a series of checkboxes, all with the same name, to record different
types of weather observed (rain, sun, snow, fog, and so on).

 7. Create a series of radio buttons, all with the same name, for the observer
to select a suitable temperature range to refl ect the highest temperature
achieved today.

 8. Create a select box with three options for each of three possible weather
stations.

 9. Create a text area to hold comments on today’s weather.

 10. Finally, create a submit button (<input> of type submit) to send the form
data to the servlet that you are about to write.

Write the WeatherParams Servlet

 11. You’re going to write a servlet that picks up all the parameters from the form
and refl ects these back on a web page to the user. You need to create a source
fi le called WeatherParams.java, with a package of webcert.ch01.ex0102. Place
this in an appropriate directory (webcert /ch01/ex0102) within the exercise
subdirectory ex0102/ WEB-INF/classes.

 12. Following the package statement, your servlet code should import packages
java.io, java.util, javax.servlet, and javax.servlet.http.

 13. Your WeatherParams class should extend HttpServlet (and doesn’t need to
implement any interfaces).

 14. You will override one method from the parent class, which is doPost(). The
method signature is as follows:

 protected void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException

 15. Here’s some boilerplate code to place at the beginning of the method. This
gets hold of a PrintWriter from the response, giving you a slate to write on to
create your web page. The code also sets an appropriate MIME type to indi-
cate you’re generating HTML from your code, and starts off an HTML page
in the right way. You’ll learn more about all this in the next section.

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.write("<html>\n<head>\n<title>" +
 "Display Weather Parameters</title>\n</head>\n<body>");

 16. Here’s some boilerplate code to place at the end of the method. This closes
off your HTML web page properly and closes the response’s PrintWriter:

 out.write("\n</body>\n</html>");
 out.close();

 17. All your remaining code goes between the two pieces you input above.

 18. Your aim now is to write code to retrieve all the parameter names passed to
the servlet and to write these as headings for the web page. The heading-
writing code will look something like this:

 out.write("<h4>" + paramName + "</h4>");

 The variable paramName is a String holding each parameter name you’ve re-
trieved —in some kind of loop. For each name you retrieve, write out all the
parameter values underneath. Here’s the code to do the writing so that each
value appears on a new line in the web page:

 out.write("
" + paramValue);

 As for the remaining code to do the parameter name and value retrieval,
you’re on your own for that. Well, not entirely. Refer back to and adapt the
code examples in this section. If you get really stuck, refer to the source in the
solution code.

 19. Compile your servlet code in the same directory as your source fi le.

Form Parameters (Exam Objective 1.2) 35

36 Chapter 1: The Servlet Model

Running Your Code

 20. You won’t learn about deployment and WAR fi les until Chapter 2, so for this
chapter’s exercises we will cheat a bit.

 21. Start the Tomcat Server.

 22. Deploy the solution code WAR fi le, ex0102.war (follow the instructions for
deploying WAR fi les in Appendix B).

 23. Copy weather.html from your directory structure to the <Tomcat Installation
Directory>/webapps/ex0102 directory (overwrite the solution version).

 24. Copy WeatherParams.class from your directory structure to <Tomcat
Installation Directory>/webapps/ex0102/ WEB-INF/classes/webcert /ch01/
ex0102 (overwrite the solution version).

 25. Point your browser to an appropriate URL. For a default Tomcat installation,
this will be

 http://localhost:8080/ex0102/weather.html

 26. Test your code by fi lling in the parameters and pressing the submit button.
If all goes well, you'll get a web page back that tells you the parameters you
chose.

CERTIFICATION OBJECTIVE

Requests (Exam Objective 1.2)
Using the HttpServletRequest interface, . . . retrieve HTTP request header information or
retrieve cookies from the request.

In this section you will work through the several APIs available on HttpServlet
Request that break down the available information on an HTTP request. The APIs
are straightforward. You will also encounter several header properties recognized
by the HTTP protocol and learn the signifi cance they have for servlet containers.
We'll explore some of the more common header properties that sometimes grace the
screens of the SCWCD exam.

We’ll also look at the question of cookies — those small and useful text fi les that
can be uploaded from browsers (we’ll look at downloading to browsers in the next
section, on the HttpServletResponse interface). You might regard cookies as a viola-
tion of your privacy, but there’s no denying their usefulness —and you can’t deny
their place as a core topic on the exam syllabus!

Request Headers
The HTTP RFC lays out an extensive list of separate pieces of header information
that can accompany a request (or a response). These are described as name/value
pairs, very much like parameters. There are almost fi fty valid named headers. And
again very similar to parameters, one named header can have multiple values. Head-
ers can be categorized into four types:

■ Request Headers: pertaining strictly to the request —for example, communicat-
ing to the server what the client will fi nd acceptable in terms of fi le formats and
encodings.

■ Response Headers: pertaining strictly to the response —for example, describing a
specifi c aspect of how the server responded to a particular request.

■ General Headers: can occur on either the request or the response. “Date” is a
good example — this contains a timestamp for the HTTP message, so it is equally
applicable whatever message is under consideration.

■ Entity Headers: again, applicable to both request and response. These head-
ers have information about the request or response body (how it’s encoded or
encrypted, for example).

Within an HTTP message, headers’ names are separated from their values by a
colon, multiple values are comma-separated, and each header is separated from the
next by a carriage return. Here’s how an HTTP request line looks with its headers
immediately following:

GET /search?q=MIME&ie=UTF-8&oe=UTF-8&hl=en&btnG=Google+Search&meta= HTTP/1.0
Accept: image/*, application/vnd.ms-excel, */*
Accept-Language: en-gb
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)
Host: www.google.co.uk
Connection: Keep-Alive
 [BLANK LINE]

Requests (Exam Objective 1.2) 37

38 Chapter 1: The Servlet Model

A blank line fi nishes the header section, separating this from any attached request body.
Our interaction with headers is made easier through the provision of fi ve methods

on HttpServletRequest. Here they are in summary:

HttpServletRequest Method Description

String getHeader(String name) Returns the (fi rst or only) value of the
specifi ed request header as a String

Enumeration getHeaders(String
name)

Returns all values of the specifi ed request
header as Strings within an Enumeration

Enumeration getHeaderNames() Returns the names of all request headers as
Strings within an Enumeration

long getDateHeader(String name) Returns the value of the specifi ed request
header as a long primitive representing a
date

int getIntHeader(String name) Returns the value of the specifi ed request
header as an int primitive

Method families that return
Strings and Enumerations have a typical
pattern—compare the getHeader* family
with getParameter* (on the ServletRequest
interface) and getAttribute* (on several
interfaces). If there is no header (or pa-
rameter or attribute) of the given name,

methods returning a String will return
null. Methods returning Enumerations
will return an instance of an Enumeration
object, but it will be empty. (That said,
look carefully at the API documentation
for getHeader(String name) and
getHeaderNames()).

The simplest method is getHeader(String name), which returns a String —use
this when you know the name of the request header you want and you know there
will only ever be one value. If the name is not recognized, null is returned. Note that
with this and the other header methods, you can specify the name in an entirely
case-InSensitive manner.

■ getHeaders(String name) returns all the values for the given request
header name, in the form of an Enumeration containing Strings. The Enum-
eration object will be empty if the header name is not recognized, or simply not
present.

■ getHeaderNames() returns an Enumeration of Strings representing all avail-
able request header names, which you will typically feed into successive calls to
getHeader(String name) or getHeaders(String name). If there are no
request headers, this Enumeration will be empty —although it’s most unlikely
you would ever receive an HTTP request (at least from a conventional browser)
that contained no header information at all.

For getHeaders(String Name) and getHeaderNames(), it’s possible for the
servlet container to deny access to the request headers. In this case —and only this
case —null may be returned instead of an Enumeration object.

You can do everything you need to with the methods above. However, there are
a couple of convenience methods when you know that the value returned for a spe-
cifi c request header name will represent either a date or an integer. The two methods
are getDateHeader(String name) and getIntHeader(String name), which
return a long (representing a date) and an int, respectively. These methods perform
conversion from the original String representation of the header’s value. Of course,
there’s the possibility of using these methods inappropriately — one way is to supply
a header name that doesn’t convert to a long date or an int. In that case, getDate
Header() will throw an IllegalArgumentException, while getIntHeader() will
throw a NumberFormatException. Both methods return a value of �1 if the re-
quested header is missing. There’s an assumption there that getIntHeader() could
never legitimately return a negative value, while any dates sought with getDate
Header() are after midnight on January 1, 1970, Greenwich Mean Time!

Here’s a short code example that you might embed in a doGet() or doPost()
method to obtain a date header, and write this to a resulting web page (“response” is
the HttpServletResponse object passed as parameter to the doGet() or doPost()
method and “request” is the HttpServletRequest object). Of course, the code runs sat-
isfactorily only if an “If-Modifi ed-Since” date header is supplied in the HTTP request.

PrintWriter out = response.getWriter();
long aDateHeader = request.getDateHeader("If-Modified-Since");
DateFormat df = DateFormat.getDateInstance();
String displayDate = df.format(new Date(aDateHeader));
out.write("
If-Modified-Since Request Header has value: " + displayDate);

What you next need to consider is some of the actual HTTP request headers
you’re likely to deal with. Table 1-1 summarizes these. The table shows the request
header name, describes its purpose briefl y, shows an example value, and has a column
to indicate whether the value is a date or an integer, and therefore amenable to the
use of the getDateHeader() or getIntHeader() convenience method.

Requests (Exam Objective 1.2) 39

40 Chapter 1: The Servlet Model

TABLE 1-1 Common Request Headers

Request Header
Name Description Example Value

int (I) or
date as
long (D)

Accept MIME types acceptable to client (we’ll
explore what a MIME type is later: for now,
think fi le formats).

text /html, text /plain,
image/*

Accept-Charset ISO character sets acceptable to client.
ISO-8859-1 is assumed as the default.

ISO-8859-6

Accept-Encoding The content encoding acceptable to
client —usually associated with com-
pression methods.

gzip, compress

Accept-Language The (human) language acceptable to
client. ISO codes are used to denote which
language.

en, us

Authorization Authentication information. Usually pro-
vided after the server has returned a 401
response code (indicating that the request
requires user authentication).

(at simplest, user
ID and password
passed with minimum
encoding)

From The e-mail address of the request sender.
The server might use this to log request
origins, or to notify the sender of unwanted
requests.

zebedee@
magicroundabout.com

Host Internet host and port number from the
request URL. Mandatory with HTTP 1.1
requests.

localhost:8080

If-Modifi ed-Since If the requested resource has not been modi-
fi ed since the date given, it’s not returned:
A 304 status code is returned instead.

Thu, 07 May 2003
14:01:31 GMT

D

Max-Forwards The maximum number of interim proxy
servers a request can be forwarded to.

5 I

Referer The URL of the resource that had the link
to the resource now being requested. Note
the misspelling— should be “Referrer,” but
“Referer” is kept for historical reasons.

http://www.osborne
.com/mybookshelf

User-Agent Information about the client software (typi-
cally, browser) making the request —helpful
to the server in tailoring responses to clients
or in gathering statistics.

Mozilla/4.0 (compatible;
MSIE 6.0; Windows
NT 5.1)

At the beginning of this section, we noted that request headers are not the only kind
of header. There are general headers, entity headers, and response headers as well.
We’ll defer discussion of response headers until we look in more detail at responses
later in this chapter. However, let’s devote a couple of tables to common general
headers (Table 1-2) and entity headers (Table 1-3) that you might discover in the
request (or place in the response).

Remember that the entity headers (listed in Table 1-3) describe things about the
request (or response) body, if this is present in the HTTP message.

Cookies
Cookies are small text fi les passed between client browsers and web servers. They are
used in part as an extended parameter mechanism. Although generally limited to
a few thousand bytes in length, a cookie can store a great deal of essential informa-
tion — often enough to identify the client and to store information about choices
made. Nearly every sizable commercial web site uses cookies to “personalize” the
user’s experience. In this section, we’re interested in one direction only —intercepting
cookies sent from the browser. We’ll look at the other direction (setting up cookies

TABLE 1-2 Common General Headers

General Header
Name Description Example Value

int (I) or
date as
long (D)

Cache-Contro Directives that must be followed by all
caches in the request /response chain —
a complex area and not one you need to
understand for the exam.

max-age=10000 (This
means that the resource
in the cache must not
be returned if over
10,000 seconds old.)

Connection A directive about the connection (from server
to client or vice versa). Typically used to
denote that connections cannot be persistent.

close

Date Date and time when a message is originated.
This is almost always supplied by the server
(in a response), but seldom supplied by a
client (in a request).

Tue, 15 Nov 1994
08:12:31 GMT (note
the Internet standard
date format)

D

Transfer-Encoding The transfer encoding applied to the message
(which gives options around the way the
message is structured).

chunked

Requests (Exam Objective 1.2) 41

42 Chapter 1: The Servlet Model

at the server end to send to the browser) when we get around to the HttpServlet
Response interface later in the chapter.

Getting Cookies from the Request
Getting cookies passed with the request is easy —you simply use the HttpServlet
Request.getCookies() method. This returns an array of javax.servlet.http.Cookie
objects, or null if none are sent with the request.

You’ll need to have at least a passing familiarity with the things you can do with
a Cookie. It’s a very simple class, consisting entirely of data with some getters and
setters. The data attributes are shown in Table 1-4.

TABLE 1-3 Common Entity Headers

Entity Header
Name Description Example Value

int (I) or
date as
long (D)

Allow HTTP options permitted for the requested
resource. This is the value returned by the
HTTP OPTIONS method.

GET, HEAD,
OPTIONS, TRACE

Content-Encoding A modifi er to the media type (“Content-
Type”), indicating further encoding of the
entity. Used mainly to allow a document to
be compressed.

gzip

Content-Language The natural (human) language for the entity’s
intended audience.

En

Content-Length Length of the entity in bytes. 8124 I

Content-Location The URI denoting where the requested
resource is to be found on the server. Typi-
cally the same as the request URI—but can
be different (see the discussion of welcome-
fi le-list in Chapter 2 for one reason that this
comes about).

http://www.osborne
.com/index.html
(This might be returned
when the request URI
was simply http://www
.osborne.com.)

Content-Type The MIME type of the entitytext /html.

Expires Date/ Time by which the response — returned
from a cache —is considered stale.

Thu, 17 Nov 1994
09:13:32 GMT

D

Last-Modifi ed Date/ Time on which the entity was last
modifi ed, as best the server can determine.
This is easy for static resources (by using the
date of a fi le on the fi le system, for example),
but is less obvious for dynamic resources.

Thu, 17 Nov 1994
09:13:32 GMT

D

TABLE 1-4 Cookie Attributes

Attribute Type Mandatory? Description

Name String Yes May contain only ASCII alphanumeric characters; cannot con-
tain commas, semicolons, or whitespace; must not begin with
a $ character. The name can’t be changed once passed into the
constructor —hence, there is no setName() method.

Value String Yes A String value. To be compliant with version 0 cookies (see
“Version,” below), a value can’t have any embedded white
space, and most punctuation signs are banned: (){}[]=@,:;?"\/
are explicitly outlawed. That does leave a few options for
delimiters —* and —and _, for example.

Domain String No The domain to which the cookie is applicable —if visiting that
domain, the browser should send the cookie (e.g., google.com).
Although not a mandatory attribute, it’s hard to imagine a very
functional cookie without this attribute set.

Path String No A path for the client to return the cookie to — specifi cally, this is
meant to match the path of the servlet that set the cookie (e.g.,
ex0101/CookieMakerServlet). This meaning of the path is that
this cookie should be visible to resources invoked with this direc-
tory path, or to resources held in any subdirectories of it (e.g.,
ex0101/CookieMakerServlet /chocchip).

Comment String No A comment meant to explain the purpose of a cookie to a
user (if the browser is designed to present such comments)—
supported at Version 1 only.

MaxAge int No The maximum age of the cookie in seconds. There are two
special values:

 ■ any negative value: denotes that the cookie should be
 deleted on exiting the browser (a transient cookie)
 ■ a value of zero: denotes that the cookie should be deleted

Secure boolean No When set to true, indicates that the cookie should be passed
over a secure transport layer (HTTPS, SSL).

Version int No 0 indicates the original cookie specifi cation defi ned by
Netscape.

1 indicates the standard defi ned by RFC 2109. It’s less widely
supported — the default is that cookies are created at version 0
for maximum compatibility (so you have to explicitly setVersion
(1) if that’s what you really want).

Requests (Exam Objective 1.2) 43

44 Chapter 1: The Servlet Model

ON THE CD

A Cookie has a two-argument constructor passing in the mandatory name and
value — thereafter, you can set any of its attributes except the name, which is treated
with the same kind of sanctity reserved for unique keys on database tables. Cookies
are transmitted to servers within HTTP request header fi elds. You can clone() a
cookie to make a copy of it.

EXERCISE 1-3

Reading HttpServletRequest Headers and Cookies
In this exercise, you’ll write and deploy servlet code to display request headers and
the details of any cookies passed with the request. This activity follows the same pat-
tern as the previous exercise. The unique directory is ex0103, and the solution is on
the CD in fi le sourcecode/ch01/ex0103.war.

Write the RequestHeaders Servlet

 1. You need to create a source fi le called RequestHeaders.java, with a pack-
age of webcert.ch01.ex0103. Place this in an appropriate package directory
(webcert /ch01/ex0103) within the exercise subdirectory ex0103/ WEB-INF/
classes.

 2. Following the package statement, your servlet code should import packages
java.io, java.util, javax.servlet, and javax.servlet.http.

 3. Your RequestHeaders class should extend HttpServlet (and doesn’t need to
implement any interfaces).

 4. You will override one method from the parent class, which is doGet(). The
method signature is as follows:

 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException

 5. You need code to set the response type to HTML and to start and fi nish the
web page with appropriate HTML syntax. Copy and adapt the boilerplate
code you used for this purpose in the Exercise 1-2.

 6. Using the content of this section as a guide, fi nd the appropriate method to
discover all the request header names. This returns an Enumeration — set

up a loop to process each element in turn. Use out.write() to output each
header name as an HTML heading.

 7. Within the loop, insert the method that pulls back all values for a given
header name, again as an Enumeration. Feed each header name in turn as a
parameter to this method. Set up an inner loop to process all the elements
representing header values. Use out.write() to output each value in turn
to a fresh line on the web page.

 8. After the above code, include the following line of code, which ensures that
an HttpSession object is associated with your use of this servlet. You don’t for-
mally learn about HttpSession objects until Chapter 4. I’m including it here
only because it practically guarantees the creation of a cookie to be passed
from client to server.

 9. Retrieve the array of cookies from the HttpServletRequest passed as param-
eter to the doGet() method. Assuming this is not null, process each cookie
in turn, and display each attribute of the cookie as a line of text on the web
page. Refer to Table 1-4 for a list of attributes of cookies.

Running Your Code

 10. Start the Tomcat Server (if not started already).

 11. Deploy the solution code WAR fi le, ex0103.war (follow the instructions for
deploying WAR fi les in Appendix B).

 12. Copy RequestHeaders.class from your directory structure to <Tomcat
Installation Directory>/webapps/ex0103/ WEB-INF/classes/webcert /ch01/
ex0103 (overwrite the solution version).

 13. Point your browser to the appropriate URL. For a default Tomcat installation,
this will be

 http://localhost:8080/ex0103/RequestHeaders

If you don't see any cookie information at fi rst, then refresh the browser page. The
second and subsequent accesses to the RequestHeaders servlet in the same session
should at least guarantee that you see a cookie whose name is JSESSONID.

Requests (Exam Objective 1.2) 45

46 Chapter 1: The Servlet Model

CERTIFICATION OBJECTIVE

Responses (Exam Objective 1.3)
Using the HttpServletResponse interface, write code to set an HTTP response header, set
the content type of the response, acquire a text stream for the response, acquire a binary
stream for the response, redirect an HTTP request to another URL, or add cookies to the
response.

We’ve seen some of the fundamental things we can do with HttpServletRequest.
Now we’re going to deal with its counterpart, HttpServletResponse, a class that con-
veniently wrappers up the HTTP message sent back to the requester. It’s available as
the second parameter in the set of doXXX() methods within a servlet.

HTTPServletResponse
We’ll explore how to set header fi elds in the response. Some of these header fi elds
we met already when we looked at how to read them from HttpServletRequest.
Now we’ll discover how to write header fi elds, some of which have the same name,
and others that are new and unique to the response. Earlier, we were able to read
cookies from the request; now we’ll see how it’s possible to write cookies to the re-
sponse —and at the same time discover that a cookie is really just a specialized kind
of response header. Maybe the servlet we invoke isn’t quite what the client needs, so
we’ll explore how easy it is to instruct the client to redirect itself to a different URL.

There are many possibilities for the material you transmit in the response. You’ll
see how you can help the recipient client by at least hinting at what type of content
is in the HTTP response message. You’ll also see how to deal with the two funda-
mental divisions of content — textual and binary — the response provides both
Writer- and Stream-based approaches.

Setting Response Header Fields
For the request, we were interested in reading the values of header fi elds coming into
our servlet. For the response, we are interested in setting the values of header fi elds
to send back to the client. We’ll explore in a moment the range of methods avail-
able on the HttpServletResponse, which complement the getHeader* methods on
HttpServletRequest.

In the previous section, on HttpServletRequest, we looked at most common
possibilities for header fi elds. You’ll want to look back at the tables in that section.
One table listed header fi elds that applied only to the request, but Tables 1-2 and 1-3
described general and entity header fi elds that are just as applicable to the response.
Table 1-5 shows the most commonly used header fi elds that you would expect to fi nd
only in a response.

There are two approaches to setting headers on the response fi eld. I’d suggest that
you most want to use addHeader(String name, String value). This will keep
adding values, even where the name is the same (which is just the effect you want
if there are multiple values to add — perhaps on the Accept header, for example).

TABLE 1-5 Response Header Fields

Response
Header Name Description Example Value

int (I) or
date as
long (D)

Age If the server has returned the response from
a cache, this fi gure determines the age (in
seconds) of the cached resource —giving an
indication of its “freshness.”

814487 I

Location Used to redirect the requester to a URI other
than the requested URI. Used “under the
covers” by the sendRedirect() method.

http://www.osborne
.com/altlocation.html

Retry-After If a service is unavailable, the time after
which a client should try again. Could be a
time in seconds or an absolute date/time.

180
Thu, 07 May 2003
11:59:59 GMT

I
D

Server Information about the web server providing
the response —for example, the product and
version number.

Apache 2.0 45-dev
(Unix)

Set-Cookie Used by a server to ask a client to create a
cookie according to the details set in the
value. Used “under the covers” by the
addCookie() method.

(A String —usually
fairly long —containing
cookie fi elds. Format
varies according to
cookie version.)

WWW-
Authenticate

Accompanies a response status code of 401
(unauthorized). This fi eld describes the au-
thentication method required and expected
parameters (authentication methods are
discussed in Chapter 5).

BASIC

Requests (Exam Objective 1.3) 47

48 Chapter 1: The Servlet Model

There’s also a setHeader(String name, String value) that overwrites existing
values.

You may well wonder what happens if you use addHeader() to add multiple
values for the same header name, and then invoke setHeader() on the
same header name. Do all the values you added get obliterated in favor of the
single value you have just added with setHeader()? The API documenta-
tion is silent on this point, and the answer appears to be no: setHeader()
just replaces one of the existing values with its own setting—from my testing,
the fi rst one added with addHeader(). My advice would be don’t use
setHeader() for multiple value headers; use it only to replace (or add) a
single value header fi eld. Otherwise, you will confuse those maintaining your
code. You can always use HttpServletResponse.containsHeader
(String headerName) to determine if a value has been set for a given
header name already—as you’ve probably guessed, this returns a boolean
primitive.

Most of the art of writing headers has to do with, fi rst, knowing the header name
for your purpose and, second, providing appropriate and well-formatted values for
the header name. Tables 1-2, 1-3, and 1-5 help you get started with that and give
you more than suffi cient guidance for the exam. There are two pairs of convenience
methods when you know the value you are dealing with is either an integer or a
date. Take the case of the header Retry-After — this can accept either an integer
(representing a number of seconds) or a date. So you can use

response.addIntHeader("Retry-After", 180);

to add a header to tell the client to try again in 180 seconds, or

Date retryAfter = new Date();
long retryAfterMillis = retryAfter.getTime() + 180000;
response.addDateHeader("Retry-After", retryAfterMillis);

to achieve the same effect with dates. There are “set” equivalents of both the above
methods to replace values instead of adding to what’s already there.

Redirection
HttpServletResponse also provides other methods that don’t set headers directly,
but instead do this “under the covers.” These may set appropriate headers and
sometimes do additional work in order to get the job done. A good example is the
sendRedirect() method. When a client makes a call to a servlet, there is the op-

tion to send an alternative URL back—and the client will understand on receiving
this URL to look there instead. It works as shown in Figure 1-8.

The redirection is achieved through the HttpServletResponse.sendRedirect
(String pathname) method. The String parameter in this method is a path ca-
pable of conversion to a URL. This can be either relative or absolute. Let’s consider
a request for a servlet that has a call to this method, which looks like this:

http://localhost:8080/ex0104/servlet/RedirectorServlet

In this example, /servlet/RedirectorServlet is a path to a specifi c servlet inside
the web application /ex0104. The servlet container’s root is http://localhost:
8080/ (if running under Tomcat, you’ll fi nd the main help page at this location).

The RedirectorServlet code might redirect to a completely different domain, with
code like this:

response.sendRedirect("http://www.otherdomain.com/otherResource");

If the parameter begins with a forward slash, this is interpreted as relative to the root
of the servlet container. The code might look like this:

response.sendRedirect("/otherResource");

GET http://www.ibm.com HTTP/1.1
Accept: */*
Host: www.ibm.com

HTTP/1.1 302 MOVED_TEMPORARILY
Location: www3.ibm.com/index.html

HTTP request

HTTP (re-)request

HTTP response

GET http://www.ibm3.com/index.html HTTP/1.1
Accept: */*
Host: www.ibm3.com

HTTP response

HTTP/1.1 200 OK
Location: www3.ibm.com/index.html
Date: Fri, 02 May 2003 15:30:30 GMT
Content-Type: text/html

<html><head><title>Welcome to IBM</title> etc.

Client

www .ibm.com

www3.ibm.com

FIGURE 1-8

Redirection

Requests (Exam Objective 1.3) 49

50 Chapter 1: The Servlet Model

The servlet container would translate this to the following URL:

http://localhost:8080/otherResource

If you don’t lead with a forward slash, the parameter is interpreted as relative to the
path in which the original resource is found. So if you asked for the following address:

http://localhost:8080/ex0104/servlet/RedirectorServlet

and the code of RedirectorServlet had the following redirection request:

response.sendRedirect("subservlet/OtherPlace");

then the server would assume that the search for this resource should begin with the
same path that found RedirectorServlet and tell the client to redirect to

http://localhost:8080/ex0104/servlet/subservlet/OtherPlace

Redirection achieves
roughly the same effect as forwarding,
which we meet later. Both effectively divert
the request and cause a different resource
to be served back to the client. The big dif-

ference is that sendRedirect() actually
sends a message back to the client, so the
client makes a re-request for the actual
resource required. With forwarding, all the
action stays on the server.

What has all this to do with response headers? Well, the call to send
Redirect() causes the servlet container to fi ll out a “Location” header with the
(full) alternative URL, according to the rules given above. But this isn’t quite enough
by itself. The servlet container must also tell the client that the resource has been
moved temporarily. In technical terms, this is achieved by setting a response status
code with the setStatus() method on response. If you wanted to achieve the
same effect as a sendRedirect(), you could execute code such as the following:

response.setStatus(HttpServletResponse.SC_TEMPORARY_REDIRECT);
response.setHeader("Location", "http://www.osborne.com/index.jsp");

HttpServletResponse comes loaded with a set of constant values (public static fi nal
int variables) to represent different possible values for the response status code.

Setting Cookies on the Response As we learned earlier, cookies are small
pieces of textual information sent between server and client. In this case, we’re
interested in attaching cookies to a response for the browser to receive them —and
if not refused, store them. A browser is expected to support 20 cookies for each Web
server, 300 cookies total, and may limit cookie size to 4 KB each. The rules on cookie
creation and attributes are covered in the earlier section on getting cookies from the
request. To attach a cookie to the response, simply invoke the addCookie(Cookie
cookie) method as many times as you need to add cookies. There is no “remove
cookie” method — though addCookie() is a convenience method to add a header
with the name “Set-Cookie” and a correctly formatted cookie content. In theory, you
could use setHeader("Set-Cookie", newValue) to change the value of an existing
cookie, but then you would have to do the formatting of the value yourself as a String.

Sending Back Content in the Response As you may well ask at this point,
“Setting headers and cookies is all very well, but how do I simply send back stuff
in the HTTP response message?” We couldn’t avoid introducing part of this in the
exercises, but now it’s time to look at the topic in a little more detail.

The fi rst decision you have to (well, should) make is this: What kind of infor-
mation am I sending back to the client? This means setting the correct content
type with the ServletResponse.setContentType(String mimeType) method.
Although there’s no validation as such on the parameter passed in (beyond the
fact that it has to be a String), you should provide information that a browser will
understand, in the form of a registered MIME type. MIME stands for Multipurpose
Internet Mail Extension, but despite the “mail” component in the acronym, it has
become accepted as the universal standard for describing formats (primarily, fi le
formats) for transmission through any Internet protocol (not just e-mail). You can
easily fi nd a list of allowed MIME types on the Internet: A good one is at ftp://
ftp.isi.edu /in-notes/iana/assignments/media-types/media-types. One of the most
common is “text /html,” which indicates text using HTML markup. The MIME
type “text /plain” denotes text with no markup at all. Generally, a MIME type
consists of a top-level classifi cation (text, image, application), followed by a slash,
followed by a subclassifi cation (often represented as the typical fi le extension).

Content type is one thing. The exact encoding you are using for your fi les is an-
other. This could range from simple ASCII through to full Unicode, with plenty
of variants in between. You can, in fact, set the encoding along with the content
type as part of the String passed to setContentType(). The API documentation
tells you how. You can set the encoding separately through the setCharacter
Encoding(). You don’t necessarily have to do this: Often, you can get away with
whatever default encoding is supplied on your server (probably ISO-8859-1).

Requests (Exam Objective 1.3) 51

52 Chapter 1: The Servlet Model

ON THE CD

It’s all very well defi ning the type of your content, but at some point you have to
produce the content. Your fi rst decision is whether the content is character-based or
byte-based, for you have both a PrintWriter and an OutputStream associated with
the response, but you can’t use both at once. To get hold of the PrintWriter, all you
have to do is execute

PrintWriter out = response.getWriter();

You know this already, as you have had to use this code from the fi rst servlet you
wrote in Exercise 1-2. You then have access to all the methods that java.io.Print
Writer allows, though the most convenient is undoubtedly the overloaded out
.write() method, to which you typically pass a String. This means that if your
MIME type is “text /html,” you can start writing (preferably well-formed) HTML
syntax directly to the Writer —as we have been doing throughout. Writing HTML
in Java code seems bizarre when fi rst encountered, but you quickly get used to it, and
it’s a fi ne approach for simple, dynamic web pages. You have the option of fl ushing
the PrintWriter (out.flush()), which is a pretty good idea if you want to make
sure that all the output written has been committed to the response. You can even
close the PrintWriter (out.close()), though this may not be a good idea unless you
know that your servlet is the last thing that will contribute to the composition of
the response (as you’ll learn later, a servlet may be one small part in a chain of other
servlets and/or fi lters).

If it’s a binary fi le format you want to send in your response, then

OutputStream out = response.getOutputStream()

is the right choice for you. You’ll be expected to know the range of methods for
this class and the techniques you learned for the SCJP in mastering the java.io
package. At its most basic, you can write each byte individually with out.write
(int byteToWrite).

EXERCISE 1-4

Using HttpServletResponse
You’ll write two servlets in this exercise: one to return a binary fi le to the requester,
and another to simply redirect to this image-loading servlet. The unique directory
for this exercise is ex0104, and the solution is on the CD in fi le sourcecode/ch01/
ex0104.war.

Write the ImageLoader Servlet

 1. You need to create a source fi le called ImageLoader.java, with a package
of webcert.ch01.ex0104. Place this in an appropriate package directory
(webcert /ch01/ex0104) within the exercise subdirectory ex0104/ WEB-
INF/classes.

 2. You’ll need a gif image —any image fi le will do — placed directly in directory
ex0104.

 3. Following the package statement, your servlet code should import packages
java.io, javax.servlet, and javax.servlet.http.

 4. Your ImageLoader class should extend HttpServlet (and doesn’t need to
implement any interfaces).

 5. Override the doGet() method. (Refer back to previous exercises if the signa-
ture isn’t yet familiar.)

 6. Set the response content type to “image/gif.”

 7. Obtain the full path to the example image fi le with the following line of code
(we’ll learn more about ServletContext APIs later in the book):

String path = getServletContext().getRealPath("exampleimage.gif");

 8. Use the path so obtained to create a File object.

 9. Set the response content length to the size of the File.

 10. Wrapper the File object in a FileInputStream, and wrapper that in a Buffered
InputStream.

 11. Obtain the OutputStream from the response.

 12. Write the contents of the BufferedInputStream to the response’s Output
Stream.

 13. Compile the servlet to the same directory as the source.

Write the Redirector Servlet

 14. You need to create a source fi le called Redirector.java, with a package
of webcert.ch01.ex0104. Place this in an appropriate package directory
(webcert /ch01/ex0104) within the exercise subdirectory ex0104/ WEB-
INF/classes.

 15. Following the package statement, your servlet code should import packages
java.io, javax.servlet, and javax.servlet.http.

Requests (Exam Objective 1.3) 53

54 Chapter 1: The Servlet Model

 16. Your Redirector class should extend HttpServlet (and doesn’t need to imple-
ment any interfaces).

 17. Override the doGet() method. (Refer back to previous exercises if the signa-
ture isn’t yet familiar.)

 18. Have the servlet accept a parameter called “location”— store the value in a
String.

 19. Pass the location String as a parameter into the response’s redirection method.

 20. Compile the servlet in the same directory as the source.

Write redirect.html

 21. Create an HTML fi le called redirect.html directly in directory ex0104.

 22. Create a form within the fi le, whose action is “Redirector” and whose method
is GET (you can leave this out —as then the default method for the form will
be GET).

 23. Create an input text fi eld within the form named “location.” You’ll use this to
type the URL to redirect to (so make it a reasonable size).

 24. Create a submit button within the form.

Run the Code

 25. Start the Tomcat Server (if not started already).

 26. Deploy the solution code WAR fi le, ex0104.war (follow the instructions for
deploying WAR fi les in Appendix B).

 27. Copy redirect.html and your image fi le from your directory structure to the
<Tomcat Installation Directory>/webapps/ex0104 directory (overwrite
solution versions).

 28. Copy ImageLoader.class and Redirector.class from your directory structure
to <Tomcat Installation Directory>/webapps/ex0104/ WEB-INF/classes/
webcert /ch01/ex0104 (overwrite the solution versions).

 29. Point your browser to the appropriate URL. For a default Tomcat installation,
this will be

http://localhost:8080/ex0104/redirect.html

 30. Type in ImageLoader into the text fi eld, for this is the servlet you want to
redirect to. Your image should load into the browser.

CERTIFICATION OBJECTIVE

Servlet Life Cycle (Exam Objective 1.4)
Describe the purpose and event sequence of the servlet life cycle: (1) servlet class loading,
(2) servlet instantiation, (3) call the init method, (4) call the service method, and (5) call
destroy method.

Now that we’ve seen some of the practicalities of servlets — responding to requests
and supplying responses —we’ll throw the net a bit wider in the next examination
objective. At the end of this chapter, we’ll look at the entire lifespan of a servlet and
see what support the servlet container is bound to provide and the rules it has to
follow.

Life Cycle
So far, we’ve focused more or less exclusively on overridden doXXX() methods in
our servlets. We have buried the fact that all these methods are called from the
service() method in the parent class we override, HttpServlet. There’s no need
to override service() itself, as it already does a splendid job of converting HTTP
requests into appropriate doXXX() method calls. However, what we do need to
take note of is that the service() method comes at the center of the servlet life
cycle —and that’s true not just for HTTP, but in the plain world of GenericServlet
as well.

The certifi cation objective asks you to consider the following stages of the servlet
life cycle, and it is kind enough to list them in order:

 1. Servlet class loading — the point where static data (if any) in your servlet are
initialized

 2. Servlet instantiation — the point where instance data (if any) in your servlet
are initialized, and the no-argument constructor (if present) is called

 3. init()— the initialization method called when a servlet instance is created

 4. service()— the method called to perform the work

 5. destroy()— the method called when a servlet is taken out of service

We need to consider in a bit more detail when each of these milestones occurs, and
what they are good for. To set the stage, Figure 1-9 shows the fi ve stages in pictures.

Servlet Life Cycle (Exam Objective 1.4) 55

56 Chapter 1: The Servlet Model

Servlet Class Loading and Servlet Instantiation
You are bound to be asked about when servlets are loaded and instantiated; it’s a
classic exam topic. There’ll be questions that lead you astray by talking about events
that are always linked to servlet creation. Actually, there is only one rule to remem-
ber: The servlet must be loaded and instantiated before the fi rst request for it is pro-
cessed. It’s pretty obvious that the servlet must be there to service the request! The
implication of the rule, though, is that it doesn’t matter when instantiation happens.
It might be “just in time”— the servlet is loaded at the point where a request comes
through for it (which might lead to a performance penalty for the fi rst user to access
the servlet). Or it might happen as soon as the servlet container is started up. Or it
might happen at any point in between, according to the servlet container’s whim.

For any given declaration of a servlet (and what that means we learn in Chap-
ter 2), there will— normally —be one instance. That’s not to say the servlet can deal
with only one request at a time. Again — normally — the same servlet instance can
be used by multiple Java threads to maximize throughput. It’s a very effi cient model.
However, it does mean that servlet instance data can be accessed by any of those
threads at any time, so the best approach is to avoid using servlet instance data al-

1

2

3

4

5

1

2

Multiple requests for same servlet (may be concurrent)

http://www.osborne.com/SomeServlet

http://www.osborne.com/SomeServlet

http://www.osborne.com/SomeServlet

http://www.osborne.com/SomeServlet

http://www.osborne.com/SomeServlet

http://www.osborne.com/SomeServlet

Servlet container

SomeServlet
instance

Multiple
threads

3

4

5

SomeServlet class loaded, static initialization.

instance of SomeServlet created

init() called

Requests to SomeServlet processed by calling
service() method. May occur in multiple
concurrent threads.

Servlet taken out of service():
• destroy() called
• instance of SomeServlet garbage collected.

service()

init()

destroy()

SomeServlet
class

FIGURE 1-9

The Servlet Life
Cycle

together. You can get around the problem by having your servlet implement the
(now deprecated) SingleThreadModel interface. It’s a marker interface — no meth-
ods to implement —but it’s a sign to the servlet container to ensure that any one
instance of the servlet has only one request accessing it at a time. To avoid a single-
instance bottleneck, servlet containers can instantiate multiple instances of a servlet
(as a less effi cient but bearable alternative to having multiple threads going through
a single instance). Figure 1-10 shows how it looks.

But the good news (for exam purposes, especially) is that you should need to
know about this interface only for historical reasons. Its use is heavily discouraged,
and it’s deprecated: Servlet containers probably still support it for backward compat-
ibility, but its time has come and gone. And any mention of it has been removed
from the exam syllabus.

In the next chapter, you’ll learn that a servlet can be set to “load on startup.” The
only way in which this affects the process is that the servlet is loaded and instanti-
ated on startup of the web application.

The init() Method
Initialization code for a servlet could go in the constructor. There’s nothing wrong
in having a zero-argument constructor for a servlet, but it’s more usual to override
the public void init() method and place initialization code there. The servlet

http://www.osborne.com/SomeServlet

http://www.osborne.com/SomeServlet

http://www.osborne.com/SomeServlet

http://www.osborne.com/SomeServlet

http://www.osborne.com/SomeServlet

http://www.osborne.com/SomeServlet

Servlet container

An instance
of SomeServlet

service()

init()

destroy()

http://www.osborne.com/SomeServlet

http://www.osborne.com/SomeServlet

http://www.osborne.com/SomeServlet

http://www.osborne.com/SomeServlet

http://www.osborne.com/SomeServlet

http://www.osborne.com/SomeServlet
Another instance
of SomeServlet

Single thread:
requests
processed
in sequence

service()

init()

destroy()

Requests for same servlet (may be concurrent)

Requests for same servlet (may be concurrent)

Single thread:
requests
processed
in sequence

FIGURE 1-10

The Deprecated
SingleThread
Model

Servlet Life Cycle (Exam Objective 1.4) 57

58 Chapter 1: The Servlet Model

container is guaranteed to call this method once —and only once — on instantia-
tion of the servlet. Here are the sorts of things you might do in this method:

■ Set up expensive resources (database connections, object pools, etc.)

■ Do one-off initialization (such as reading confi guration fi les into Java objects in
memory)

The init() method must complete successfully before the servlet container will
allow any requests to be processed by the servlet. Two things might go wrong. The
method might throw a ServletException, or it might run out of time. Dealing with
out of time fi rst: A server should provide its own means of setting a default time be-
yond which init() is deemed to have failed. The ServletException is a little more
complex. A straight ServletException is a failure, and the servlet container can aban-
don this instance and try to construct another. However, there is a subclass of Servlet
Exception called UnavailableException, which can be constructed in two ways:

■ With a message — this denotes permanent unavailability. The servlet container
should log the fault and not necessarily try to create another instance. The na-
ture of the error is likely to require some operator intervention —changing some
confi guration information, perhaps.

■ With a message and a time limit (in seconds)— this denotes temporary unavail-
ability. There’s no absolute defi nition of what the servlet container should do un-
der these circumstances. A sensible resolution would be to block requests to the

You might get questioned
about the parentage of the init() method.
The init() method is a convenience
method in the GenericServlet class. The
servlet container actually calls Servlet
.init(ServletConfig config),
passing in a servlet confi guration object
(we’ll learn more about that in the following
chapters). This method does some essential
initialization of its own, including loading
any initialization parameters associated

with the servlet. The no-parameter init()
saves you the bother in your servlets of over-
riding init(config) and then having to
remember to call super(config) before
adding your own initialization. The servlet
container actually calls init(config)—
which is found in GenericServlet—and this
calls init() after completing its own work.
If you have overridden the no-parameter
init(), your version of the method will be
found polymorphically.

servlet until the time limit has expired, then allow them through if the init()
method has successfully completed.

The service() Method
Let’s review the key points about this method, some of which we’ve met already:

■ The method is called by the servlet container in response to a client request.

■ The method is defi ned in the Servlet interface.

■ The method is implemented in the GenericServlet and HttpServlet classes.

■ The method accepts a ServletRequest and ServletResponse as parameters.

■ There is an overloaded version of the method in HttpServlet that dispatches to
the appropriate doXXX() methods. The overloaded version accepts an Http
ServletRequest and HttpServletResponse as parameters.

■ If there are multiple requests, these may come through on multiple threads. So
multiple threads may simultaneously access the service() method for a single
servlet instance.

■ There may be no client requests at all, and that means the service() method
may never get executed.

The destroy() Method
When a servlet instance is taken out of service, the destroy() method is called —
only once for that instance. It’s an opportunity to reclaim all the expensive resources
that may have been set up in init().

What prompts a servlet container to take a servlet out of service is, like startup,
somewhat arbitrary. Clearly, this method should be called if the web application or
entire web server is closed down. However, there may be more transient reasons for
taking a servlet out of service: to conserve memory, for example (you get the feeling
that a web server would be have to be in a pretty bad way to undertake this sort of
reclamation, but it’s possible).

There are some conditions that dictate whether or not destroy() can be called:

 1. All threads executing a service() method on this instance must have
ended — or if not ended, gone beyond a server-defi ned time limit.

 2. destroy() is never called if init() failed. It’s inappropriate to call a
method to tear down what was never set up in the fi rst place.

Servlet Life Cycle (Exam Objective 1.4) 59

60 Chapter 1: The Servlet Model

ON THE CD

EXERCISE 1-5

Exploring the Servlet Life Cycle
In this exercise, you’ll write a servlet that tracks its own life cycle. You’ll be able to
tell when the class loads, when an instance is made, and when the life cycle methods
are called. The unique directory for this exercise is ex0105, and the solution is on
the CD in fi le sourcecode/ch01/ex0105.war.

Write the LifeCycle Servlet

 1. Create a source fi le called LifeCycle.java, with a package of webcert.ch01
.ex0105. Place this in an appropriate package directory (webcert /ch01/
ex0105) within the exercise subdirectory ex0105/ WEB-INF/classes.

 2. Following the package statement, your servlet code should import pack-
ages java.io, javax.servlet, and javax.servlet.http. (Note: Future exercises
won’t mention a list of imports —you’re ready to handle this yourself!)

 3. Your LifeCycle class should extend HttpServlet (and doesn’t need to
implement any interfaces). Again, future exercises won’t repeat this
information.

 4. You will override the init(), destroy(), and doGet() methods in your
servlet. Also, you will supply a zero-argument public constructor.

 5. In each of the above methods, output some text to indicate what method
is being executed. Don’t try to write this to the response (which in any case
is only available in the doGet() method)—go for something simple, such
as System.out.println(), to put text on the server’s console. For a more
advanced approach, use Java’s native logging facilities.

 6. Also include “static initializer” code. This is code between curly braces within
the class but outside any method. It will be called at the point where the class
is loaded. This code should also do a System.out.println() to indicate
that the class is being loaded.

Run the Solution Code and Your Code

 7. Start the Tomcat Server (if not started already).

 8. Deploy the solution code WAR fi le, ex0105.war (follow the instructions for
deploying WAR fi les in Appendix B).

 9. Copy LifeCycle.class from your directory structure to <Tomcat Installation
Directory>/webapps/ex0105/ WEB-INF/classes/webcert /ch01/ex0105 (over-
write the solution version).

 10. This time, restart (or stop and start) the Tomcat Server.

 11. Check to see if there is any output from the LifeCycle servlet already on the
console (is the class loaded on server startup?).

 12. Point your browser to the appropriate URL for the servlet. This is likely to be

 http://localhost:8080/ex0105/LifeCycle

 13. Note any additional messages on the console. Refresh the browser page
a few times to ensure that you enter the doGet() method without going
back through init(). Remember that the doGet() method is called from
service(), in case you were wondering where service() fi tted into the
picture. My Tomcat console is shown below, from my run of the exercise
(don’t be alarmed by the Exception: I print a stack trace to the console spe-
cifi cally to show that doGet() is called from service()).

 14. Finally, recompile your version of LifeCycle.java, such that your compiled
class fi le replaces the existing servlet class solution fi le LifeCycle.class. See
if Tomcat picks up the change to the class fi le —you should see a call to the
destroy() method as the old class is unloaded. Call your own version of
LifeCycle by pointing to the appropriate URL as at step 10 above, to check
that it works OK.

Servlet Life Cycle (Exam Objective 1.4) 61

62 Chapter 1: The Servlet Model

CERTIFICATION SUMMARY

This chapter has discussed the certifi cation objectives that are really funda-
mental to the way servlets work. You started off by learning about the seven
HTTP methods — GET, POST, HEAD, OPTIONS, TRACE, PUT, and DELETE.
You saw that HTTP (hypertext transfer protocol) is a high-level protocol built
on top of TCP/IP and used for the transfer of messages across the Internet between
client and server machines.

You looked at HTTP messages in some detail and saw that they contain three
components: an initial line, some headers, and an (optional) body. You learned
that this structure holds true for both requests and responses, though clearly the
exact content of requests and response differs a little. You learned that a request line
consists of the method itself (one of the seven), the target URI, and an HTTP ver-
sion. You saw a number of request headers following this request line, some typical
ones being Accept (to indicate what fi le formats the client can cope with), User-
Agent (to describe the client software), and Host (to state which server the client
is targeting). You learned that the request body might contain parameters (name/
value pairs) when the HTTP method is POST.

Regarding the seven methods, you saw that GET generally obtains a resource,
while POST may get a resource but is more intended for sending data to the server.
You learned that HEAD does everything that GET does, short of retrieving the
resource itself. You saw that OPTIONS told you what you could do with a target
resource. You found out that PUT and DELETE are much more rarely used, but serve
to place resources at or remove resources from a given URL. You learned that POST,
PUT, and DELETE are “unsafe” methods in that they can cause a permanent change
to server state. Also, all the methods except POST are idempotent — that is, you
can repeat them over and over again, yet expect no difference to occur just because
you repeat the method call to the same URL.

Most importantly, you learned how the servlet world relates to HTTP. You saw
that a J2EE servlet container will take the raw HTTP request and translate this to
a method call within a servlet. A GET method is translated to a doGet() call, a
POST to a doPost(), and so on. Each of these methods receives two parameters —
an HttpServletRequest object (representing the HTTP request) and an HttpServlet
Response object (representing the HTTP response).

From there, you went on to look at HTML forms because you need to learn how
parameters generated from such forms could be made available to your servlets. You
saw that the form itself began with a <form> opening tag, whose action attribute

targets the servlet you want to execute. You also learned that <form> has an op-
tional method attribute, which you often want to set to POST, and when left out
defaults to GET. Within the opening and closing form tags, you saw that you could
create several sorts of form controls. You learned that most of these are controlled
by the <input> tag, which has numerous values for the attribute type. A type of
text, password or hidden, creates a straight line of text —visible, concealed when
typed, or hidden altogether. You saw that you are not restricted to straight text —a
type of checkbox or radio creates tick boxes and mutually exclusive radio buttons,
respectively. You learned that for form controls to be passed as parameters, they must
have their name attribute set —and where the value isn’t directly input by the user,
the value attribute also.

You went on to learn about the <select> tag, which allows the user to defi ne
from a predefi ned list of options defi ned within individual <option> subelements.
You saw that this could work in two modes —for selection of a single value or of
multiple values (achieved by including the “multiple” attribute within the opening
<select> tag). You also met the <textarea> element, for input of multiple lines of
text in a single control.

Finally, on form controls, you saw how to create different sorts of buttons —again
through use of the <input> element. You met the types of submit, reset, and
button. As you found, pressing on a submit type actually sends the form data to the
target of the action, along with the named parameters. You saw that the reset type
keeps the action on the client browser and simply restores the values in form con-
trols as they were before any user input took place. You fi nally saw that the button
type is meant for connection with custom scripting (for example, with JavaScript)
and that, again, all the action stays within the client browser.

You saw that when parameters are submitted, they are passed as name/value pairs
separated by ampersands —for example, user=David&password=revealed. You learned
that multiple parameters with the same name could be passed, simply by repeat-
ing the name with a fresh value —for example, country=DK&country=GB. You
saw parameters passed in the URL when the HTTP method is GET and didn’t see
parameters passed when the HTTP method is POST, for they are then concealed in
the request body.

You then met the servlet APIs for intercepting parameters. You saw that the
ServletRequest object had useful methods for this —getParameter() to get hold
of the fi rst value from a named parameter, getParameterValues() to get hold of
all values for a named parameter as a String array, and getParameterNames() to
get an Enumeration of Strings with all parameter names present in the request. You
also met getParameterMap(), which returns an Enumeration of all keys and their

Servlet Life Cycle (Exam Objective 1.4) 63

64 Chapter 1: The Servlet Model

values. You also learned that you could get at parameters the hard way through a
request’s InputStream —and also never to mix and match the two approaches (APIs
vs. InputStream).

You went on to look at more methods on the HttpServletRequest object, passed
as the fi rst parameter into doXXX() methods. This fi rst of these concerned request
headers —each a piece of information within the request consisting of a name with
single or multiple values. You met APIs for getting hold of the headers within the
request, such as getHeader() returning a single value for the supplied name. You
saw that you could get all values as an Enumeration for a given header name using
getHeaders()—and that if you needed to fi nd out the names themselves, you could
use getHeaderNames(), also returning an Enumeration. You saw that there were
also convenience methods — the getDateHeader() and getIntHeader() meth-
ods — specifi cally for headers whose values are dates or integers. You then met the
getCookies() method, which returns an array of javax.servlet.http.Cookie objects.
You saw that cookies come in two versions — 0 or 1—and that the only mandatory
attributes in both cases are a name and a value. Other attributes include a domain,
a path, a maximum age, and a comment. You learned that you could create a cookie
with a two-parameter constructor, accepting the mandatory attributes of name and
value, and attach this to the HttpServletResponse object with the addCookie()
method.

There were several more things you learned about the HttpServletResponse ob-
ject. You saw that just as you can read headers from HttpServletRequest, so you can
write headers to HttpServletResponse. You saw that there are add* and set* methods
to do this, with each call to an add* method for the same-named header placing an
additional value against the header, and with each call to a set* method replacing
a value already there (if any). You were warned against the use of set* methods for
multiple value headers. Like the request methods, there are convenience methods
for integers and dates: an addIntHeader(), setIntHeader(), addDateHeader(),
and setDateHeader().

You also learned how to achieve redirection using the HttpServletResponse
.sendRedirect() method. You saw that this can accept a String representing a
complete or partial URL — partial URLs being interpreted as relative to the web
server’s root (when beginning with a forward slash) and relative to the location
of the redirecting resource (when not beginning with a forward slash). You
learned that the server converts a partial URL to a full URL, then transmits
this back to the client with an appropriate response code, so it’s up to the client
to re-request the suggested URL. You also learned that the mechanics of this
(setting a Location header and an appropriate response code) are concealed within
the sendRedirect() method.

Finally, you met the methods you are likely to use most often in HttpServletRe-
sponse: those to do with setting a content type and with actually writing content.
You saw that you should use the setContentType() method to supply a suitable
MIME type for the content, represented by a String such as “text /html.” You learned
that you can supply an optional character encoding at the same time, or set this
separately. You then saw that you can obtain a PrintWriter or OutputStream from
the response, using getWriter() and getOutputStream() respectively —but that
you should never mix and match the two within the same response. You saw that
you can use the regular java.io methods on these classes (most typically, write()) to
place content in the response.

In the fi nal section of the chapter, you learned about the servlet life cycle. You
learned that the web container generally makes only one instance of a servlet class
(though there was a mysterious sentence about “if the class is declared only once,”
which will make sense when we look at the deployment descriptor in Chapter 2).
You learned that the web container does any static class initialization, then calls
the no-argument servlet constructor (if there is a bespoke one in your servlet), and
then calls the init(ServletConfig config) method —and you are guaranteed
that the init(ServletConfig config) method will only ever be called once for
any given instance of a servlet. You learned that this whole initialization process can
take place any time before the fi rst request to the servlet is processed. You saw then
that if the servlet received any requests (and it might not), the web container calls
the service() method —which in the case of HTTP servlets, dispatches to the
appropriate doXXX() method. Finally, you learned that when a web container takes
a servlet out of service, it calls the servlet’s destroy() method (just once) before
that instance of the servlet is garbage collected. You learned that for destroy() to
be called, certain conditions have to be true: (1) initialization must have completed
successfully, and (2) all requests against the servlet must be complete or some server-
defi ned time limit must have expired.

You briefl y met the SingleThreadModel, which keeps requests unique to particu-
lar instances of servlets. However, you learned that knowledge of this is required
only for legacy code you maintain and that the interface has been deprecated and
dropped from the exam syllabus.

Servlet Life Cycle (Exam Objective 1.4) 65

66 Chapter 1: The Servlet Model

✓ TWO-MINUTE DRILL

HTTP Methods
❏ HTTP is a simple request /response protocol underpinning most web applica-

tions on the Internet, regardless of whether they are written in Java.

❏ J2EE servlet containers provide a Java “superstructure” built around the
HTTP protocol.

❏ HTTP works through seven methods, supplied with the request. These are
GET, POST, HEAD, OPTIONS, TRACE, PUT, and DELETE.

❏ GET is used to obtain a web resource, usually in a “read only” fashion.

❏ POST is used typically to send data to a web server, but is also frequently used
to return web resources in addition.

❏ HEAD is equivalent to GET except that it doesn’t return the web resource —
only meta-information about the resource.

❏ OPTIONS lists which of the seven methods can be executed against a target
resource.

❏ TRACE is for debug purposes and refl ects a client request back from the
server to the client (to check how it might have changed en route).

❏ PUT places a resource at the URL that is the target of the HTTP request.

❏ DELETE does the opposite of PUT—it removes a resource from the URL
that is the target of the HTTP request.

❏ PUT and DELETE are disallowed on most web servers. They are “unsafe”
methods. POST is also deemed an “unsafe” method. “Unsafe” means that
the client may be held accountable for the action.

❏ By contrast, GET, OPTIONS, HEAD, and TRACE are “safe” methods that
should never execute anything for which the client can be held to account.

❏ The HTTP specifi cation defi nes most methods as “idempotent,” which means
that if you execute them more than once, the result is the same as executing
them only once (in terms of the state the web server is left in).

❏ Of the seven methods, POST is the only one that is not considered
“idempotent.”

❏ HTTP requests consist of a request line, some headers, and an (optional)
message body.

Two-Minute Drill 67

❏ HTTP responses are similar: response line, some headers, and message body.

❏ The seven HTTP methods map on to servlet methods of the same name with
a “do” in front (e.g., POST maps on to doPost()).

❏ The doXXX() methods receive two objects as parameters — the fi rst repre-
senting the HTTP request and the second the HTTP response.

Form Parameters
❏ The primary means by which user input is made available to a web applica-

tion is through an HTML form.

❏ An HTML <form> element consists of an opening and closing form tag,
containing other elements representing user interface elements on the form
(form controls).

❏ The opening <form> tag has two crucial attributes: action (used to target a
resource in the web application — typically a servlet or JSP) and method (to
denote the HTTP method).

❏ If the method attribute is left out, the default method invoked is an HTTP GET.

❏ It’s more usual to set method=“POST.”

❏ Many form controls are created using the <input> element.

❏ The <input> element has three crucial attributes: type, name, and value.

❏ The type attribute determines what sort of user interface component should
be drawn by the browser within the web page (e.g., text fi eld, checkbox, radio
button).

❏ If <input> elements have a name and value set, these are passed in the
HTTP request as parameters, separated by an equal sign. Each name/value
pair is separated from the next by an ampersand. Example: user=david&
password=indiscrete.

❏ Parameters are attached to the URL when the HTTP method is GET,
separated from the rest of the URL by a question mark (e.g., http://
localhost:8080/login?user=david&password=indiscrete).

❏ Parameters are passed in the request body when the HTTP method is POST.

❏ An input element doesn’t necessarily have the value attribute set when
this is supplied by direct user input. A text fi eld (type="text") is a good
example —by typing into the fi eld, the browser knows to associate the value
with the named form control.

68 Chapter 1: The Servlet Model

❏ An input element of type="text" creates a single-line text fi eld. Attributes
can be set to limit the displayed size and maximum length of input.

❏ An input element of type="password" is exactly like a text fi eld, except
that user input is masked when typed in.

❏ An input element of type="hidden" creates a fi eld invisible to the user
but present in the HTML source. These fi elds are often used to hold session-
dependent data in an ongoing client-server interaction. A scripting language
(such as JavaScript) might also be used entirely on the client side to populate
these fi eld values.

❏ An input element of type="checkbox" creates a selectable box.

❏ If the user checks the box, the name/value pair defi ned for the checkbox is
sent as a parameter.

❏ An input element of type="radio" creates a radio button. Two or more
radio buttons sharing the same name will be mutually exclusive (only one
can be selected from the group).

❏ The chosen radio button has its name/value pair sent as a parameter.

❏ Descriptive text for checkboxes and radio buttons is supplied separately,
usually adjacent to the input element (but not an intrinsic part — there is
no description attribute).

❏ An input element of type="submit" creates a button that triggers the action
on the form, sending all parameter data to the server in an HTTP request.

❏ An input element of type="reset" creates a button that returns the HTML
form to the state before any user input took place. Nothing is sent to the
server; it’s a client-side action.

❏ An input element of type="button" creates a button that can trigger client-
side script.

❏ Other form controls include the <select> and <textarea> elements.

❏ The <select> element allows defi nition of a predefi ned list of options.

❏ By default, the user can choose one of the options, but the inclusion of the
multiple attribute allows selection of more than one.

❏ The <select> element should include a name attribute (the name of the
parameter — or parameters for multiple selections — passed to the web
server).

Two-Minute Drill 69

❏ The <select> element can restrict the number of visible rows using a size
attribute (e.g., size="3"). Remaining rows are generally accessible with a
scroll bar.

❏ The <select> element contains <option> elements, which should have a
value attribute included (for the value of the parameter passed back to the
server —if this item in the list is selected).

❏ The <textarea> element has a name attribute, whose function is the same as
for other form controls.

❏ Generally, you should defi ne rows and cols attributes, which defi ne the
number of visible rows and columns (imposing —usually — scrollbars for rows
and wrap-around for columns).

❏ Text typed into the text area is passed back as the value parameter. This may
contain special characters to denote white space, tabs, line feeds, and carriage
returns.

❏ On the receiving end, a servlet can use a number of methods through the
interface ServletRequest to get at request parameters.

❏ The simplest is getParameter(String parmName), which returns the (fi rst)
value for a given parameter name.

❏ getParameterValues(String parmName) returns all values for a given
parameter name —as a String array (null if no values present).

❏ getParameterNames() returns an Enumeration of String objects containing
all parameter names. The Enumeration will never be null, but there may be
no Strings within it.

❏ Finally, getParameterMap() returns a java.util.Map object with all the
parameter names (the keys of the Map, of type String) and all the parameter
values (the values in the Map, of type String array).

❏ You can get at parameters directly through the Reader associated with the
request (ServletRequest.getReader()).However, this approach should
not be used in conjunction with the APIs already described —unpredictable
results occur.

Requests
❏ Request header information can be obtained using APIs available in the

HttpServletRequest interface.

70 Chapter 1: The Servlet Model

❏ getHeader(String headerName) returns the (fi rst or only) value for the
specifi ed header name. This can return null if the named header is not
present.

❏ getHeaders(String headerName) returns an Enumeration of all values for
the specifi ed header.

❏ getHeaderNames() returns an Enumeration of all header names present in
the request.

❏ The Enumerations returned by the above two methods can be empty but
are —in general— never null, unless the web container imposes security
restrictions on the availability of some or all request headers.

❏ getIntHeader(String headerName) returns a primitive int for the speci-
fi ed header name.

❏ If the requested header isn’t present, this method returns �1.

❏ If the request header is present but isn’t numeric, this method throws a
NumberFormatException.

❏ getDateHeader(String headerName) returns a long representing a date
for the specifi ed header name.

❏ If the requested header isn’t present, this method returns �1.

❏ If the requested header is present but can’t be interpreted as a date, this
method throws an IllegalArgumentException.

❏ Common request headers are Accept, Accept-Language, Host (compulsory in
HTTP version 1.1), and User-Agent.

❏ There are other headers used in the request that aren’t tied to request mes-
sages. They may be generally used in HTTP messages or describe the entity
attached to either a request or a response.

❏ Cookies are small text fi les attached as request or response headers.

❏ When present in the request, the HttpServletRequest method
getCookies() can be used to return a javax.servlet.http.Cookie array.

❏ Cookies have two compulsory attributes: name and value.

❏ Optional attributes of cookies are domain, path, comment, maximum age, ver-
sion, and a fl ag denoting whether the cookie has been passed over a secure
protocol or not.

Two-Minute Drill 71

Responses
❏ HTTP responses can be manipulated using APIs in the HttpServletResponse

interface.

❏ addHeader(String name, String value) adds a header of a given name
and value to the response.

❏ If a header of that name already exists, addHeader() simply interprets this as
an additional value to add to the existing response header.

❏ setHeader(String name, String value) also adds a header of a given
name and value to the response; however, it replaces a value already given if
the header is already present.

❏ addIntHeader(String name, int value) can be used to add a header
whose value is known to be an integer.

❏ addDateHeader(String name, long value) can be used to add a header
whose value is known to be a date.

❏ There are setIntHeader() and setDateHeader() counterpart methods.

❏ Common response headers include Date (the date the message was returned),
and most usually have to do with the entity returned, such as Content-Type,
Content-Encoding, and Content-Language.

❏ HttpServletResponse has some convenience methods that mask the under-
lying setting of response headers. These include sendRedirect(String
path), which sets the Location header with an alternative URL and sets a
response code to tell the client to make a request to the alternative URL.

❏ addCookie(Cookie aCookie) is used to attach a Cookie to the response.

❏ Under the covers, a Set-Cookie response header is written.

❏ setContentType(String MIMEtype) sets the Content-Type header to an
appropriate value (which should be chosen from the list of defi ned MIME
types — such as “text /html”).

❏ Content itself is written to the response through a PrintWriter (for charac-
ters) or OutputStream (for binary data).

❏ Either (but not both) can be obtained using the HttpServletResponse meth-
ods getWriter() or getOutputStream().

72 Chapter 1: The Servlet Model

Servlet Life Cycle
❏ Servlets can be instantiated at any point before processing their fi rst request

(server startup, at the point where the fi rst request is received, or somewhere
in between).

❏ In general, there is only one instance of a servlet per servlet class.

❏ The same servlet class can have more than one declaration in the de-
ployment descriptor; in that case, the servlet may have one instance per
declaration.

❏ Multiple request threads may access this one instance (hence, servlets are not
thread-safe).

❏ Servlets have their own creation and instantiation rules over and above obey-
ing standard rules for Java class loading and object instantiation.

❏ First, the class is loaded, and any static initialization is done (obviously not
repeated for any subsequent servlet instance —if there is one).

❏ Second, the no-argument constructor on the servlet is called (you can supply
one in your own servlets).

❏ Third, the init(ServletConfig config) method is called — once only for
the given instance.

❏ In general, you should place initialization code in the init(ServletConfig
config) method rather than in the constructor.

❏ Now the servlet is instantiated, its service() method is called for every
request made — probably in multiple threads if there are many concurrent
requests.

❏ service() dispatches to doXXX() methods in HTTP servlet implementa-
tions — there is no need to override service() in HttpServlet.

❏ service() may never be called; there may be no requests.

❏ Servlets can be taken out of service at any point the web server sees fi t
(closed down, running out of memory, not used for a long time, . . .).

❏ The servlet container must wait for all threads running service() methods
on a servlet to complete before taking the servlet out of service.

❏ The servlet container can impose a time limit on this waiting period.

❏ Before the servlet container takes a servlet out of service, it must call the
servlet’s destroy() method.

Two-Minute Drill 73

❏ The destroy() method can be used to cleanly close down expensive re-
sources probably initialized in the servlet’s init() method.

❏ destroy() is never called if the servlet fails to initialize.

❏ Failure to initialize is denoted by init() not completing properly.

❏ init() may throw a ServletException to denote not completing properly.

❏ init() may throw a subclass of ServletException called Unavailable
Exception.

❏ UnavailableExceptions can be temporary or permanent; the servlet container
has the right to treat these differently or treat everything as a permanent
error.

❏ init() may simply run out of time (as determined by a web server specifi c
confi guration parameter).

❏ With most of the preceding failures of init() the servlet container derefer-
ences the failing servlet instance and allows it to be garbage collected.

❏ If the failure is not permanent (i.e., a temporary UnavailableException), the
servlet container may try again to make another instance of the servlet.

❏ If the failure is permanent, the servlet container must return an HTTP 404
(page not found) error.

SELF TEST
The following questions will help you measure your understanding of the material presented in this
chapter. Read all the choices carefully because there might be more than one correct answer. The
number of correct choices to make is stated in the question, as in the real SCWCD exam.

HTTP Methods

 1. Which of the HTTP methods below is not considered to be “idempotent”? (Choose one.)

 A. GET

 B. TRACE

 C. POST

 D. HEAD

 E. OPTIONS

 F. SERVICE

 2. Which of the HTTP methods below are likely to change state on the web server? (Choose three.)

 A. DELETE

 B. TRACE

 C. OPTIONS

 D. POST

 E. PUT

 F. CONNECT

 G. HEAD

 H. SERVICE

 3. Which of the following are valid servlet methods that match up with HTTP methods?
(Choose four.)

 A. doGet()

 B. doPost()

 C. doConnect()

 D. doOptions()

 E. doHead()

 F. doRequest()

 G. doService()

74 Chapter 1: The Servlet Model

Self Test 75

 4. What is the likely effect of calling a servlet with the POST HTTP method if that servlet does
not have a doPost() method? (Choose one.)

 A. If the servlet has a doGet() method, it executes that instead.

 B. 404 response code: SC_NOT_FOUND.

 C. 405 response code: SC_METHOD_NOT_ALLOWED.

 D. 500 response code: SC_INTERNAL_SERVER_ERROR.

 E. 501 response code: SC_NOT_IMPLEMENTED.

 5. What is the likely effect of calling a servlet with the HEAD HTTP method if that servlet does
not have a doHead() method? (Choose one.)

 A. 200 response code: SC_OK

 B. 404 response code: SC_NOT_FOUND

 C. 405 response code: SC_METHOD_NOT_ALLOWED

 D. 500 response code: SC_INTERNAL_SERVER_ERROR

 E. 501 response code: SC_NOT_IMPLEMENTED

Form Parameters

 6. What will be the result of pressing the submit button in the following HTML form?
(Choose two.)

<form action="/servlet/Register">
 <input type="text" name="fullName" value="Type name here" />
 <input type="submit" name="sbmButton" value="OK" />
</form>

 A. A request is sent with the HTTP method HEAD.

 B. A request is sent with the HTTP method POST.

 C. A request is sent with the HTTP method GET.

 D. The parameter fullName is the only parameter passed to the web server in the request URL.

 E. The parameter fullName is the only parameter passed to the web server as part of the re-
quest body.

 F. The parameters fullName and sbmButton are passed to the web server in the request URL.

 G. The parameters fullName and sbmButton are passed to the web server as part of the re-
quest body.

 H. No parameters are passed to the web server.

76 Chapter 1: The Servlet Model

 7. Consider the following form and servlet code. Assuming the user changes none of the default
settings and presses submit, what will the servlet output in the response? (Choose one.)

<form action="PrintParams?param1=First" method="post">
 <input type="hidden" name="param1" value="First" />
 <input type="text" name="param1" value="Second" />
 <input type="radio" name="param1" value="Third" />
 <input type="submit" />
</form>
protected void doPost
 HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.write("<html>\n<head>\n<title>Print
 Parameters</title>\n</head>\n<body>");
 String[] param1 = request.getParameterValues("param1");
 for (int i = 0; i < param1.length; i++) {
 out.write(param1[i] + ":");
 }
 out.write("\n</body>\n</html>");
 out.close();
}

 A. First:Second:Third

 B. First:Second:Second

 C. First:Third:Third

 D. Second:Third:First

 E. First:First:Second

 F. No response — servlet will not compile.

 G. No response — ServletException occurs.

Self Test 77

 8. (drag-and-drop question) The following illustration shows a form in an HTML page and also
the doPost() method of the servlet that is the target of the form’s action attribute. Match the
hidden lettered values from the HTML form and the servlet code with numbers from the list on
the right.

protected void doPost(
 HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/plain");
 PrintWriter out = response.getWriter();
 out.write("<HTML>\n<HEAD>\n<TITLE>Parameters
as Map Servlet</TITLE>\n</HEAD>\n<BODY>");
 Map params = request.getParameterMap();
 Set s = params.entrySet();
 Iterator it = s.iterator();
 while (it.hasNext()) {
 Map.Entry entry = (Map.Entry) it.next();
 String[] value = (String[])
entry.getValue();
 out.write(value[0]);
 }
 out.write("\n</BODY>\n</HTML>");
 out.close();
}

<form action="Question8?param1=First"
 method=”post”>

 <input type="hidden" name="param2"
 value="Second" />
 <input type=”submit” />
</form>

E
C

F

G

I

D

B
A

H

15 method="post"

14 Object[]

13 values

12 entrySet

11 Parameters

10 String[]

9 method="head"

8 Map.Entry

7 value

6 type="submit"

5 ParameterMap

4 getParams

3 ParameterValues

2 ParameterSet

1 name

78 Chapter 1: The Servlet Model

 9. What is the maximum number of parameter values that can be forwarded to the servlet from
the following HTML form? (Choose one.)

<html>
 <body>
 <h1>Chapter 1 Question 9</h1>
 <form action="ParamsServlet" method="get">
 <select name="Languages" size="3" multiple>
 <option value="JAVA" selected>Java</option>
 <option value="CSHARP">C#</option>
 <option value="C" selected>C</option>
 <option value="CPLUSPLUS">C++</option>
 <option value="PASCAL">Pascal</option>
 <option value="ADA">Ada</option>
 </select>
 <input type="submit" name="button" />
 </form>
 </body>
</html>

 A. 0

 B. 1

 C. 2

 D. 3

 E. 4

 F. 5

 G. 6

 H. 7

 10. What request header must be set for parameter data to be decoded from a form? (Choose one.)

 A. EncType: application /x-www-urlencoded

 B. Content-Type: application /x-www-form-urlencoded

 C. Content-Type: multipart /form-data

 D. Encoding-Type: multipart /form-data

 E. Accept-Encoding: application /www-form-encoded

 F. Encoding-Type: multipart /www-form-data

Self Test 79

Requests

 11. Which of the following are likely to found as request header fi elds? (Choose three.)

 A. Accept

 B. WWW-Authenticate

 C. Accept-Language

 D. From

 E. Client-Agent

 F. Retry-After

 12. What is the most likely outcome of running the following servlet code? (Choose one.)

long date = request.getDateHeader("Host");
response.setContentType("text/plain");
response.getWriter().write("" + date);

 A. A formatted date is written to the response.

 B. �1 is written to the response.

 C. Won’t run because won’t compile.

 D. IllegalArgumentException

 E. NumberFormatException

 F. DateFormatException

 13. What is the likely outcome of attempting to run the following servlet code?

String[] values = request.getHeaders("BogusHeader");
response.setContentType("text/plain");
response.getWriter().write(values[0]);

 A. IllegalArgumentException

 B. NumberFormatException

 C. Won’t run: 1 compilation error.

 D. Won’t run: 2 compilation errors.

 E. Nothing written to the response.

 F. null written to the response.

80 Chapter 1: The Servlet Model

 14. What is the likely outcome of attempting to compile and run the following servlet code, assum-
ing there is one cookie attached to the incoming request?

11 Cookie[] cookies = request.getCookies();
12 Cookie cookie1 = cookies[0];
13 response.setContentType("text/plain");
14 String attributes = cookie1.getName();
15 attributes += cookie1.getValue();
16 attributes += cookie1.getDomain();
17 attributes += cookie1.getPath();
18 response.getWriter().write(attributes);

 A. Compilation error at line 11

 B. Compilation error at line 16

 C. Output to the response including at least the name and domain

 D. Output to the response including at least the name and value

 E. Output to the response including at least the name, value, and domain

 F. Output to the response including all of name, value, domain, and path

 15. Under what circumstances can the HttpServletRequest.getHeaders(String name)
method return null? (Choose one.)

 A. If there are no request headers present in the request for the given header name.

 B. If there are multiple headers for the given header name.

 C. If the container disallows access to the header information.

 D. If there are multiple values for the given header name.

 E. If there is only a single value for the given header name.

 F. There is no such method on HttpServletRequest.

Responses

 16. Which of the following methods can be used to add cookies to a servlet response? (Choose two.)

 A. HttpServletResponse.addCookie(Cookie cookie)

 B. ServletResponse.addCookie(Cookie cookie)

 C. HttpServletResponse.addCookie(String contents)

 D. ServletResponse.addCookie(String contents)

 E. HttpServletResponse.addHeader(String name, String value)

 F. ServletResponse.addHeader(String name, String value)

Self Test 81

 17. What is the outcome of running the following servlet code? (Choose two.)

public void doGet(
 HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/plain;charset-UTF-8");
 PrintWriter out = response.getWriter();
 out.flush();
 out.close();
 System.out.println(response.isCommitted());
 response.setContentType("illegal/value");
}

 A. An IllegalArgumentException is thrown.

 B. A blank page is returned to the client.

 C. A 500 error is reported to the client.

 D. “true” is output on the server’s console.

 E. “false” is output on the server’s console.

 18. What will be the outcome of executing the following code? (Choose one.)

public void doGet(
 HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/plain");
 response.setContentLength(4);
 PrintWriter out = response.getWriter();
 out.write("What will be the response? ");
 out.write("" + response.isCommitted());
}

 A. Won’t execute because of a compilation error.

 B. An IllegalArgumentException is thrown.

 C. An IllegalStateException is thrown.

 D. A blank page is returned to the client.

 E. “What” is returned to the client.

 F. “What will be the response?” is returned to the client.

 G. “What will be the response? true” is returned to the client.

 H. “What will be the response? false” is returned to the client.

82 Chapter 1: The Servlet Model

 19. (drag-and-drop question) Consider the following servlet code, which downloads a binary fi le to
the client. Match the concealed (lettered) parts of the code with the (numbered) possibilities.
You may need to use some possibilities more than once.

public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 response.setContentType(”image/gif”);
 String path =
 getServletContext().
 getRealPath("loading-msg.gif");

 File imageFile = new File(path);
 long length = imageFile.length();
 response.setContentLength((int) length);
 OutputStream os = response.getOutputStream();
 BufferedInputStream bis = new
 BufferedInputStream(new FileInputStream(

 imageFile));
 int info;
 while ((info = bis.read()) > -1) {
 os.write(info);
 }
 os.flush();
}

E

C

F

D
B

A

15 "text/plain"

14 Output

13 println

12 ImageLength

11 print

10 "image/mime"

9 write

8 StreamLength

7 int

6 long

5 "image/gif"

4 ContentLength

3 short

2 ContentType

1 byte

 20. Which of the approaches below will correctly cause a client to redirect to an alternative URL?
(In the code fragments below, consider that “response” is an instance of HttpServletResponse.)
(Choose two.)

 A. response.sendRedirect("index.jsp");

 B. response.setLocation("index.jsp");

 C. RequestDispatcher rd = response.getRequestDispatcher("index.jsp");

rd.sendRedirect();

 D. response.redirect("index.jsp");

 E. response.setHeader("Location", "index.jsp");

Self Test 83

 F. response.setStatus(HttpServletResponse.SC_TEMPORARY_REDIRECT);

response.setHeader("Location", "index.jsp");

Servlet Life Cycle

 21. Identify statements that are always true about threads running through the service()
method of a servlet with the following class declaration. (Choose two.)

public class MyServlet extends HttpServlet { // servlet code }

 A. The destroy() method never cuts short threads running through the service()
method.

 B. Threads running through the service() method must run one at a time.

 C. There could be anything from zero to many threads running through the service()
method during the time the servlet is loaded.

 D. If the init() method for the servlet hasn’t run, no threads have yet been able to run
through the service() method.

 E. At least one thread will run through the service() method if init() has been executed.

 22. Under which of the following circumstances are servlets most likely to be instantiated?
(Choose four.)

 A. During web application startup

 B. If there are insuffi cient instances of the servlet to service incoming requests

 C. On a client fi rst requesting the servlet

 D. At the same time as a different servlet is instantiated, when that different servlet makes
use of the servlet in question

 E. After the servlet’s destroy() method is called, dependent on the server’s keep-alive
setting

 F. At some arbitrary point in the web application or application server lifetime

 G. After the time specifi ed on an UnavailableException has expired

 23. Which of the following are true statements about servlet availability? (Choose two.)

 A. If a servlet is removed from service, then any requests to the servlet should result in an
HTTP 404 (SC_NOT_FOUND) error.

 B. The init() method must not throw an UnavailableException.

84 Chapter 1: The Servlet Model

 C. If permanent unavailability is indicated via an UnavailableException, a servlet’s destroy()
method must be called.

 D. Servlet containers must distinguish between periods of temporary and permanent unavail-
ability.

 E. If a servlet is deemed temporarily unavailable, a container may return an HTTP 503
(SC_SERVICE_UNAVAILABLE) message on receiving requests to the servlet during its
time of unavailability.

 24. Under what circumstances will a servlet instance’s destroy() method never be called?
(Choose two.)

 A. As a result of a web application closedown request

 B. When init() has not run to completion successfully

 C. If no thread has ever executed the service() method

 D. After destroy() has already been called

 E. During servlet replacement

 25. Given the following servlet code, identify the outputs that could not or should not occur during
the lifetime of the web application housing the servlet.

 A. init:destroy:

 B. init:destroy:init:destroy:

 C. init:init:init:

 D. destroy:service:

 E. init:service:service:service:service:service:

 F. init:service:init:service:

public class Question25 extends HttpServlet {
 public void init() {
 System.out.print("init:");
 }
 public void destroy() {
 System.out.print("destroy:");
 }
 protected void service(HttpServletRequest arg0,
 HttpServletResponse arg1)
 throws ServletException, IOException {
 super.service(arg0, arg1);
 System.out.print("service:");
 }
}

LAB QUESTION
Here is your turn to put together the skills you’ve learned in this fi rst chapter. You’ll write the servlet
that you used at the start of this chapter in Exercise 1-1. Your servlet is going to do several things:
(1) accept posted data from a request parameter, then (2) append this data to the end of a text fi le,
and fi nally (3) read the entire text fi le and return this in the web page response.

Use PostServlet as the name and webcert.lab01 as the package. Use the web.xml fi le from the
solution fi le, lab01.war — place this in your lab01/ WEB-INF directory. To operate the servlet, write
a basic HTML page with a form and an appropriate action and text fi eld — or series of input fi elds,
depending on how adventurous you are feeling.

This and future labs have solution code on the CD —you’ll fi nd the references to this in the Lab
Answer after the Self Test Answers in each chapter.

Lab Question 85

SELF TEST ANSWERS
HTTP Methods

 1. � C is correct. Idempotent methods should behave the same however many times they are
executed against a particular resource. The POST method doesn’t offer that guarantee.

 � A, B, D, and E are incorrect because all these methods (GET, TRACE, HEAD, and
OPTIONS) are the personifi cation of idempotency. F is incorrect because SERVICE is not an
HTTP method at all.

 2. � A, D, and E are correct. The methods DELETE, POST, and PUT are all liable to change
state on the web server —DELETE by removing a resource at the specifi ed URL, PUT by plac-
ing one there, and POST by doing whatever it pleases.

 � B, C, and G are incorrect because all these methods (TRACE, OPTIONS, and HEAD) are
enquiry methods that should change nothing on the server. F and H are incorrect because these
are not HTTP methods at all.

 3. � A, B, D, and E are the correct answers. doGet() matches HTTP GET, doPost() HTTP
POST, doOptions() HTTP OPTIONS, and doHead() HTTP HEAD.

 � C, F, and G are incorrect. CONNECT is a method reserved for future use in the HTTP
RFC and has no servlet method counterpart. Although the concepts of request and service play
a part in the servlet response to HTTP messages (you receive a request as a parameter into the
doXXX() method family, and a servlet’s service() method dispatches to the correct doXXX()
method), there are no REQUEST or SERVICE HTTP methods.

 4. � C is the correct answer: 405, SC_METHOD_NOT_ALLOWED. If your servlet doesn’t pro-
vide a doPost() method (overriding the one in HttpServlet), the default behavior is to reject
the POST method request in this way.

 � A is incorrect — there’s no automatic substitution of a doPost() with the next-best method.
B is incorrect, as the resource is actually there. D is incorrect —a 500 error is reserved for the
servlet failing with some kind of exception. E is plausible because the method is indeed not
implemented —but this isn’t the response code returned. Try it!

 5. � A is correct. Your own servlet should rarely or never override the doHead() method — the
default implementation for this is fi ne. The default doHead() method will return all response
headers, but no body —and the likelihood is a normal (200) response code as well.

 � B is incorrect because the resource is found in the scenario described. C is incorrect be-
cause the method is allowed through a servlet container’s default implementation. D is incor-
rect in that you could get a 500 error if the servlet goes wrong —but that will be for some other

86 Chapter 1: The Servlet Model

reason, not the absence of a doHead() method (which is what the question is driving at).
Finally, E is incorrect —a “not implemented” error is very unlikely.

Form Parameters

 6. � C and F. In the absence of specifying a method parameter on the <form> opening tag, an
HTTP GET is the default. This means that parameters from the form are passed within the
query string of the URL.

 � A and B are incorrect because an HTML’s default method is GET—you are likely to
explicitly specify POST instead with method=“post,” but this happens only if you are explicit.
You would never use HEAD in a form — GET and POST are the only valid methods. D is
incorrect because sbmButton is passed as a parameter as well as fullName: As long as a fi eld in
a form has a name, its value will be passed as a parameter (even if there may seem no point in
passing the submit button as a parameter). E is incorrect for the same reason as D, and because
form parameters get passed in the request body only when the method is POST. G is incor-
rect — right parameters, wrong place for them when the method is GET. Finally, H is incorrect
because parameters are passed to the server — there’s nothing in the HTML that would indicate
this wouldn’t happen.

 7. � E is correct. The servlet writes out the value of param1 in the query string of the form’s
action, then the value of param1 in the hidden fi eld, and then the value of param1 in the text
fi eld. It doesn’t print out the value of param1 in the radio fi eld: The user doesn’t select it, nor is
it preselected with the “checked” attribute in the HTML.

 � A, B, C, and D are incorrect according to the reasoning for the correct answer. The servlet
compiles fi ne, so F is incorrect —and there’s no reason for it to throw a ServletException;
hence, G is incorrect.

 8. � A, 5; B, 12; C, 8; D, 8; E, 10; F, 10; G, 15; H, 1; and I, 6. There are a few things thrown
in here that rely on your knowledge of the map interface —and that’s fair game for the exam.
The key thing is that each entry in the map is a Map.Entry object. Beyond that, you have to
know that the values part of the Map.Entry will be held as a String array, even though the pa-
rameters concerned have only a single value.

 � All other combinations are incorrect, as dictated by the right answer above.

 9. � H is the correct answer. Seven parameter values may be returned by the form by selecting
all six of the language options in the select (it’s a multiple selector), and you get an additional
parameter value for free with the named <input> submit button.

 � A through G are incorrect, according to the reasoning in the correct answer. Issues you
might have thought that limited the number of parameters: Does the size attribute for the

Self Test Answers 87

88 Chapter 1: The Servlet Model

<select> limit the number of choices? No, only the number of visible rows. Does the fact that
two of the options are already selected make a difference? No, the user can select all the others
in addition to the ones already selected. Does the button have an associated parameter value,
as it lacks a value attribute? Yes it does —because the <input> button has a name attribute, a
default value will be passed (something like “Submit Query”—matching the default text on the
button).

 10. � B is correct. You just have to know this one.
 � A is incorrect —EncType is not a proper request header name, and the value is mangled.

C is incorrect: Content-Type is the correct request header names, and multipart /form-data is a
valid value —but you use it when posting complete data fi les from an HTML form rather than
simple parameters. D, E, and F are incorrect —Encoding-Type and Accept-Encoding are cor-
rect request header names, but not applicable to this situation —and the values are mangled in
different ways.

Requests

 11. � A, C, and D. Accept describes the MIME types acceptable to the client, and
AcceptLanguage describes the human language preferred for the response. From has the
e-mail address of the client.

 � B is incorrect because WWW-Authenticate is returned as a response header, to indicate
that authentication details are required from the client. E is incorrect — Client-Agent is made
up. (User-Agent is a real request header, however, and describes the type of client making the
request.) F is incorrect —Retry-After is returned as a response header, not a request header, to
indicate that a service is unavailable and the client should retry after the suggested time or time
interval.

 12. � D is the correct answer — the most likely outcome is an IllegalArgumentException. This
occurs because the request header “Host” is almost certainly present in the request (it’s manda-
tory with HTTP 1.1) but patently doesn’t contain a date (it holds the domain that is the target
of the request). Since the header value can’t be formatted as a date, the exception results.

 � A is incorrect —even if a date was returned from getDateHeader(), the code makes no
attempt to format it. B is incorrect, though close —if the header requested didn’t exist, then
getDateHeader() would indeed return �1. The code compiles just fi ne, ruling out C. E is
incorrect: A NumberFormatException is, however, a possible outcome from getIntHeader().
Finally, F is incorrect: There’s no such thing as a DateFormatException.

 13. � D is the correct answer — there are two compilation errors, both relating to the fi rst line of
code. For one thing, HttpServletRequest.getHeaders() returns all request header names,

so you don’t specify any parameter to the method to narrow down the range. Second, the
method returns an Enumeration, not a String array.

 � A and B are incorrect —getHeaders() doesn’t give rise either to an IllegalArgument
Exception or a NumberFormatException. C is wrong because there are two compilation errors,
not one. E and F— to do with writing to the response —are incorrect because you’d never reach
that point. Furthermore, you would need code to extract the Strings from the Enumeration
returned to actually write header names to the response.

 14. � D is the correct answer —you will get output to the response including at least the name
and value.

 � A is incorrect — there is no compilation error in the call to getCookies(). You may
have thought this returned an Enumeration, as do many other get* methods in the servlet API
(especially when getting a plural number of things). However, a Cookie array is indeed what’s
returned. B is incorrect —you may have thought that getDomain() did not exist in the Cookie
class, but it does. C is incorrect —as a cookie’s value is a mandatory attribute, that should be
present in the list. E and F are incorrect —both answers are perfectly possible (as domain and
path, though optional attributes, are regularly set), but as statements they are not as accurate as
the correct answer.

 15. � C is the correct answer — the one circumstance where HttpServletRequest.getHeaders
(String name) would return null is if the servlet container disallows return of values.

 � A is incorrect —if there are no request headers for the given name, this method returns an
empty Enumeration. B is incorrect —multiple headers for the given header name don’t make
sense. D is incorrect — the whole point of the method is to return multiple values for the given
header name. E is incorrect —if there is only a single value for the given header name, you still
get an Enumeration back containing one String value. F is incorrect because there is such a
method on HttpServletRequest —it returns all the values for a given request header name.

Responses

 16. � A and E are the correct answers. A is correct, for the addCookie() method is part of
HttpServletResponse, not ServletResponse —and accepts a Cookie object as a parameter. You
can also add cookies the hard way, using the addHeader() or setHeader() methods also on
HttpServletResponse —making E correct as well. You pass in a header name of Set-Cookie, and
a formatted String as the value, with the cookie fi elds formatted according to the version of the
cookie standard used.

 � B, D, and F are incorrect, for there are no methods on ServletResponse (the generic servlet
response interface) that have to do with cookies —it’s most defi nitely an HTTP thing. C is

Self Test Answers 89

90 Chapter 1: The Servlet Model

incorrect — there is no overloading on the addCookie() method to allow passing in of a String
directly.

 17. � B and D are the correct answers. A blank page is written to the client (nothing is written to
the PrintWriter, although it’s obtained from the response); “true” is output to the console: once
the PrintWriter is fl ushed and closed, the response is committed.

 � A is incorrect, for there is no IllegalArgumentException. You can put any rubbish into
the parameter of setContentType, but nothing will go wrong in the server code. (However, you
may confuse the client — though again, most browsers are built to be fairly robust faced with
incorrect content types. Some even ignore what’s set and do their own interpretation of the
response.) C is incorrect. You might have thought that the call to setContentType() after the
response was committed would cause an exception resulting in a 500 error code to the client,
but this call is simply ignored. Finally, E is incorrect —“false” isn’t shown on the server console
because the response has been committed at this point.

 18. � E is the correct answer: “What” is returned to the client. The response is committed once
the content length (of 4 bytes) is reached.

 � A is incorrect — there’s nothing wrong with the code that will prevent compilation. B and
C are incorrect — there’s nothing in the code to cause IllegalArgumentException or Illegal
StateException (you might have thought that exceeding the content length would do this, but
additional content is simply ignored). D and F are wrong because the output is as described in
the correct answer. G and H are wrong for the same reason, but as a point of interest, the output
of response.isCommitted() in the output would be “true” at this point.

 19. � A matches to 5: The content type here should be “image/gif.” B matches to 6: This is java.
io revision — the size of a fi le is returned as a long. C matches to 4: HttpServletResponse
.setContentLength() is the method for setting the length of the response, here to match the
size of the fi le. As this method accepts an int, D matches to 7: We have to convert the long
returned from inspecting the fi le length to an int. E also matches to 7: A Reader reads an int
representing a byte from the fi le. Finally, F matches to 9: The OutputStream method is write()
for writing an int (representing a byte) to a fi le.

 � Other matches are wrong, according to the correct answer. It’s worth mentioning that some
other contenders for content type (such as “image/mime”) are made up. “text /plain” exists —
but we’re clearly dealing with a binary fi le here.

 20. � A and F are the correct answers. A shows the easy way to do it: simply invoke the
sendRedirect() method on the response. The code in answer F shows what sendRedirect()
does under the covers — sets an appropriate status code, then sets the Location header with the
URL to redirect to (the container must translate this to a complete URL).

 � B is incorrect — there is no setLocation() method on HttpServletResponse. C is in-
correct —we will encounter the RequestDispatcher class later in the book, but it has no
sendRedirect() method, and doesn’t perform redirection (as such). D is incorrect — the
method name on HttpServletResponse is not redirect(); it’s sendRedirect(). E is incor-
rect —when redirecting the manual way, it’s insuffi cient to set the Location header only: You
have to set an appropriate response status as well, as per the correct answer.

Servlet Life Cycle

 21. � C and D are the correct answers. There can be any number of threads active at one time in
a service() method —it just all depends on the number of client requests and how the servlet
container manages those requests.

 � A is incorrect, though there’s room for some discussion. destroy() should not be run until
all the threads in the service() method end. However, there is a let-out clause that allows a
servlet container to impose a time-out for threads in service() to end. If they are not com-
plete by the end of this time, then destroy() will be called. So it’s fair to say that destroy()
should not cut short service() threads if at all possible, but not fair to say that it will never
cut them short. B is incorrect — only if the servlet implements the deprecated SingleThread
Model interface should threads be single-queued through an instance. We can see from the
declaration that it doesn’t implement this interface (nor should it, being as it’s deprecated).
E is incorrect —even if the servlet is initialized, there is no guarantee that any thread will run
through the service() method. Of course, it’s likely —especially if servlets are lazily initialized
at the point of a user fi rst requesting them —but it’s not always true.

 22. � A, C, F, and G are the correct answers. A servlet is very likely to be instantiated on web
application startup (especially if <load-on-startup> is specifi ed —we learn about this in
Chapter 2). If servlet instantiation doesn’t happen, then it must happen when a client fi rst
requests a servlet. The server may also start and stop servlets on a whim (maybe for memory
management reasons), so a servlet may start at a seemingly arbitrary point. Finally, some servlet
containers will attempt to reinitialize a servlet that fi rst failed with an UnavailableException
(if this is of a temporary nature).

 � B is incorrect. A servlet container just starts up more threads on the same instance. Only if
the servlet container was supporting servlets implementing the deprecated SingleThreadModel
interface could it possibly work as described. D is incorrect — there is no check on servlet depen-
dencies at instantiation stage, and consequent loading of “chains” of servlets. E is incorrect —
there’s no such thing as a server’s keep-alive setting for servlet instances.

Self Test Answers 91

92 Chapter 1: The Servlet Model

 23. � A and E are the correct answers, being true statements. A servlet container should return
an HTTP 404 error when a servlet is not in service, and can return an HTTP 503 error during
a period of unavailability.

 � B is incorrect, for an error can occur during initialization and cause an Unavailable
Exception (subtype of ServletException). C is almost correct —if an UnavailableException
occurs during a run of a servlet’s service() method, then the destroy() method must be
called, true enough —but not if the exception occurs in the init() method. Finally, D is in-
correct: The servlet specifi cation allows containers to treat temporary and permanent unavail-
ability in the same way (removing a servlet from service(); returning HTTP 404 errors).

 24. � B and D are the correct answers. When init() does not complete successfully, the con-
tainer deems this an initialization error, so it’s not appropriate to call destroy(). Also, once
destroy() has been called on a servlet instance, the servlet should be made available for
garbage collection; hence, destroy() cannot be called again on the same instance.

 � A is incorrect, for destroy() is very likely to be called on all servlet instances as a result
of web application closedown. C is incorrect — the number of threads that have executed the
service() method (including zero) has no bearing on whether destroy() is called or not.
Finally, E is incorrect —“hot” replacement of servlet classes very often results in destroy()
being called on the running instance, where the servlet container supports this.

 25. � D and F are the correct answers, for the methods should not be executed in the immedi-
ate sequence shown. In D, if a servlet is destroyed, then the next instance of the same servlet
should not show output from the service() method before init() is called. In F, a “destroy:”
is missing. init() cannot be called again on the same instance, so the implication is that the
same servlet must have been taken out of service; hence, there should be a “destroy:” between
the fi rst “service:” and the second “init:.”

 � A, B, C, and E are incorrect, for they are all perfectly feasible outputs. A (“init:destroy:”)
occurs if a servlet is put into service, then taken out again at some later stage — though no
requests are directed to it. B (“init:destroy:init:destroy”) is an extension of the same idea —just
that after the servlet was taken out of service, it was put back into service again. C (“init:init:
init:”) might occur if a servlet stalls on initialization and the servlet container tries to start it
again. E (“init:service:service:service:service:service:”) is a snapshot of business as usual for a
servlet (prior to destruction)—initialization followed by fi ve requests.

LAB ANSWER
You’ll fi nd the solution fi le lab01.war on the CD, in the /sourcecode/chapter01 directory. Deploy this
according to the instructions in Appendix B. The initial web page to call is postData.html, so for me,
running the Tomcat server at port 8080 on my local machine, a URL of http://localhost:8080/

lab01/postData.html works well. Enter some data in the text fi eld, and press the “Submit Query”
button. You should see what you just typed displayed on a web page. Press the “back” button on your
browser, and repeat the exercise. Now you should see what you typed before as well as what you just
typed on the web page. If you inspect the postData.txt fi le (for me, at <Tomcat Install Directory>/
webapps/ lab01), then all the text you typed in should also be saved there.

Lab Answer 93

