Web Applications

CERTIFICATION OBJECTIVES

° File and Directory Structure v Two-Minute Drill
° Deployment Descriptor Elements Q&A Self Test
° WAR Files

9@ Chapter 2: Web Applications

n Chapter | we saw how J2EE gave us a coding framework for our web applications. But

J2EE also has plenty to say about how to package and deploy applications—nothing is left

to chance! In this chapter you’ll see how to design the correct directory structure for a
J2EE web app, and which files go where. You'll learn about the “deployment descriptor” file,
web.xml, which tells any self-respecting J2EE web container all it needs to know about your web
app. Finally, you'll get to bundle up all the files making up your application into a single “web ar-
chive” or WAR file, making deployment that much easier.

Do not think there is anything optional about these topics, either in the real
world or in the exam! You can’t wash your hands of your web app as soon as the code
is written —you have to package and deploy with the best of them. The good news
is that any decent J2EE IDE does practically all the packaging and deployment as
you code. But because you need to understand what you're doing, we’ll keep things
explicit and hands-on in this chapter.

CERTIFICATION OBJECTIVE

File and Directory Structure (Exam Objective 2.1)

Construct the file and directory structure of a Web Application that may contain (a) static
content, (b) JSP pages, (c) servlet classes, (d) the deployment descriptor, (e) tag libraries,
(f) JAR files and (g) Java class files; and describe how to protect resource files from HT TP

access.

One of the many goals outlined in the J2EE specification is the “portable deployment
of J2EE applications into any J2EE product.” A logical consequence of this goal is
that any one J2EE application should have a structure broadly identical to any other
J2EE application. Sun has standards for this. Although a J2EE web container is free
to impose its own structure, it rarely makes sense for it to do so. And more to the
point, the standard structure is something you are expected to know for the exam.

A Place for Everything and Everything in Its Place

Generally, servers (with J2EE web containers) have a preferred location for web
applications—sometimes more than one. You should generally abide by preferred
locations, but most servers provide a facility to specify any directory whatsoever
as a home for web application contexts. The Tomcat server prefers <TOMCAT

on th?

Qob

File and Directory Structure (Exam Objective 2.1) Q7

INSTALLATION DIRECTORY>/webapps—you’ll see this in action in the chapter
exercises.

Whether or not there is a preferred location, each web application needs its own
home directory, which generally means a directory immediately beneath the pre-
ferred location. All the resources a web application needs go inside this home direc-
tory, or subdirectories beneath it. Once the web application is placed there, how can
we get at those resources? Typically, we point toward them with a URL, usually (but
not exclusively) entered in the address line of a browser, such as

http://host:port/webappcontext/resourcelneed

Let’s look at what different parts of the URL equate to (always assuming that a J2EE
web application is the target):

B host:port—directly or indirectly, this identifies a running instance of an applica-

tion server hosting a J2EE web container.

B webappcontext— this part of the URL uniquely identifies a particular web appli-
cation running within the server. This is the “context root,” and it identifies the

home directory for the web application.

B resourcelneed—any resource available in the web application. This could be
a simple static web page or a servlet returning complex dynamic content; the
request mechanism (resource name in URL) is the same.

In a production environment, the host:port part of the URL rarely points
directly to an application server running a web container. More usually, the
host:port combination identifies an industrial-strength web server, such as
Apache. The web server works out—from the rest of the URL—which re-
quests are appropriate to hand off to the web container.

For web applications running under the same server to be distinguished from
one another, the context root must be unique. There’s no requirement that the
context name match the home directory name, though this is often the case —for
one thing, it keeps organization simple, and for another, many deployment tools
actively encourage this behavior.

HTTP Accessible Resources

Any files directly within the context root are meant to be available to users of your
web application: They are there for the requesting. Here’s a nonexhaustive list of
resources we might expect to find there:

98 Chapter 22 Web Applications

Static HTML files

Dynamic JavaServer Page (JSP) files
Images

Media clips

Stylesheets

B Java applets (and their supporting classes and JARs)

Nothing in the rules says you can’t define your own directories off the context root.
So if you want a directory to store JPEGs and GIFs, create an “images” directory. If
you want another directory to store stylesheet files, create one called “style.” The pro-
cess is no different from defining a typical directory structure for a regular web site.

Special Directories Beneath the Context Root

What do we do, though, with all those files that support the operation of the web
application but that have no business being the direct target of a user request?! These
might include (but are not limited to)

B Servlet class files
B Other class files that support the work of your servlets
B Whole libraries of support code in JAR files

B Configuration files—your own, or those mandated by the servlet specification

The servlet specification strongly recommends that you have a directory called
WEB-INF for these files. The directory is called WEB-INF: capitalized WEB,
hyphen, capitalized INF. Other variants don’t count (Web-Inf, WEB_INF,
web-inf —none of these will do). There are a standard set of directories defined

within WEB-INF:

B /WEB-INF/classes—for classes that exist as separate Java classes (not packaged
within JAR files). These might be servlets or other support classes. Of course,
because your classes are likely to live in packages, the directory structure should
normally reflect that: for example, / WEB-INF/classes/webcert /chapter2/ Well
LocatedServlet.class.

B /WEB-INF/lib—for JAR files. These can contain anything at all— the main serv-
lets for your application, supporting classes that connect to databases—whatever.

B /WEB-INF itself is the home for an absolutely crucial file called web.xml, the
deployment descriptor file. You’ll learn much more about this in the “Deployment
Descriptor Elements” section of the chapter.

FIGURE 2-1
</appSvrRoot /webapps>

A Web Applica-
tion Directory
Structure with
Typical Contents

File and Directory Structure (Exam Objective 2.1) Q9@

index.html

L—» /catalogapp &<——<Jsp>| catalog.jsp

customErrorPage.html

L» /style ——————

style.css

L—» /applet ————— 1010 MyApplet.class

1011
L—» /WEB- INF

<web-app>| web.xml

<tag-1libs| mytags.tld

1010

L—V /classes/webcert/chapter2/ To11

MyOnlyServlet.class

L—' /1ib | 1010 | supportStuff.jar
1011

Again, there is nothing wrong with defining your own directories (or directory
structure) under WEB-INF. You might have, perhaps, a / WEB-INF/xml directory
to house a bunch of XML configuration files that support your application. The
point—especially for exam purposes—is that you can distinguish between the
Sun-specified directories and any other sort.

Two special rules apply to files within the / WEB-INF directory. One is that di-
rect client access should be disallowed with an HTTP 404 (file not found) error.
The second regards the order of class loading. Java classes in the / WEB-INF/classes
directory should be loaded before classes resident in JAR files in the / WEB-INF/lib
directory.

Before doing the exercise at the end of this section, take a look at Figure 2-1,
which shows a web application directory structure. Although sparsely populated,
you can see a selection of different sorts of files and where they belong.

1 00 Chapter2: Web Applications

Datch

Having a directory called to allow for this loophole in the specifica-
WEB-INF is a strong recommendation, but tion. So if you see a question along these
not an absolute obligation. Look out for lines—*“Should a servlet class live in the
questions that ask you to say whether a WEB-INFIclasses directory?”—you are safe
web application must have particular di- to answer “yes.” The expectation is that
rectories. The correct answer is “no”! More files normally do live in the recommended
usually, though, questions will be phrased file structure.

on the

Qob

If you are designing a web container, or working with one that allows flexibil-
ity over the name of the WEB-INF directory, you should still support the usual
naming convention. You may not like the standard, but practically all of the
Java web application universe abides by it. So you’re very much on your own
if you go your own way.

Al

_ONTHECD

Using a Servlet to Look at the Context Path

In this exercise we are going to deploy a small web application containing a single
servlet. By running the servlet, we will see details of the web application’s home
directory and context.

Install and Deploy

I. Start the Tomcat server.

2. In the book CD, find file sourcecode /ch02/ex0201.war.

3. Copy this file to <Tomcat Installation Directory>/webapps.
4,

Observe the messages on the Tomcat console—make sure that it finds
ex0201.war and installs it without error messages.

Explore Directories and Run Servlet

5. Use your file system facilities to confirm that a new directory has been
created: <Tomcat Installation Directory>/webapps/ex0201.

Deployment Descriptor Elements (Exam Objectives 2.2and 2.3) J O |

6. Check under this directory for files in the right places: a couple of JSPs in the
context root and a servlet class file under / WEB-INF/classes.

ﬂ
watch You are very likely to get

questions that require you to spot a mis-
placed file, such as a jsp in the WEB-INF
directory or a class file in a subdirectory
that isn’t WEB-INF/classes.

7.

Now run the servlet. The default URL will
be http://localhost:8080/ex0201/Show
Context. Study the output carefully. Look
at the source code (which is listed to the
web page, but you may find the original file
easier to work with—look under / WEB-
INF/src). Work out which parts of the code
produce which parts of the web page.

CERTIFICATION OBJECTIVES

Deployment Descriptor Elements (Exam

Objectives 2.2 and 2.3)

Describe the purpose and semantics of the following deployment descriptor elements:
error-page, init-param, mime-mapping, servlet, servlet-class, servlet-mapping, servlet-

name, and welcome-file.

Construct the correct structure for each of the following deployment descriptor
elements: error-page, init-param, mime-mapping, servlet, servlet-class, servlet-mapping,

servlet-name, and welcome-file.

Proper file structure is an important part of web application packaging, but the story
does not end there. As we have seen, each web application contains a deployment
descriptor file called web.xml in the WEB-INF directory. We need to start explor-
ing the semantics of this file in gory detail. Again, your IDE will do you no favors.
Chances are your IDE builds the WEB-INF file as you build each web component.
As the IDE fills in deployment descriptor details from wizards or through intelligent
guesswork, you are left in happy ignorance of web.xml detail. The exam, though,
expects you to have developed deployment descriptors from childhood. You need to
memorize the elements, the elements that go inside the elements, and sometimes
the element order. Time to put aside that IDE and go to your text editor!

1 02 Chapter2: Web Applications

This section of the book is the first (but not the last) to examine web.xml ele-
ments. We'll start with some of the more fundamental ones, pertaining to servlets
or the web application as a whole. As we look at different facets of web applications
throughout the rest of the book, their associated deployment descriptor elements
will be introduced.

Overall Structure of the Deployment Descriptor

The first thing to note about the deployment descriptor file is that it’s an XML file.
Given that the name is web.xml, you were probably ahead of me on that one. You
might find it reassuring (or disappointing!) to know that next to no XML knowl-
edge is required for the exam, but we will start this part of the chapter by giving you
enough knowledge to tackle deployment descriptor semantics. With that founda-
tion, we can go on to explore the seven specific deployment descriptor elements
mentioned in the exam objective above.

The Least You Need to Know about XML

If you're reading this book, it’s hard to believe that you have not been exposed to
XML at some point in your development career. However, it can’t do any harm to
pin down some essentials about XML format that assume no previous knowledge
and that will aid your efforts in deconstructing deployment descriptor files.

Let’s start by looking at a minimalist deployment descriptor file, just for the pur-
pose of picking out the XML features. The lines are numbered for ease of reference, as
they might appear in some text editors, but the numbers are not part of the syntax.

01 <?xml version="1.0" encoding="UTF-8"?2>

02 <web-app version="2.4" xmlns=http://java.sun.com/xml/ns/j2ee
03 xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

04 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

05 http://java.sun.com/xml/ns/j2ee/web-app 2 4.xsd">

06

07 <welcome-file-list>

08 <welcome-file>index.jsp</welcome-file>
09 </welcome-file-list>

10

11 </web-app>

Line I This line tells us that the file is an XML file, which version of XML is used,

and what character set is used for encoding the file contents.

Deployment Descriptor Elements (Exam Objectives 2.2 and 2.3) | 03

Lines 2-5 and Line Il These lines define the start and end tags of the root
element <web-app>, together with a number of attributes that define aspects of
the entire document. Every XML document must have a root element to enclose
its contents. So in the case of web.xml, the start tag <web-app> is closed off with
</web-app> on line 11. The start tag contains some attributes (name /value pairs).
For example, the version attribute (version="2.4") marks the document version
being used and matches the version number of the servlet specification. (A short
digression on versions: The exam you are studying for pertains to the J2EE 1.4
standard. However,]2EE 1.4 embraces a whole range of technologies, each with
an associated version number. So J2EE 1.4 has embraced version 2.4 of the servlet
specification, which is what’s reflected in the deployment descriptor document.)
The remaining attributes all have to do with defining an associated “schema”
document. The software, which reads an XML file (an XML Parser), has the op-
tion of validating the document contents against rules defined in the schema
document.

on the Schemas are not the only mechanism by which XML documents can be vali-
Qob dated. Up to and including J2EE 1.3 and version 2.3 of the servlet standard,
web.xml was validated against something called a DTD— or document type
definition. The heading material of the XML file looks slightly different, as
you can see:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app 2 3.dtd">

However, the intention is the same—to have a means of validating the
deployment descriptor. If you have worked on web applications prior to
J2EE 1.4, the good news is that the actual rules for element validation have
changed very little, even if the mechanism has. We’ll examine the few subtle
version differences as we encounter them in the discussion.

Lines 7 and 9 These lines define the start and end tags for <welcome-file-
list>, one of the many immediate children of the root tag <web-app>. XML
works by having pairs of tags nested inside each other, to any depth you like. We’ll
defer talking about what <welcome-file-1ist> actually does for you until later in
the chapter; at the moment, we’ll stick with XML syntax features.

1 04 Chapter 2: Web Applications

Line 8 This line defines the start and end tag for <welcome-file>, child of
<welcome-file-1list> and grandchild of the root element <web-app>. The
start and end tags enclose some character data: index. jsp.

In terms of content, this very brief deployment descriptor tells us that there is one
welcome file, called index.jsp, defined in the welcome file list for this web applica-
tion. Of course, we have many more options available to us for the information we
record about our web application in the deployment descriptor. The next section
opens up the possibilities.

Anatomy of web.xml

The deployment descriptor has, in fact, 27 top-level elements, shown in Figure 2-2.
These top-level elements each contain— on average —a half dozen or so elements,
at various levels of nesting, ranging from the very simple (e.g., <distributable>,

with no nested elements) to <servlet> (with 9 nested elements, some containing

more nested elements).

<display-name> Elements in <bold> are
i <icon> discussed in this chapter.
TriFuthﬁ <distributable>
o Top- eYe <c<?ntext—param> Elements can appear in any
Elements in the <filter>) order, and as many times as
Deployment <fJ..1ter—mapp1ng> required (even not at all). There
Descriptor <listener> are some few exceptions,
P <servlet> . discussed throughout the book.
web.xml <servlet-mapping>

<session-configs>
<mime-mapping>
<welcome-file-list>
<error-page>
<jsp-configs>
<security-constraints>
<login-config>
<security-roles

<env-entry> ‘\\\

<ejb-ref>

<ejb-local-ref>

<service-ref>

<resource-ref>
<resource-env-ref>
<message-destination-ref>
<locale-encoding-mapping-list>

(knowledge of these elements not
K required for the exam) /

N

(OO0

Deployment Descriptor Elements (Exam Objectives 2.2and 2.3) J OS8

Uatch o
A traditional type of “got- of them are! A web.xml file that con-
cha” exam question asks you to identify tains only an empty root element
which of a list of elements within root (<web-app></web-app>) is perfectly
element web-app are mandatory. None legal.

Datch

Differences from Previous Servlet Specification

Good news for examinees: Top-level elements can now appear in any order! For an
earlier version of the exam, I spent a lot of time memorizing sequence. Having said
that, you are probably well advised to follow

the order shown in Figure 2-2. People are very
used to the order from previous versions of the

Sequence still matters servlet specification, so they might be thrown
within the elements inside the top-level by placement of elements radically different
elements—<servlet>, for example. from the established norm.

Some elements that used to be optional
or appear once are now optional and can
(according to schema validation) appear many times. This doesn’t make a lot of
sense in some circumstances. For example, the <distributable> element need
only appear once for the application to be marked distributable — repeating the
element ten times doesn’t make the application any more distributable! The servlet
specification tells you what containers are supposed to do when there is more than
one occurrence of an element that formerly could only appear once, and we’ll draw
attention to the rules in subsequent chapters.

Deployment Descriptor Elements for Servlets

One of the top-level elements in the deployment descriptor is <servlet>. This is a
“complex type” of element because it contains several other elements within itself.
For the exam and for real-life development, it isn’t sufficient just to know the top-
level elements—you’ll need to know the contents as well.

There are several characteristics you can define for a servlet, beyond a simple
name. We'll need to give the deployment descriptor the fully qualified name of the
actual Java class for a start. Other optional subelements control whether the servlet
is loaded when the web container starts, and any security rules in force.

I 06 Chapter2: Web Applications

And we’ll ind that <servlet> is a slight misnomer. Not only can you use the
element to define plain servlets; you can also use it to define a reference to a JSP
(JavaServer Page). (However, as we’ll see later, JSPs are converted to servlets by the
web container, so perhaps the element name isn’t such a misnomer after all.)

A separate element called <servlet-mapping> gives you flexibility over which
URLSs are used to access servlet resources, and we’ll talk about that too.

<servlet> and Its Important Subelements

Figure 2-3 shows the <servlet> element expanded so that you can see how the sub-
elements nest within one another, which ones are optional, and how many times
each can appear. You can see that only the <servlet-name> and <servlet-class>/
<jsp-file> elements are mandatory and that these elements can appear only once
within the <servlet> element. Other elements, such as <load-on-startup>,

are entirely optional. You don’t have to have any <init-param> elements, or you
can have as many as you like. The figure indicates that if you do include an <init-
param>, it must house one <param-name> and one <param-value>.

The ordering of subelements within <servlet> is crucial. We've already noted
that the top-level elements within the root element <web-app> can come in any
order. However, the deployment descriptor schema validates that when it comes to
the elements in <servlet>, then (for example) <servlet-name> must come before
<servlet-class> (and after <icon>, if you choose to include an <icon> element).

m <servlet> <description> 0 or many

) You'll see this optional
<display-name> 0 or many

group of descriptive

The Servlet) -

<icons> <small-icon> Oor | elemen.ts in several
Element 0 places in the DD.
Expanded sy <large-icon> Oor |

~— <servlet-name> |Always |
M— <servlet-class> OR <jsp-file> |Always |

N <init- L
<init-param> <description> Oorl

0 or many <param-name> |Always |

<param-value> |Always |
N— <load-on-startup> Oor |

N - N
<run-as> t<descr1ptlon> 0 or many

Oor | <role-name> [Always |

~— Lty - .
<security-role-ref> <description> 0 or many

0 or many <role-name> [Always |

<role-link> Oor |

Deployment Descriptor Elements (Exam Obijectives 2.2 and 2.3)

m An Example <servlet> Declaration in the Deployment Descriptor

<web-app>
<servlet>

<description>A servlet for predicting the future</descriptions>
<description xml:lang="fr">une servlette pour prédire l'avenir</descriptions>

<display-name>Future Predictor</display-names>

<display-name xml:lang="fr">Pour Prédire L'avenir</display-name>

<icon>
<small-icon>/images/futurep.gif</small-icon>

</icon>

<servlet-name>FutureServlet</servlet-name>

107

Fully qualified name of class—
NB: don’t add.class to the end!

<servlet-class>com.osborne.c02.FutureServlet</servlet-class>

<init-param>

<description>The number of months ahead to predict: default value</descriptions>

<param-name>months</param-name>
<param-value>3</param-value>
</init-param>
<init-param>

<description>How wild to make the prediction: default adjective</descriptions>

<param-name>wildness</param-name>
<param-value>exaggerated</param-value>
</init-param>

<load-on-startup>1</load-on-startup>
</servlet>
</web-app>

run-as and security-role-ref omitted—these make
a comeback in Chapter 5, on web security.

Figure 2-4 completes the picture by showing servlet deployment definitions in
practice: a mostly complete servlet definition for a web.xml file. The more important
start and end tags are in boldface. Just note for now that the servlet is called Future
Servlet and that it maps to the Java class com.osborne.c02.FutureServlet. There are
two initialization parameters, one called months and the other wildness, with values

of 3 and “exaggerated,” respectively.

Let’s take a look at the more important subelements in a bit more detail.

<servlet-name> This subelement defines a logical name for the servlet. There
aren’t many rules for this element, but you should know them. The name must be
unique within the web application. Any string for the name will do, provided it’s

at least one character long. There’s no obligation to make this name the same as

the Java class to which it relates (though people often do use the Java class name

stripped of the fully qualified package parts).

Why do we want to name a servlet anyway? There are many other possible re-
sources in a web application that don’t boast a specially defined name in the deploy-
ment descriptor. However, here are at least a couple of reasons:

B Servlets are normally a protected resource, kept in the WEB-INF/classes direc-

tory, so that direct URL access to the servlet won’t work. The servlet name is part

1 08 Chapter2: Web Applications

of the mechanism by which controlled access to servlets is allowed (you’ll learn

more about this when we look at <servlet-mapping>).

B A logical, unique name for the servlet is a deal less cumbersome than always
referring to a servlet, say, by its fully qualified Java class name. You'll ind that you
can reference a servlet name at various points from elsewhere in the deployment

descriptor.

Should you want to access the servlet name within your own code, you can.
There is a getServletName () method defined in the ServletConfig interface
(which is implemented by GenericServlet, so any inheriting servlet will have the
method available). Here’s a code listing showing how a servlet’s doGet () method
can print the servlet name on the server console:

protected void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException ({
System.out.println(this.getServletName());

}
$atch . . .]
You may think I’m very information from the deployment descrip-

pedantic in pointing out which interface tor (all of which you meet in this section);
defines the getServletName () method Servlet has no methods of this kind; its
(ServletConfig). You might encounter methods are mainly to do with servlet life
questions that ask you to distinguish cycle, which we meet in Chapter 3. How-
whether a method originates from, say, ever you do it, though, you need the meth-
the ServletConfig or the Servlet interface. ods of Servlet memorized for the exam,
Helpful hint: Three of the four methods on together with the interfaces from which
ServletConfig have to do with extracting they originate.

<servlet-class> This subelement defines the fully qualified name of a

Java servlet class. You’ll want this class to be a descendant of GenericServlet or

HttpServlet. Your XML validation software won't tick you off if you violate this

rule, but your web container will choke when it tries to run a nonservlet defined as a

servlet class here. Separate parts of the package name should be separated with dots

(nothing unusual there). On no account put “.class” at the end of the value you enter.
Although the names of servlets (defined in <servlet-name>) have to be

unique, there is no such constraint on servlet classes. You can define the same

Deployment Descriptor Elements (Exam Objectives 2.2 and 2.3) | Q9

servlet class against two or more names, as shown in the deployment descriptor
extract below:

<servlet>
<servlet-name>MyServletHere</servlet-name>
<servlet-class>webcert.chapter2.MyServlet</servlet-class>
</servlet>
<servlet>
<servlet-name>MyServletThere</servlet-name>
<servlet-class>webcert.chapter2.MyServlet</servlet-class>
</servlet>

Why would you want to do this? Although not shown, it’s the only way of supply-
ing separate sets of initialization parameters to the servlet, for starters. It’s also a way
of ensuring a separate running instance of the servlet. Normally, a web container
would deal with any number of requests for the servlet logically known as My
ServletHere by instantiating only one object of the MyServlet type. However, as
soon as the web container received a request for MyServletThere, it would be forced
to instantiate another separate object of MyServlet type. If it’s important, you can
use the getServletName () method to determine which instance you are running.

...or<jsp-file> We don’t meet JSPs (JavaServer Pages) for another few
chapters. When we do, you'll see that—unlike servlets— they are normally located
in the HTTP-accessible regions of a web application. So users typically request a JSP
directly from the web application context root (or a suitable subdirectory).

However, suppose we want a JSP that is not directly accessible, which we keep in
some directory of WEB-INF—for example,

/WEB-INF/secure/concealed. jsp

The direct approach —say, http://localhost:8080/mywebcontext / WEB-INF/secure /
concealed.jsp—rightly results in an HTTP 404 (page not found) error. However,
the following deployment descriptor entries give a means of access:

<servlet>
<servlet-name>ConcealedJSP</servlet-name>
<jsp-file>/WEB-INF/secure/concealed. jsp</jsp-file>
</servlet>
<servlet-mapping>
<servlet-name>ConcealedJSP</servlet-name>
<url-pattern>/allIsRevealed</url-pattern>
</servlet-mapping>

I 10 Chapter2: Web Applications

The full chapter and verse on <servlet-mapping> will follow very soon. Suffice to
say for the moment that the user can now type http://localhost:8080/mywebcontext/
alllsRevealed into her browser and have the JSP returned. One possible reason for
doing this is to conceal the usage of JSPs in the application: The URL gives noth-
ing away. Another is to support existing links that are converted from static pages

to JSPs (so . . . /index.html finds a JSP file). There is no necessity to keep the JSPs
under WEB-INF for this purpose; just set up an appropriate servlet mapping.

<init-param> We saw in Chapter 1 how we can get parameters to a servlet
from the web page <form>, which has the servlet as the subject of its action.
<init-param> gives another means of priming a servlet, but this time the infor-
mation is recorded directly in the deployment descriptor file. We saw in Figure 2-4
the full deployment descriptor details for the FuturePredictor servlet. Here’s the
deployment descriptor for the initialization parameters alone:

<init-param>
<description>The number of months ahead to predict: default value</description>
<param-name>months</param-name>
<param-value>3</param-value>

</init-param>

<init-param>
<description>How wild to make the prediction: default adjective</description>
<param-name>wildness</param-name>
<param-value>exaggerated</param-value>

</init-param>

The <init-param> envelope can repeat as many times as you want parameters
for the servlet. Inside the envelope, we always find two subelements: <param-name>
and <param-value>. These are mandatory, and they represent a key/value pairing:
You use the key of the name to return the value. There can only be one <param-
name>/<param-value> pairing for each <init-param> (if you want another pair-
ing, use a fresh <init-param>). Should you wish, you can place a <description>
before <param-name>.

All we need now is the means of retrieving the information, which is very easy.
The code below uses two servlet methods (originating from the ServletConfig
interface, implemented in the GenericServlet class) to get at the initialization
information. getInitParameterNames () returns an Enumeration of all the pa-
rameter names available to the servlet. Armed with a parameter name, you can use
getInitParameter(String paramName) to return an individual parameter value.

Deployment Descriptor Elements (Exam Objectives 2.2and 2.3) | | |

protected void doGet (HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
/* Local variables to hold parameter values */
int months = 0;
String wildness = "";
/* Iterate through all the initialization parameters */
Enumeration e = getInitParameterNames();
while (e.hasMoreElements()) {
String parmName = (String) e.nextElement();
if (parmName.equals("months")) {
months = Integer.parselnt(getInitParameter (parmName));
}
if (parmName.equals("wildness")) {
wildness = getInitParameter (parmName) ;

}
}

/* Return a page showing the values discovered */

response.setContentType("text/plain");

PrintWriter out = response.getWriter();

out.write("Intialization parameters were 'months' with a value of
+ months + and 'wildness' with a value of '" + wildness + "'");

Because getInitParameter (String paramName) returns a String value, you have
to write your own parsing code to coerce numeric values to their right type —as is
the case with the months parameter.

Finally, there’s no servlet API to get at the optional <description> element
of an initialization parameter. That’s there for the benefit of those responsible for
maintaining the deployment descriptor, and it might show up in a graphical admin-
istrative console.

Jatch

<init-param> appears which makes its appearance in Chap-
elsewhere in the deployment descrip- ter 3. And the trio of subelements—
tor—not just as a nested element within <description>, <param-name>,

<servlet>. Watch out for its very similar = <param-value>—also crop up inside
use as a nested element in <filter>, the <context-param> element.

I 1 2 Chapter2: Web Applications

The <servlet-mapping> element

Although we’ve defined a number of key aspects of the servlet, we haven't yet given
users of our application any means of getting at it as a URL resource. That’s what the
<servlet-mapping> element is for. You might find it surprising that <servlet-
mapping> is not another subelement of <servlet>; instead, it lives as a top-level
element directly off the root <web-app>. Perhaps the designers of the deployment
descriptor thought the <servlet> tag was already too overloaded. You can see in
the following illustration expanding <servlet-mapping> and its subelements that
it’s considerably simpler than the related <serviet> element.

<servlet-name>

<servlet-mapping> [
<url-patterns

The subelement <servlet-name> should tie back to a <servlet-name> de-
fined in a <servlet> element. The <url-pattern> subelement specifies what
the user can expect to type into the URL after the context name and have her
request find the associated servlet. So if the deployment descriptor has the follow-
ing servlet mapping defined:

<servlet-mapping>
<servlet-name>FutureServlet</servlet-name>
<url-pattern>/myfuture</url-pattern>
</servlet-mapping>

And the user types something like the following URL:
http://localhost:8080/webappcontext/myfuture

Then the servlet (or JSP) defined in a corresponding <servlet> tag with a
<servlet-name> of FutureServlet will execute.

$atch
What values are allowed for legal—a URL pattern such as <url-

the URL pattern? You can use almost any pattern>My Servlet</url-pattern>
characters you like. Two things to note: is legal and works. You’ll probably find that
First, carriage returns and line feeds are your browser substitutes a hexadecimal
not allowed. No real surprise there. What representation of the white space charac-
is more surprising is that white space is ter in the address line (%20).

Deployment Descriptor Elements (Exam Obijectives 2.2 and 2.3)

SIDE THE EXAI

URL Mapping Strategies

Actually, we're not quite done with servlet
mapping. The servlet specification builds in
a deal of flexibility into URL patterns, which

you need to know for the exam. There are four

kinds of mapping you can specify. There are
also rules which dictate —in the case of more
than one matching mapping for a URL —
which mapping should take precedence. Let’s
look in more detail.

Exact Path Mapping The URL content
following the context path exactly matches
the URL pattern in the servlet mapping.

Longest Path Prefix The URL content

following the context path is tested against

partial paths specified in URL patterns. The
longest match wins.

Extensions If the last part of the request
URL is a file with an extension (e.g., the
.jsp in /index.jsp), the extension is matched
against any extension-type URL patterns.

Default Servlet If the above map-
ping methods have failed, the server may
have one ace left up its sleeve: the default
servlet.

The following table shows how to specify
the URL patterns to indicate which of the
four match methods is intended, and gives
some examples of URLs that would cause a
match.

How to Form the

URL Pattern

URL Pattern

URLs That Would Match

u/ ”

Exact match /findthis Any string—must begin ~ /findthis
with “/.”
Path match /indthat/ String must begin with /indthat /here
here/* “/” and end in “/*.” /findthat /here /quickly
/findthat /here /quickly/index.html
Extension *jsp String must begin /index.jsp/any
match with “*.” directory/index.jsp
Default / Single forward slash only: ~ (any URL that fell through all

other matching attempts)

Once a match is found according to the

rules above, no further matching is attempted.

And whereas these rules were merely “recom-

mendations” in past versions of the servlet
spec, web containers are now “required” to
support them.

113

I 14 Chapter 2: Web Applications

THE EXAM (cont

Two things to remember: URL patterns extension, for JSP files can’t be served directly.
are case sensitive. A URL of /findthis If you specify your own extension match for
would match a pattern of /findthis, but not “jsp” or an alternative to the default servlet,
/FindThis. Second, servers may have some im- then you will override what the server does:
plicit mappings already set up outside of web [t’s then your web application’s responsibility
.xml—for example, something to trap a “.jsp” to deal with the request.
on the Do you need a <servlet-mapping> to execute a servlet? The answer is

Qob

“not necessarily.” Many web servers have the capability of “serving servlets
by name.” There is nothing particularly magical about this, and it does—in
fact—involve servlet mappings. Imagine your server had a <url-pattern>
set up of Iservlet/*, which mapped on to a servlet called ServietExecutor. This
means that a request such as mycontext/servlet/SomeServletOrOther will
invoke the ServletExecutor servlet. The ServletExecutor servlet determines
that SomeServletOrOther is indeed a servlet within this web application, and
it redirects control to the SomeServletOrOther servlet—even though there is
no mapping necessarily set up for SomeServletOrOther. Convenient as such
a facility is, you will want to switch it off in production environments for
security reasons! This approach may be convenient for development and test
environments, however; it saves some setup in the deployment descriptor.
That said, you will probably be working with an IDE that sets up the deploy-
ment descriptor servlet mappings as part of the servlet creation process.

In such circumstances, the usefulness of serving servlets by name dwindles
somewhat. Added to this, you could argue that it’s not a proper test of your
servlet except in the context of mappings correctly set up in the deployment
descriptor.

Other <servlet> Subelements

There are other elements embedded in the <servlet> tag that we haven't yet
discussed. Some of these will return in future chapters and objectives. Others aren’t
explicitly mentioned in the exam objective, but your knowledge of the <servlet>
tag wouldn’t be complete without them.

Deployment Descriptor Elements (Exam Objectives 2.2and2.3) | | §

We'll start with the trio of <description>, <display-name>, and <icon>.
This is a standard grouping of elements that occurs several times in the deployment
descriptor. For example, these three elements are actually the first three top-level
elements under <web-app> (see Figure 2-2). In that case, they apply to the entire
web application. As subelements of <servlet>, they apply to a particular servlet. As
you might hope, though, they are functionally equivalent wherever they appear.
We'll end this section with elements that are entirely specific to <servlet>.

<description> Optionally, you can enter descriptive text for your servlet in
this tag. There is no API in the servlet packages to retrieve this description. It’s not
for the consumers of your web application; it’s for the benefit of administrators. So a
web container might have an administrative console that chose to display this text
for a deployed web application, for example.

You can include as many descriptions as you want (i.e., separate occurrences of
the description element). What’s wrong with just one, you ask? The reason is to ac-
commodate multiple languages. You can qualify each description element with the
xml:lang attribute, giving a valid two-character country code. If you omit xml:lang,
then a default of xml:lang="en” is presumed. Here’s an extract from a longer web.xml
file, which shows both an English and a French description:

<description>A servlet for predicting the future</description>
<description xml:lang="fr">une servlette pour prédire 1l'avenir</description>

<display-name> The function of <display-name> is very similar to the
<description> element. It’s also meant for use in web container administrative
user interfaces in order to provide a short descriptive name — perhaps less cryptic
than the servlet name, but less expansive than the description text. However, you
can provide any string you want, of course. The same rules apply about language:
You can have as many display names as different languages. Here’s an example:

<display-name>Future Predictor</display-name>
<display-name xml:lang="fr">Pour Prédire L'avenir</display-name>

<icon> This subelement is the last of the descriptive trio. As with the others, it is
entirely optional, and you can have many occurrences. Within the icon element you
can embed a <small-icon> and a <large-icon> element (one, both, or neither).
The element describes a path (from the context root) to an image file (JPG and GIF
are the permitted formats) that might be used by your web container administrative
GUI to display next to your servlet. Example:

I 1 & Chapter2: Web Applications

on the

Qob

<icon>
<small-icon>/images/futurep.gif</small-icon>
</icon>

That concludes the “descriptive trio” of elements. There are three remaining
subelements of <servlet>: <load-on-startup>, <run-as>, and <security-
role-ref>. Actually, we're going to postpone the last two until we discuss security
in Chapter 5, leaving just <load-on-startup>.

<load-on-startup> A web container’s usual practice is to load a servlet at
the point where it is first accessed. In fact, the web container is free to load the serv-
let at any point it regards as suitable. However, by defining the <load-on-startup>
element, the servlet is loaded at the point when the web container starts. Further-
more, you can control the order in which servlets load by the integers you specify as
the values of the <load-on-startup> tags:

B A servlet with a lower number will be loaded before a servlet with a higher
number.

B If the numbers are the same, you’re in the lap of the web container designers—
there are no guarantees on which servlet starts first.

B If the number is negative, the web container can do whatever it pleases regard-
ing loading the servlet: It’s as if the <load-on-startup> element wasn't there
at all.

If a <jsp-file> is specified rather than a <servlet-class>, a <load-on-
startup> setting ensures that the JSP is pre-compiled (turned into a servlet),
then loaded as any other servlet would be.

Before you individually register hundreds of JSPs from your web-app in web
.xml just to force pre-compilation, check out the facilities of your application
server. These days, almost every application server has an option for pre-
compiling JSPs at the point of deploying the application into the server.

Other Deployment Descriptor Elements

Now we’ll turn our attention to some of the deployment descriptor elements that
affect the web application as a whole, as opposed to individual servlets.

Deployment Descriptor Elements (Exam Objectives 22and 2.3) | |7

Welcome Files: <welcome-file-list>

There have probably been many occasions in your life where you have typed in a
web site address into your browser — such as www.osborne.com —and, owing to
some magic in the target web server, you are taken to the resource for a specific
URL, say http://www.osborne.com /index.html. If a J2EE web application is the
object of your request, the chances are that this behavior comes about through
the specification of a welcome file list in the deployment descriptor. Here’s an
example:

<welcome-file-list>
<welcome-file>index.html</welcome-file>
<welcome-file>index.jsp</welcome-file>
<welcome-file>mainlibrary/catalog.jsp</welcome-file>
</welcome-file-list>

To see how this works, we need a set of files and a directory structure for the cor-
responding web application. We’re imagining a library application with a host
of mylibrary.com and a context of catalogapp. Here we see the visible (HTTP-
accessible) directories and files from context root downward.

</appSvrRoot /webapps>

L—» /catalogapp — % index.html
L—» /mainlib —————1<jsp>| style.css
L—» /musiclib ————— 1<jsp>| catalog.jsp
L—» /referencelib —— E index.html
<jsp>| catalog.jsp

Now we need to consider what happens when you request a URL that falls to the
web container to deal with but that doesn’t immediately match a specific resource. A
trailing slash is appended to the URL if not already present. Then each entry in the

I 18 Chapter2: Web Applications

http://mylibrary.com /catalogapp

M “/” appended to URL.

B “index.html”—first welcome-file —
appended to URL.

M catalogapp directory checked for
index.html—found!

B index.html returned to requester.

http://mylibrary.com /catalogapp/mainlib/

B “index.htm]”—first welcome file —
appended to URL.

B mainlib directory checked for index
.html—not found.

B “index.jsp”—second welcome file —
appended to URL.

B mainlib directory checked for index
.jsp—found and returned!

http://mylibrary.com /catalogapp/musiclib/

B “index.htm!”—first welcome file—
appended to URL but not found in
musiclib directory.

B “index.jsp”—second welcome file —
appended to URL but still no match in
musiclib directory.

B “catalog.jsp”— third welcome file —
appended to URL. Found and returned!

http://mylibrary.com /catalogapp/referencelib/

B “index.htm]”—first welcome file —
appended to URL. Found and returned!
B Ewven though catalog.jsp— the third
welcome file—is present in the referencelib
directory, it won't be returned by the wel-
come file mechanism, which will always find
index.html first.

welcome file list is appended —in turn—to this URL and tested for a match against
a specific resource. If the resource is present in the directory, it’s returned to the

requester. Here are some examples:

The rules in the servlet specification state that welcome-file entries must describe
a partial URL with no leading and no trailing slashes. This makes sense when you con-
sider that the entries are appended to a URL that has a trailing slash (either because
the user typed it into the browser or the web server put it in implicitly) and should
match up to a specific resource (not a directory).

Deployment Descriptor Elements (Exam Objectives 2.2and2.3) | | 9

Jatch B . .
It’s very easy to be caught come-file>) or that introduce subtle and
out on the exact wording and nesting incorrect variant spellings (<welcome-
of the tags. Look out for questions that files>). Remember also that the direct
get the element order inside out (<wel- parent of <welcome-file-list>is
come-file-list> nested under <wel- <web-app>, the root element.

Error Files: <error-page>

In Chapter 1 we examined the world of HT TP requests, including the error codes
that crop up when requests go bad. The <error-page> element in the deployment
descriptor gives you customized control over the web page displayed to the user in
the event of requests going wrong. Let’s suppose you have the following set up in
your deployment descriptor:

<web-abb>
<error-page>
<error-code>404</error-code>
<location>/customErrorPage.html</location>
</error-page>
</web-app>

Your context root contains your customErrorPage.html file and a couple of other files.

</appSvrRoot /webapps>

L—) /catalogapp

index.html

<jsp>| catalog.jsp

customErrorPage.html

A user means to request catalog.jsp but erroneously enters the following in his
browser:

http://mylibrary.com/catalogapp/gatalog.jsp

I 20 Chapter2: Web Applications

The request correctly routes to the web application because the context is correct,
but it doesn’t find the specific resource qatalog.jsp. The result is an HT TP 404 error
code, page not found. Instead of returning the standard web server page for this er-
ror, the web container looks for a matching error code in the deployment descriptor’s
list of error codes. A match is found, so the custom error page customErrorPage.html
is set up instead.

There are some important things to note about the deployment descriptor con-
struction:

B <error-page> has <web-app> as its immediate parent.
B <error-code> and <location> both have <error-page> as their parent.

B The resource specified in <location> must start with a “/.” The path described
is from the context root.

Jatch . c
It’s very easy to get the a “l,” whereas those in <welcome-file>
rules for <location> in <error-page> must not begin with a “/.” Neither
confused with <welcome-£file> in should end with a ““l,” of course, because
<welcome-file-1list>. Resources spe- they specify particular resources—files
cified in <location> must begin with and servlets—not directories.

The web container is perfectly capable of generating HT TP status codes when
the conditions are right (or should [say wrong!). We can—in servlet code —
generate our own status or error codes, using the sendError () and setStatus ()
methods on HttpServletResponse. So servlet code like this (to generate a “404”
error):

response.sendError (HttpServletResponse.SC NOT FOUND) ;

would cause the error page mechanism to kick in just as effectively as the user typing
error we saw a few moments ago. And so would

response.setStatus (HttpServletResponse.SC NOT FOUND);

However, it is a bad thing to use setStatus () for anything other than normal
conditions.

on the

Qob

<web-abb>

Deployment Descriptor Elements (Exam Objectives 2.2 and 2.3) |21

You are not limited to specifying static html pages as the location for an error
page. You can specify a servlet to perform any dynamic processing you like.
Just make sure that you specify a location value that will chime in with the
servlet mapping for your dynamic error servlet.

That’s not the end of the story for <error-page>. HTTP status codes are not the
only error page mechanism at your disposal. You can also map plain old Java excep-
tions to particular error pages. In that case, you substitute the <exception-type>
tag for <error-code>:

<error-page>
<exception-type>javax.servlet.ServletException</exception-type>
<location>/customErrorPage.html</location>

</error-page>

</web-app>

If you have a servlet that happens to throw a ServletException at runtime, the web
container will return the custom error page as specified. Take care to specify the full
qualified name of the exception (e.g., javax.servlet.ServletException), though, or
the mechanism will not be triggered, and you’ll get some standard application server
error page instead.

Mime-mapping: <mime-file>

MIME (Multipurpose Internet Mail Extensions) is an Internet standard for describ-
ing media types. By “media,” understand “file”—which could be anything from plain
text to images to movies. Don’t be fooled by the “Mail” part of the MIME acronym:
The standard has been embraced by web servers, application servers, and web brows-
ers everywhere. See http://www.iana.org [assignments/media-types/ for the official
list of MIME types.

We already saw in Chapter 1 how you could set the MIME type of a servlet re-
sponse programmatically. That’s fine and appropriate when the object of your request
is a servlet. However, your web application may serve up other types of resources.
Some are likely to be understood. If I set up plain text files with a .txt extension in
my web application, my web container serves them up to my browser without dif-
ficulty. What if I wanted to serve up my own brand of XML files, though, with an
.xmldavid extension? My application server returns them happily enough, but with
no mime-type, the browser has to do the best it can to figure out the response. How-
ever, if [set up a <mime-mapping> entry in the deployment descriptor as follows:

I 22 Chapter 2: Web Applications

<web-app>
<mime-mapping>
<extension>xmldavid</extension>
<mime-type>text/xml</mime-type>
</mime-mapping>
</web-app>

The client has an opportunity to process the file as an XML file, despite the unusual
extension. I say “opportunity,” because browsers may ignore the MIME-type set in
the response and apply their own rules on processing the content.

',

ON THE CD

Defining Deployment Descriptor Elements

In this exercise we are going to deploy a small web application containing a single
servlet. The servlet isn’t very useful because the supplied deployment descriptor file
is minimal (<web-app></web-app>). You will complete the deployment descriptor
in the course of the exercise and run the servlet.

Install and Deploy

I. Start the Tomcat server.
In the book CD, find file sourcecode /ch02/ex0202.war.
Copy this file to <Tomcat Installation Directory>/webapps.

H WS

Observe the messages on the Tomcat console —make sure that it finds
ex0202.war and installs it without error messages.

5. Delete ex0202.war.

Adjust the Deployment Descriptor

6. Find the deployment descriptor file, web.xml (in <Tomcat Installation Direc-

tory>/webapps /ex0202/ WEB-INF).

7. Using your favorite text editor, amend the file to have a <welcome-file-
list> pointing to index1.jsp, and an <error-page> pointing to error.jsp

for an HT TP status code 404 error.
8. Restart Tomcat.
9. Check that index1.jsp displays for URL http://localhost:8080/ex0202/. (Hint:

If this— or any other page —fails to display, first make sure you clear your

WAR Files (Exam Objective 2.4) |23

browser cache by hitting the refresh button. This applies throughout this and
future exercises!)

10. Check that error.jsp displays for URL http://localhost:8080/ex0202 /notfound
.html. (You may have a problem seeing this page — some browsers have a
habit of substituting their own 404 “page not found” error page instead of
deferring to the server’s page.)

I'l. Stop Tomcat.

12. Re-edit web.xml. Add a servlet definition for servlet class webcert.ch02.
ex0202.ShowlnitParms. Give the servlet any number of initialization param-
eters you like. Don’t forget to add a servlet mapping for the servlet.

13. Restart Tomcat, and call the servlet using your mapping details.

14. If you are really stuck (and only if!), check out the web.solution.xml file in
the / WEB-INF directory of the web application.

CERTIFICATION OBJECTIVE

WAR Files (Exam Objective 2.4)

Explain the purpose of a WAR file and describe the contents of a WAR file, how one may
be constructed.

Web applications get chock-full of directories and files in even the most unambitious
of projects. If you are happy to deploy and manage all those directories and files indi-
vidually, you have more of a taste for configuration management than I do. Fortu-
nately, the J2EE providers thought of that and provided a standard for packaging all
web application components into a single zip-format file whose format is known as
the web archive — or WAR, for short.

Packaging Your Web Application

Provided you have abided by the file and directory naming rules outlined in the first
section of this chapter, packaging your web application is no big deal. You simply
take the contents beneath the context path and zip up the whole structure into

1 24 Chapter 2: Web Applications

one file. The context path itself is not part of the WAR. WARs are designed to be
unzipped into a context path of the deployer’s choosing.

The structure of a WAR file is exactly the same as a Java archive (JAR), which
is in turn the same as a ZIP file. So on a Windows system, a tool such as WinZip is
very useful for interrogating the contents of a WAR file. A zip-type tool is all that’s
required to package and unpackage a WAR file, and, of course, the J2SDK comes
with one supplied in the shape of the “jar” tool.

A WAR Is Not a JAR

Although a WAR file can be produced in the same way as a JAR file, and has the
same underlying file format, it is different. The most obvious difference is the file
extension naming convention: .jar for Java ARchive, and .war for Web (Applica-
tion) ARchive.

JARSs are packaged in a particular way to make it easy for a running JVM to find
and load Java class files. WARSs are packaged for a different purpose: to make it as
easy as possible for a web container to deploy an application.

Several web containers have automatic deployment mechanisms. The server
recommended for this book— Tomcat—has a “webapps” directory. Place a WAR file
in this directory, and Tomcat (by default) will un-jar the contents into the file sys-
tem under the webapps directory. It provides a context root directory with the same
name as the WAR file (but without the .war extension)— then makes the applica-
tion available for use. The interesting contrast here is that WAR files are not neces-
sarily “un-jarred” for use; some web containers run web applications directly from the
WAR file itself. For example, the Sun application server that comes with the J2EE
1.4 download has an “autodeploy” directory. Placing the WAR file there causes the
server to load the constituent parts of the application into memory and available for
use —but doesn’t unzip them.

Either way, | hope you are beginning to see the point of having the WAR file
standard. When it comes to deployment, life is very easy. Get the packaging wrong,
however, and your web container will disown the WAR file in no uncertain manner.

Just before we move on to methods for making WAR files, we need to consider
one last required directory for our web application: META-INF.

The META-INF Directory

In the beginning, WARs were intended to be completely self-contained. Everything
a web application relied on would be packaged in the WAR. This setup was conve-
nient, but it overlooked the fact that many web applications deployed on the same

WAR Files (Exam Objective 2.4) |28

server might make use of many common libraries of code. Including these as JAR
files in every WAR seemed wasteful; if nothing else, it led to huge inflation of WAR
file size. Configuration management was potentially an issue, for updating a common
library JAR file meant duplicating it to every web application that used it.

The solution was to allow web containers to provide a common repository for
code. How and where the web container defines this common repository is specific
to the web container; it may have several. It’s quite a complex business that demands
associated rules to do with class loading. For a good explanation on how one web
container does this— Tomcat — take a look at

http://jakarta.apache.org/tomcat/tomcat-5.0-doc/class-loader-howto.html

For exam purposes, though, you don’t need to know anything of the detail. All you
need is some grasp of the general principle so that the purpose of META-INF is
clearer to you.

Although the rules for storing and loading common code are container-specific,
the mechanism by which a WAR references such common code is a J2EE standard.
Each WAR can now reference the JARs it needs in this common repository by using
an existing mechanism: a manifest file. This file is called MANIFEST.MF, and it
must be located in the META-INF directory in the WAR file.

The essential content of MANIFEST.MF is a list of JARs under a heading of
“classpath.” Suppose you wanted to take advantage of a logging library such as
log4j in your web server’s common repository. You might see an entry in the file
such as this:

Classpath: log4j.jar

Note that only the JAR file name is present; the server knows which specific directo-
ries to search.

There is plenty more you can specify about referenced code in MANIFEST.MF,
such as version information or the vendor that sold (and digitally signed) a code
library. You can find chapter and verse on the standard at

http://java.sun.com/j2se/1.4.2/docs/guide/extensions/

You have to introduce META-INF only at the WAR-making stage, and then
only if you have a need for it. Chances are you will want it available to you in most

Il 26 Chapter2: Web Applications

applications; indeed, most development tools will put it there for you whether you
request it or not.

”

\watch When META-INF is present the META-INF directory. However, the web
in your web application, the same access container should reject any attempt at cli-
rules apply as for WEB-INF. Server-side ent-side access with the regular “page not

code is welcome to access resource filesin found” HTTP error code of 404.

Cross-referencing common code isn’t the only purpose for the META-INF direc-
tory. If you are signing the WAR file for security reasons, or JARs contained in WEB-
INF/lib, the META-INF directory is also the right place to store digital certificates.

Making WARs

Now that we know what a WAR is for and how it’s made up, let’s look a bit more
closely at how we make a WAR. The most obvious method is using the jar tool in
the J2SDK. For the exam you will be expected to know the basic parameters to pro-
vide to jar, both for packaging and unpackaging WAR files.

The jar tool is not the only game in town, however. We'll touch on some other
WAR-making devices that you're more likely to encounter in “real” development
than naked use of the jar command.

Packaging Your Web Application

To run the jar command, you will want a command line. To make things easier,
change directory to the context directory of the web application that you want to
package. You'll need to have your <J2SDK>/bin directory in your PATH. Enter the
following command (for Windows —UNIX is very similar):

jar cvf0 mywarfile.war *.*

This creates a WAR file called mywarfile.war in the context directory, containing all
the files in the context directory and any subdirectories (/ WEB-INF, / WEB-INF/lib,

etc.). The following table explains the parameters:

WAR Files (Exam Objective 2.4) | 27

c Creates the WAR file.

v Verbose: outputs messages on the command line telling you about every
file added.

f A WAR file name will be specified (can be omitted, but you’re unlikely to
want to go there).

0 Don’t compress the file (you would usually omit this).

mywarfile The name of the WAR file to be created. It must follow straight after the

.war “cvf0” group (separated by a space).

% K

The files to include in the WAR file: in this case, everything. Must follow
straight after the WAR file name (separated by a space).

Unpackaging Your Web Application

Unpackaging looks very similar, and it is not usually something you would do manu-
ally anyway, for web servers invariably have their own deployment mechanisms, as
previously explained. If you do want to expand a WAR file manually so that you
know how to for the exam, here are instructions:

B Create a context directory in the relevant part of your web server’s hierarchy.
B DPut the WAR file in the context directory.

B Execute the following command (Windows and UNIX are very similar):

jar xvf mywebapp.war

B Command explanation follows:

X Extracts the contents of the WAR file.

v Verbose: outputs messages on the command line telling you about every
file extracted.

f A WAR file name will be specified.

mywarfile The name of the WAR file to be created. It must follow straight after the

.war “xvf” group (separated by a space).

I 28 Chapter 2: Web Applications

Datch

Another useful command full command might look like this: jar
parameter for the jar command is t, to tf mywarfile.war.
display the contents of a WAR file. The

on the Development Tools (IDEs) often have built-in functionality to export WAR
Qob files directly from your web development environment, and most will do

more than this. Furthermore, if your IDE is lacking, your web server probably
won’t be. Most web servers come with some sort of assembly and packag-
ing tool. You specify the files and directories you want to include using the
tool’s graphical user interface; out pops a WAR file at the other end. These
tools tend to more than just package WARs: They have facilities to build the
deployment descriptor from graphical dialogs and to cope with other aspects
of J2EE: Enterprise Java Beans (EJBs), EAR files, Resource Files . . . the full
story belongs in a separate book!

$atch

In real life, you will use all get the structure in your mind. Just as you
the packaging support tools you can get had to “be the compiler” in the program-
hold of. But don’t neglect to practice more mer exam, you have to “be the assembler”
primitive assembly methods so you really in the web component exam!

Al

ON THE CD

Making and Deploying WARs

In this exercise we are going to jar up a web application, then deploy it.

Make the WAR File

I. Stop the Tomecat server.

2. Using your command line facility, navigate to <Tomcat Installation
Directory>/webapps /ex0201.

WAR Files (Exam Objective 2.4) | 29

3. Use the jar command with appropriate parameters to create ex0203.war,
which zips up all the files from Exercise 2-1.

Adjust the Deployment Descriptor

4. Make a directory under <Tomecat Installation Directory>/webapps called
ex0203.

5. Move the WAR file you made in step 3 to this directory.
6. Use the jar command to extract the contents of the file.

7. Check that the extraction worked: There should be an error.jsp and index1
.jsp directly in the ex0203 directory, as well as a WEB-INF and META-INF

directory.
8. Start the Tomcat server.

9. This application is a clone of Exercise 2-1, deployed to a new context
root—ex0203. Check the deployment by running the ShowContext servlet:

http://localhost:8080/ex0203/ShowContext

CERTIFICATION SUMMARY

In this chapter you have learned a lot about the fundamental structure of web ap-
plications. You are now equipped not just to write servlet code but also to structure

the code and all other resources that make up a web application —by putting them
in the right directory structure and by providing declarative information about them
in the deployment descriptor.

You started by looking at directory structure. You learned that web applications
have a “context path” at their root. By making up a stub URL from the server details
and context path, you saw how you could append a path to find a particular resource
in your web application. You learned that resources meant for public HT TP access
should be placed directly in the directory matching the context path, or in sub-
directories with names of your own choosing off the context root.

You further learned that every web application has a directory called WEB-INF,
which must exist directly in the context root. You saw that any resources kept in

I 30 Chapter2: Web Applications

WEB-INF are not for direct public HTTP access. You learned that, as a minimum,
WEB-INF must contain a file called web.xml— the deployment descriptor for the
application. WEB-INF also has two other officially sanctioned directories: WEB-
INF/classes (for separate Java class files, typically servlets and other supporting code)
and WEB-INF/lib (for JAR files of Java code). You learned that a web container
should look for the classes it needs first in WEB-INF/classes, then in WEB-INF/lib.

You went on to learn about the deployment descriptor file. You examined the
XML structure and several of the more fundamental elements within the file. In
the exercises you set up <servlet> elements, logically defining servlet names
and their corresponding servlet classes. You examined the deployment descrip-
tor elements and code required to access initialization parameters in servlets,
using a combination of <init-param> tags and ServletConfig methods such as
getInitParameter (String paramName) and getInitParameterNames (). You
learned how to set up corresponding <servlet-mapping> elements so that users
of your web applications can enter a URL to access a servlet resource. You learned
about the four different sorts of URL mappings and the order in which they are
processed: exact match, path prefix, extension, and default. You also learned about
some of the more esoteric elements affecting servlets— optional <description>,
<display-name>, and <icon> elements for the benefit of web server administrators
and graphical web server consoles—and the concept of being able to load servlets in
a predefined order determined by <load-on-startup> elements.

After learning about deployment descriptor elements affecting servlets, you
looked at elements that affect the web application as a whole. These include the
<welcome-file-1list>, which gives a web server a possible resource to serve up
when the user requests a directory rather than a specific file. You also met <error-
page>, which allows you to associate customized pages with specific HT TP error
codes (such as 404 —SC_NOT_FOUND) and/or Java exception types. Finally, you
learned about <mime-mapping> and saw how you used this to associate an arbitrary
file extension with a known file type from a predefined list of MIME file types.

In the last section of the chapter, you turned your attention to web archive
(WAR) files. You found out how you could compress your application into a single,
ZIP-format file with a .war extension. In the exercises, you experimented with the
process of deploying WAR files on to the Tomcat server. You also learned how to
handcraft your own WAR files using the jar command with appropriate parameters
(cf mywar.war *.*), and how to use the jar command to reverse the process and
extract the files from a WAR into a web application directory structure on the file
system. You learned that WAR files may contain a META-INF directory (short for
meta-information), which may have a manifest file (MANIFEST.MF) describing

dependencies on common code lying outside of the web application context.

Two-Minute Drill | 3 1

TWO-MINUTE DRILL

File and Directory Structure

a
a

a

Every web application within a web container has a unique context path.

The context path and any directories you choose to create within it contain
resources that are accessible through HTTP.

HTTP-accessible resources in your context path might include but are not
restricted to static HTML files, JavaServer Pages, Java applets and support
code (including JARs), JavaScript files, images, media clips, and stylesheets.

The context path contains a special directory called WEB-INF, which must
contain the deployment descriptor file, web.xml.

A client application may not directly access resources in WEB-INF or its
subdirectories through HT TP—any attempt to do so results in an HTTP 404
(page not found) error.

Server-side web application code is permitted to access files in WEB-INF and
its subdirectories, using methods such as getResourceAsStream(String
path) on the ServletContext interface.

The special directory / WEB-INF/classes contains Java class files—servlets
and supporting code.

The special directory / WEB-INF/lib contains JAR files with supporting
libraries of code.

You can create your own directories as needed under / WEB-INFE.

Apart from those already mentioned (web.xml, class files, JAR files), re-
sources that you expect to find under / WEB-INF include tag libraries (.tld

files—discussed in Chapter 8), configuration files (typically xml or properties
files), and server-side scripts.

Deployment Descriptor Elements

a

a

The deployment descriptor file is called web.xml, and it must be located in

the WEB-INF directory.
web.xml is in XML (extended markup language) format. Its root element is
<web-app>.

web.xml houses other elements, each with a start and end tag, which in turn
may house other elements.

I 32 Chapter2: Web Applications

O At the lowest level of nesting, elements in web.xml have character data.
Example: <web-app><welcome-file-list><welcome-file>index.html

</welcome-file></welcome-file></web-app>.

1 The deployment descriptor is now validated by a schema file (at servlet spec
level 2.4) rather than a DTD (at servlet spec level 2.3). The validation rules
are little altered, though top-level elements can now appear in any order.

[The <servlet> element holds declarative information about a servlet. It has
only two mandatory subelements—<servlet-name>, a logical name for the
servlet, and <servlet-class>, the fully qualified Java class name without the
.class extension.

O A <servlet> element can include zero to many <init-param> elements:
These aid in passing initialization parameter information from the deploy-
ment descriptor to the servlet.

0 Each <init-param> element contains the optional <description> element
and the mandatory <param-name> and <param-value> elements.

0 The ServletConfig interface (implemented by GenericServlet and its
subtypes) contains APIs to get at deployment descriptor information
about the servlet: getServletName (), getInitParameterNames (), and
getInitParameter (String paramName).

O The same servlet class can be declared using different logical names in the
deployment descriptor.

0 Different logically named servlets are implemented as different instances by
the web container (even if the same servlet class is referenced).

A The <servlet> element can define a JSP rather than a servlet. In that case,
the element <jsp-file> is substituted for <servlet-class>.

0 The <servlet-mapping> element provides a means of defining URLs to use
the servlet resources otherwise inaccessible under WEB-INF.

[There are four different sorts of mapping information you can provide in the
<url-pattern> element. The web container processes them in strict order
of precedence: exact path (/exactmatch), path prefix (longest match first)
(/partial /*), extension matching (*.jsp), and default servlet (/).

[d Paths are case-sensitive.

O The <welcome-file-1list> element provides a list of one or more pages to
return when the user types a path that identifies a directory.

Two-Minute Drill | 33

The <error-page> element associates custom error pages with HT TP status
codes and /for Java exception types.

The <mime-mapping> element serves to associate file extensions with offi-
cially recognized file types.

WAR Files

a

a

Web archive (WAR) files provide a convenient means of storing an entire
web application in a single, compressed file.

WAR files must have a .war file extension.

The contents of the context directory and all its subdirectories (including
WEB-INF) should be included in the WAR file, but not the context directory
itself. A WAR file can be installed at any context path.

A WAR file can be created with the jar command, using cf as parameters:
jar cf myapp.war *.*.

A WAR file can be extracted with the jar command, using xf as parameters:
jar xf myapp.war.

A WAR file must contain a META-INF directory, containing a file called
MANIFEST.MF. This lists dependencies on common code JAR files stored
outside of the web application context (but available through a web server’s
own mechanisms).

The META-INF directory can also be used to store security-related resources,
such as signature files and digital certificates.

I 34 Chapter2: Web Applications

SELF TEST

The following questions will help you measure your understanding of the material presented in this
chapter. Read all the choices carefully because there might be more than one correct answer. The
number of correct choices to make is stated in the question, as in the real SCWCD exam.

File and Directory Structure

I. Which of the following directories are legal locations for the deployment descriptor file? Note
that all paths are shown as from the root of the machine or drive. (Choose two.)

A. /WEB-INF

B. /appserverlnstallDirectory/webapps/webappName/WEB-INF/xml
C. /appserverlnstallDirectory/webapps/webappName/ WEB-INF

D. /appserverlnstallDirectory/webapps/webappName/ WEB-INF/classes

2. What would be the best directory in which to store a supporting JAR file for a web application?
Note that in the list below, all directories begin from the context root. (Choose one.)

/ WEB-INF

[/ WEB-INF/classes
[jars

/web-inf/jars
J/CLASSES

/ WEB-INF/lib
/lib

None of the above.

IommoONw® >

3. What's the likely outcome of a user entering the following URL in her browser? You can as-
sume that index.html does exist in /| WEB-INF/html, where / WEB-INF/html is a directory

off the context root, and that the server, port, and context details are specified correctly.

(Choose one.)

http://localhost:8080/mywebapp/WEB-INF/html/index.html

A. Because the file is an HTML file, the web application serves it back to the browser.

B. An HTTP response code in the 500 range is returned (server error).

Self Test |35

C. An HTTP response code of 403 is returned to indicate that the server is not allowed to
serve files from this location.

D. An HTTP response code of 404 returned to indicate that the requested resource has not
been found.

E. None of the above.
4. (drag-and-drop question) In the following illustration, match the numbered files on the right to

the appropriate lettered locations on the left. All files must find a home, so you will have to use
some of the lettered locations for more than one file.

</appSvrRoot /webapps> 1 | web . xml

L—» /catalogapp

2 | mytags.tld

8 index.html

a2]
3	MyServlet.class
4	MyApplet.class
5	catalog.jsp
6	customErrorPage.html
L» /WEB-INF ———	
7	supportStuff.jar

L—» /classes/webcert/chapter2/

L» /ib []

5. Identify which of the following are true statements about web applications. (Choose three.)

A. The only way to access resources under the / WEB-INF directory is through appropriate
servlet mapping directives in the deployment descriptor.

w

Server-side code has access to all resources in the web application.

)

Clients of web applications can'’t directly access resources in / WEB-INF/tld.
D. A good place to keep a .tld (tag library file) is directly in the / WEB-INF directory.

I 36 Chapter2: Web Applications

Deployment Descriptor Elements

6. See the extract from web.xml below:

<servlet-mapping>
<servlet-name>ServletA</servlet-name>
<url-pattern>/</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>ServletB</servlet-name>
<url-pattern>/bservlet.html</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>ServletC</servlet-name>
<url-pattern>*.servletC</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>ServletD</servlet-name>
<url-pattern>/dservlet/*</url-pattern>

</servlet-mapping>

Given that a user enters the following into her browser, which (if any) of the mapped servlets
will execute? (Choose one.)

http://myserver:8080/mywebapp/Bservlet.html

ServletA
ServletB
ServletC
ServletD

The answer is dependent on the web container you use.

mmgogQnN®w>»

None of the above: A 404 “page not found error” will result.

7. What is the parent tag for <welcome-file-1ist>! (Choose one.)
A. <welcome-file>

<web-app>

None — the tag doesn't exist.

<welcome-files>

moOw

<servlet>

Self Test |37

8. Which of the following are true statements about the deployment descriptor for a web applica-
tion? (Choose two.)

At least one <servlet> element must be present.

<welcome-file> is a child element of <welcome-file-1list>.

<web-application> is the root element.

<servlet> elements must all be declared before <servlet-mapping> elements.

moQNw® >

At least one element must be present.

9. (drag-and-drop question) Complete the missing lettered elements from the deployment de-
scriptor in the following illustration, using the numbered choices on the right. You will not
have to use all the numbered choices but may have to use some more than once.

<servlet>

<[A >Question 09 Servlet</[A |»
<display-name>Question09</display-name>
< B I>Question09</[__ B >
<[¢ Jscom.osborne.| D)</ [¢] >
<init-param>

{ __E PmyParm</[E_ >

< F I>myAttribute</ F >

</init-params> | 9 | description |
<load-on-startup>10</load-on-startup>
</servlet> | 10 | desc
<servlet-mapping>
<6 T-ouestion0s</[_& | 12 | param-attribute |
< H J>/Question09</__E >
</servlet-mapping> | 12 | jsp-class
| 1 | servlet-name | | 13 | parm-name
| 2 | servletname | | 14 | param-attribute
| 3 | servlet-id | | 15 | parm-attribute
| 4 | Question09 | | 16 | parm-attribute
| 5 | Q09.class | | 17 | param-value
| 6 | servlet | | 18 | parm-value
| 7 | servlet-mapping | | 19 | url-pattern
| 8 | url-mapping | | 20 | servlet-class

I 38 Chapter2: Web Applications

10. What of the following represents a correct declaration of a servlet in the deployment descriptor?

(Choose one.)

A.
<servlet>
<servlet-class>MyServlet</servlet-class>
<servlet-name>MyServlet</servlet-name>
</servlet>
B.
<servlet>
<servlet-name>MyServlet</servlet-name>
<servlet-class>MyServlet.class</servlet-class>
</servlet>
C.
<servlet>
<description>My Servlet</description>
<servlet-name>MyServlet</servlet-name>
<servlet-class>MyServlet</servlet-class>
</servlet>
D.
<servlet>

<servlet-class>MyServlet</servlet-class>
<jsp-file>index.jsp</jsp-file>
</servlet>

Il. Given five servlets with <load-on-startup> value set as follows, and declared in the following
order in the deployment descriptor,

B ServletA: 1
M ServletB: 0
B ServletC: 1
B ServletD: 1

B ServletE: no value set for <load-on-startup>

Self Test | 39

Identify true statements from the list below. (Choose one.)
A. ServletA will load before ServletB.
ServletB will load before ServletC.
ServletC will load before ServletD.
ServletD will load before ServletE.
ServletA will load before ServletE.

moOow

What will be the outcome of compiling and deploying the servlet code below? (You can assume
that correct import statements are provided and that the servlet lives in the default package.
Line numbers are for ease of reference and are not part of the code.)

11 public class NameServlet extends HttpServlet {
12 protected void doGet (HttpServletRequest request,

13 HttpServletResponse response) {
14 out.write(getServletName());
15 }

16 }

Will not compile because the doGet () method doesn’t throw the correct exceptions
Will not compile for some other reason

When run, terminates with a ServletNotFoundException at line 14

Outputs “NameServlet”

Outputs the contents of the corresponding <servlet> element

mmonw®»

Outputs the contents of the corresponding <servlet-name> element

Assume that there is a file called secure.txt, located at / WEB-INF/securefiles, whose contents
are “Password=WebCert.” What statements are false about the result of compiling and running
the following code?

11 public class CodeTestServlet extends HttpServlet {
12 protected void doGet (HttpServletRequest request,

13 HttpServletResponse response) throws IOException {

14 ServletContext sc = getServletContext();

15 InputStream is = sc.getResourceAsStream("/WEB-" +

16 "INF/securefiles/secure.txt");

17 BufferedReader br = new BufferedReader (new InputStreamReader(is));
18 System.out.println(br.readLine());

19 }

20 }

140 Chapter2: Web Applications

The code will not compile.

A RuntimeException will occur at lines 15/16.

An IOException will occur at line 18.

The string “Password=WebCert” will be returned to the requester.
A, B, and C above.

B, C, and D above.

A, B, C, and D above.

OmMmMoON® >

14. Given the following deployment descriptor:

<web-app>
<servlet>
<servlet-name>InitParams</servlet-name>
<servlet-class>com.osborne.c02.InitParamsServlet</servlet-class>
<init-param>
<param-name>initParm</param-name>
<param-value>questionl4</param-value>
</init-param>
</servlet>
</web-app>

What is the outcome of running the following servlet? (Choose one.)

public class InitParamsServlet extends HttpServlet {

protected void doGet (HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException
ServletContext sc = this.getServletContext();
PrintWriter out = response.getWriter();
out.write("Initialization Parameter is: "

+ sc.getInitParameter("initParm"));
}
}

A runtime error
“Initialization Parameter is: null” written to the console
“Initialization Parameter is: question14” returned to the requester

“Initialization Parameter is: null” returned to the requester

mon® >

“Initialization Parameter is: question14” written to the console

Self Test |41

I5. Which of the following methods derive from the ServletConfig interface? (Choose three.)
A. ServletContext getServletContext()

String getInitParameter(String name)

MapEntry getInitParameterEntry ()

Iterator getInitParameterNames/()

moQO w

String getServletName()

16. Which of the following is a valid way to set up a mime mapping in the deployment descriptor?
(Choose one.)

A

<mime-mapping-list>
<mime-type>text/plain</mime-type>
<extension>txt</extension>

<mime-mapping-list>

<mime-mapping-list>
<extension>.txt</extension>
<mime-type>text/plain</mime-type>

<mime-mapping-list>

<mime-mapping>
<mime-type>txt</mime-type>
<extension>text/plain</extension>
<mime-mapping>

<mime-mapping>
<extension>txt</extension>
<mime-type>text/plain</mime-type>
<mime-mapping>

7. Which of the following servlet methods can return null? (Choose one.)
A getInitParameterNames ()
getInitParameter (String name)

B
C. getServletName()
D. getServletContext()

142 Chapter2: Web Applications

WAR Files

18. Identify correct statements about the META-INF directory from the list below. (Choose three.)

A. META-INF is a suitable location for storing digital certificates.
META-INF is used as a repository for common code.

The MANIFEST.MF file is found in the META-INF directory.

The deployment descriptor file is found in the META-INF directory.
META-INF is not directly accessible to clients.

moOw

19. Identify correct statements about WAR files from the list below. (Choose three.)

A. A META-INF directory will be present in the WAR file.
B. A WEB-INF directory will be present in the WAR file.

C. A web container can’t work directly from a WAR file; it must be extracted (unzipped) into
the file system.

D. A WAR file is in ZIP file format.
20. Consider the following list of files in a web application, where myApp is the context path:

/devDir/myapp/index.jsp
/devDir/myapp/WEB-INF/web.xml
/devDir/myapp/WEB-INF/classes/webcert/ch02/SomeServlet.class

Which of the following sets of instructions will build a correctly formed web archive file?
(Choose one.)

A. None of the sets of instructions will build a valid WAR file until /webcert /ch02/Some
Servlet.class is moved to the WEB-INF/lib directory.

Change directory to /devDir; execute jar tvf myapp.war *.*

Change directory to /devDir/myApp; execute jar cvf myapp.jar *.*

Change directory to /devDir/myApp/ WEB-INF; execute jar xvf myapp.war *.*

moOw

Change directory to /devDir/myApp; execute jar cvf someapp.war *.*

Lab Question |43

LAB QUESTION

[t’s your turn now to develop a web application from scratch! Develop a servlet that displays its name
back to the user. Register this same servlet class three times in the deployment descriptor. Prove to
yourself (through extra code in the servlet) that by calling servlets with different names, you are
genuinely getting different instances of the servlet (i.e., separate Java objects). One way of doing this
is to place an instance variable in the servlet that keeps a count of how many times the servlet has

been called.

144 Chapter2: Web Applications

SELF TEST ANSWERS

File and Directory Structure

M A and C are the correct answers. The deployment descriptor file, web.xml, must go directly
in the WEB-INF directory. A looks strange —it would be peculiar, not to say foolish, to have
the context of a web app located in the root directory —but it is still legal.

B is incorrect; though it’s perfectly OK to create a directory called xml within WEB-INF to
keep your own configuration files, it is not OK to have web.xml housed there. D is incorrect be-
cause although WEB-INF/classes is a standard J2EE-defined directory, it’s meant for Java classes
(such as servlet classes), not web.xml.

M Fis the correct answer. WEB-INF/lib is the right place for supporting JAR files, though you
can include JAR files in the META-INF directory as well.

® The remaining answers are incorrect. Only A, B, and the correct answer, F, define directo-
ries found in the servlet specification. D is wrong on two counts, one of which is that the case

is wrong (the directory is WEB-INF in capitals), and the other is that you’re welcome to have

a subdirectory called “jars,” but there’s no standard to say that the web container should look
there. C and G come straight off the context root, which is the publicly accessible area. Finally,
H is wrong because there is a correct answer!

M D. A 404 response code should be returned: resource not found. That way, the server masks
the fact that a resource even exists at the location specified (as it does in this example).

A tries to fool you into thinking that certain types of file will be served from WEB-INF
and its subdirectories: incorrect. B (a 500 range error) is reserved for genuine server problems
(uncaught exceptions in servlet code). C (a 403 error) sounds reasonable; you might expect a
“nonauthorized” type message. But that reveals that there is a resource to get at. E is incorrect
because there is a correct answer.

M A is the location for 4, 5, 6, and 8: static HTML (including custom error pages), Java
Server Pages, and applet classes should live in the context directory (or—not shown in the
picture —a directory that isn’t WEB-INF under the context directory). B is the location for

1 and 2: The deployment descriptor web.xml must be located here, and tag library descriptors
(.tld files) can be located here or a subdirectory of WEB-INF. C is the location for 3, a servlet
class file: under / WEB-INF/classes, in its own package directory. D is the location for 7: / WEB-
INF/lib is for supporting JAR files.

Other combinations are ill-advised or won’t work at all.

Self Test Answers | 4.5

5. M B, C, and D. Server-side code can get at anything in the web application, even resources
under the WEB-INF directory. Clients can'’t directly access resources under WEB-INF/tld (don’t
be thrown by the fact the WEB-INF/tld isn’t an “official” directory; it’s perfectly OK to invent a
directory called tld, and because it’s under WEB-INF, clients can’t get at it).
& A is incorrect. The only way for a client-side application to access resources under WEB-
INF is through a servlet mapping, true enough. But server-side code can get directly at those
resources through, for example, ServlietContext.getResourceAsStream(String path).

Deployment Descriptor Elements

6. M A is correct. ServletA—set up for the default mapping of “/"—will execute.
& B is incorrect because BServlet.html does not match the URL pattern for ServletB in
terms of case sensitivity. C and D don’t have mappings remotely similar to the URL requested.
E is incorrect because mapping behavior is not permitted to be server-specific since the 2.4 serv-
let spec. Finally, F is incorrect —because a default servlet mapping is set up, you will never get a
404 error (unless you code the default servlet to return a 404 error).

7. M B.<welcome-file-1list> nests directly under the root element <web-app>.
& A is incorrect because <welcome-file> is the child of <welcome-file-1ist>. D is
incorrect because <welcome-files> does not exist. Answer C tries to persuade you that <wel-
come-file-1list> doesn'’t exist, but it does. E encourages you to think that <welcome-file-
list> is a subelement of <servlet>; of course, it’s not, as it pertains to the whole application,
not just one particular servlet.

8. M BandE. <welcome-file> is the child of <welcome-file-1ist>. And there does have to
be one element in web.xml: the root element (<web-app></web-app>).
& A is incorrect because you don’t have to have a <servlet> element, or indeed any element
except for the root element. C is incorrect because <web-app> is the root element, not <web-
application>. D is incorrect because, since servlet spec 2.4 (in J2EE 1.4), order no longer
matters: Elements can come in any order. That said, Tomcat (the reference implementation)
server objects to referencing the servlet in a <servlet-mapping> before it is declared in a
<servlet> element—you can, however, have the elements alternating so that servlet map-
pings are kept close to their associated servlets.

9. M A mapsto9 (description), B to 1 (servlet-name), C to 20 (servlet-class), D to 4
(Question09 — the answer most likely to be a class name without the extension .class),
E to 16 (param-name), F to 17 (param-value), G to 1 (servlet-name —again), and H to
19 (url-pattern).
& Other combinations are incorrect.

146 Chapter2: Web Applications

10.

15.

M Cis the correct answer. All the elements are correctly specified, in the correct order.

A, B, and D are incorrect. A reverses the <servlet-name> and <servlet-class> tags
(order does matter within the <servlet> element). B has correct element order but incorrectly
appends “.class” to the servlet name. D is almost correct but for the fact that the JSP file should
be expressed from the context root and so begin with a leading slash, thus: <jsp-file>/index
.jsp</jsp-file>.

M B. The web container must guarantee that ServletB, with a <load-on-startup> value of
0, loads before ServletA, with a <load-on-startup> value of 1.

& A is incorrect because servlets with a negative <load-on-startup> value have an inde-
terminate load time — probably on first user access, but not guaranteed. Servlets with no load-
on-startup value are indeterminate in the same way; hence, answers D and E are incorrect. C is
incorrect because there is no guarantee that servlets with the same <load-on-startup> value
will load in their declared order in the deployment descriptor.

M B. It won’t compile for other reasons— the reason being simply that the out variable is not
declared (it’s presumably meant to be the PrintWriter obtained from HttpServletResponse).

A is incorrect because it’s OK to throw fewer exceptions on a method than are in your
superclass. C is incorrect because the code will never run, and in any case there isn’t such a
thing as ServletNotFoundException. D could be correct if the code compiled: If the servlet isn’t
registered in web.xml, the class name is returned from getServletName(). In the same way,

F would be correct if code compiled and the servlet was registered. E would never be correct;
the <servlet> element contains a lot else besides the servlet name.

M G is the correct answer, for all of A, B, C, and D are false statements. A is false because the
code will compile. B is false because there’s nothing wrong with the method call and the path to
the file is correctly stated. C is false; although an IOException is always possible from 1O-based
methods, it mostly won't happen. D is false because the string read from the file is not returned
to the requester, but output to the server console.

® A, B,C,D,E, and F are incorrect answers, following the reasoning in the correct answer.

M D. Although there is a correctly set up initialization parameter for the servlet in the deploy-
ment descriptor, the code is looking for a context parameter. There isn’t one set up, and null is
returned.

& A is incorrect; the code runs fine. B and E are incorrect, for nothing is written to the
console — the output is to the response’s PrintWriter, and so it is returned to the requester.

C would be right if the code was set up to return the servlet’s initialization parameter.

M A, B, and E. All are correct signatures for methods on the ServletConfig interface.

Self Test Answers | 47

& Cis incorrect; there’s no such method as getInitParameterEntry(). D is incorrect:
ServletConfig does have a method called getInitParameterNames (), but it returns a good
old-fashioned Enumeration, not an Iterator.

16. M D is the correct answer. This has the correct element names and sequence and content for a
<mime-mapping>.
& A and B are incorrect because both have the wrong-named outer element, <mime-mapping-
list>. In addition, A reverses the <extension> and <mime-type> elements, and B—while
«»

getting the order correct—declares the extension content with a “.” (it must be specified as
“txt,” not “.txt”). C is incorrect only in that <mime-type> and <extension> are reversed.

7. M B.If an initialization parameter name does not exist, getInitParameter(String name)
returns null.
A is incorrect because getInitParameterNames () returns an empty Enumeration if
there are no servlet initialization parameters declared in the deployment descriptor. C is in-
correct because getServletName () always returns some name or other: Even if the servlet
is undeclared, it will return the class name of the servlet. D is incorrect because there must
always be a ServletContext to return (no servlet can operate in a vacuum).

WAR Files

18. M A, C,andE. It’s the right place for digital certificates and the MANIFEST.MF file. Like
WEB-INF, client access to META-INF should be rejected with an HTTP 404 error.
B is incorrect because META-INF isn’t used to store common code across web applications;
the MANIFEST.MF text file within it references common code via classpath entries. D is incor-
rect because the deployment descriptor file web.xml is kept in WEB-INF, not META-INF.

19. M A, B,and D. A might surprise you, and there are plenty of WAR files around without a
META-INF directory that deploy OK on most web servers. However, the servlet spec section
9.6 does say that META-INF “will be present.”
® Cis incorrect. Although most web servers do expand WAR files into the file system (like
Tomcat), it’s not a requirement. The Sun application server (part of the J2EE 1.4 reference
implementation) doesn’t expand WAR files, but runs the application directly from the WAR file
itself.

20. M E is the correct answer. Note that the WAR file name need bear no relation to the context
path.
Bl A is incorrect, for the servlet class is in entirely the right place. Only if it was in a JAR file
should it be present in / WEB-INF/lib. B is incorrect because you shouldn’t be zipping up the

148 Chapter2: Web Applications

context directory itself, only the contents of the context directory and below. C is incorrect
because the file created has a .jar extension, and a WAR file must have a .war extension. D is
incorrect because you can’t just wrap up the WEB-INF directory; you need all the web content
in the directory above, the context root.

LAB ANSWER

Deploy the WAR file from the CD called lab02.war, in the /sourcecode /chapter02 directory. This
contains a sample solution. You can call the servlets using a URL such as http://localhost:8080/
lab02/ServletA (or ../ServletBor ../Servletc). The source for the servlet is included in the
WEB-INF/src directory. If you experience strange behavior even though your code and deployment
descriptor look right (counts not incrementing, perhaps), then do make sure you refresh your browser
cache as you make repeat calls to each servlet URL and after redeployment of the WAR file.

