
CERTIFICATION OBJECTIVES

2
Web Applications

 • File and Directory Structure

 • Deployment Descriptor Elements

 • WAR Files

 ✓ Two-Minute Drill

 Q&A Self Test

96 Chapter 2: Web Applications

In Chapter 1 we saw how J2EE gave us a coding framework for our web applications. But
J2EE also has plenty to say about how to package and deploy applications—nothing is left
to chance! In this chapter you’ll see how to design the correct directory structure for a

J2EE web app, and which fi les go where. You’ll learn about the “deployment descriptor” fi le,
web.xml, which tells any self-respecting J2EE web container all it needs to know about your web
app. Finally, you’ll get to bundle up all the fi les making up your application into a single “web ar-
chive” or WAR fi le, making deployment that much easier.

Do not think there is anything optional about these topics, either in the real
world or in the exam! You can’t wash your hands of your web app as soon as the code
is written —you have to package and deploy with the best of them. The good news
is that any decent J2EE IDE does practically all the packaging and deployment as
you code. But because you need to understand what you’re doing, we’ll keep things
explicit and hands-on in this chapter.

CERTIFICATION OBJECTIVE

File and Directory Structure (Exam Objective 2.1)
Construct the fi le and directory structure of a Web Application that may contain (a) static
content, (b) JSP pages, (c) servlet classes, (d) the deployment descriptor, (e) tag libraries,
(f) JAR fi les and (g) Java class fi les; and describe how to protect resource fi les from HTTP
access.

One of the many goals outlined in the J2EE specifi cation is the “portable deployment
of J2EE applications into any J2EE product.” A logical consequence of this goal is
that any one J2EE application should have a structure broadly identical to any other
J2EE application. Sun has standards for this. Although a J2EE web container is free
to impose its own structure, it rarely makes sense for it to do so. And more to the
point, the standard structure is something you are expected to know for the exam.

A Place for Everything and Everything in Its Place
Generally, servers (with J2EE web containers) have a preferred location for web
applications — sometimes more than one. You should generally abide by preferred
locations, but most servers provide a facility to specify any directory whatsoever
as a home for web application contexts. The Tomcat server prefers <TOMCAT

INSTALLATION DIRECTORY>/webapps—you’ll see this in action in the chapter
exercises.

Whether or not there is a preferred location, each web application needs its own
home directory, which generally means a directory immediately beneath the pre-
ferred location. All the resources a web application needs go inside this home direc-
tory, or subdirectories beneath it. Once the web application is placed there, how can
we get at those resources? Typically, we point toward them with a URL, usually (but
not exclusively) entered in the address line of a browser, such as

http://host:port/webappcontext/resourceIneed

Let’s look at what different parts of the URL equate to (always assuming that a J2EE
web application is the target):

■ host:port—directly or indirectly, this identifi es a running instance of an applica-
tion server hosting a J2EE web container.

■ webappcontext— this part of the URL uniquely identifi es a particular web appli-
cation running within the server. This is the “context root,” and it identifi es the
home directory for the web application.

■ resourceIneed—any resource available in the web application. This could be
a simple static web page or a servlet returning complex dynamic content; the
request mechanism (resource name in URL) is the same.

In a production environment, the host:port part of the URL rarely points
directly to an application server running a web container. More usually, the
host:port combination identifi es an industrial-strength web server, such as
Apache. The web server works out—from the rest of the URL—which re-
quests are appropriate to hand off to the web container.

For web applications running under the same server to be distinguished from
one another, the context root must be unique. There’s no requirement that the
context name match the home directory name, though this is often the case —for
one thing, it keeps organization simple, and for another, many deployment tools
actively encourage this behavior.

HTTP Accessible Resources
Any fi les directly within the context root are meant to be available to users of your
web application: They are there for the requesting. Here’s a nonexhaustive list of
resources we might expect to fi nd there:

File and Directory Structure (Exam Objective 2.1) 97

98 Chapter 2: Web Applications

■ Static HTML fi les

■ Dynamic JavaServer Page (JSP) fi les

■ Images

■ Media clips

■ Stylesheets

■ Java applets (and their supporting classes and JARs)

Nothing in the rules says you can’t defi ne your own directories off the context root.
So if you want a directory to store JPEGs and GIFs, create an “images” directory. If
you want another directory to store stylesheet fi les, create one called “style.” The pro-
cess is no different from defi ning a typical directory structure for a regular web site.

Special Directories Beneath the Context Root
What do we do, though, with all those fi les that support the operation of the web
application but that have no business being the direct target of a user request? These
might include (but are not limited to)

■ Servlet class fi les

■ Other class fi les that support the work of your servlets

■ Whole libraries of support code in JAR fi les

■ Confi guration fi les —your own, or those mandated by the servlet specifi cation

The servlet specifi cation strongly recommends that you have a directory called
WEB-INF for these fi les. The directory is called WEB-INF: capitalized WEB,
hyphen, capitalized INF. Other variants don’t count (Web-Inf, WEB_INF,
web-inf — none of these will do). There are a standard set of directories defi ned
within WEB-INF:

■ / WEB-INF/classes —for classes that exist as separate Java classes (not packaged
within JAR fi les). These might be servlets or other support classes. Of course,
because your classes are likely to live in packages, the directory structure should
normally refl ect that: for example, / WEB-INF/classes/webcert /chapter2/ Well
LocatedServlet.class.

■ / WEB-INF/ lib —for JAR fi les. These can contain anything at all— the main serv-
lets for your application, supporting classes that connect to databases —whatever.

■ / WEB-INF itself is the home for an absolutely crucial fi le called web.xml, the
deployment descriptor fi le. You’ll learn much more about this in the “Deployment
Descriptor Elements” section of the chapter.

Again, there is nothing wrong with defi ning your own directories (or directory
structure) under WEB-INF. You might have, perhaps, a / WEB-INF/xml directory
to house a bunch of XML confi guration fi les that support your application. The
point —especially for exam purposes —is that you can distinguish between the
Sun-specifi ed directories and any other sort.

Two special rules apply to fi les within the / WEB-INF directory. One is that di-
rect client access should be disallowed with an HTTP 404 (fi le not found) error.
The second regards the order of class loading. Java classes in the / WEB-INF/classes
directory should be loaded before classes resident in JAR fi les in the / WEB-INF/ lib
directory.

Before doing the exercise at the end of this section, take a look at Figure 2-1,
which shows a web application directory structure. Although sparsely populated,
you can see a selection of different sorts of fi les and where they belong.

</appSvrRoot/webapps>

/catalogapp

/style

/applet

/WEB-INF

/classes/webcert/chapter2/

/lib

<jsp>

<web-app>

<tag-lib>

index.html

catalog.jsp

customErrorPage.html

style.css

MyApplet.class

web.xml

mytags.tld

MyOnlyServlet.class

supportStuff.jar

1010
1011

1010
1011

1010
1011

FIGURE 2-1

A Web Applica-
tion Directory
Structure with
Typical Contents

File and Directory Structure (Exam Objective 2.1) 99

100 Chapter 2: Web Applications

ON THE CD

If you are designing a web container, or working with one that allows fl exibil-
ity over the name of the WEB-INF directory, you should still support the usual
naming convention. You may not like the standard, but practically all of the
Java web application universe abides by it. So you’re very much on your own
if you go your own way.

EXERCISE 2-1

Using a Servlet to Look at the Context Path
In this exercise we are going to deploy a small web application containing a single
servlet. By running the servlet, we will see details of the web application’s home
directory and context.

Install and Deploy

 1. Start the Tomcat server.

 2. In the book CD, fi nd fi le sourcecode/ch02/ex0201.war.

 3. Copy this fi le to <Tomcat Installation Directory>/webapps.

 4. Observe the messages on the Tomcat console —make sure that it fi nds
ex0201.war and installs it without error messages.

Explore Directories and Run Servlet

 5. Use your fi le system facilities to confi rm that a new directory has been
created: <Tomcat Installation Directory>/webapps/ex0201.

Having a directory called
WEB-INF is a strong recommendation, but
not an absolute obligation. Look out for
questions that ask you to say whether a
web application must have particular di-
rectories. The correct answer is “no”! More
usually, though, questions will be phrased

to allow for this loophole in the specifi ca-
tion. So if you see a question along these
lines—“Should a servlet class live in the
WEB-INF/classes directory?”—you are safe
to answer “yes.” The expectation is that
fi les normally do live in the recommended
fi le structure.

 6. Check under this directory for fi les in the right places: a couple of JSPs in the
context root and a servlet class fi le under / WEB-INF/classes.

7. Now run the servlet. The default URL will
be http:// localhost:8080/ex0201/Show
Context. Study the output carefully. Look
at the source code (which is listed to the
web page, but you may fi nd the original fi le
easier to work with —look under / WEB-
INF/src). Work out which parts of the code
produce which parts of the web page.

CERTIFICATION OBJECTIVES

Deployment Descriptor Elements (Exam
Objectives 2.2 and 2.3)

Describe the purpose and semantics of the following deployment descriptor elements:
error-page, init-param, mime-mapping, servlet, servlet-class, servlet-mapping, servlet-
name, and welcome-fi le.

Construct the correct structure for each of the following deployment descriptor
elements: error-page, init-param, mime-mapping, servlet, servlet-class, servlet-mapping,
servlet-name, and welcome-fi le.

Proper fi le structure is an important part of web application packaging, but the story
does not end there. As we have seen, each web application contains a deployment
descriptor fi le called web.xml in the WEB-INF directory. We need to start explor-
ing the semantics of this fi le in gory detail. Again, your IDE will do you no favors.
Chances are your IDE builds the WEB-INF fi le as you build each web component.
As the IDE fi lls in deployment descriptor details from wizards or through intelligent
guesswork, you are left in happy ignorance of web.xml detail. The exam, though,
expects you to have developed deployment descriptors from childhood. You need to
memorize the elements, the elements that go inside the elements, and sometimes
the element order. Time to put aside that IDE and go to your text editor!

You are very likely to get
questions that require you to spot a mis-
placed fi le, such as a jsp in the WEB-INF
directory or a class fi le in a subdirectory
that isn’t WEB-INF/classes.

Deployment Descriptor Elements (Exam Objectives 2.2 and 2.3) 101

102 Chapter 2: Web Applications

This section of the book is the fi rst (but not the last) to examine web.xml ele-
ments. We’ll start with some of the more fundamental ones, pertaining to servlets
or the web application as a whole. As we look at different facets of web applications
throughout the rest of the book, their associated deployment descriptor elements
will be introduced.

Overall Structure of the Deployment Descriptor
The fi rst thing to note about the deployment descriptor fi le is that it’s an XML fi le.
Given that the name is web.xml, you were probably ahead of me on that one. You
might fi nd it reassuring (or disappointing!) to know that next to no XML knowl-
edge is required for the exam, but we will start this part of the chapter by giving you
enough knowledge to tackle deployment descriptor semantics. With that founda-
tion, we can go on to explore the seven specifi c deployment descriptor elements
mentioned in the exam objective above.

The Least You Need to Know about XML
If you’re reading this book, it’s hard to believe that you have not been exposed to
XML at some point in your development career. However, it can’t do any harm to
pin down some essentials about XML format that assume no previous knowledge
and that will aid your efforts in deconstructing deployment descriptor fi les.

Let’s start by looking at a minimalist deployment descriptor fi le, just for the pur-
pose of picking out the XML features. The lines are numbered for ease of reference, as
they might appear in some text editors, but the numbers are not part of the syntax.

01 <?xml version="1.0" encoding="UTF-8"?>
02 <web-app version="2.4" xmlns=http://java.sun.com/xml/ns/j2ee
03 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
04 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
05 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">
06
07 <welcome-file-list>
08 <welcome-file>index.jsp</welcome-file>
09 </welcome-file-list>
10
11 </web-app>

Line 1 This line tells us that the fi le is an XML fi le, which version of XML is used,
and what character set is used for encoding the fi le contents.

Lines 2–5 and Line 11 These lines defi ne the start and end tags of the root
element <web-app>, together with a number of attributes that defi ne aspects of
the entire document. Every XML document must have a root element to enclose
its contents. So in the case of web.xml, the start tag <web-app> is closed off with
</web-app> on line 11. The start tag contains some attributes (name/value pairs).
For example, the version attribute (version=“2.4”) marks the document version
being used and matches the version number of the servlet specifi cation. (A short
digression on versions: The exam you are studying for pertains to the J2EE 1.4
standard. However, J2EE 1.4 embraces a whole range of technologies, each with
an associated version number. So J2EE 1.4 has embraced version 2.4 of the servlet
specifi cation, which is what’s refl ected in the deployment descriptor document.)
The remaining attributes all have to do with defi ning an associated “schema”
document. The software, which reads an XML fi le (an XML Parser), has the op-
tion of validating the document contents against rules defi ned in the schema
document.

Schemas are not the only mechanism by which XML documents can be vali-
dated. Up to and including J2EE 1.3 and version 2.3 of the servlet standard,
web.xml was validated against something called a DTD—or document type
defi nition. The heading material of the XML fi le looks slightly different, as
you can see:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

However, the intention is the same—to have a means of validating the
deployment descriptor. If you have worked on web applications prior to
J2EE 1.4, the good news is that the actual rules for element validation have
changed very little, even if the mechanism has. We’ll examine the few subtle
version differences as we encounter them in the discussion.

Lines 7 and 9 These lines defi ne the start and end tags for <welcome-file-
list>, one of the many immediate children of the root tag <web-app>. XML
works by having pairs of tags nested inside each other, to any depth you like. We’ll
defer talking about what <welcome-file-list> actually does for you until later in
the chapter; at the moment, we’ll stick with XML syntax features.

Deployment Descriptor Elements (Exam Objectives 2.2 and 2.3) 103

104 Chapter 2: Web Applications

Line 8 This line defi nes the start and end tag for <welcome-file>, child of
<welcome-file-list> and grandchild of the root element <web-app>. The
start and end tags enclose some character data: index.jsp.

In terms of content, this very brief deployment descriptor tells us that there is one
welcome fi le, called index.jsp, defi ned in the welcome fi le list for this web applica-
tion. Of course, we have many more options available to us for the information we
record about our web application in the deployment descriptor. The next section
opens up the possibilities.

Anatomy of web.xml
The deployment descriptor has, in fact, 27 top-level elements, shown in Figure 2-2.
These top-level elements each contain — on average —a half dozen or so elements,
at various levels of nesting, ranging from the very simple (e.g., <distributable>,
with no nested elements) to <servlet> (with 9 nested elements, some containing
more nested elements).

<web-app> <description>
<display-name>
<icon>
<distributable>
<context-param>
<filter>
<filter-mapping>
<listener>
<servlet>
<servlet-mapping>
<session-config>
<mime-mapping>
<welcome-file-list>
<error-page>
<jsp-config>
<security-constraint>
<login-config>
<security-role>

Elements in <bold> are
discussed in this chapter.

Elements can appear in any
order, and as many times as
required (even not at all). There
are some few exceptions,
discussed throughout the book.

<env-entry>
<ejb-ref>
<ejb-local-ref>
<service-ref>
<resource-ref>
<resource-env-ref>
<message-destination-ref>
<locale-encoding-mapping-list>

(knowledge of these elements not
required for the exam)

FIGURE 2-2

The Full List
of Top-Level
Elements in the
Deployment
Descriptor
web.xml

Differences from Previous Servlet Specifi cation
Good news for examinees: Top-level elements can now appear in any order! For an
earlier version of the exam, I spent a lot of time memorizing sequence. Having said

that, you are probably well advised to follow
the order shown in Figure 2-2. People are very
used to the order from previous versions of the
servlet specifi cation, so they might be thrown
by placement of elements radically different
from the established norm.

Some elements that used to be optional
or appear once are now optional and can

(according to schema validation) appear many times. This doesn’t make a lot of
sense in some circumstances. For example, the <distributable> element need
only appear once for the application to be marked distributable — repeating the
element ten times doesn’t make the application any more distributable! The servlet
specifi cation tells you what containers are supposed to do when there is more than
one occurrence of an element that formerly could only appear once, and we’ll draw
attention to the rules in subsequent chapters.

Deployment Descriptor Elements for Servlets
One of the top-level elements in the deployment descriptor is <servlet>. This is a
“complex type” of element because it contains several other elements within itself.
For the exam and for real-life development, it isn’t suffi cient just to know the top-
level elements —you’ll need to know the contents as well.

There are several characteristics you can defi ne for a servlet, beyond a simple
name. We’ll need to give the deployment descriptor the fully qualifi ed name of the
actual Java class for a start. Other optional subelements control whether the servlet
is loaded when the web container starts, and any security rules in force.

A traditional type of “got-
cha” exam question asks you to identify
which of a list of elements within root
element web-app are mandatory. None

of them are! A web.xml fi le that con-
tains only an empty root element
(<web-app></web-app>) is perfectly
legal.

Sequence still matters
within the elements inside the top-level
elements—<servlet>, for example.

Deployment Descriptor Elements (Exam Objectives 2.2 and 2.3) 105

106 Chapter 2: Web Applications

And we’ll fi nd that <servlet> is a slight misnomer. Not only can you use the
element to defi ne plain servlets; you can also use it to defi ne a reference to a JSP
(JavaServer Page). (However, as we’ll see later, JSPs are converted to servlets by the
web container, so perhaps the element name isn’t such a misnomer after all.)

A separate element called <servlet-mapping> gives you fl exibility over which
URLs are used to access servlet resources, and we’ll talk about that too.

<servlet> and Its Important Subelements
Figure 2-3 shows the <servlet> element expanded so that you can see how the sub-
elements nest within one another, which ones are optional, and how many times
each can appear. You can see that only the <servlet-name> and <servlet-class>/
<jsp-file> elements are mandatory and that these elements can appear only once
within the <servlet> element. Other elements, such as <load-on-startup>,
are entirely optional. You don’t have to have any <init-param> elements, or you
can have as many as you like. The fi gure indicates that if you do include an <init-
param>, it must house one <param-name> and one <param-value>.

The ordering of subelements within <servlet> is crucial. We’ve already noted
that the top-level elements within the root element <web-app> can come in any
order. However, the deployment descriptor schema validates that when it comes to
the elements in <servlet>, then (for example) <servlet-name> must come before
<servlet-class> (and after <icon>, if you choose to include an <icon> element).

Always 1

Always 1

Always 1

Always 1

Always 1

Always 1

<servlet> <description> 0 or many

<display-name> 0 or many

<icon>

0 or many

<servlet-name>

<servlet-class> OR <jsp-file>

<init-param>

 0 or many

<load-on-startup> 0 or 1

<run-as>

 0 or 1

<security-role-ref>

 0 or many

<small-icon> 0 or 1

<large-icon> 0 or 1

<description> 0 or many

<role-name>

<description> 0 or many

<role-name>

<role-link> 0 or 1

<description> 0 or 1

<param-name>

<param-value>

You’ll see this optional
group of descriptive
elements in several
places in the DD.

FIGURE 2-3

The Servlet
Element
Expanded

Figure 2-4 completes the picture by showing servlet deployment defi nitions in
practice: a mostly complete servlet defi nition for a web.xml fi le. The more important
start and end tags are in boldface. Just note for now that the servlet is called Future
Servlet and that it maps to the Java class com.osborne.c02.FutureServlet. There are
two initialization parameters, one called months and the other wildness, with values
of 3 and “exaggerated,” respectively.

Let’s take a look at the more important subelements in a bit more detail.

<servlet-name> This subelement defi nes a logical name for the servlet. There
aren’t many rules for this element, but you should know them. The name must be
unique within the web application. Any string for the name will do, provided it’s
at least one character long. There’s no obligation to make this name the same as
the Java class to which it relates (though people often do use the Java class name
stripped of the fully qualifi ed package parts).

Why do we want to name a servlet anyway? There are many other possible re-
sources in a web application that don’t boast a specially defi ned name in the deploy-
ment descriptor. However, here are at least a couple of reasons:

■ Servlets are normally a protected resource, kept in the WEB-INF/classes direc-
tory, so that direct URL access to the servlet won’t work. The servlet name is part

<web-app>
 <servlet>
 <description>A servlet for predicting the future</description>
 <description xml:lang="fr">une servlette pour prédire l'avenir</description>
 <display-name>Future Predictor</display-name>
 <display-name xml:lang="fr">Pour Prédire L'avenir</display-name>
 <icon>
 <small-icon>/images/futurep.gif</small-icon>
 </icon>
 <servlet-name>FutureServlet</servlet-name>
 <servlet-class>com.osborne.c02.FutureServlet</servlet-class>
 <init-param>
 <description>The number of months ahead to predict: default value</description>
 <param-name>months</param-name>
 <param-value>3</param-value>
 </init-param>
 <init-param>
 <description>How wild to make the prediction: default adjective</description>
 <param-name>wildness</param-name>
 <param-value>exaggerated</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
</web-app>

Fully qualified name of class—
NB: don’t add.class to the end!

run-as and security-role-ref omitted—these make
a comeback in Chapter 5, on web security.

FIGURE 2-4 An Example <servlet> Declaration in the Deployment Descriptor

Deployment Descriptor Elements (Exam Objectives 2.2 and 2.3) 107

108 Chapter 2: Web Applications

of the mechanism by which controlled access to servlets is allowed (you’ll learn
more about this when we look at <servlet-mapping>).

■ A logical, unique name for the servlet is a deal less cumbersome than always
referring to a servlet, say, by its fully qualifi ed Java class name. You’ll fi nd that you
can reference a servlet name at various points from elsewhere in the deployment
descriptor.

Should you want to access the servlet name within your own code, you can.
There is a getServletName() method defi ned in the ServletConfi g interface
(which is implemented by GenericServlet, so any inheriting servlet will have the
method available). Here’s a code listing showing how a servlet’s doGet() method
can print the servlet name on the server console:

protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 System.out.println(this.getServletName());
}

You may think I’m very
pedantic in pointing out which interface
defi nes the getServletName()method
(ServletConfi g). You might encounter
questions that ask you to distinguish
whether a method originates from, say,
the ServletConfi g or the Servlet interface.
Helpful hint: Three of the four methods on
ServletConfi g have to do with extracting

information from the deployment descrip-
tor (all of which you meet in this section);
Servlet has no methods of this kind; its
methods are mainly to do with servlet life
cycle, which we meet in Chapter 3. How-
ever you do it, though, you need the meth-
ods of Servlet memorized for the exam,
together with the interfaces from which
they originate.

<servlet-class> This subelement defi nes the fully qualifi ed name of a
Java servlet class. You’ll want this class to be a descendant of GenericServlet or
HttpServlet. Your XML validation software won’t tick you off if you violate this
rule, but your web container will choke when it tries to run a nonservlet defi ned as a
servlet class here. Separate parts of the package name should be separated with dots
(nothing unusual there). On no account put “.class” at the end of the value you enter.

Although the names of servlets (defi ned in <servlet-name>) have to be
unique, there is no such constraint on servlet classes. You can defi ne the same

servlet class against two or more names, as shown in the deployment descriptor
extract below:

<servlet>
 <servlet-name>MyServletHere</servlet-name>
 <servlet-class>webcert.chapter2.MyServlet</servlet-class>
</servlet>
<servlet>
 <servlet-name>MyServletThere</servlet-name>
 <servlet-class>webcert.chapter2.MyServlet</servlet-class>
</servlet>

Why would you want to do this? Although not shown, it’s the only way of supply-
ing separate sets of initialization parameters to the servlet, for starters. It’s also a way
of ensuring a separate running instance of the servlet. Normally, a web container
would deal with any number of requests for the servlet logically known as My
ServletHere by instantiating only one object of the MyServlet type. However, as
soon as the web container received a request for MyServletThere, it would be forced
to instantiate another separate object of MyServlet type. If it’s important, you can
use the getServletName() method to determine which instance you are running.

. . . or <jsp-file> We don’t meet JSPs (JavaServer Pages) for another few
chapters. When we do, you’ll see that —unlike servlets — they are normally located
in the HTTP-accessible regions of a web application. So users typically request a JSP
directly from the web application context root (or a suitable subdirectory).

However, suppose we want a JSP that is not directly accessible, which we keep in
some directory of WEB-INF —for example,

/WEB-INF/secure/concealed.jsp

The direct approach — say, http:// localhost:8080/mywebcontext / WEB-INF/secure/
concealed.jsp — rightly results in an HTTP 404 (page not found) error. However,
the following deployment descriptor entries give a means of access:

<servlet>
 <servlet-name>ConcealedJSP</servlet-name>
 <jsp-file>/WEB-INF/secure/concealed.jsp</jsp-file>
</servlet>
<servlet-mapping>
 <servlet-name>ConcealedJSP</servlet-name>
 <url-pattern>/allIsRevealed</url-pattern>
</servlet-mapping>

Deployment Descriptor Elements (Exam Objectives 2.2 and 2.3) 109

110 Chapter 2: Web Applications

The full chapter and verse on <servlet-mapping> will follow very soon. Suffi ce to
say for the moment that the user can now type http:// localhost:8080/mywebcontext /
allIsRevealed into her browser and have the JSP returned. One possible reason for
doing this is to conceal the usage of JSPs in the application: The URL gives noth-
ing away. Another is to support existing links that are converted from static pages
to JSPs (so . . . /index.html fi nds a JSP fi le). There is no necessity to keep the JSPs
under WEB-INF for this purpose; just set up an appropriate servlet mapping.

<init-param> We saw in Chapter 1 how we can get parameters to a servlet
from the web page <form>, which has the servlet as the subject of its action.
<init-param> gives another means of priming a servlet, but this time the infor-
mation is recorded directly in the deployment descriptor fi le. We saw in Figure 2-4
the full deployment descriptor details for the FuturePredictor servlet. Here’s the
deployment descriptor for the initialization parameters alone:

<init-param>
 <description>The number of months ahead to predict: default value</description>
 <param-name>months</param-name>
 <param-value>3</param-value>
</init-param>
<init-param>
 <description>How wild to make the prediction: default adjective</description>
 <param-name>wildness</param-name>
 <param-value>exaggerated</param-value>
</init-param>

The <init-param> envelope can repeat as many times as you want parameters
for the servlet. Inside the envelope, we always fi nd two subelements: <param-name>
and <param-value>. These are mandatory, and they represent a key/value pairing:
You use the key of the name to return the value. There can only be one <param-
name>/<param-value> pairing for each <init-param> (if you want another pair-
ing, use a fresh <init-param>). Should you wish, you can place a <description>
before <param-name>.

All we need now is the means of retrieving the information, which is very easy.
The code below uses two servlet methods (originating from the ServletConfi g
interface, implemented in the GenericServlet class) to get at the initialization
information. getInitParameterNames() returns an Enumeration of all the pa-
rameter names available to the servlet. Armed with a parameter name, you can use
getInitParameter(String paramName) to return an individual parameter value.

protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException, IOException {
 /* Local variables to hold parameter values */
 int months = 0;
 String wildness = "";
 /* Iterate through all the initialization parameters */
 Enumeration e = getInitParameterNames();
 while (e.hasMoreElements()) {
 String parmName = (String) e.nextElement();
 if (parmName.equals("months")) {
 months = Integer.parseInt(getInitParameter(parmName));
 }
 if (parmName.equals("wildness")) {
 wildness = getInitParameter(parmName);
 }
 }
 /* Return a page showing the values discovered */
 response.setContentType("text/plain");
 PrintWriter out = response.getWriter();
 out.write("Intialization parameters were 'months' with a value of "
 + months + ' and 'wildness' with a value of '" + wildness + "'");
}

Because getInitParameter(String paramName) returns a String value, you have
to write your own parsing code to coerce numeric values to their right type —as is
the case with the months parameter.

Finally, there’s no servlet API to get at the optional <description> element
of an initialization parameter. That’s there for the benefi t of those responsible for
maintaining the deployment descriptor, and it might show up in a graphical admin-
istrative console.

<init-param> appears
elsewhere in the deployment descrip-
tor—not just as a nested element within
<servlet>. Watch out for its very similar
use as a nested element in <filter>,

which makes its appearance in Chap-
ter 3. And the trio of subelements—
<description>, <param-name>,
<param-value>—also crop up inside
the <context-param> element.

Deployment Descriptor Elements (Exam Objectives 2.2 and 2.3) 111

112 Chapter 2: Web Applications

The <servlet-mapping> element
Although we’ve defi ned a number of key aspects of the servlet, we haven’t yet given
users of our application any means of getting at it as a URL resource. That’s what the
<servlet-mapping> element is for. You might fi nd it surprising that <servlet-
mapping> is not another subelement of <servlet>; instead, it lives as a top-level
element directly off the root <web-app>. Perhaps the designers of the deployment
descriptor thought the <servlet> tag was already too overloaded. You can see in
the following illustration expanding <servlet-mapping> and its subelements that
it’s considerably simpler than the related <servlet> element.

What values are allowed for
the URL pattern? You can use almost any
characters you like. Two things to note:
First, carriage returns and line feeds are
not allowed. No real surprise there. What
is more surprising is that white space is

legal—a URL pattern such as <url-
pattern>My Servlet</url-pattern>
is legal and works. You’ll probably fi nd that
your browser substitutes a hexadecimal
representation of the white space charac-
ter in the address line (%20).

<servlet-mapping>
<servlet-name>
<url-pattern>

The subelement <servlet-name> should tie back to a <servlet-name> de-
fi ned in a <servlet> element. The <url-pattern> subelement specifi es what
the user can expect to type into the URL after the context name and have her
request fi nd the associated servlet. So if the deployment descriptor has the follow-
ing servlet mapping defi ned:

<servlet-mapping>
 <servlet-name>FutureServlet</servlet-name>
 <url-pattern>/myfuture</url-pattern>
</servlet-mapping>

And the user types something like the following URL:

http://localhost:8080/webappcontext/myfuture

Then the servlet (or JSP) defi ned in a corresponding <servlet> tag with a
<servlet-name> of FutureServlet will execute.

INSIDE THE EXAM

URL Mapping Strategies
Actually, we’re not quite done with servlet
mapping. The servlet specifi cation builds in
a deal of fl exibility into URL patterns, which
you need to know for the exam. There are four
kinds of mapping you can specify. There are
also rules which dictate —in the case of more
than one matching mapping for a URL —
which mapping should take precedence. Let’s
look in more detail.

Exact Path Mapping The URL content
following the context path exactly matches
the URL pattern in the servlet mapping.

Longest Path Prefi x The URL content
following the context path is tested against

partial paths specifi ed in URL patterns. The
longest match wins.

Extensions If the last part of the request
URL is a fi le with an extension (e.g., the
.jsp in /index.jsp), the extension is matched
against any extension-type URL patterns.

Default Servlet If the above map-
ping methods have failed, the server may
have one ace left up its sleeve: the default
servlet.

The following table shows how to specify
the URL patterns to indicate which of the
four match methods is intended, and gives
some examples of URLs that would cause a
match.

Once a match is found according to the
rules above, no further matching is attempted.
And whereas these rules were merely “recom-

mendations” in past versions of the servlet
spec, web containers are now “required” to
support them.

Rule URL Pattern
How to Form the
URL Pattern URLs That Would Match

Exact match /fi ndthis Any string —must begin
with “/.”

/fi ndthis

Path match /fi ndthat /
here/*

String must begin with
“/” and end in “/*.”

/fi ndthat /here
/fi ndthat /here/quickly
/fi ndthat /here/quickly/index.html

Extension
match

*.jsp String must begin
with “*.”

/index.jsp/any
directory/index.jsp

Default / Single forward slash only:
“/.”

(any URL that fell through all
other matching attempts)

Deployment Descriptor Elements (Exam Objectives 2.2 and 2.3) 113

114 Chapter 2: Web Applications

Do you need a <servlet-mapping> to execute a servlet? The answer is
“not necessarily.” Many web servers have the capability of “serving servlets
by name.” There is nothing particularly magical about this, and it does—in
fact—involve servlet mappings. Imagine your server had a <url-pattern>
set up of /servlet/*, which mapped on to a servlet called ServletExecutor. This
means that a request such as mycontext/servlet/SomeServletOrOther will
invoke the ServletExecutor servlet. The ServletExecutor servlet determines
that SomeServletOrOther is indeed a servlet within this web application, and
it redirects control to the SomeServletOrOther servlet—even though there is
no mapping necessarily set up for SomeServletOrOther. Convenient as such
a facility is, you will want to switch it off in production environments for
security reasons! This approach may be convenient for development and test
environments, however; it saves some setup in the deployment descriptor.
That said, you will probably be working with an IDE that sets up the deploy-
ment descriptor servlet mappings as part of the servlet creation process.
In such circumstances, the usefulness of serving servlets by name dwindles
somewhat. Added to this, you could argue that it’s not a proper test of your
servlet except in the context of mappings correctly set up in the deployment
descriptor.

Other <servlet> Subelements
There are other elements embedded in the <servlet> tag that we haven’t yet
discussed. Some of these will return in future chapters and objectives. Others aren’t
explicitly mentioned in the exam objective, but your knowledge of the <servlet>
tag wouldn’t be complete without them.

INSIDE THE EXAM (continued)

Two things to remember: URL patterns
are case sensitive. A URL of /fi ndthis
 would match a pattern of /fi ndthis, but not
/FindThis. Second, servers may have some im-
plicit mappings already set up outside of web
.xml—for example, something to trap a “.jsp”

extension, for JSP fi les can’t be served directly.
If you specify your own extension match for
“.jsp” or an alternative to the default servlet,
then you will override what the server does:
It’s then your web application’s responsibility
to deal with the request.

We’ll start with the trio of <description>, <display-name>, and <icon>.
This is a standard grouping of elements that occurs several times in the deployment
descriptor. For example, these three elements are actually the fi rst three top-level
elements under <web-app> (see Figure 2-2). In that case, they apply to the entire
web application. As subelements of <servlet>, they apply to a particular servlet. As
you might hope, though, they are functionally equivalent wherever they appear.

We’ll end this section with elements that are entirely specifi c to <servlet>.

<description> Optionally, you can enter descriptive text for your servlet in
this tag. There is no API in the servlet packages to retrieve this description. It’s not
for the consumers of your web application; it’s for the benefi t of administrators. So a
web container might have an administrative console that chose to display this text
for a deployed web application, for example.

You can include as many descriptions as you want (i.e., separate occurrences of
the description element). What’s wrong with just one, you ask? The reason is to ac-
commodate multiple languages. You can qualify each description element with the
xml:lang attribute, giving a valid two-character country code. If you omit xml:lang,
then a default of xml:lang=“en” is presumed. Here’s an extract from a longer web.xml
fi le, which shows both an English and a French description:

<description>A servlet for predicting the future</description>

<description xml:lang="fr">une servlette pour prédire l'avenir</description>

<display-name> The function of <display-name> is very similar to the
<description> element. It’s also meant for use in web container administrative
user interfaces in order to provide a short descriptive name — perhaps less cryptic
than the servlet name, but less expansive than the description text. However, you
can provide any string you want, of course. The same rules apply about language:
You can have as many display names as different languages. Here’s an example:

<display-name>Future Predictor</display-name>
<display-name xml:lang="fr">Pour Prédire L'avenir</display-name>

<icon> This subelement is the last of the descriptive trio. As with the others, it is
entirely optional, and you can have many occurrences. Within the icon element you
can embed a <small-icon> and a <large-icon> element (one, both, or neither).
The element describes a path (from the context root) to an image fi le (JPG and GIF
are the permitted formats) that might be used by your web container administrative
GUI to display next to your servlet. Example:

Deployment Descriptor Elements (Exam Objectives 2.2 and 2.3) 115

116 Chapter 2: Web Applications

<icon>
 <small-icon>/images/futurep.gif</small-icon>
</icon>

That concludes the “descriptive trio” of elements. There are three remaining
subelements of <servlet>: <load-on-startup>, <run-as>, and <security-
role-ref>. Actually, we’re going to postpone the last two until we discuss security
in Chapter 5, leaving just <load-on-startup>.

<load-on-startup> A web container’s usual practice is to load a servlet at
the point where it is fi rst accessed. In fact, the web container is free to load the serv-
let at any point it regards as suitable. However, by defi ning the <load-on-startup>
element, the servlet is loaded at the point when the web container starts. Further-
more, you can control the order in which servlets load by the integers you specify as
the values of the <load-on-startup> tags:

■ A servlet with a lower number will be loaded before a servlet with a higher
number.

■ If the numbers are the same, you’re in the lap of the web container designers —
there are no guarantees on which servlet starts fi rst.

■ If the number is negative, the web container can do whatever it pleases regard-
ing loading the servlet: It’s as if the <load-on-startup> element wasn’t there
at all.

If a <jsp-file> is specifi ed rather than a <servlet-class>, a <load-on-
startup> setting ensures that the JSP is pre-compiled (turned into a servlet),
then loaded as any other servlet would be.

Before you individually register hundreds of JSPs from your web-app in web
.xml just to force pre-compilation, check out the facilities of your application
server. These days, almost every application server has an option for pre-
compiling JSPs at the point of deploying the application into the server.

Other Deployment Descriptor Elements
Now we’ll turn our attention to some of the deployment descriptor elements that
affect the web application as a whole, as opposed to individual servlets.

Welcome Files: <welcome-file-list>
There have probably been many occasions in your life where you have typed in a
web site address into your browser — such as www.osborne.com —and, owing to
some magic in the target web server, you are taken to the resource for a specifi c
URL, say http://www.osborne.com/index.html. If a J2EE web application is the
object of your request, the chances are that this behavior comes about through
the specifi cation of a welcome fi le list in the deployment descriptor. Here’s an
example:

<welcome-file-list>
 <welcome-file>index.html</welcome-file>
 <welcome-file>index.jsp</welcome-file>
 <welcome-file>mainlibrary/catalog.jsp</welcome-file>
</welcome-file-list>

To see how this works, we need a set of fi les and a directory structure for the cor-
responding web application. We’re imagining a library application with a host
of mylibrary.com and a context of catalogapp. Here we see the visible (HTTP-
accessible) directories and fi les from context root downward.

</appSvrRoot/webapps>

/catalogapp

/mainlib

/musiclib

<jsp>

index.html

catalog.jsp

style.css

/referencelib index.html

<jsp>

<jsp> catalog.jsp

Now we need to consider what happens when you request a URL that falls to the
web container to deal with but that doesn’t immediately match a specifi c resource. A
trailing slash is appended to the URL if not already present. Then each entry in the

Deployment Descriptor Elements (Exam Objectives 2.2 and 2.3) 117

118 Chapter 2: Web Applications

welcome fi le list is appended —in turn — to this URL and tested for a match against
a specifi c resource. If the resource is present in the directory, it’s returned to the
requester. Here are some examples:

The rules in the servlet specifi cation state that welcome-fi le entries must describe
a partial URL with no leading and no trailing slashes. This makes sense when you con-
sider that the entries are appended to a URL that has a trailing slash (either because
the user typed it into the browser or the web server put it in implicitly) and should
match up to a specifi c resource (not a directory).

http://mylibrary.com/catalogapp ■ “/” appended to URL.
■ “index.html”—fi rst welcome-fi le —
appended to URL.
■ catalogapp directory checked for
index.html—found!
■ index.html returned to requester.

http://mylibrary.com/catalogapp/mainlib/ ■ “index.html”—fi rst welcome fi le —
appended to URL.
■ mainlib directory checked for index
.html— not found.
■ “index.jsp”— second welcome fi le —
appended to URL.
■ mainlib directory checked for index
.jsp —found and returned!

http://mylibrary.com/catalogapp/musiclib/ ■ “index.html”—fi rst welcome fi le —
appended to URL but not found in
musiclib directory.
■ “index.jsp”— second welcome fi le —
appended to URL but still no match in
musiclib directory.
■ “catalog.jsp”— third welcome fi le —
appended to URL. Found and returned!

http://mylibrary.com/catalogapp/referencelib/ ■ “index.html”—fi rst welcome fi le —
appended to URL. Found and returned!
■ Even though catalog.jsp—the third
welcome fi le—is present in the referencelib
directory, it won’t be returned by the wel-
come fi le mechanism, which will always fi nd
index.html fi rst.

Error Files: <error-page>
In Chapter 1 we examined the world of HTTP requests, including the error codes
that crop up when requests go bad. The <error-page> element in the deployment
descriptor gives you customized control over the web page displayed to the user in
the event of requests going wrong. Let’s suppose you have the following set up in
your deployment descriptor:

<web-abb>
 <error-page>
 <error-code>404</error-code>
 <location>/customErrorPage.html</location>
 </error-page>
</web-app>

Your context root contains your customErrorPage.html fi le and a couple of other fi les.

It’s very easy to be caught
out on the exact wording and nesting
of the tags. Look out for questions that
get the element order inside out (<wel-
come-file-list> nested under <wel-

come-file>) or that introduce subtle and
incorrect variant spellings (<welcome-
files>). Remember also that the direct
parent of <welcome-file-list> is
<web-app>, the root element.

</appSvrRoot/webapps>

/catalogapp index.html

customErrorPage.html

<jsp> catalog.jsp

A user means to request catalog.jsp but erroneously enters the following in his
browser:

http://mylibrary.com/catalogapp/qatalog.jsp

Deployment Descriptor Elements (Exam Objectives 2.2 and 2.3) 119

120 Chapter 2: Web Applications

The request correctly routes to the web application because the context is correct,
but it doesn’t fi nd the specifi c resource qatalog.jsp. The result is an HTTP 404 error
code, page not found. Instead of returning the standard web server page for this er-
ror, the web container looks for a matching error code in the deployment descriptor’s
list of error codes. A match is found, so the custom error page customErrorPage.html
is set up instead.

There are some important things to note about the deployment descriptor con-
struction:

■ <error-page> has <web-app> as its immediate parent.

■ <error-code> and <location> both have <error-page> as their parent.

■ The resource specifi ed in <location> must start with a “/.” The path described
is from the context root.

It’s very easy to get the
rules for <location> in <error-page>
confused with <welcome-file> in
<welcome-file-list>. Resources spe-
cifi ed in <location> must begin with

a “/,” whereas those in <welcome-file>
must not begin with a “/.” Neither
should end with a “/,” of course, because
they specify particular resources—fi les
and servlets—not directories.

The web container is perfectly capable of generating HTTP status codes when
the conditions are right (or should I say wrong!). We can —in servlet code —
generate our own status or error codes, using the sendError() and setStatus()
methods on HttpServletResponse. So servlet code like this (to generate a “404”
error):

response.sendError(HttpServletResponse.SC_NOT_FOUND);

would cause the error page mechanism to kick in just as effectively as the user typing
error we saw a few moments ago. And so would

response.setStatus(HttpServletResponse.SC_NOT_FOUND);

However, it is a bad thing to use setStatus() for anything other than normal
conditions.

You are not limited to specifying static html pages as the location for an error
page. You can specify a servlet to perform any dynamic processing you like.
Just make sure that you specify a location value that will chime in with the
servlet mapping for your dynamic error servlet.

That’s not the end of the story for <error-page>. HTTP status codes are not the
only error page mechanism at your disposal. You can also map plain old Java excep-
tions to particular error pages. In that case, you substitute the <exception-type>
tag for <error-code>:

<web-abb>
 <error-page>
 <exception-type>javax.servlet.ServletException</exception-type>
 <location>/customErrorPage.html</location>
 </error-page>
</web-app>

If you have a servlet that happens to throw a ServletException at runtime, the web
container will return the custom error page as specifi ed. Take care to specify the full
qualifi ed name of the exception (e.g., javax.servlet.ServletException), though, or
the mechanism will not be triggered, and you’ll get some standard application server
error page instead.

Mime-mapping: <mime-file>
MIME (Multipurpose Internet Mail Extensions) is an Internet standard for describ-
ing media types. By “media,” understand “fi le”—which could be anything from plain
text to images to movies. Don’t be fooled by the “Mail” part of the MIME acronym:
The standard has been embraced by web servers, application servers, and web brows-
ers everywhere. See http://www.iana.org /assignments/media-types/ for the offi cial
list of MIME types.

We already saw in Chapter 1 how you could set the MIME type of a servlet re-
sponse programmatically. That’s fi ne and appropriate when the object of your request
is a servlet. However, your web application may serve up other types of resources.
Some are likely to be understood. If I set up plain text fi les with a .txt extension in
my web application, my web container serves them up to my browser without dif-
fi culty. What if I wanted to serve up my own brand of XML fi les, though, with an
.xmldavid extension? My application server returns them happily enough, but with
no mime-type, the browser has to do the best it can to fi gure out the response. How-
ever, if I set up a <mime-mapping> entry in the deployment descriptor as follows:

Deployment Descriptor Elements (Exam Objectives 2.2 and 2.3) 121

122 Chapter 2: Web Applications

ON THE CD

<web-app>
 <mime-mapping>
 <extension>xmldavid</extension>
 <mime-type>text/xml</mime-type>
 </mime-mapping>
</web-app>

The client has an opportunity to process the fi le as an XML fi le, despite the unusual
extension. I say “opportunity,” because browsers may ignore the MIME-type set in
the response and apply their own rules on processing the content.

EXERCISE 2-2

Defi ning Deployment Descriptor Elements
In this exercise we are going to deploy a small web application containing a single
servlet. The servlet isn’t very useful because the supplied deployment descriptor fi le
is minimal (<web-app></web-app>). You will complete the deployment descriptor
in the course of the exercise and run the servlet.

Install and Deploy

 1. Start the Tomcat server.

 2. In the book CD, fi nd fi le sourcecode/ch02/ex0202.war.

 3. Copy this fi le to <Tomcat Installation Directory>/webapps.

 4. Observe the messages on the Tomcat console —make sure that it fi nds
ex0202.war and installs it without error messages.

 5. Delete ex0202.war.

Adjust the Deployment Descriptor

 6. Find the deployment descriptor fi le, web.xml (in <Tomcat Installation Direc-
tory>/webapps/ex0202/ WEB-INF).

 7. Using your favorite text editor, amend the fi le to have a <welcome-file-
list> pointing to index1.jsp, and an <error-page> pointing to error.jsp
for an HTTP status code 404 error.

 8. Restart Tomcat.

 9. Check that index1.jsp displays for URL http:// localhost:8080/ex0202/. (Hint:
If this — or any other page —fails to display, fi rst make sure you clear your

browser cache by hitting the refresh button. This applies throughout this and
future exercises!)

 10. Check that error.jsp displays for URL http:// localhost:8080/ex0202/notfound
.html. (You may have a problem seeing this page — some browsers have a
habit of substituting their own 404 “page not found” error page instead of
deferring to the server’s page.)

 11. Stop Tomcat.

 12. Re-edit web.xml. Add a servlet defi nition for servlet class webcert.ch02.
ex0202.ShowInitParms. Give the servlet any number of initialization param-
eters you like. Don’t forget to add a servlet mapping for the servlet.

 13. Restart Tomcat, and call the servlet using your mapping details.

 14. If you are really stuck (and only if!), check out the web.solution.xml fi le in
the / WEB-INF directory of the web application.

CERTIFICATION OBJECTIVE

WAR Files (Exam Objective 2.4)
Explain the purpose of a WAR fi le and describe the contents of a WAR fi le, how one may
be constructed.

Web applications get chock-full of directories and fi les in even the most unambitious
of projects. If you are happy to deploy and manage all those directories and fi les indi-
vidually, you have more of a taste for confi guration management than I do. Fortu-
nately, the J2EE providers thought of that and provided a standard for packaging all
web application components into a single zip-format fi le whose format is known as
the web archive — or WAR, for short.

Packaging Your Web Application
Provided you have abided by the fi le and directory naming rules outlined in the fi rst
section of this chapter, packaging your web application is no big deal. You simply
take the contents beneath the context path and zip up the whole structure into

WAR Files (Exam Objective 2.4) 123

124 Chapter 2: Web Applications

one fi le. The context path itself is not part of the WAR. WARs are designed to be
unzipped into a context path of the deployer’s choosing.

The structure of a WAR fi le is exactly the same as a Java archive (JAR), which
is in turn the same as a ZIP fi le. So on a Windows system, a tool such as WinZip is
very useful for interrogating the contents of a WAR fi le. A zip-type tool is all that’s
required to package and unpackage a WAR fi le, and, of course, the J2SDK comes
with one supplied in the shape of the “jar” tool.

A WAR Is Not a JAR
Although a WAR fi le can be produced in the same way as a JAR fi le, and has the
same underlying fi le format, it is different. The most obvious difference is the fi le
extension naming convention: .jar for Java ARchive, and .war for Web (Applica-
tion) ARchive.

JARs are packaged in a particular way to make it easy for a running JVM to fi nd
and load Java class fi les. WARs are packaged for a different purpose: to make it as
easy as possible for a web container to deploy an application.

Several web containers have automatic deployment mechanisms. The server
recommended for this book—Tomcat —has a “webapps” directory. Place a WAR fi le
in this directory, and Tomcat (by default) will un-jar the contents into the fi le sys-
tem under the webapps directory. It provides a context root directory with the same
name as the WAR fi le (but without the .war extension)— then makes the applica-
tion available for use. The interesting contrast here is that WAR fi les are not neces-
sarily “un-jarred” for use; some web containers run web applications directly from the
WAR fi le itself. For example, the Sun application server that comes with the J2EE
1.4 download has an “autodeploy” directory. Placing the WAR fi le there causes the
server to load the constituent parts of the application into memory and available for
use —but doesn’t unzip them.

Either way, I hope you are beginning to see the point of having the WAR fi le
standard. When it comes to deployment, life is very easy. Get the packaging wrong,
however, and your web container will disown the WAR fi le in no uncertain manner.

Just before we move on to methods for making WAR fi les, we need to consider
one last required directory for our web application: META-INF.

The META-INF Directory
In the beginning, WARs were intended to be completely self-contained. Everything
a web application relied on would be packaged in the WAR. This setup was conve-
nient, but it overlooked the fact that many web applications deployed on the same

server might make use of many common libraries of code. Including these as JAR
fi les in every WAR seemed wasteful; if nothing else, it led to huge infl ation of WAR
fi le size. Confi guration management was potentially an issue, for updating a common
library JAR fi le meant duplicating it to every web application that used it.

The solution was to allow web containers to provide a common repository for
code. How and where the web container defi nes this common repository is specifi c
to the web container; it may have several. It’s quite a complex business that demands
associated rules to do with class loading. For a good explanation on how one web
container does this —Tomcat — take a look at

http://jakarta.apache.org/tomcat/tomcat-5.0-doc/class-loader-howto.html

For exam purposes, though, you don’t need to know anything of the detail. All you
need is some grasp of the general principle so that the purpose of META-INF is
clearer to you.

Although the rules for storing and loading common code are container-specifi c,
the mechanism by which a WAR references such common code is a J2EE standard.
Each WAR can now reference the JARs it needs in this common repository by using
an existing mechanism: a manifest fi le. This fi le is called MANIFEST.MF, and it
must be located in the META-INF directory in the WAR fi le.

The essential content of MANIFEST.MF is a list of JARs under a heading of
“classpath.” Suppose you wanted to take advantage of a logging library such as
log4j in your web server’s common repository. You might see an entry in the fi le
such as this:

Classpath: log4j.jar

Note that only the JAR fi le name is present; the server knows which specifi c directo-
ries to search.

There is plenty more you can specify about referenced code in MANIFEST.MF,
such as version information or the vendor that sold (and digitally signed) a code
library. You can fi nd chapter and verse on the standard at

http://java.sun.com/j2se/1.4.2/docs/guide/extensions/

You have to introduce META-INF only at the WAR-making stage, and then
only if you have a need for it. Chances are you will want it available to you in most

WAR Files (Exam Objective 2.4) 125

126 Chapter 2: Web Applications

applications; indeed, most development tools will put it there for you whether you
request it or not.

When META-INF is present
in your web application, the same access
rules apply as for WEB-INF. Server-side
code is welcome to access resource fi les in

the META-INF directory. However, the web
container should reject any attempt at cli-
ent-side access with the regular “page not
found” HTTP error code of 404.

Cross-referencing common code isn’t the only purpose for the META-INF direc-
tory. If you are signing the WAR fi le for security reasons, or JARs contained in WEB-
INF/ lib, the META-INF directory is also the right place to store digital certifi cates.

Making WARs
Now that we know what a WAR is for and how it’s made up, let’s look a bit more
closely at how we make a WAR. The most obvious method is using the jar tool in
the J2SDK. For the exam you will be expected to know the basic parameters to pro-
vide to jar, both for packaging and unpackaging WAR fi les.

The jar tool is not the only game in town, however. We’ll touch on some other
WAR-making devices that you’re more likely to encounter in “real” development
than naked use of the jar command.

Packaging Your Web Application
To run the jar command, you will want a command line. To make things easier,
change directory to the context directory of the web application that you want to
package. You’ll need to have your <J2SDK>/bin directory in your PATH. Enter the
following command (for Windows —UNIX is very similar):

jar cvf0 mywarfile.war *.*

This creates a WAR fi le called mywarfi le.war in the context directory, containing all
the fi les in the context directory and any subdirectories (/ WEB-INF, / WEB-INF/ lib,
etc.). The following table explains the parameters:

Unpackaging Your Web Application
Unpackaging looks very similar, and it is not usually something you would do manu-
ally anyway, for web servers invariably have their own deployment mechanisms, as
previously explained. If you do want to expand a WAR fi le manually so that you
know how to for the exam, here are instructions:

■ Create a context directory in the relevant part of your web server’s hierarchy.

■ Put the WAR fi le in the context directory.

■ Execute the following command (Windows and UNIX are very similar):

jar xvf mywebapp.war

■ Command explanation follows:

c Creates the WAR fi le.

v Verbose: outputs messages on the command line telling you about every
fi le added.

f A WAR fi le name will be specifi ed (can be omitted, but you’re unlikely to
want to go there).

0 Don’t compress the fi le (you would usually omit this).

mywarfi le
.war

The name of the WAR fi le to be created. It must follow straight after the
“cvf0” group (separated by a space).

. The fi les to include in the WAR fi le: in this case, everything. Must follow
straight after the WAR fi le name (separated by a space).

x Extracts the contents of the WAR fi le.

v Verbose: outputs messages on the command line telling you about every
fi le extracted.

f A WAR fi le name will be specifi ed.

mywarfi le
.war

The name of the WAR fi le to be created. It must follow straight after the
“xvf ” group (separated by a space).

WAR Files (Exam Objective 2.4) 127

128 Chapter 2: Web Applications

ON THE CD

Development Tools (IDEs) often have built-in functionality to export WAR
fi les directly from your web development environment, and most will do
more than this. Furthermore, if your IDE is lacking, your web server probably
won’t be. Most web servers come with some sort of assembly and packag-
ing tool. You specify the fi les and directories you want to include using the
tool’s graphical user interface; out pops a WAR fi le at the other end. These
tools tend to more than just package WARs: They have facilities to build the
deployment descriptor from graphical dialogs and to cope with other aspects
of J2EE: Enterprise Java Beans (EJBs), EAR fi les, Resource Files . . . the full
story belongs in a separate book!

Another useful command
parameter for the jar command is t, to
display the contents of a WAR fi le. The

full command might look like this: jar
tf mywarfile.war.

In real life, you will use all
the packaging support tools you can get
hold of. But don’t neglect to practice more
primitive assembly methods so you really

get the structure in your mind. Just as you
had to “be the compiler” in the program-
mer exam, you have to “be the assembler”
in the web component exam!

EXERCISE 2-3

Making and Deploying WARs
In this exercise we are going to jar up a web application, then deploy it.

Make the WAR File

 1. Stop the Tomcat server.

 2. Using your command line facility, navigate to <Tomcat Installation
Directory>/webapps/ex0201.

 3. Use the jar command with appropriate parameters to create ex0203.war,
which zips up all the fi les from Exercise 2-1.

Adjust the Deployment Descriptor

 4. Make a directory under <Tomcat Installation Directory>/webapps called
ex0203.

 5. Move the WAR fi le you made in step 3 to this directory.

 6. Use the jar command to extract the contents of the fi le.

 7. Check that the extraction worked: There should be an error.jsp and index1
.jsp directly in the ex0203 directory, as well as a WEB-INF and META-INF
directory.

 8. Start the Tomcat server.

 9. This application is a clone of Exercise 2-1, deployed to a new context
root —ex0203. Check the deployment by running the ShowContext servlet:

http://localhost:8080/ex0203/ShowContext

CERTIFICATION SUMMARY
In this chapter you have learned a lot about the fundamental structure of web ap-
plications. You are now equipped not just to write servlet code but also to structure
the code and all other resources that make up a web application —by putting them
in the right directory structure and by providing declarative information about them
in the deployment descriptor.

You started by looking at directory structure. You learned that web applications
have a “context path” at their root. By making up a stub URL from the server details
and context path, you saw how you could append a path to fi nd a particular resource
in your web application. You learned that resources meant for public HTTP access
should be placed directly in the directory matching the context path, or in sub-
directories with names of your own choosing off the context root.

You further learned that every web application has a directory called WEB-INF,
which must exist directly in the context root. You saw that any resources kept in

WAR Files (Exam Objective 2.4) 129

130 Chapter 2: Web Applications

WEB-INF are not for direct public HTTP access. You learned that, as a minimum,
WEB-INF must contain a fi le called web.xml— the deployment descriptor for the
application. WEB-INF also has two other offi cially sanctioned directories: WEB-
INF/classes (for separate Java class fi les, typically servlets and other supporting code)
and WEB-INF/ lib (for JAR fi les of Java code). You learned that a web container
should look for the classes it needs fi rst in WEB-INF/classes, then in WEB-INF/ lib.

You went on to learn about the deployment descriptor fi le. You examined the
XML structure and several of the more fundamental elements within the fi le. In
the exercises you set up <servlet> elements, logically defi ning servlet names
and their corresponding servlet classes. You examined the deployment descrip-
tor elements and code required to access initialization parameters in servlets,
using a combination of <init-param> tags and ServletConfi g methods such as
getInitParameter(String paramName) and getInitParameterNames(). You
learned how to set up corresponding <servlet-mapping> elements so that users
of your web applications can enter a URL to access a servlet resource. You learned
about the four different sorts of URL mappings and the order in which they are
processed: exact match, path prefi x, extension, and default. You also learned about
some of the more esoteric elements affecting servlets — optional <description>,
<display-name>, and <icon> elements for the benefi t of web server administrators
and graphical web server consoles —and the concept of being able to load servlets in
a predefi ned order determined by <load-on-startup> elements.

After learning about deployment descriptor elements affecting servlets, you
looked at elements that affect the web application as a whole. These include the
<welcome-file-list>, which gives a web server a possible resource to serve up
when the user requests a directory rather than a specifi c fi le. You also met <error-
page>, which allows you to associate customized pages with specifi c HTTP error
codes (such as 404 — SC_NOT_FOUND) and/or Java exception types. Finally, you
learned about <mime-mapping> and saw how you used this to associate an arbitrary
fi le extension with a known fi le type from a predefi ned list of MIME fi le types.

In the last section of the chapter, you turned your attention to web archive
(WAR) fi les. You found out how you could compress your application into a single,
ZIP-format fi le with a .war extension. In the exercises, you experimented with the
process of deploying WAR fi les on to the Tomcat server. You also learned how to
handcraft your own WAR fi les using the jar command with appropriate parameters
(cf mywar.war *.*), and how to use the jar command to reverse the process and
extract the fi les from a WAR into a web application directory structure on the fi le
system. You learned that WAR fi les may contain a META-INF directory (short for
meta-information), which may have a manifest fi le (MANIFEST.MF) describing
dependencies on common code lying outside of the web application context.

Two-Minute Drill 131

✓ TWO-MINUTE DRILL

File and Directory Structure
❏ Every web application within a web container has a unique context path.

❏ The context path and any directories you choose to create within it contain
resources that are accessible through HTTP.

❏ HTTP-accessible resources in your context path might include but are not
restricted to static HTML fi les, JavaServer Pages, Java applets and support
code (including JARs), JavaScript fi les, images, media clips, and stylesheets.

❏ The context path contains a special directory called WEB-INF, which must
contain the deployment descriptor fi le, web.xml.

❏ A client application may not directly access resources in WEB-INF or its
subdirectories through HTTP—any attempt to do so results in an HTTP 404
(page not found) error.

❏ Server-side web application code is permitted to access fi les in WEB-INF and
its subdirectories, using methods such as getResourceAsStream(String
path) on the ServletContext interface.

❏ The special directory / WEB-INF/classes contains Java class fi les — servlets
and supporting code.

❏ The special directory / WEB-INF/ lib contains JAR fi les with supporting
libraries of code.

❏ You can create your own directories as needed under / WEB-INF.

❏ Apart from those already mentioned (web.xml, class fi les, JAR fi les), re-
sources that you expect to fi nd under / WEB-INF include tag libraries (.tld
fi les —discussed in Chapter 8), confi guration fi les (typically xml or properties
fi les), and server-side scripts.

Deployment Descriptor Elements
❏ The deployment descriptor fi le is called web.xml, and it must be located in

the WEB-INF directory.

❏ web.xml is in XML (extended markup language) format. Its root element is
<web-app>.

❏ web.xml houses other elements, each with a start and end tag, which in turn
may house other elements.

132 Chapter 2: Web Applications

❏ At the lowest level of nesting, elements in web.xml have character data.
Example: <web-app><welcome-file-list><welcome-file>index.html
</welcome-file></welcome-file></web-app>.

❏ The deployment descriptor is now validated by a schema fi le (at servlet spec
level 2.4) rather than a DTD (at servlet spec level 2.3). The validation rules
are little altered, though top-level elements can now appear in any order.

❏ The <servlet> element holds declarative information about a servlet. It has
only two mandatory subelements —<servlet-name>, a logical name for the
servlet, and <servlet-class>, the fully qualifi ed Java class name without the
.class extension.

❏ A <servlet> element can include zero to many <init-param> elements:
These aid in passing initialization parameter information from the deploy-
ment descriptor to the servlet.

❏ Each <init-param> element contains the optional <description> element
and the mandatory <param-name> and <param-value> elements.

❏ The ServletConfi g interface (implemented by GenericServlet and its
subtypes) contains APIs to get at deployment descriptor information
about the servlet: getServletName(), getInitParameterNames(), and
getInitParameter(String paramName).

❏ The same servlet class can be declared using different logical names in the
deployment descriptor.

❏ Different logically named servlets are implemented as different instances by
the web container (even if the same servlet class is referenced).

❏ The <servlet> element can defi ne a JSP rather than a servlet. In that case,
the element <jsp-file> is substituted for <servlet-class>.

❏ The <servlet-mapping> element provides a means of defi ning URLs to use
the servlet resources otherwise inaccessible under WEB-INF.

❏ There are four different sorts of mapping information you can provide in the
<url-pattern> element. The web container processes them in strict order
of precedence: exact path (/exactmatch), path prefi x (longest match fi rst)
(/partial /*), extension matching (*.jsp), and default servlet (/).

❏ Paths are case-sensitive.

❏ The <welcome-file-list> element provides a list of one or more pages to
return when the user types a path that identifi es a directory.

Two-Minute Drill 133

❏ The <error-page> element associates custom error pages with HTTP status
codes and/or Java exception types.

❏ The <mime-mapping> element serves to associate fi le extensions with offi -
cially recognized fi le types.

WAR Files
❏ Web archive (WAR) fi les provide a convenient means of storing an entire

web application in a single, compressed fi le.

❏ WAR fi les must have a .war fi le extension.

❏ The contents of the context directory and all its subdirectories (including
WEB-INF) should be included in the WAR fi le, but not the context directory
itself. A WAR fi le can be installed at any context path.

❏ A WAR fi le can be created with the jar command, using cf as parameters:
jar cf myapp.war *.*.

❏ A WAR fi le can be extracted with the jar command, using xf as parameters:
jar xf myapp.war.

❏ A WAR fi le must contain a META-INF directory, containing a fi le called
MANIFEST.MF. This lists dependencies on common code JAR fi les stored
outside of the web application context (but available through a web server’s
own mechanisms).

❏ The META-INF directory can also be used to store security-related resources,
such as signature fi les and digital certifi cates.

134 Chapter 2: Web Applications

SELF TEST
The following questions will help you measure your understanding of the material presented in this
chapter. Read all the choices carefully because there might be more than one correct answer. The
number of correct choices to make is stated in the question, as in the real SCWCD exam.

File and Directory Structure

 1. Which of the following directories are legal locations for the deployment descriptor fi le? Note
that all paths are shown as from the root of the machine or drive. (Choose two.)

 A. / WEB-INF

 B. /appserverInstallDirectory/webapps/webappName/ WEB-INF/xml

 C. /appserverInstallDirectory/webapps/webappName/ WEB-INF

 D. /appserverInstallDirectory/webapps/webappName/ WEB-INF/classes

 2. What would be the best directory in which to store a supporting JAR fi le for a web application?
Note that in the list below, all directories begin from the context root. (Choose one.)

 A. / WEB-INF

 B. / WEB-INF/classes

 C. /jars

 D. /web-inf /jars

 E. /CLASSES

 F. / WEB-INF/ lib

 G. / lib

 H. None of the above.

 3. What’s the likely outcome of a user entering the following URL in her browser? You can as-
sume that index.html does exist in / WEB-INF/html, where / WEB-INF/html is a directory
off the context root, and that the server, port, and context details are specifi ed correctly.
(Choose one.)

http://localhost:8080/mywebapp/WEB-INF/html/index.html

 A. Because the fi le is an HTML fi le, the web application serves it back to the browser.

 B. An HTTP response code in the 500 range is returned (server error).

Self Test 135

 C. An HTTP response code of 403 is returned to indicate that the server is not allowed to
serve fi les from this location.

 D. An HTTP response code of 404 returned to indicate that the requested resource has not
been found.

 E. None of the above.

 4. (drag-and-drop question) In the following illustration, match the numbered fi les on the right to
the appropriate lettered locations on the left. All fi les must fi nd a home, so you will have to use
some of the lettered locations for more than one fi le.

A

B

D

C

8 index.html

7 supportStuff.jar

6 customErrorPage.html

5 catalog.jsp

4 MyApplet.class

3 MyServlet.class

2 mytags.tld

1 web.xml</appSvrRoot/webapps>

/catalogapp

/WEB-INF

/classes/webcert/chapter2/

/lib

 5. Identify which of the following are true statements about web applications. (Choose three.)

 A. The only way to access resources under the / WEB-INF directory is through appropriate
servlet mapping directives in the deployment descriptor.

 B. Server-side code has access to all resources in the web application.

 C. Clients of web applications can’t directly access resources in / WEB-INF/tld.

 D. A good place to keep a .tld (tag library fi le) is directly in the / WEB-INF directory.

136 Chapter 2: Web Applications

Deployment Descriptor Elements

 6. See the extract from web.xml below:

<servlet-mapping>
 <servlet-name>ServletA</servlet-name>
 <url-pattern>/</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>ServletB</servlet-name>
 <url-pattern>/bservlet.html</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>ServletC</servlet-name>
 <url-pattern>*.servletC</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>ServletD</servlet-name>
 <url-pattern>/dservlet/*</url-pattern>
</servlet-mapping>

 Given that a user enters the following into her browser, which (if any) of the mapped servlets
will execute? (Choose one.)

http://myserver:8080/mywebapp/Bservlet.html

 A. ServletA

 B. ServletB

 C. ServletC

 D. ServletD

 E. The answer is dependent on the web container you use.

 F. None of the above: A 404 “page not found error” will result.

 7. What is the parent tag for <welcome-file-list>? (Choose one.)

 A. <welcome-file>

 B. <web-app>

 C. None — the tag doesn’t exist.

 D. <welcome-files>

 E. <servlet>

Self Test 137

 8. Which of the following are true statements about the deployment descriptor for a web applica-
tion? (Choose two.)

 A. At least one <servlet> element must be present.

 B. <welcome-file> is a child element of <welcome-file-list>.

 C. <web-application> is the root element.

 D. <servlet> elements must all be declared before <servlet-mapping> elements.

 E. At least one element must be present.

 9. (drag-and-drop question) Complete the missing lettered elements from the deployment de-
scriptor in the following illustration, using the numbered choices on the right. You will not
have to use all the numbered choices but may have to use some more than once.

<servlet>
 <description>Question 09 Servlet</description>
 <display-name>Question09</display-name>
 <servlet-name>Question09</servlet-name>
 <servlet-class>com.osborne.Question09</servlet-class>
 <init-param>
 <param-name>myParm</param-name>
 <param-value>myAttribute</param-value>
 </init-param>
 <load-on-startup>10</load-on-startup>

</servlet>
<servlet-mapping>
 <servlet-name>Question09</servlet-name>
 <url-pattern>/Question09</url-pattern>
</servlet-mapping>

A A

BB
D

EE
F F

G
H

G
H

C

8 url-mapping

7 servlet-mapping

6 servlet

5 Q09.class

4 Question09

3 servlet-id

2 servletname

C

1 servlet-name

20 servlet-class

19 url-pattern

18 parm-value

17 param-value

16 parm-attribute

15 parm-attribute

14 param-attribute

13 parm-name

12 jsp-class

11 param-attribute

10 desc

9 description

138 Chapter 2: Web Applications

 10. What of the following represents a correct declaration of a servlet in the deployment descriptor?
(Choose one.)

 A.

<servlet>
 <servlet-class>MyServlet</servlet-class>
 <servlet-name>MyServlet</servlet-name>
</servlet>

 B.

<servlet>
 <servlet-name>MyServlet</servlet-name>
 <servlet-class>MyServlet.class</servlet-class>
</servlet>

 C.

<servlet>
 <description>My Servlet</description>
 <servlet-name>MyServlet</servlet-name>
 <servlet-class>MyServlet</servlet-class>
</servlet>

 D.

<servlet>
 <servlet-class>MyServlet</servlet-class>
 <jsp-file>index.jsp</jsp-file>
</servlet>

 11. Given fi ve servlets with <load-on-startup> value set as follows, and declared in the following
order in the deployment descriptor,

 ■ ServletA: 1

 ■ ServletB: 0

 ■ ServletC: 1

 ■ ServletD: 1

 ■ ServletE: no value set for <load-on-startup>

Self Test 139

 Identify true statements from the list below. (Choose one.)

 A. ServletA will load before ServletB.

 B. ServletB will load before ServletC.

 C. ServletC will load before ServletD.

 D. ServletD will load before ServletE.

 E. ServletA will load before ServletE.

 12. What will be the outcome of compiling and deploying the servlet code below? (You can assume
that correct import statements are provided and that the servlet lives in the default package.
Line numbers are for ease of reference and are not part of the code.)

11 public class NameServlet extends HttpServlet {
12 protected void doGet(HttpServletRequest request,
13 HttpServletResponse response) {
14 out.write(getServletName());
15 }
16 }

 A. Will not compile because the doGet() method doesn’t throw the correct exceptions

 B. Will not compile for some other reason

 C. When run, terminates with a ServletNotFoundException at line 14

 D. Outputs “NameServlet”

 E. Outputs the contents of the corresponding <servlet> element

 F. Outputs the contents of the corresponding <servlet-name> element

 13. Assume that there is a fi le called secure.txt, located at / WEB-INF/securefi les, whose contents
are “Password=WebCert.” What statements are false about the result of compiling and running
the following code?

11 public class CodeTestServlet extends HttpServlet {
12 protected void doGet(HttpServletRequest request,
13 HttpServletResponse response) throws IOException {
14 ServletContext sc = getServletContext();
15 InputStream is = sc.getResourceAsStream("/WEB-" +
16 "INF/securefiles/secure.txt");
17 BufferedReader br = new BufferedReader(new InputStreamReader(is));
18 System.out.println(br.readLine());
19 }
20 }

140 Chapter 2: Web Applications

 A. The code will not compile.

 B. A RuntimeException will occur at lines 15/16.

 C. An IOException will occur at line 18.

 D. The string “Password=WebCert” will be returned to the requester.

 E. A, B, and C above.

 F. B, C, and D above.

 G. A, B, C, and D above.

 14. Given the following deployment descriptor:

<web-app>
 <servlet>
 <servlet-name>InitParams</servlet-name>
 <servlet-class>com.osborne.c02.InitParamsServlet</servlet-class>
 <init-param>
 <param-name>initParm</param-name>
 <param-value>question14</param-value>
 </init-param>
 </servlet>
</web-app>

 What is the outcome of running the following servlet? (Choose one.)

public class InitParamsServlet extends HttpServlet {
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException, IOException {
 ServletContext sc = this.getServletContext();
 PrintWriter out = response.getWriter();
 out.write("Initialization Parameter is: "
 + sc.getInitParameter("initParm"));
 }
}

 A. A runtime error

 B. “Initialization Parameter is: null” written to the console

 C. “Initialization Parameter is: question14” returned to the requester

 D. “Initialization Parameter is: null” returned to the requester

 E. “Initialization Parameter is: question14” written to the console

Self Test 141

 15. Which of the following methods derive from the ServletConfi g interface? (Choose three.)

 A. ServletContext getServletContext()

 B. String getInitParameter(String name)

 C. MapEntry getInitParameterEntry()

 D. Iterator getInitParameterNames()

 E. String getServletName()

 16. Which of the following is a valid way to set up a mime mapping in the deployment descriptor?
(Choose one.)

 A.

<mime-mapping-list>
 <mime-type>text/plain</mime-type>
 <extension>txt</extension>
<mime-mapping-list>

 B.

<mime-mapping-list>
 <extension>.txt</extension>
 <mime-type>text/plain</mime-type>
<mime-mapping-list>

 C.

<mime-mapping>
 <mime-type>txt</mime-type>
 <extension>text/plain</extension>
<mime-mapping>

 D.

<mime-mapping>
 <extension>txt</extension>
 <mime-type>text/plain</mime-type>
<mime-mapping>

17 . Which of the following servlet methods can return null? (Choose one.)

 A. getInitParameterNames()

 B. getInitParameter(String name)

 C. getServletName()

 D. getServletContext()

142 Chapter 2: Web Applications

WAR Files

 18. Identify correct statements about the META-INF directory from the list below. (Choose three.)

 A. META-INF is a suitable location for storing digital certifi cates.

 B. META-INF is used as a repository for common code.

 C. The MANIFEST.MF fi le is found in the META-INF directory.

 D. The deployment descriptor fi le is found in the META-INF directory.

 E. META-INF is not directly accessible to clients.

 19. Identify correct statements about WAR fi les from the list below. (Choose three.)

 A. A META-INF directory will be present in the WAR fi le.

 B. A WEB-INF directory will be present in the WAR fi le.

 C. A web container can’t work directly from a WAR fi le; it must be extracted (unzipped) into
the fi le system.

 D. A WAR fi le is in ZIP fi le format.

 20. Consider the following list of fi les in a web application, where myApp is the context path:

/devDir/myapp/index.jsp
/devDir/myapp/WEB-INF/web.xml
/devDir/myapp/WEB-INF/classes/webcert/ch02/SomeServlet.class

 Which of the following sets of instructions will build a correctly formed web archive fi le?
(Choose one.)

 A. None of the sets of instructions will build a valid WAR fi le until /webcert /ch02/Some
Servlet.class is moved to the WEB-INF/ lib directory.

 B. Change directory to /devDir; execute jar tvf myapp.war *.*

 C. Change directory to /devDir/myApp; execute jar cvf myapp.jar *.*

 D. Change directory to /devDir/myApp/ WEB-INF; execute jar xvf myapp.war *.*

 E. Change directory to /devDir/myApp; execute jar cvf someapp.war *.*

LAB QUESTION
It’s your turn now to develop a web application from scratch! Develop a servlet that displays its name
back to the user. Register this same servlet class three times in the deployment descriptor. Prove to
yourself (through extra code in the servlet) that by calling servlets with different names, you are
genuinely getting different instances of the servlet (i.e., separate Java objects). One way of doing this
is to place an instance variable in the servlet that keeps a count of how many times the servlet has
been called.

Lab Question 143

144 Chapter 2: Web Applications

SELF TEST ANSWERS

File and Directory Structure

 1. � A and C are the correct answers. The deployment descriptor fi le, web.xml, must go directly
in the WEB-INF directory. A looks strange —it would be peculiar, not to say foolish, to have
the context of a web app located in the root directory —but it is still legal.

 � B is incorrect; though it’s perfectly OK to create a directory called xml within WEB-INF to
keep your own confi guration fi les, it is not OK to have web.xml housed there. D is incorrect be-
cause although WEB-INF/classes is a standard J2EE-defi ned directory, it’s meant for Java classes
(such as servlet classes), not web.xml.

 2. � F is the correct answer. WEB-INF/ lib is the right place for supporting JAR fi les, though you
can include JAR fi les in the META-INF directory as well.

 � The remaining answers are incorrect. Only A, B, and the correct answer, F, defi ne directo-
ries found in the servlet specifi cation. D is wrong on two counts, one of which is that the case
is wrong (the directory is WEB-INF in capitals), and the other is that you’re welcome to have
a subdirectory called “jars,” but there’s no standard to say that the web container should look
there. C and G come straight off the context root, which is the publicly accessible area. Finally,
H is wrong because there is a correct answer!

 3. � D. A 404 response code should be returned: resource not found. That way, the server masks
the fact that a resource even exists at the location specifi ed (as it does in this example).

 � A tries to fool you into thinking that certain types of fi le will be served from WEB-INF
and its subdirectories: incorrect. B (a 500 range error) is reserved for genuine server problems
(uncaught exceptions in servlet code). C (a 403 error) sounds reasonable; you might expect a
“nonauthorized” type message. But that reveals that there is a resource to get at. E is incorrect
because there is a correct answer.

 4. � A is the location for 4, 5, 6, and 8: static HTML (including custom error pages), Java
Server Pages, and applet classes should live in the context directory (or — not shown in the
picture —a directory that isn’t WEB-INF under the context directory). B is the location for
1 and 2: The deployment descriptor web.xml must be located here, and tag library descriptors
(.tld fi les) can be located here or a subdirectory of WEB-INF. C is the location for 3, a servlet
class fi le: under / WEB-INF/classes, in its own package directory. D is the location for 7: / WEB-
INF/ lib is for supporting JAR fi les.

 � Other combinations are ill-advised or won’t work at all.

 5. � B, C, and D. Server-side code can get at anything in the web application, even resources
under the WEB-INF directory. Clients can’t directly access resources under WEB-INF/tld (don’t
be thrown by the fact the WEB-INF/tld isn’t an “offi cial” directory; it’s perfectly OK to invent a
directory called tld, and because it’s under WEB-INF, clients can’t get at it).

 � A is incorrect. The only way for a client-side application to access resources under WEB-
INF is through a servlet mapping, true enough. But server-side code can get directly at those
resources through, for example, ServletContext.getResourceAsStream(String path).

Deployment Descriptor Elements

 6. � A is correct. ServletA— set up for the default mapping of “/”—will execute.
 � B is incorrect because BServlet.html does not match the URL pattern for ServletB in

terms of case sensitivity. C and D don’t have mappings remotely similar to the URL requested.
E is incorrect because mapping behavior is not permitted to be server-specifi c since the 2.4 serv-
let spec. Finally, F is incorrect —because a default servlet mapping is set up, you will never get a
404 error (unless you code the default servlet to return a 404 error).

 7. � B. <welcome-file-list> nests directly under the root element <web-app>.
 � A is incorrect because <welcome-file> is the child of <welcome-file-list>. D is

incorrect because <welcome-files> does not exist. Answer C tries to persuade you that <wel-
come-file-list> doesn’t exist, but it does. E encourages you to think that <welcome-file-
list> is a subelement of <servlet>; of course, it’s not, as it pertains to the whole application,
not just one particular servlet.

 8. � B and E. <welcome-file> is the child of <welcome-file-list>. And there does have to
be one element in web.xml: the root element (<web-app></web-app>).

 � A is incorrect because you don’t have to have a <servlet> element, or indeed any element
except for the root element. C is incorrect because <web-app> is the root element, not <web-
application>. D is incorrect because, since servlet spec 2.4 (in J2EE 1.4), order no longer
matters: Elements can come in any order. That said, Tomcat (the reference implementation)
server objects to referencing the servlet in a <servlet-mapping> before it is declared in a
<servlet> element —you can, however, have the elements alternating so that servlet map-
pings are kept close to their associated servlets.

 9. � A maps to 9 (description), B to 1 (servlet-name), C to 20 (servlet-class), D to 4
(Question09— the answer most likely to be a class name without the extension .class),
E to 16 (param-name), F to 17 (param-value), G to 1 (servlet-name —again), and H to
19 (url-pattern).

 � Other combinations are incorrect.

Self Test Answers 145

146 Chapter 2: Web Applications

 10. � C is the correct answer. All the elements are correctly specifi ed, in the correct order.
 � A, B, and D are incorrect. A reverses the <servlet-name> and <servlet-class> tags

(order does matter within the <servlet> element). B has correct element order but incorrectly
appends “.class” to the servlet name. D is almost correct but for the fact that the JSP fi le should
be expressed from the context root and so begin with a leading slash, thus: <jsp-file>/index
.jsp</jsp-file>.

 11. � B. The web container must guarantee that ServletB, with a <load-on-startup> value of
0, loads before ServletA, with a <load-on-startup> value of 1.

 � A is incorrect because servlets with a negative <load-on-startup> value have an inde-
terminate load time — probably on fi rst user access, but not guaranteed. Servlets with no load-
on-startup value are indeterminate in the same way; hence, answers D and E are incorrect. C is
incorrect because there is no guarantee that servlets with the same <load-on-startup> value
will load in their declared order in the deployment descriptor.

 12. � B. It won’t compile for other reasons — the reason being simply that the out variable is not
declared (it’s presumably meant to be the PrintWriter obtained from HttpServletResponse).

 � A is incorrect because it’s OK to throw fewer exceptions on a method than are in your
superclass. C is incorrect because the code will never run, and in any case there isn’t such a
thing as ServletNotFoundException. D could be correct if the code compiled: If the servlet isn’t
registered in web.xml, the class name is returned from getServletName(). In the same way,
F would be correct if code compiled and the servlet was registered. E would never be correct;
the <servlet> element contains a lot else besides the servlet name.

 13. � G is the correct answer, for all of A, B, C, and D are false statements. A is false because the
code will compile. B is false because there’s nothing wrong with the method call and the path to
the fi le is correctly stated. C is false; although an IOException is always possible from IO-based
methods, it mostly won’t happen. D is false because the string read from the fi le is not returned
to the requester, but output to the server console.

 � A, B, C, D, E, and F are incorrect answers, following the reasoning in the correct answer.

 14. � D. Although there is a correctly set up initialization parameter for the servlet in the deploy-
ment descriptor, the code is looking for a context parameter. There isn’t one set up, and null is
returned.

 � A is incorrect; the code runs fi ne. B and E are incorrect, for nothing is written to the
console — the output is to the response’s PrintWriter, and so it is returned to the requester.
C would be right if the code was set up to return the servlet’s initialization parameter.

 15. � A, B, and E. All are correct signatures for methods on the ServletConfi g interface.

 � C is incorrect; there’s no such method as getInitParameterEntry(). D is incorrect:
ServletConfi g does have a method called getInitParameterNames(), but it returns a good
old-fashioned Enumeration, not an Iterator.

 16. � D is the correct answer. This has the correct element names and sequence and content for a
<mime-mapping>.

 � A and B are incorrect because both have the wrong-named outer element, <mime-mapping-
list>. In addition, A reverses the <extension> and <mime-type> elements, and B—while
getting the order correct —declares the extension content with a “.” (it must be specifi ed as
“txt,” not “.txt”). C is incorrect only in that <mime-type> and <extension> are reversed.

 17. � B. If an initialization parameter name does not exist, getInitParameter(String name)
returns null.

 � A is incorrect because getInitParameterNames() returns an empty Enumeration if
there are no servlet initialization parameters declared in the deployment descriptor. C is in-
correct because getServletName() always returns some name or other: Even if the servlet
is undeclared, it will return the class name of the servlet. D is incorrect because there must
always be a ServletContext to return (no servlet can operate in a vacuum).

WAR Files

 18. � A, C, and E. It’s the right place for digital certifi cates and the MANIFEST.MF fi le. Like
WEB-INF, client access to META-INF should be rejected with an HTTP 404 error.

 � B is incorrect because META-INF isn’t used to store common code across web applications;
the MANIFEST.MF text fi le within it references common code via classpath entries. D is incor-
rect because the deployment descriptor fi le web.xml is kept in WEB-INF, not META-INF.

 19. � A, B, and D. A might surprise you, and there are plenty of WAR fi les around without a
META-INF directory that deploy OK on most web servers. However, the servlet spec section
9.6 does say that META-INF “will be present.”

 � C is incorrect. Although most web servers do expand WAR fi les into the fi le system (like
Tomcat), it’s not a requirement. The Sun application server (part of the J2EE 1.4 reference
implementation) doesn’t expand WAR fi les, but runs the application directly from the WAR fi le
itself.

 20. � E is the correct answer. Note that the WAR fi le name need bear no relation to the context
path.

 � A is incorrect, for the servlet class is in entirely the right place. Only if it was in a JAR fi le
should it be present in / WEB-INF/ lib. B is incorrect because you shouldn’t be zipping up the

Self Test Answers 147

148 Chapter 2: Web Applications

context directory itself, only the contents of the context directory and below. C is incorrect
because the fi le created has a .jar extension, and a WAR fi le must have a .war extension. D is
incorrect because you can’t just wrap up the WEB-INF directory; you need all the web content
in the directory above, the context root.

LAB ANSWER
Deploy the WAR fi le from the CD called lab02.war, in the /sourcecode/chapter02 directory. This
contains a sample solution. You can call the servlets using a URL such as http://localhost:8080/
lab02/ServletA (or ../ServletB or ../ServletC). The source for the servlet is included in the
WEB-INF/src directory. If you experience strange behavior even though your code and deployment
descriptor look right (counts not incrementing, perhaps), then do make sure you refresh your browser
cache as you make repeat calls to each servlet URL and after redeployment of the WAR fi le.

