
CERTIFICATION OBJECTIVES

3
The Web
Container Model

 • ServletContext

 • Attributes, Scope, and Multithreading

 • Request Dispatching

 • Filters and Wrappers

 ✓ Two-Minute Drill

 Q&A Self Test

150 Chapter 3: The Web Container Model

In this chapter we examine more closely that largely overlooked piece of software that looks
after your requests, responses, and servlets: the web container. As you’ll have gathered from
looking at the J2EE API documentation for javax.servlet and related packages, there are a large

number of classes and interfaces implicated in web applications. Some you have to write yourself as
a developer: implementing interfaces in the API or extending useful base classes (such as Generic
Servlet). However, there are many more interfaces that you never have to implement—because your
web container provider has done it for you. That’s the deal if you are creating a J2EE web container:
You have to understand the servlet specifi cations in detail and provide suitably compliant classes.
That’s not to mention orchestrating the runtime environment: making sure that instances of servlets
are created in the right circumstances and that life cycle methods are called at the right time.

Fortunately, you are a web component developer, not a web container developer. So
you can take for granted much of what is built into the web container (both for the
exam and for real development work). You are a consumer of what the web con-
tainer provides —and have to understand the infrastructure only insofar as it affects
your own business applications.

That’s the focus of the exam objectives we explore in this chapter. We start with
the ServletContext interface. You never build a class implementing this interface,
nor do you instantiate such a class at runtime: The web container does that for you.
All you have to do is to understand when and why a ServletContext is available —
and what you can do with it (attaching initialization parameters for your web ap-
plication, for example). We go on to dissect three different scopes maintained by the
web container — request, session, and context —and examine how you can attach
information to these scopes. We’ll also see how this information is affected by the
multithreaded nature of web containers. The mechanism of request dispatching will
be laid bare: how one servlet can take advantage of other servlets and other web
resources. And we’ll fi nish the chapter with a look at fi lters, a way of trapping and
processing requests and responses going to and from a target web resource.

CERTIFICATION OBJECTIVE 3.01

ServletContext (Exam Objective 3.1)
For the ServletContext initialization parameters: write servlet code to access initializa-
tion parameters; and create the deployment descriptor elements for declaring initialization
parameters.

We have already met the ServletContext, and in this chapter —describing the
web container model—we explore its remaining secrets. The ServletContext most
closely represents the web application itself — or, more correctly, provides a set of
services for the web application to work with the web container.

We’ll start this chapter by looking at one of the fundamentally useful aspects of
the ServletContext: the ability to set up initialization parameters that are then avail-
able to every servlet and JSP in your web application.

ServletContext Initialization Parameters
What if you want some fundamental information available to all the dynamic
resources (servlets, JSPs) within your web application? We’ve already seen how to
provide initialization information for servlets by using servlet initialization param-
eters in the deployment descriptor and by using the getInitParameter(String
parmName) method. But a servlet initialization parameter is accessible only from its
containing servlet. For web application level, we have ServletContext parameters.

Setting Up the Deployment Descriptor
You can have as many ServletContext initialization parameters as you wish —
none, one, fi fty, or more. The listing below shows two ServletContext initializa-
tion parameters as the only things in the deployment descriptor:

<web-app>
 <context-param>
 <param-name>machineName</param-name>
 <param-value>GERALDINE</param-value>
 </context-param>
 <context-param>
 <param-name>secretParameterFile</param-name>
 <param-value>/WEB-INF/xml/secretParms.xml</param-value>
 </context-param>
</web-app>

How does this compare with servlet initialization parameters (covered in Chap-
ter 1)? You can see that the <param-name> and <param-value> tag pairings are
identical between Servlet and ServletContext. If you are good at deciphering the
XSD used to validate the deployment descriptor — not that you need to be for the
exam!— this will come as no surprise, because this “block” of <param-name> and
<param-value> has a unifying element description that occurs wherever a parame-
ter name/value pairing is required. But note that the parent element is not the same.

ServletContext (Exam Objective 3.1) 151

152 Chapter 3: The Web Container Model

Whereas a servlet has <init-param> to encase the parameter name/value pair-
ing, ServletContext has <context-param>. And whereas —for servlets —<init-

param> has <servlet> as its parent, a ServletContext’s <context-param> ele-
ments sit directly in the root element, <web-app>. This makes perfect sense, because
servlet initialization parameters belong to a servlet, whereas context initialization
parameters belong to a web application.

Writing Code to Retrieve ServletContext
Initialization Parameters
Furthermore, the coding approach for getting hold of initialization parameters is
nearly identical. In fact, the method signatures involved —getInitParameter

(String parmName) and getInitParameterNames()—are identical. Here’s
servlet code to retrieve the ServletContext parameters we set up in the deployment
descriptor in the previous section. (It’s a fragment: You’ll have to imagine this is part
of a doGet() method and that the response’s PrintWriter has already been retrieved
to a variable called out.)

ServletContext sc = getServletContext();
String database = sc.getInitParameter("machineName");
String secret = sc.getInitParameter("secretParameterFile");
out.write("
The machine name is: " + database);
out.write("
The secret parameter file is: " + secret);

This might yield output in the web page looking like the following:

The machine name is: GERALDINE
The secret parameter file is: /WEB-INF/xml/secretParms.xml

If you wish to recover the names of all the parameters set up for the Servlet
Context, then look up the values for those names, the snippet of servlet code
below will do the trick:

ServletContext sc = getServletContext();
Enumeration e = sc.getInitParameterNames();
while (e.hasMoreElements()) {
 String paramName = (String) e.nextElement();
 out.write("
Parameter name " + paramName
 + " has the value <I>" + sc.getInitParameter(paramName)
 + "</I>");
}

When I run this code in Tomcat, I get the following web page output:

Parameter name secretParameterFile has the value /WEB-INF/xml/secretParms.xml
Parameter name machineName has the value GERALDINE

You might have noticed that this lists the parameters in the opposite order from their
setup in the deployment descriptor, where the machineName parameter came fi rst.
Let this be a warning to you: In this case and many more, you can’t rely on deploy-
ment descriptor order.

ServletContext initializa-
tion parameters are not tricky—it might
be hard to imagine any diffi cult questions
arising! Watch out, though, for questions
that focus on what you get back from
ServletContext methods when the initial-
ization parameters are wrong or missing.
getInitParameter(String parm
Name) hands back a null String refer-
ence if the parameter is not recognized.

If there are no context parameters at all,
getInitParameterNames() hands back
an empty Enumeration (i.e., a non-null,
bona fi de Enumeration reference—but the
Enumeration has no elements). What you
don’t get is any kind of exception being
thrown from these methods—at least, not
under these normal circumstances, where
parameters are unrecognized or missing.

I don’t put all my system parameters and other meta-information in Servlet
Context initialization parameters. I put most data of that sort in fi les on the
fi le system—maybe in simple properties fi les, or XML fi les for more sophis-
ticated data. I would locate the fi les under a directory located within the
WEB-INF directory, then use a single ServletContext initialization parameter
to hold this location, relative to the web context. For properties fi les, I would
use methods such as getResourceAsStream() to return an InputStream I
could load() into a Properties object. (XML fi les might need a more hand-
crafted approach, dependent on the Java classes that will receive the XML-
described information.) The properties object itself could be set (and subse-
quently accessed) as a ServletContext attribute—something we’ll learn about
in the next section of this chapter. Why do I do this? Because while Servlet
Context initialization parameters are a great idea, they’re not as fl exible
as data held in fi les. Files can be altered in situ—and, if necessary, you can

ServletContext (Exam Objective 3.1) 153

154 Chapter 3: The Web Container Model

ON THE CD

arrange a call to a servlet that will reload the fi le values into Java variables in
your web application dynamically, without recourse to closing the application
down. A change to a ServletContext parameter necessitates redeploying the
deployment descriptor fi le and restarting the web application to cause the
parameters to be re-read.

EXERCISE 3-1

Using the ServletContext to Discover and Read a Properties File
In this exercise, you’ll set up a ServletContext initialization parameter that holds the
location and name of a fi le. You’ll write servlet code to use this parameter to locate
and read the fi le, holding the individual properties within it as ServletContext at-
tributes (this gives you a taste of what is to come in the next section!). Finally, you’ll
write more servlet code to access those properties at a later point in the servlet life
cycle.

Each exercise from now on will involve a web application of its own. I suggest you
work in the following way, as described more fully in Appendix B:

■ Create a directory that follows the naming structure of the chapter and exercise
number —ex0301 for this exercise.

■ Create a web application directory structure underneath this. This structure
should contain the / WEB-INF directory, the / WEB-INF/classes directory, and
the deployment descriptor fi le web.xml in the / WEB-INF directory.

■ Create a package structure under / WEB-INF/classes of your own (you don’t
have to put your servlets into packages).

■ Create your source fi les directly in your package directories (or directly in
/ WEB-INF/classes if there are no package directories).

■ Compile the source in place so that the class fi les appear in the same directories
as the source directories.

For this exercise, there’s a solution in the CD in the fi le sourcecode/ch03/ex0301
.war —check there if you get stuck.

Set Up the Deployment Descriptor

 1. In web.xml, set up two context initialization parameters, one named
“propsFileName,” with a value of / WEB-INF, and the other “propsFile

Location,” with a value of ex0301.properties. Refer to the section above to
see how to set up context initialization parameters.

 2. Declare a servlet named ContextInitParms, with a suitable servlet mapping.
Ensure that it loads on start up of the server. Refer to Chapter 2 to refresh
yourself on <servlet> element setup if you need to.

Set Up the Properties File

 3. Create a fi le called “ex0301.properties” in the / WEB-INF directory.

 4. Use a text editor to put the following contents into the properties fi le:

 application_name=EX0301 ContextInitParms

Write the ContextInitParms Servlet

 5. Create a Java source fi le ContextInitParms.java in / WEB-INF/classes or an
appropriate package directory. Write the class declaration in the source fi le,
extending HttpServlet.

 6. In your ContextInitParms servlet, override the init() method (inherited
from GenericServlet)— that’s the init() without any parameters.

 7. In the init() method, return the context initialization parameters you set
up in step 1 of the exercise into local String variables.

 8. Still in the init() method, concatenate the Strings retrieved in step 7, with
a forward slash in between. Use this concatenated string as the parameter to
ServletContext.getRealPath(), which will return the true path on the
fi le system to the properties fi le.

 9. Still in the init() method, create a FileInputStream from the true path
you calculated in step 8. Create a new Properties object, and use the
Properties.load() method to load information from the FileInput
Stream into your Properties object.

 10. Use the ServletContext.setAttribute() method to set up the Properties
object as an attribute of the ServletContext. You don’t meet servlet context
attributes until the next section of this chapter, but don’t let that worry
you — they’re simple. They allow you to associate a String name with any
object. Make sure the name of the attribute is properties. The code you use
to do it will probably look very like this:

 context.setAttribute("properties", properties);

ServletContext (Exam Objective 3.1) 155

156 Chapter 3: The Web Container Model

 11. Now override the doGet() method in ContextInitParms.

 12. Retrieve the context attribute you set up in the init() method. You’ll use
the ServletContext.getAttribute() method with a parameter of prop-
erties. Since this returns a plain Object, ensure that you cast the result to a
Properties type.

 13. Obtain the “application_name” property from your properties object with the
getProperty() method, and display this (it’s a String) in the servlet (write
it to the response’s PrintWriter).

Run the Application

 14. Having compiled your code, copy the entire ex0301 directory to your server’s
web applications directory.

 15. Stop and start your server, checking the application log produced. Since you
specifi ed that ContextInitParms should load on start up, the init() method
should run —make sure that there are no problems.

 16. If step 15 was successful, point your browser (using the appropriate servlet
mapping that you set up in step 2) to the ContextInitParms servlet with a
URL such as this one:

 http://localhost:8080/ex0301/ContextInitParms

 17. Check that the application name “EX0301 ContextInitParms” appears on the
resulting web page. Here’s how the solution page looks:

CERTIFICATION OBJECTIVES

Attributes, Scope, and Multithreading (Exam
Objectives 3.2 and 4.1)

For the fundamental servlet attribute scopes (request, session, and context): write servlet
code to add, retrieve, and remove attributes; given a usage scenario, identify the proper
scope for an attribute; and identify multithreading issues associated with each scope.

Write servlet code to store objects into a session object and retrieve objects from a session
object.

In this section, we’re going to spend some time on attributes. These have a little in
common with parameters, but we will explore the difference. Parameters allow in-
formation to fl ow into a web application. We started (in Chapter 1) with request
parameters—attaching identifi able data to an HTTP request. In Chapter 2 we met
initialization parameters for servlets, and at the beginning of this chapter, we met
initialization parameters for the servlet context. Both get information from the web
deployment descriptor to web application code. Attributes are more of a means of
handling information within the web application. They are more of a two-way street
than parameters—because you can update attributes in your code, not just read them.

We’re also going to consider scope in this section. Web application context (as
represented by the ServletContext object) is one of three “scopes” you can use. The
other two are session scope (represented by HttpSession objects) and request scope
(represented by objects implementing the ServletRequest or HttpServletRequest
interfaces). You can attach your attributes to any of these three scopes, and you
need to be very familiar with their characteristics for the exam. (Before the end of
the book you’ll encounter a fourth — page scope —but that needs to wait until we
discuss JavaServer Pages more fully in Chapter 6.)

Once you know about scopes, you’ll be ready to understand about multithreading
issues: questions about the thread safety of different types of attribute — those at-
taching to request, session, and context. When should you use synchronized blocks
for attribute access? Is it ever appropriate to use servlet instance variables instead of
attributes? We’ll cover these questions and more before the end of the chapter.

Attributes
Attributes are a dumping ground for information. The web container uses attributes
(alongside APIs) as a place to

Attributes, Scope, and Multithreading (Exam Objectives 3.2 and 4.1) 157

158 Chapter 3: The Web Container Model

■ Provide information to interested code. There are a number of standard attributes
that a web container should provide as part of the servlet specifi cation, and
chances are it will provide a few optional extras of its own. You can regard at-
tributes used this way as a means of supplementing the standard APIs that yield
information about the web container.

■ Hang on to information that your application, session, or even request requires later.
These “user-defi ned” attributes are likely to account for the bulk of attribute
usage in your web application.

Attributes are easy to learn for this reason: Whatever scope you are dealing with
(request, session, or context), the retrieval and update mechanisms are pretty much
identical. The essentials are that you can pick the appropriate object for the scope,
then use the appropriate get /set /removeAttribute method.

The thing that takes a little more learning is the idea of “scope.” The idea of
scope will already be familiar from general Java coding —for example, the idea that
a local variable goes out of scope when a method comes to an end. Java coding scope
defi nes how long a variable is available. Web application scope is the same idea on
a grander scale —an attribute’s scope can span an entire request, web application,
session, and even — occasionally —multiple JVMs.

Make sure you don’t mix
up your attributes and parameters! Pa-
rameters—whatever scope you fi nd them
in—are read-only. They travel one way:
perhaps from an HTML form through an
HTTP request, or from initialization pa-

rameter settings in the deployment descrip-
tor fi le to the servlet context or individual
servlets. You’ll fi nd only “getters” for them.
Attributes are read/write—you can cre-
ate, update, and delete them from all the
scopes—request, session, or context.

Mechanisms for Manipulating Attributes
For all three scopes — request, session, and context — there are four methods for
the manipulation of attributes. If you take any one of those four methods — say,
getAttributeNames()—you’ll fi nd that it has an identical signature (well, nearly
identical) across request, session, and context. Input parameters and return types
don’t vary, nor do the rules governing what type or constant is returned under what
circumstances. The only thing that spoils the perfect symmetry is session, whose
methods can throw IllegalStateExceptions. No need to worry about why those might

occur (it’s a topic we cover in Chapter 4)—it’s just worth noting that the session
methods are the “exception” that proves the rule when it comes to parameter and
attribute methods (which in general don’t throw exceptions on their signature).

The four methods and the three scopes are shown in Table 3-1, for ease of
comparison.

TABLE 3-1 Comparison of Attribute Methods for Different Scopes

Scope Request Scope Session Scope
Context (Application)
Scope

on Interface javax.servlet
.ServletRequest

javax.servlet.http
.HttpSession

javax.servlet
.ServletContext

public void
setAttribute
(String
name,Object
value)

Binds an object to the re-
quest, keyed by the String
name. If the object passed
as a value is null, has the
same effect as
removeAttribute().

Binds an object to the
session, keyed by the
String name. If the object
passed as a value is null,
has the same effect as
removeAttribute().
Throws IllegalStateException
if invoked when the session
is invalid.

Binds an object to the
context, keyed by the
String name. If the object
passed as a value is null,
has the same effect as
removeAttribute().

public
Object
getAttribute
(String
name)

Returns the value of the
named attribute as an
Object, or null if no at-
tribute of the given name
exists.

Returns the value of the
named attribute as an
Object, or null if no at-
tribute of the given name
exists. Throws IllegalState
Exception if invoked when
the session is invalid.

Returns the value of the
named attribute as an Ob-
ject, or null if no attribute
of the given name exists.

public
Enumeration
getAttribute
Names()

Returns an Enumeration
containing the names of
available attributes.
Returns an empty
Enumeration if no
attributes exist.

Returns an Enumeration
containing the names of
available attributes. Returns
an empty Enumeration if
no attributes exist. Throws
IllegalStateException if
invoked when the session
is invalid.

Returns an Enumeration
containing the names
of available attributes.
Because there are some at-
tributes that the web con-
tainer must supply to the
context, this Enumeration
should never be empty.

public void
remove
Attribute
(String
name)

Removes the named
attribute.

Removes the named attri-
bute. Throws IllegalState
Exception if invoked when
the session is invalid.

Removes the named
attribute.

Attributes, Scope, and Multithreading (Exam Objectives 3.2 and 4.1) 159

160 Chapter 3: The Web Container Model

So as you can see, the mechanisms are pretty much identical. There are a few points
worth making about the use of these methods:

■ You can choose any String you want for your attribute name. That said, the servlet
specifi cation suggests you follow the “reverse domain name” standard, using
names such as “com.mycompany.myattributename.”

■ It’s impossible to have two or more attributes with the same name. If you make a call
to setAttribute() using a name of an attribute that already exists, the existing
attribute is replaced with the new value.

■ Session methods are unique among the three scopes in being able to throw exceptions.
This has to do with attempting to use the methods on an “invalid session” and is
discussed in detail in Chapter 4.

■ But despite this caveat about session method exceptions, note that none of the methods
(whatever the scope) throw exceptions just because attributes don’t exist. In this, they
are just like parameter methods.

■ Although there is a removeAttribute(String name) method, you don’t neces-
sarily need it. A call such as this to setAttribute() has the same effect:

scopeinstance.setAttribute("com.myco.attrname", null);

There are some families of attribute names that are reserved for use by Sun Micro-
systems and the servlet specifi ers. Proscribed names begin with

■ java.

■ javax.

■ sun.

■ com.sun

You have to memorize the
material in Table 3-1 for the exam—no
way around it! Focus on the similarities
and (few) differences between the method
calls. There are numerous tricky ques-
tions on this content. Be aware that when

JavaServer Pages are introduced in Chapter
6, you’ll be adding a fourth scope into the
mix—page scope—and that exam ques-
tions mostly ask you to differentiate among
all four scopes, not just the three you have
learned so far.

This is so that web containers can provide some standard attributes —just like
standard properties inside a JVM, retrieved with the System.getProperty(String
propertyName) static method. A case in point is the ServletContext attribute
“javax..servlet.context.tempdir.” This is a mandatory attribute that web containers
must provide, and it specifi es a temporary storage directory unique to a particular
web application. This is why —as noted in Table 3-1—you should never have an
empty Enumeration returned from ServletContext.getAttributeNames().

So let’s look at some code that exercises all these methods for ServletContext
(which serves as a guide for all three scopes). The code listing is a fragment from a
longer doGet() method in a servlet:

10 // "out" is the response's PrintWriter
11 out.write("<H2>Context (Application) Scope</H2>");
12 ServletContext context = getServletContext();
13 String myAttributeName = "com.osborne.conductor";
14 context.setAttribute(myAttributeName, "Andre Previn");
15
16 enum = context.getAttributeNames();
17 while (enum.hasMoreElements()) {
18 attrName = (String) enum.nextElement();
19 attrValue = context.getAttribute(attrName);
20 out.write("
Attribute name: " + attrName + ", value: "
21 + attrValue + "");
22 }
23 String conductor = (String) context.getAttribute(myAttributeName);
24 out.write("
 Just used getAttribute() to obtain "
25 + myAttributeName + " whose value is " + conductor);
26
27 context.removeAttribute(myAttributeName);
28 context.setAttribute(myAttributeName, null);
29
30 out.write("
Value of attribute " + myAttributeName + " is now "
31 + context.getAttribute(myAttributeName));

The code can be explained as follows:

■ Line 12: get hold of a handle to the ServletContext.

■ Lines 13–14: add our own attribute (name —“com.osborne.conductor,” value —
a String object holding the conductor “Andre Previn”).

■ Lines 16 –22: obtain the Enumeration of all context attribute names. Loop
around this, using the getAttribute() method, to obtain the context value
for each name in turn, and output the name and value to the web page.

Attributes, Scope, and Multithreading (Exam Objectives 3.2 and 4.1) 161

162 Chapter 3: The Web Container Model

■ Lines 23–24: use getAttribute() to get hold of the attribute we added above
at lines 13–14, and output the name and value to the web page.

■ Line 27 removes this attribute using removeAttribute().

■ Line 28 removes this attribute again, using a different technique with set
Attribute(). This action is completely redundant, for the attribute has
already been removed in the previous line, but makes the point that this doesn’t
matter (no exceptions thrown).

■ Line 30: use getAttribute() again to prove that the attribute has really gone
(null is output to the web page, as you can see in the output listing below).

The output from the code (when I run it under Tomcat) is this:

Context (Application) Scope
Attribute name: com.osborne.conductor, value: Andre Previn
Attribute name: org.apache.catalina.jsp_classpath, value: /C:/Java/jakarta-
tomcat-5.0.27/webapps/scratchpad/WEB-INF/classes/;C:/Java/jakarta-tomcat-
5.0.27/shared/classes/;<...>
Attribute name: javax.servlet.context.tempdir, value: C:\Java\jakarta-tomcat-
5.0.27\work\Catalina\localhost\scratchpad
Attribute name: org.apache.catalina.resources, value: org.apache.naming
.resources.ProxyDirContext@aa0877
Attribute name: org.apache.catalina.WELCOME_FILES, value: [Ljava.lang
.String;@111ded2
Just used getAttribute() to obtain com.osborne.conductor whose value is Andre
Previn
Value of attribute com.osborne.conductor is now null

You can see the context attribute added by our code at the top of the web page—com
.osborne.conductor (but do note that there’s no guarantee of the order of attributes
within the Enumeration returned by the getAttributeNames() method). Tucked
in the middle of the listing is the compulsory context attribute, javax.servlet.context
.tempdir. Sprinkled in between are a few “org.apache.<whatever>” context attri-
butes—these are particular to the Tomcat web container. Some of the outlandish
values (e.g., org.apache.naming resources.ProxyDirContext@aa0877) underline the
fact that any object of any type can be held as an attribute value—not merely Strings.

Scope
So far in this chapter, I have happily bandied around the term “scope” without at-
tempting to pin down exactly what it means for request, session, and context. I’ve
given you the eagle-level defi nition: Scope describes the lifetime and availability of

web application artifacts (by which I mean attributes, mostly). What we’ll do in
this section is to go through each of the three scopes in turn, mapping out their
extent.

Request Scope
Request scope lasts from the moment an HTTP request hits a servlet in your web
container to the moment the servlet is done with delivering the HTTP response.
More accurately, the request scope is available from entry into a servlet’s service()
method up to the point of exit from that method. Of course, the default behavior of
a servlet’s service() method —unless you’ve overridden it to do something unique
and strange —is to call a method you’re more likely to override — such as doGet()
or doPost(). And here the request is still very much alive and well, and available
as a parameter. Now, your doGet() or doPost() method may in turn make use
of other classes, and pass on their HttpServletRequest parameter to those classes’
methods. In other words, the whole tree of method calls initiated by the service()
method —however deep —counts as a single request scope.

The scope is represented by an instance of a request object: most often, one of
type HttpServletRequest (it could be of type ServletRequest if we’re considering
a non-HTTP servlet container —most developers won’t meet such a thing, ever).
Figure 3-1 shows the progress of a request — possibly not a typical one, for its life-
time is arguably longer than most. You see at (1) in Figure 3-1 a client making a
request for a servlet called ServletA. This triggers the web container (at (2) in Fig-
ure 3-1) to provide a request object to the servlet’s service method. This will—in
all likelihood —be passed on as a parameter to the doGet() or doPost() method
(assuming that ServletA is an HttpServlet). ServletA makes use of a helper class
(at (3)): We’re imagining that the helper class contains a method receiving a Servlet
Request as a parameter, so the request object is passed into the helper class. Some-
thing more extravagant happens at (4) in Figure 3-1: ServletA decides it needs
to make use of ServletB in a separate web application. It can do this by using the
RequestDispatcher mechanism — something we learn all about later in this chapter.
The reason for its premature inclusion here is to show that a request object’s scope
can transcend web application boundaries. When you use a RequestDispatcher, you
have to pass on the request (and response) objects to the resource to which you are
dispatching.

At the end of the request ((5) in Figure 3-1), the request object is placed out of
scope. This doesn’t necessarily mean that the web container sets its value to null and
that the JVM garbage collects the object. It’s more effi cient for a web container to
refrain from destroying and recreating request objects —better to throw them back

Attributes, Scope, and Multithreading (Exam Objectives 3.2 and 4.1) 163

164 Chapter 3: The Web Container Model

into a pool where they can be recycled. You don’t have to concern yourself (either
for the exam or —usually —in real life) with the mechanism for this: It’s up to the
web container implementers. What you need to take away is that a request object
is no longer any use beyond the scope of a single request. You may wonder how you
could ever think otherwise. Well, a misguided move would be to save a reference
to the request object — say —as an attribute of your session, then try to recover the
request object on the next request to that session. As the servlet specifi cation says,
the results could be —well—“unpredictable.” As far as the container is concerned,
once a request object has passed beyond its rightful scope, the object can be recycled
for another request.

Of course, we’ve accessed the request object for many different reasons already —
such as for obtaining header information and retrieving parameters set up on an
HTML form. This chapter asks you to consider a new purpose for the request object:
as a repository for objects, held as attributes. You might think it hardly worth bother-
ing going to the trouble of attaching and retrieving request attributes. If your request
scope comprises a short doGet() method in a single servlet, you would be quite
right. Why would you set an attribute only to retrieve it a few lines of code later?
You might just as well use a local variable in your doGet() method instead. How-

1

5 3

2

4
Client makes request to web container for
ServletA.

Web container supplies request object to
service() method of ServletA.

ServletA passes request object to helper
class (in same web application).

ServletA dispatches to ServletB in separate
web application, passing the request object.

Control returns to ServletA. ServletA
service() method ends. Web container
removes request object from scope (and
returns response to client).

1.

2.

3.

4.

5.

Request object

Helper
Class

Web App 1

Web container (App server / JVM)

Client
ServletA

service()

Web App 2

ServletB

service()

FIGURE 3-1 Request Scope

ever, the moment you involve a couple of resources —a servlet forwarding to a JSP
or, indeed, the fuller life cycle shown in Figure 3-1— request attributes can prove a
useful way of passing on information.

Note in passing (though it’s very unlikely to come up in the exam) that the
web container might attach some attributes of its own to the request. Sometimes
it’s obliged to when the request is transmitted through a secure protocol such as
HTTPs. For example, there is an attribute named javax.servlet.request.key_size,
which holds an integer object indicating the bit size of the algorithm used to encrypt
the transmission (and you might legitimately wonder why this information isn’t en-
shrined in a full-blown HttpServletRequest API—a method such as getKeySize(),
perhaps).

Attributes aren’t the only things of interest in connection with request objects.
Request parameters —which we looked at in Chapter 1—are bound by the same
scope. Just as for attributes, if you don’t strip out parameter values while the request
is in scope —and put them somewhere a bit more permanent — they’ll be lost. The
“more permanent” aspect is something we now go on to consider as we examine ses-
sion and context scopes.

Session Scope
Session scope is something we are going to skimp on in this chapter. Don’t feel
cheated, though — Chapter 4 thoroughly revisits sessions. However, it’s worth saying
a little about session scope here so you can see it alongside the other two scopes.

You are likely to use session scope a great deal in your applications. Loosely speak-
ing, session scope comes into play from the point where a browser window estab-
lishes contact with your web application up to the point where that browser window
is closed.

On the application server side, the session is represented by an object implement-
ing the HttpSession interface and can be retrieved from the request object using
code such as the following:

HttpSession session = request.getSession();

The idea is that successive requests from the same browser window will each obtain
the same session object each time. And that’s the whole idea — to provide a scope
that allows you as a developer to give a user the feeling of continuity throughout a
series of interactions with your web application. So any parameters from web page
forms that need to survive beyond single requests —items you add to your shopping
cart (the classic, clichéd, and clinching example)—are best served by converting
their information to session attributes.

Attributes, Scope, and Multithreading (Exam Objectives 3.2 and 4.1) 165

166 Chapter 3: The Web Container Model

Context (Application) Scope
Let’s now deal with context scope, which is the longest-lived of the three scopes
available to you. Figure 3-2 shows a web container with two different web applica-
tions. On startup of the container, a servlet context is created for each web applica-
tion (at (1) in Figure 3-2). A client web browser — Client 1— then requests the
services of ServletA, which in turn uses the context object —at (2) in Figure 3-2.
Client 2 uses both ServletA and ServletB: Both servlets use the same context object
((3) in Figure 3-2).

So far, all the action has taken place inside one web application —Web App
1. Now Client 3 requests the services of ServletB and ServletC. ServletB uses the
context object we’ve already met in Web App 1. However, ServletC —located in
Web App 2—uses the separate context object that belongs to Web App 2. The
point here is that context objects do not straddle different web applications: There is
strictly one per web application.

The loss of context scope is shown at (6) in Figure 3-2. If the web container is
stopped, then the web applications die —and this includes the context objects for
each web application. If a web application is reloaded, then the context object is

1

6

5

5

3

2

2

4

3

4
Application server starts up and loads web
apps: separate context object created for each.

Client1 requests ServletA; ServletA uses Web
App 1 context object.

Client 2 requests ServletA, then ServletB: both
servlets use same Web App 1 context object.

Client 3 requests ServletB in Web App 1:
ServletB uses context object as before.

Client 3 requests ServletC in Web App 2:
ServletC uses separate context object for
this web app.

Application server stops; context objects
destroyed.

1.

2.

3.

4.

5.

6.

Context object

Context object

Web App 1

Web container (App server / JVM)

Client 1

Client 2

Client 3 ServletA

ServletB

ServletC

Web App 2

FIGURE 3-2 Context Scope

destroyed and recreated. And if an individual web application is taken out of service,
the context object necessarily dies.

When a web application is distributed across different machines —in other words,
different JVMs —you might consider the web application to be logically the same
wherever it occurs. Don’t fall into the trap of thinking that the context object is
therefore the same instance whichever clone of the web application you use. Of
course, it can’t be literally the same instance because we’re talking about different
JVMs. But neither is the context object logically the same across the identikit copies
of the web application: There is one context object per web application per JVM. If
you add an attribute to the context in one web application’s JVM, it won’t be present
in the cloned web application’s JVM unless you explicitly add it there as well. This is
shown in the following illlustration:

ServletA adds
context
attribute
orange

ServletB adds
context
attribute

apple

Context object

Context object

Web App 1

Web Container 1 (App server / JVM)

Web Container 2 (App server / JVM)

ServletA

ServletB

Web App 2

(first running
instance of
distributed
web app)

(second
running
instance of
distributed
web app)

Attributes, Scope, and Multithreading (Exam Objectives 3.2 and 4.1) 167

You can see the cloned web application Web App 1 appearing twice, each in
a separate JVM. Some overall application server architecture (represented by the
outer box) will manage issues such as which requests get routed to which clone of
the JVM. You see the different servlets in the separate clones adding different named

168 Chapter 3: The Web Container Model

context attributes to the context object —“apple” in one, “orange” in the other —
there is nothing to stop the instances drifting apart and holding different informa-
tion. If you do need attributes with the same values across JVMs, you need to use
session attributes in a distributed web application (see Chapter 4). For distributed
sessions, the overall application server architecture is supposed to replicate session
information across cloned web applications in different JVMs.

Choosing Scopes
Mostly, you care about scopes for attaching attributes. The question is this: Which
is the best scope to use for a given scenario? Should you ignore request attributes be-
cause the information placed there evaporates so soon? Should everything go in the
context object, because then anything in the web container can access the informa-
tion? Of course, it depends on circumstances.

Multithreading
Java is a multithreaded language, but you can pursue a viable Java development
career without ever attempting multithreaded programming (apart from what you
had to do to pass the SCJD exam, anyway!). However, development for the web
container model (not to mention the certifi cation exam) requires some knowledge
of the way threads work. Although you are not likely to create threads of your own
during servlet and JSP programming (some other areas of J2EE programming ac-

You have information retrieved from a database, which is
required for a one-off web page and isn’t part of a longer
transaction.

Store the information in a request attribute. If the
information truly isn’t needed beyond one production
of one HTTP response, then don’t keep it around clut-
tering up the web application JVM memory.

You have some XML fi les that store essential information
about the way your web application works: perhaps some
information about table headings and columns. This
information changes only when the web application
undergoes development changes and is redelivered.

Store the information derived from the XML fi les
in one or more context attributes. The information
is then in JVM memory for any web resource to ac-
cess — no need to keep trawling through the XML fi le
every time a request needs information.

You have information retrieved from a database to a web
page in one request. The user makes updates on the web
page to the information, and submits the changes, which
are subject to some complex, server-side validation. The
validation fails, so the user is presented with the changes
made and a list of problems that need resolving.

This scenario is a transaction spanning several
requests. However, it is information unique to a
particular client transaction — not appropriate to at-
tach to the “public” context object. The information
that persists across web pages should be held in one or
more session attributes: more on these in Chapter 4!

SCENARIO & SOLUTION

tively ban you from making your own threads), you need to be aware that the web
container has the potential to create many threads of its own. And your developed
servlets have to live within this multithreaded model.

The issue —which is no different from any other multithreaded environment —
is when you have two (or more) concurrently running threads that require access to
the same resource. And in the context of threads and web applications, “resource”—
more often than not —means an object that is held as the value of some named
attribute in some scope or other — request, session, or context. Is one thread chang-
ing an attribute value under the feet of another thread reading that value? Worse,
are the threads both trying to update an attribute value at the same time? What we
consider in this section is the three scopes again: which are thread safe, which are
not, and what you need to do about it as a developer.

Multithreading and Request Attributes
We’ll fi rst consider requests. The good news here is that request attributes are thread
safe. In fact, everything to do with the request and response objects (results of
method calls on these objects, request attributes, request parameters, etc.) will only
ever be accessed by one thread and one thread alone. The web container provides
a new (or as good as new) instance of the request and response objects whenever a
new request is received. Here’s how it looks:

req

A AA P

P
resp

req

A AA P

P
resp

req

A AA P

P
resp

req

A AA P

P
resp

Web App 1

Web container (App server / JVM)

ClientA

= Request object

= Request attribute

= Request parameter

= Response object

A

P

req

resp

Request thread

Request thread

ClientB Request thread

Request thread
ClientC

Attributes, Scope, and Multithreading (Exam Objectives 3.2 and 4.1) 169

170 Chapter 3: The Web Container Model

Multithreading and Session Attributes
Again, we’re going to defer a full discussion of this until Chapter 4, on sessions.
Suffi ce to say for the moment that session attributes are offi cially not thread safe. For
most common web applications, though, you can assume thread safety. But until
you’ve passed your SJWCD exam, assume not (just as you wouldn’t cross your hands
on the steering wheel until after you’ve passed your driving test).

Multithreading and Context Attributes
The servlet context represents the opposite extreme from the request. The world
and his wife have access to the servlet context object. To speak more technically,
each and every client requesting thread to a web application can potentially update
a servlet context attribute. So you do need to worry about thread safety.

Web App 1

Web container (App server / JVM)

ClientA

Request thread

Request thread

ClientB Request thread

Request thread
ClientC

Context
object

Attribute

Attribute

Attribute

Attribute

Attribute

You have two approaches to solve the multithreading dilemma:

 1. Treat servlet context attributes like servlet context parameters. Set up servlet
context attributes in the init() method of a servlet that loads on the startup
of the server, and at no other time. Thereafter, treat these attributes as “read
only”— only ever call getAttribute(), never setAttribute(), on the
context object.

 2. If there are context attributes where you have no option but to update them
later, surround the updates with synchronization blocks. If it’s crucial that
no other thread reads the value of these attributes mid-update, you’ll need to
synchronize the getAttribute() calls as well.

Bear in mind that synchronization —especially on a much-accessed context attri-
bute —might create a huge bottleneck in your application. Keep it to a minimum!
Also bear in mind that the recommendations above are not enforced by anything
in the web container model. It’s down to programming standards to enforce these
approaches.

As of this version of the
exam, you will no longer get questions
about the SingleThreadModel interface.
This interface is deprecated in the ver-
sion 2.4 of the servlet specifi cation. The
idea was that if a servlet implemented
this interface, the web container would
guarantee that only one thread at a time
would be able to access any given instance

of the servlet. Web containers providing
this facility paid a high cost in performance
terms. And so it was deemed much better
to avoid this approach altogether: better
to rely on other ways of enforcing thread
safety where needed (in general, synchro-
nize what you have to, but keep this to a
minimum).

The old exam syllabus required awareness of thread safety issues regarding
types of variables you might use in servlets: local, instance, and class. Al-
though this isn’t part of the exam anymore, it’s still good to have some knowl-
edge when out in the fi eld.

Local Variables: These are either parameters to servlet methods, or
variables declared within methods. Just as elsewhere in Java, local variables
are completely thread safe: The JVM guarantees that there can be only one
thread ever accessing a local variable. Even if the same instance of a servlet is
running simultaneously in multiple threads, the service() and other methods
are effectively separate.

Instance Variables: These are considered harmful! They are not thread
safe, so add your own synchronization if you have to. You never know when
there will be more than one thread accessing a single instance of a servlet.

Attributes, Scope, and Multithreading (Exam Objectives 3.2 and 4.1) 171

172 Chapter 3: The Web Container Model

ON THE CD

But more than that, servlet instance variables are not particularly useful. Ex-
cept for the very specialized case in which you want to keep track of informa-
tion about individual servlet instances (perhaps to record a usage count per
instance), there isn’t much you can usefully defi ne as servlet instance informa-
tion. You can’t guarantee that the same client targeting the same servlet URL
more than once will get the same instance, so servlet instance information is
no substitute for session attributes.

Class Variables: Again, these are not thread safe. However, they are po-
tentially a bit more useful than servlet instance variables because the infor-
mation is shared across all instances of a particular servlet. So a usage coun-
ter on a class variable does tell you how many times the actual servlet class
was accessed—which is more likely to be something you want to know (as
opposed to separate counters for individual instances of the servlet).

EXERCISE 3-2

Displaying All Attributes in All Scopes
In this exercise, you’ll display the attributes available to a web page in all scopes.
The context directory for this exercise is ex0302, so set up your web application
structure under a directory of this name.

For this exercise, there’s a solution in the CD in the fi le sourcecode/ch03/ex0302
.war —check there if you get stuck.

Set Up the Deployment Descriptor

 1. Declare a servlet named AttributesAllScopes, with a suitable servlet map-
ping. If needed, refer to Chapter 2 to refresh yourself on <servlet> element
setup.

Write the AttributesAllScopes Servlet

 2. Create a Java source fi le AttributesAllScopes.java in / WEB-INF/classes or an
appropriate package directory. Write the class declaration in the source fi le,
extending HttpServlet.

 3. Override the doGet() method in AttributesAllScopes.

 4. Do the necessary preliminaries to obtain the response’s PrintWriter, and set
the content type to “text /html.”

 5. Using the request object (of type HttpServletRequest) that’s passed as a
parameter into the doGet() method, retrieve an Enumeration using the
getAttributeNames() method.

 6. Write code to go through all the elements in the Enumeration. For each
parameter name retrieved, display the attribute name. Get hold of the
corresponding attribute value using the getAttribute() method on the
request object.

 7. Now obtain the session object, using the getSession() method on the
request object. Repeat steps 5 and 6 —getting an Enumeration of parameter
names and displaying the attribute names and values —but with the session
rather than the request object.

 8. Now obtain the context object, using the servlet’s getServletContext()
method. Again, repeat steps 5 and 6 for context attributes.

Run the Application

 9. Having compiled your code, copy the entire ex0302 directory to your server’s
web applications directory. Stop and start your server (if necessary to deploy
the application).

 10. Point your browser (using the appropriate servlet mapping that you set up in
step 1) to the AttributesAllScopes servlet, and check that a web page appears
displaying at least some attributes. Here’s the URL you are likely to use with
the Tomcat server:

 http://localhost:8080/ex0302/AttributesAllScopes

 11. It’s almost certain you will get some context attributes appearing. However,
it’s quite likely that request and session scopes will come up blank. Add
some request and session attributes to the request and session objects (using
the setAttribute() method) at the beginning of your doGet() method
to prove that your retrieval code works. The following illustration shows a
screen shot from the solution code.

Attributes, Scope, and Multithreading (Exam Objectives 3.2 and 4.1) 173

174 Chapter 3: The Web Container Model

CERTIFICATION OBJECTIVE

Request Dispatching (Exam Objective 3.5)
Describe the RequestDispatcher mechanism; write servlet code to create a request dispatcher;
write servlet code to forward or include the target resource; and identify and describe the
additional request-scoped attributes provided by the container to the target resource.

So far, we’ve considered the case of calling one single servlet to accomplish a task:
request made, servlet executes, response generated —job done. We have also learned
about helper classes that a servlet can use. We can include those in the web appli-
cation’s / WEB-INF/classes directory or in a JAR fi le in / WEB-INF/ lib, as we saw in
Chapter 2.

What, though, if the servlet we summon wants to call on the services of another
servlet within the web application? Or some other web resource, maybe a JSP? Or
even hand off all responsibility and let a different servlet handle the work? Enter the
RequestDispatcher: a mechanism for controlling the fl ow of control within the web
resources in your web application.

Obtaining a RequestDispatcher
You can obtain a RequestDispatcher either from the request (ServletRequest) or
the web application context (ServletContext). ServletRequest has one method for
getting hold of a RequestDispatcher, and ServletContext has two —making three
possible ways of getting hold of a RequestDispatcher. You can be sure that exam
questions will focus on the subtle shades of difference among these three methods!

We’ll fi rst of all look at the “how” of getting a RequestDispatcher from the three
methods in question.

From ServletRequest
ServletRequest has one method for getting a RequestDispatcher: getRequest
Dispatcher(String path). Note that the method is part of parent interface
ServletRequest. Of course, HttpServletRequest has it too by virtue of inheriting
from ServletRequest. But if you’re faced with a question about where the method
originates, you need to know this information!

The path parameter can be a full path beginning at the context root. This means
a path to the resource without naming the context root itself. The following illustra-
tion gives some examples.

Request Dispatching (Exam Objective 3.5) 175

176 Chapter 3: The Web Container Model

ServletA ServletB

ServletC

RequestDispatcher rd =
 request.getRequestDispatcher
 ("/servlet/ServletB");

<servlet-mapping>
 <servlet-name>ServletB</servlet-name>
 <url-pattern>/servlet/ServletB</url-pattern>
</servlet-mapping>

RequestDispatcher rd =
 request.getRequestDispatcher
 ("/html/file.html");

/tomcat/webapps/webapp1/html/file.html

The forward slash (“/”) at the beginning of the path denotes the context root.
After this, you can append whatever path leads to a web resource — typically a
dynamic one (another servlet or JSP), though it doesn’t have to be. You can point
your RequestDispatcher to a plain old static HTML page if that’s your wish. So
when ServletA calls ServletB, it uses a matching <url-pattern> for ServletB when
creating the RequestDispatcher. When ServletC dispatches to a static HTML fi le
(fi le.html in the html directory of webapp1), it supplies the full path starting from
the context root (e.g., “/html /fi le.html”).

There’s also the possibility of specifying a path without an initial forward slash to
ServletRequest.getRequestDispatcher().The following illustration shows how
this might work.

ServletA

RequestDispatcher rd =
 request.getRequestDispatcher
 ("../html/file.html");

/tomcat/webapps/webapp1/html/file.html

Client request to ServletA:
http://localhost:8080/webapp1/servlet/ServletA

You see how the client request to ServletA—from the web application root —is
“/servlet /servletA.” The parameter to the getRequestDispatcher() method is rel-
ative to something —but what? It’s not the context root. This time, it’s the directory
containing the resource requested (ServletA)— notionally the directory /servlet. Yes,
I know this may not be a real directory —just a logical fi ction made up in a servlet
mapping —because the real servlet class probably inhabits some more involved loca-
tion such as “/ WEB-INF/classes/com/osborne/servlets.” The point is that relative
requests are relative to the URL as given. So now the getRequestDispatcher()
receives the parameter “../html /fi le.html.” The “..” means go up one directory in the
request —in other words, from servlet to the root directory of the web app. The rest
of the parameter “/html /fi le.html” now works as if expressed from the root directory
of the web app.

So you see that this form of relative path syntax gives considerable fl exibility.
That said, I try to keep things simple —and favor straightforward full paths from the
context root beginning with a forward slash. You can see how the use of “..” to go up
to the parent directory is quite vulnerable to later restructuring of resources in the
web application (for example, through servlet mapping changes).

From ServletContext
ServletContext has two methods of getting hold of a RequestDispatcher. These are
getRequestDispatcher(String path) and getNamedDispatcher(String name).

getRequestDispatcher(String path) This method works in exactly
the same way as the same named method on ServletRequest. There is a restriction:
Only full paths are allowed (i.e., paths beginning with a forward slash “/,” which de-
notes the context root). Paths without the initial forward slash will not work. You’ll
get a runtime exception —IllegalArgumentException —and text along the lines of
“Path myPath does not begin with a “/” character.”

getNamedDispatcher(String name) This method does bring something
new to the party. Instead of specifying a path, you supply a name for the resource
you want to execute. The name must match one of the <servlet-name> values you
have set up in the deployment descriptor, so it can refer to a named servlet or a JSP.

You may have idly wondered whether there was any point in setting up a
<servlet> entry in the deployment descriptor without a corresponding <servlet-
mapping>. The getNamedDispatcher() method is the point —it gives a means
of executing a servlet (or JSP) that doesn’t have any other means of access. This is
potentially very useful. There may be some services within your application that are

Request Dispatching (Exam Objective 3.5) 177

178 Chapter 3: The Web Container Model

available only in particular circumstances, or
only internally to your application. You may
not want these to be sitting on any kind of
public path that can be typed into the address
line, and a <servlet-mapping> gives just
that sort of public access. If you do exploit this
technique, make sure to switch off any server
loopholes — such as the ability to execute serv-
lets if you happen to know their name. Most
servers have such capabilities as a convenience

for developers, but they have no place in a production environment.

What happens if an incor-
rect path is fed to a RequestDispatcher
method? Answer: the method returns null.
So that’s what your code should test for
(you don’t attempt to catch any kind of
exception).

There is no way of escaping
a web application context with any of the
methods that return a RequestDispatcher.
However, there’s nothing stopping you from

using ServletContext’s getContext()
method to get yourself another web appli-
cation context, then obtaining a Request
Dispatcher on that other context.

Using a RequestDispatcher
Having obtained a RequestDispatcher, your servlet can do one of two things with it.
Either it forwards to another web resource (washing its hands of the responsibility of
returning a response) or includes another web resource within its own output. The
RequestDispatcher interface has only two methods —forward() and include()—
so no surprises there. We’ll now look at these methods in some detail.

Forwarding
We’ll fi rst consider the case of forwarding. The following illustration gives a graphic
account of what happens when a servlet forwards to another servlet.

ServletA ServletB
RequestDispatcher.forward()

Client

Response Response

You see that the fi rst servlet is effectively forgotten. Although it can have code
that writes output to the response, the contents of the response buffer are lost at
the point of forwarding to the second servlet. For this reason, if the fi rst servlet is
past the point of no return and has committed any of its response to the client,
then a forward call is illegal—and will, indeed, result in an IllegalStateException
at runtime.

The forward method accepts two parameters —a ServletRequest and the Servlet
Response. All you have scope to do is to pass on the request and response received
into the forwarding servlet’s service() method (which you more likely get hold
of in the doGet() or doPost() servlet method). You mustn’t manufacture your
own servlet requests and responses and plug these in instead. But then, why
would you?

So, let’s consider a servlet class that exists solely to forward somewhere else (im-
port statements omitted to save space):

public class FlexRequestDispatcher extends HttpServlet {
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 String fwdPath = request.getParameter("fwd");
 System.out.println("The dispatch path is: " + fwdPath);
 RequestDispatcher rd = request.getRequestDispatcher(fwdPath);
 // The following two lines are a waste of effort: the
 // response output will be binned...
 PrintWriter out = response.getPrintWriter();
 out.write("This text will be lost");
 // ...in favor of the response from the resource you are
 // forwarding to...
 rd.forward(request, response);
 }
}

The code expects a parameter named fwd which contains a String with the path to
forward to. So you might call it with a request such as the following:

http://localhost:8080/mywebapp/FlexRequestDispatcher?fwd=/AnotherServlet

The fwd parameter is then translated from the query string, so the fwdPath string
local variable would have a value of “/AnotherServlet.” This is passed into the
ServletRequest’s getRequestDispatcher method. Because the path begins with

Request Dispatching (Exam Objective 3.5) 179

180 Chapter 3: The Web Container Model

a forward slash (“/”), it will be interpreted relative to the context root —equivalent
to the address

http://localhost:8080/mywebapp/AnotherServlet

Assuming that “/AnotherServlet” is a valid resource in the web application (pre-
sumably a valid servlet mapping), then the RequestDispatcher instance rd will have
a value. All that remains is to execute rd.forward(), supplying the request and
response as passed into the doGet() method. A well-behaved servlet might fi rst test
whether rd is null before attempting to execute the forward() method, to protect
against a NullPointerException.

Note the two lines that obtain the PrintWriter from the response and write to it.
These are effectively a waste of effort. As soon as the FlexRequestDispatcher servlet
forwards to the requested resource, the response of FlexRequestDispatcher will ef-
fectively be nullifi ed — only the forwarded-to resource’s output will be visible in the
resulting response.

Special Attributes for Forwarding
Let’s now suppose you’ve arrived in the “forwarded-to” servlet AnotherServlet,
which contains the following code:

public class AnotherServlet extends HttpServlet {
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 String servletPath = request.getServletPath();
 System.out.println("The servlet path is: " + servletPath);
 }
}

Which servlet path is printed to the server console — that of the forwarding serv-
let FlexRequestDispatcher, or the forwarded-to servlet AnotherServlet? The answer
is the forwarded-to servlet AnotherServlet. So the output in the server console might
look like this:

The servlet path is: /AnotherServlet

t

Attribute Name Description
“Equivalent” Method
on ServletRequest

javax.servlet.forward.request_uri The URI of the original request to
the forwarding servlet (e.g., /myapp/
ForwardingServlet /pathinfo)

getRequestURI()

javax.servlet.forward.context_path The context path for the forwarding
servlet (e.g., /myapp)

getContextPath()

javax.servlet.forward.servlet_path The servlet path for the forwarding
servlet (e.g., /ForwardingServlet)

getServletPath()

java.servlet.forward.path_info The path information for the for-
warding servlet (e.g., /pathinfo)

getPathInfo()

java.servlet.forward.query_string The query string attaching to the
original request for the forwarding
servlet (e.g., fruit=orange)

getQueryString()

The web container is contracted (by the servlet specifi cation) to provide these
attributes. Of course, the attributes are not present if the value returned by them
would be null anyway (e.g. you won’t fi nd a java.servlet.forward.query_string attri-
bute when there is no query string on the request URI).

The “equivalent” methods shown in the table are not really equivalent at all.
The point of supplying the attributes is that they give alternative information that is

This is because a forwarded-to servlet has complete control over the request —it’s
as if the forwarding servlet had never been called.

What, though, if you want to get at the original servlet path for the request while
within AnotherServlet’s code? The web container provides for this. Five special
attributes are set up that refl ect “original” values about the request path, instead of
the request path, which has been modifi ed to fi t the forwarded to servlet. To get one
of these values, simply use the request.getAttribute() method. The following
table shows all fi ve attributes, together with a description of what they represent and
the request method for which the attributes provide a necessary substitute. Assume
that the full URL to the forwarding servlet is

http://localhost:8080/myapp/ForwardingServlet/pathinfo?fruit=orange

Request Dispatching (Exam Objective 3.5) 181

182 Chapter 3: The Web Container Model

otherwise invisible through the apparently equivalent method. This is summarized
in Table 3-2, after we look at the set of special attributes that arise when a Request
Dispatcher is used to include a web resource.

Forwarding is not so very different from request redirection (Servlet
Request.sendRedirect()). However, forwarding has an advantage—
the request information (parameters and attributes) are preserved. Redirec-
tion effectively initiates a new request from the client; the original request
parameters and attributes are lost (though you can add new parameters—or
preserve existing ones—by adding them to the query string in the URL that
is the parameter for sendRedirect()). So on the face of it, forwarding is
always better—information is preserved, and it’s more effi cient, for there’s
no return trip to the client. However, beware of any relative URLs in the
response from the servlet to which you forward. The requesting browser will
still think it’s dealing with the original URL (i.e., of the servlet that did the
forwarding). You can generally see this in the address line of the browser:
If ServletA did the forwarding, and ServletB is forwarded to, you’ll still see
http://www.myco.com/webapp/ServletA. If your image links for ServletB’s
output are relative links, they’ll be fi ne—unless the relative path from
ServletB to the images is different from that of ServletA.

When you forward to
another servlet, you might be tempted
to think that control never returns to
the servlet you are forwarding from.

Not so. Consider the following code, where
ServletA forwards to ServletB, but there is
code following the forward() method in
ServletA:

public class ServletA extends HttpServlet {
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 String fwdPath = “/ServletB”;
 RequestDispatcher rd = request.getRequestDispatcher(fwdPath);
 rd.forward(request, response);
 System.out.println(“Back in ServletA”);
 }
}

When you call ServletA, the output to the
server console (note: not the response/web
pages!) is as follows:

Now in ServletB
Back in ServletA

What you can’t do in ServletA—after
the forward call—is anything that might

attempt to affect the response. Well, you
can do it—and the lines of code will exe-
cute harmlessly, having no effect. But code
that does things unrelated to the response
(such as outputting text to the console,
setting attributes, and writing to logs) will
execute as normal.

Including
The alternative to the forward() method on RequestDispatcher is the include()
method. Instead of “passing the buck,” an including servlet takes the contents of the
included web resource and adds this to its own response. Let’s adapt an example from
before, now using the include() method instead of forward():

public class FlexRequestDispatcher extends HttpServlet {
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 String incPath = request.getParameter("inc");
 System.out.println("The dispatch path is: " + incPath);
 RequestDispatcher rd = request.getRequestDispatcher(incPath);
 PrintWriter out = response.getPrintWriter();
 out.write("The output will start with this text, ");
 rd.forward(request, response);
 out.write("and finish with this text.");
 }
}

Request Dispatching (Exam Objective 3.5) 183

public class ServletB extends HttpServlet {
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 System.out.println(“Now in ServletB”);
 }
}

184 Chapter 3: The Web Container Model

Special Attributes and Including
Just as a “forwarded-to” servlet has access to some special attributes, so does an
“included” servlet. There are a similarly named set of fi ve attributes, though their
signifi cance is almost opposite to the forwarding set. We’ll assume a URL this
time of

http://localhost:8080/myapp/IncludingServlet/pathinfo?fruit=orange

and a code snippet from IncludingServlet that includes IncludedServlet, as
follows:

RequestDispatcher rd =
 req.getRequestDispatcher("/IncludedServlet/newPathInfo?fruit=apple");
rd.forward(req, resp);

Now the attributes (as you access them in IncludedServlet) have the following
values:

What if you try to call the
forward() or include() methods when
a response has already been committed to
the client? The answer is that you get an
IllegalStateException for the forward()
method—as we mentioned before. But

you don’t get any exception if you call
an include() after the response is com-
mitted. After all, you are not trying to
throw away the original response with an
include()—only augmenting the original
response.

Suppose we fed a parameter such as inc=/IncludedServlet to FlexRequestDispatcher,
and IncludedServlet includes this code:

PrintWriter out = response.getPrintWriter();
out.write("continue with this included text, ");

The sum of the output should look something like this in the resulting response:

The output will start with this text, continue with this
included text, and finish with this text.

It’s not an easy picture to grasp! The value derived from the attribute is different
from the value returned from the “equivalent” method. When in the included
servlet, use the method to get information about the including servlet, and the at-
tribute to get information about the included servlet (i.e., the servlet you are in).
Table 3-2 summarizes what servlet you get information about, dependent on
(a) what kind of servlet you are in (forwarding, forwarded to, including, or in-
cluded) and (b) whether you are using request methods, special forward attributes,
or special include attributes.

At

Attribute Name Description
“Equivalent” Method
on ServletRequest

javax.servlet.include.request_uri The URI of the revised request to
the included servlet (e.g., /myapp/
IncludedServlet /newPathInfo)

getRequestURI()

javax.servlet. include.context_path The context path for the included
servlet (e.g., /myapp)

getContextPath()

javax.servlet. include.servlet_path The servlet path for the included
servlet (e.g., /IncludedServlet)

getServletPath()

java.servlet. include.path_info The path information for the in-
cluding servlet (e.g., /newPathInfo)

getPathInfo()

java.servlet. include.query_string The query string attaching to the re-
vised request to the included servlet
(e.g., fruit=apple)

getQueryString()

I

In the Code of
Forwarding
Servlet

Forwarded
to Servlet

Including
Servlet

Included
Servlet

servlet method call
(e.g., getServlet
Path())

Forwarding Forwarded to Including Including

forward attribute (e.g.,
javax.servlet.forward
.servlet_path)

N/A Forwarding N/A N/A

include attribute (e.g.,
javax.servlet.include
.servlet_path)

N/A N/A N/A Included

TABLE 3-2

Summary of
Information from
Request Methods
and Special
Attributes

Request Dispatching (Exam Objective 3.5) 185

186 Chapter 3: The Web Container Model

ON THE CD

Special Attributes and getNamedDispatcher()
One last point about special attributes (both the forward set and the include set, so
this is as applicable to javax.servlet.forward.context_path as it is to javax.servlet
.include.query_string): When you use getNamedDispatcher() on ServletContext
to get hold of a RequestDispatcher (as opposed to getRequestDispatcher() on
ServletContext or ServletRequest), these special attributes are not set. The rationale
is that you are not forwarding or including via an external request. Because all these
special attributes pertain to features of external requests (mostly URL information),
they are not deemed relevant to an internal server call to a named resource.

EXERCISE 3-3

Implementing a RequestDispatcher and Viewing Special Attributes
This exercise will implement two servlets, one that dispatches to the other. By ac-
cepting a parameter, we’ll make the dispatching servlet behave fl exibly so that it may
either forward or include the dispatched-to servlet. In either case, we’ll display the
special attributes that are associated with the forward or include so that these appear
on the web page produced by the servlet(s). The context directory for this exercise is
ex0303, so set up your web application structure under a directory of this name.

For this exercise, there’s a solution in the CD in the fi le sourcecode/ch03/ex0303
.war —check there if you get stuck.

Set Up the Deployment Descriptor

 1. Declare a servlet named Dispatcher, with a suitable servlet mapping. If
needed, refer to Chapter 2 to refresh yourself on <servlet> element setup.

 2. Also declare a servlet named Receiver with a servlet mapping that will trap
path information —a <url-pattern> of (e.g.) /Receiver/*.

Write the Dispatcher Servlet

 3. Create a Java source fi le Dispatcher.java in / WEB-INF/classes or an appropri-
ate package directory. Write the class declaration in the source fi le, extending
HttpServlet.

 4. Override the doGet() method in Dispatcher.

 5. In the doGet() code, retrieve a request parameter whose name is “mode,”
and hold this in a local String variable.

 6. Obtain a RequestDispatcher from the request or context object — set the
path parameter to “/Receiver/pathInfo?fruit=orange.”

 7. Test the value of the “mode” parameter obtained in step 5. If the value is
“forward,” call the forward method on the request dispatcher object obtained
in step 6; if it is “include,” call include instead.

 8. Write something to the response object so that you know from the web page
that this is the Dispatcher servlet (not the Receiver).

Write the Receiver Servlet

 9. Create a Java source fi le Receiver.java in / WEB-INF/classes or an appropriate
package directory. Write the class declaration in the source fi le, extending
HttpServlet.

 10. Override the doGet() method in Receiver.

 11. In the doGet() code, obtain the Enumeration of parameter names from the
request object, and display to the web page all parameter names and values.

 12. Do the same for request attribute names and values. This will display the
special attributes supplied by the web container for a forwarded or included
servlet.

Run the Application

 13. Having compiled your code, copy the entire ex0303 directory to your server’s
web applications directory. Stop and start your server (if necessary to deploy
the application).

 14. Point your browser (using the appropriate servlet mapping that you set up in
step 1) to the Dispatcher servlet, ensuring that you pass the “mode” param-
eter: Use a URL such as the following:

http://localhost:8080/ex0303/Dispatcher?mode=forward

 15. Compare the outputs you get from forwarding and including. Note that the
text output by the Dispatcher servlet is simply not present when you forward.
However, when you include, the text of the Dispatcher and Receiver servlets
should appear. The following illustration shows the solution code output
when mode=forward.

Request Dispatching (Exam Objective 3.5) 187

188 Chapter 3: The Web Container Model

CERTIFICATION OBJECTIVE

Filters and Wrappers (Exam Objective 3.3)
Describe the web container request processing model; write and confi gure a fi lter; create a
request or response wrapper; and, given a design problem, describe how to apply a fi lter or
a wrapper.

We’re now going to look at the interfaces and classes that make up the fi ltering
mechanism in the web container model. Filters are intriguing beasts. In many
respects they are like servlets: They receive requests and responses that they can
manipulate, they have access to the servlet context, and (like request dispatchers for
the servlet) they have an inclusion mechanism whereby a fi lter can pass control to
another fi lter or a servlet.

Their main purpose is to intervene before and after a request for a web resource.
The web resource itself need not be aware that it has been nested in a fi lter. An ex-
ample might help. Suppose you want all the output from your web application to be
encrypted. You can write a fi lter that triggers on any request to your web application
(whatever the web resource requested). The fi lter will trap the response from the
web resource, run some kind of encryption algorithm over it, then assume responsi-
bility for returning the response to the requester.

Because you so often use a fi lter to transform the response —and sometimes the
request —you may want specialized request and response objects with their own
specialized behavior. There is provision for this in the so-called “wrapper” classes —
such as HttpServletResponseWrapper. You can subclass these wrapper classes, then
substitute them for the original response (or request) that is passed to the fi lter. We’ll
talk about fi lters and wrappers in some detail.

Filters
The servlet specifi cation gives a useful and fairly comprehensive list of the uses you
might fi nd for fi lters:

■ Authentication fi lters

■ Logging and auditing fi lters

■ Image conversion fi lters

Filters and Wrappers (Exam Objective 3.3) 189

190 Chapter 3: The Web Container Model

■ Data compression fi lters

■ Encryption fi lters

■ Tokenizing fi lters

■ Filters that trigger resource access events

■ XSL / T fi lters that transform XML content

■ MIME-type chain fi lters

■ Caching fi lters

You may gather from this list that fi lters might be used for pre-processing requests for
resources, as would be the case for an authentication fi lter. If your credentials aren’t
up to scratch, a fi lter has the power to deny access to the requested resource. A data
compression fi lter is most likely to kick in on the response, perhaps converting the
output to a zipped output stream before allowing the response to return.

Now that we’ve seen what fi lters are capable of, let’s take a look at what you need
to know to write and implement one: which interfaces and classes are involved, and
what you need to declare in the deployment descriptor.

Writing the Filter Code
When writing a fi lter, these are the steps:

 1. Write a class that implements the javax.servlet.Filter interface.

 2. Implement the three methods of the Filter interface: init(), destroy(),
and doFilter().

 3. Optionally, provide a no-argument constructor.

Not much to it, really —but there is a bit of devilry in the detail. Let’s consider those
three methods further. Together, they constitute the fi lter life cycle, as shown in
Figure 3-3.

init() The full signature is

public void init(FilterConfig config) throws ServletException.

The init() method is called once only —when the web container creates the
instance of the fi lter. This could be on server startup, and at latest will occur just be-
fore the fi lter is pressed into service (because someone has requested a web resource

that triggers the fi ltration). You have one shot at this point to capture the Filter
Confi g object that is passed as a parameter to the method and to keep it available
for later use — typically as a private instance variable. Here’s an extract from a Filter
which does just that:

private FilterConfig config;
public void init(FilterConfig config) throws ServletException {
 this.config = config;
}

There’s no compulsion to do this, but the FilterConfi g object has some handy meth-
ods that you might want to use later:

FilterA

init()

doFilter()

destroy()

Web App 1

Web container (App server / JVM)

Single call to init()
between server
startup and first
request to filter

1.

Calls to doFilter()
for every filter
request

2.

Single call to
destroy() after
last filter request
and before server
shutdown

3.

FIGURE 3-3

Filter Life Cycle

Filters and Wrappers (Exam Objective 3.3) 191

192 Chapter 3: The Web Container Model

■ getFilterName(), which returns a String returning the name of the fi lter as
defi ned in the deployment descriptor.

■ getInitParameter(String name), which returns a String value for the
named parameter. This is identical in concept to the mechanism for setting
up ServletContext parameters, which we met at the beginning of this chapter.
Unsurprisingly, FilterConfi g also has a getInitParameterNames() method, re-
turning an Enumeration of the names of all the initialization parameters defi ned
for this fi lter.

■ getServletContext(), which returns a handle to the servlet context for the
web application.

You can use the init() method to do other initialization tasks you deem neces-
sary. You’re not restricted in any way as to what these might be: Do whatever the
Java language lets you do.

destroy() The full signature is public void destroy(): no parameters in,
nothing returned. You are guaranteed that this method will be called once and once
only when the fi lter is taken out of service, which means, usually, when the web
application closes down. This gives you the opportunity to do some cleanup and
resource reclamation, typically unpicking the initialization you performed in the
init() method.

doFilter() The full signature is lengthy and is very close to a servlet’s
service() (or doGet() or doPut()) method.

public void doFilter(ServletRequest request,
 ServletResponse response, FilterChain chain)
 throws IOException, ServletException

So you can see that —like a servlet — the method accepts a request and a response
object. There’s another object as well, though — the FilterChain object —and it’s this
that allows a fi lter to pass control (or deny access) to other fi lters and web resources.
Here’s an abbreviated list of what you generally do in a doFilter() method:

 1. Look at the request.

 2. Wrapper the request and response object —if required.

 3. Add or change things about the request, through the wrapper.

 4. Call the next fi lter (or servlet) in the chain (using doFilter() on the Filter
Chain object passed as a parameter), or

 5. Block the request by not calling the FilterChain’s doFilter() method.

 6. On return from the FilterChain’s doFilter() method (or even if it wasn’t
called), amend the response —headers or content — through the wrapper.

Constructor If you wish, you can supply a no-argument constructor (or rely
on the default constructor that the Java compiler provides in the absence of other
constructors). There’s no point at all in providing constructors with arguments: Af-
ter all, the web application model is the framework that instantiates fi lters, and the
framework is not set up to call constructors with arguments.

An Example Filter
So now let’s take a look at an example fi lter. It’s a logging fi lter that makes no at-
tempt to alter the request and response objects it receives. It simply writes the URL
(and other default logging details) to a named log fi le. Here’s the code:

10 import java.io.*;
11 import java.util.logging.*;
12 import javax.servlet.*;
13 import javax.servlet.http.*;
14 public class LogFilter implements Filter {
15 private FilterConfig config;
16 private static Logger logger = Logger.getLogger("com.osborne.accesslog");
17 public void init(FilterConfig config) throws ServletException {
18 // Initialize the logger
19 try {
20 Handler fh = new FileHandler("C:\\temp\\accessLog.txt");
21 logger.addHandler(fh);
22 } catch (IOException ioe) {
23 throw new ServletException(ioe);
24 }
25 logger.setLevel(Level.INFO);
26 // Capture the config object
27 this.config = config;
28 }
29 public void doFilter(ServletRequest request, ServletResponse response,
30 FilterChain chain) throws IOException, ServletException {
31 HttpServletRequest httpReq = (HttpServletRequest) request;
32 String path = httpReq.getRequestURI();
33 logger.info("The following path was requested: " + path);
34 chain.doFilter(request, response);
35 }
36 public void destroy() {

Filters and Wrappers (Exam Objective 3.3) 193

194 Chapter 3: The Web Container Model

37 logger = null;
38 config = null;
39 }
40 }

Let’s talk through some parts of this code:

■ Line 14 declares the class —called LogFilter —and shows that it implements the
Filter interface.

■ Line 15 declares an instance variable of type FilterConfi g. We go on to initialize
this from the parameter passed to the init() method at line 27, just in case we
wanted to make use of the FilterConfi g object in the fi lter (which we don’t, as it
happens —but you might amend this code and choose to do so later!).

■ Line 16 declares a static variable of type Logger, from the javax.util.logging pack-
age. Space doesn’t permit a full explanation of Java logging — take a look at the
Java Logging Overview in the J2SDK documentation.

■ Lines 17 to 28 encompass the init() method. Apart from trapping the Filter
Confi g parameter, as we discussed earlier, the code here is devoted to setting up
the Logger: tying this to a fi le on the fi le system called accessLog.txt (in directory
C:\Temp) and setting it to receive informational (or more serious) messages.

■ Lines 29 to 35 make up the doFilter() method. At line 29, this accepts a
standard parameter: request, of type ServletRequest. Since we know we will
be running this fi lter in an HTTP environment, we know it’s safe to cast the
parameter to an HttpServletRequest reference at line 31. This enables us to ex-
ecute the getRequestURI() method at line 32 to get a String showing the web
resource requested. This we pass as a parameter into the logger’s info() method
at line 33, so it’s written to the access log. Finally —at line 34 —we simply call
the FilterChain’s chain() method, passing on the request and response entirely
unaltered.

■ Lines 36 to 40 cover the destroy() method, which cleans up by setting refer-
ences to null.

Defi ning Deployment Descriptor Elements for Filters
So now that we have written our Filter, all we have to do is to ensure that the web
container will call it when we require. This is achieved through setting up <filter>
and <filter-mapping> elements in the deployment descriptor. Figure 3-4 shows
graphically how the <filter> element looks.

The fi rst three optional trio of elements —<description>, <display-name>,
<icon>—are no different in function or form from other places where they occur
(see Chapter 2, Figure 2-3, and the accompanying explanation), except, of course,
that they apply specifi cally to the fi lter you’re setting up.

The meat of the <filter> element is in the two subelements <filter-name>
and <filter-class>, which are mandatory. Here you give your Filter a logical
name (which can be used to tie into later fi lter mappings) and the full qualifi ed
name of your fi lter’s class fi le.

Optionally, supply as many <init-param> elements as you like, and use the
FilterConfi g’s getInitParameter() and getInitParameterNames() methods to
get at them in your Filter code.

Let’s now take a look at <filter-mapping>, which is shown in Figure 3-5. This
is a little more complex than <servlet-mapping>, which we met in Chapter 2.
You see that it has three subelements, two of them mandatory. The fi rst is <filter-
name>, which must tie back to a <filter-name> specifi ed in a <filter> element.
The second subelement is also mandatory, but you have a choice: either <url-
pattern> or <servlet-name>. This is the element that actually ties your fi lter to
an incoming request for a web resource.

■ <url-pattern>: Suppose your client request has a URL that matches the
<url-pattern> on a particular <servlet-mapping>. Suppose then that this
same <url-pattern> matches a <filter-mapping> as well. That’s the trigger
for the fi lter to run ahead of the servlet that has been targeted. The rules for legal
fi lter mapping URL patterns are exactly the same as those embedded in servlet
mappings: We explored them in Chapter 2. We’ll see some example URL patterns
for fi lters a little later in this section.

■ <servlet-name>: The servlets in your web application have a <servlet-
name> as a mandatory subelement of <servlet>. If the fi lter mappings’s

<filter>

Always 1

Always 1

Always 1

Always 1

<description> 0 or many

<display-name> 0 or many

<icon>

0 or many

<filter-name>

<filter-name>

<init-param>

 0 or many

<small-icon> 0 or 1

<large-icon> 0 or 1

<description> 0 or 1

<param-name>

<param-value>

FIGURE 3-4

Filter Declaration
in the
Deployment
Descriptor

Filters and Wrappers (Exam Objective 3.3) 195

196 Chapter 3: The Web Container Model

<servlet-name> matches a requested servlet’s <servlet-name>, it’s a trigger
for the fi lter to run ahead of the servlet.

The third subelement —<dispatcher>—is optional; when you leave it out,
though, it’s equivalent to explicitly stating <dispatcher>REQUEST</dispatcher>.
This feature —introduced in servlet specifi cation 2.4 —acknowledges that there are
many routes into a web resource on your web application. It could well be that you
want the fi lter to kick in dependent on one of these routes. Here are the four valid
values for the dispatcher element, with a description of the route:

■ REQUEST (the default)—a direct client request for a web resource.

■ FORWARD —an internal web server request for a web resource via the
forward() method on a RequestDispatcher.

■ INCLUDE —an internal web server request for a web resource via the
include() method on a RequestDispatcher.

■ ERROR—an internal web application request for a resource that has been
set up as an <error-page>.

When you supply a <dispatcher> value, you are giving permission for a fi lter to
trigger for the route specifi ed. The normal situation is probably that you want your
fi lter to apply only to bona fi de external client requests. If a servlet is called inter-
nally via a RequestDispatcher, chances are you want that servlet to run without the
fi lter intervening. But if you do want the fi lter to run even on RequestDispatcher
calls as well as client requests, include

<dispatcher>REQUEST</dispatcher>
<dispatcher>FORWARD</dispatcher>
<dispatcher>INCLUDE</dispatcher>

<filter-mapping> Always 1
Always 1

<filter-name>
<url-pattern> OR <servlet-name>
<dispatcher> 0 to 4

Valid
values:
REQUEST
FORWARD
INCLUDE
ERROR

FIGURE 3-5

Filter Mapping
Declaration in
the Deployment
Descriptor

FilterA is explicitly set up to fi re when its corresponding ServletA gets a client
request, so FilterA runs and calls ServletA. ServletA forwards to ServletB. Because
FilterB (attached to ServletB) allows forwarding requests, FilterB runs and calls
ServletB as the next item in the chain. Now ServletB includes the output of
ServletC. Even though FilterC attaches to ServletC, it won’t run —because it will
reject “includes” as a valid route in. So FilterC is bypassed, and ServletC is called
directly by ServletB.

ServletC

ServletA

ServletB

FiliterB

FiliterA

FiliterC

Web App 1

Web Container 1 (App server / JVM)

Client
request for
servletA

<dispatcher>REQUEST</dispatcher>
ServletA
forwards to
ServletB

<dispatcher>FORWARD</dispatcher>

ServletB
includes
ServletC

No dispatcher set (so
REQUEST is default)

in your <filter-mapping>. Here’s an illustration of this. FilterA applies to Serv-
letA, FilterB to ServletB, and FilterC to ServletC.

Filters and Wrappers (Exam Objective 3.3) 197

198 Chapter 3: The Web Container Model

Here’s how a complete deployment descriptor might look for the Log Filter we set
up earlier:

<filter>
 <filter-name>LogFilter</filter-name>
 <filter-class>com.osborne.LogFilter</filter-class>
</filter>

<filter-mapping>
 <filter-name>LogFilter</filter-name>
 <url-pattern>/</url-pattern>
</filter-mapping>

You see how the URL pattern for the LogFilter is “/.” This is the catchall: Whatever
resource is requested matches this mapping, so the LogFilter will trigger —at least for
direct client requests.

Stacking Filters
What if we want to run not just a LogFilter for every request but an Authorization
Filter as well? Well, the answer is that we can. Simply stack them up in the deploy-
ment descriptor:

<filter>
 <filter-name>LogFilter</filter-name>
 <filter-class>com.osborne.LogFilter</filter-class>
</filter>
<filter>
 <filter-name>AuthorizationFilter</filter-name>
 <filter-class>com.osborne.AuthorizationFilter</filter-class>
</filter>
<filter-mapping>
 <filter-name>LogFilter</filter-name>
 <url-pattern>/</url-pattern>
</filter-mapping>
<filter-mapping>
 <filter-name>AuthorizationFilter</filter-name>
 <url-pattern>/</url-pattern>
</filter-mapping>

In this case, both fi lters have the same generic mapping: The URL pattern matches
any request that comes in. Which will run fi rst? That’s determined by the order

The general case is this: Given a request that matches more than one fi lter
mapping,

■ First, all matching fi lters will run for <filter-mappings> with <url-pat-
tern> matches, in order of <filter-mapping> declaration.

■ Second, all matching fi lters will run for <filter-mappings> with <servlet-
name> matches, in order of <filter-mapping> declaration.

ServletAFiliterBFiliterA

Web App 1

Web Container (App server / JVM)

Client
request for
servletA

Note that fi lters will run
equally well in front of (or after) static
content (such as a plain-vanilla HTML fi le);

they are not solely for fronting (or backing)
servlets and JSPs.

INSIDE THE EXAM

Servlet /Filter Comparison
It’s uncanny how many parallels there are be-
tween servlets and fi lters (well, not really —it’s
the product of intentional design!). For exam

purposes, I fi nd it really helpful to explore the
similarities and also the nuances of difference:
It reinforces my memory of both. The table
below should get you started on this process.

of <filter-mapping> declarations in the deployment descriptor. Suppose a client
requests ServletA in this web application. The “fi lter chain” formed in this case
will be

Filters and Wrappers (Exam Objective 3.3) 199

200 Chapter 3: The Web Container Model

INSIDE THE EXAM (continued)

Servlet Interface

Type Typically built by extending the
javax.servlet.GenericServlet or
javax.servlet.http.HttpServlet class.

Built by implementing the javax
.servlet.Filter interface.

Construction Optional, no-argument constructor
(not often used)

Same.

Initialization Override the
init(ServletConfig con-
fig) method — or the plain init()
method.

Implement the
init(FilterConfig config)
method.

Destruction Override the destroy() method. Same.

Parameters Can have initialization parameters de-
clared in the deployment descriptor.

Same.

Declaration element in
deployment descriptor

Declared in a <servlet> element,
which contains <servlet-name>
and <servlet-class> elements.

Declared in a <filter> element,
which contains <filter-name>
and <filter-class> elements.

Mapping element in
deployment descriptor

Declared in a <servlet-
mapping> element, which contains
<servlet-name> and <url-
pattern> elements.

Declared in a <filter-map-
ping> element, which contains
<filter-name> and <url-
pattern> elements. <serv-
let-name> can be substituted for
<url-pattern>.

Instantiation There will be one instance of a
servlet per <servlet> element
in the deployment descriptor. The
same actual class may have separate
<servlet> declarations: Each
occurrence will result in a separate
instance of this class.

There will be one instance of a
fi lter per <filter> element in
the deployment descriptor. The
same actual class may have separate
<filter> declarations: Each
occurrence will result in a separate
instance of this class.

The drawback with fi ltering static content is that every request to your web
server has to be processed by the web container. Big production applica-
tions normally consist of a straight web server (such as Apache) that forward
requests to J2EE-aware web containers only when it’s necessary. That leaves
them free to serve the static content more effi ciently: There’s no additional
“hop” to get the information. If you want all static content to be subject to
Filter processing, then there is nothing for it but to make the additional round
trip to the J2EE-aware web container. There’s nothing wrong with that if you
really need the fi lter processing for every piece of static content you serve up.
However, place only the static content you need to under J2EE control: Leave
the rest for plain-vanilla web serving.

Filtering vs. Dispatching
You might wonder what the point is of using fi lters at all. Why not just use a chain of
servlets that dispatch from one to another? Before the invention of fi lters (at servlet
specifi cation level 2.3), that’s exactly what happened. Methods existed (now depre-
cated) to construct a servlet chain. Filtering was intended to provide a more fl exible
replacement. So what advantages are there?

■ A fi lter chain can be reshuffl ed fairly easily by moving entries up or down in the
deployment descriptor. You can easily insert additional fi lters at a later stage,
without any programming required.

■ Filters can trap requests for any kind of resource, again with no programming
required to forward on the request.

A Filter can throw an
UnavailableException, which is a subclass
of ServletException. UnavailableException
has an isPermanent() method: If this
returns true, the web container gives up
calling the fi lter; if this returns false, the
web container will try again after a speci-
fi ed time interval. Whether it will return
true or false depends on how the excep-

tion is created. If you use the version of the
constructor that simply accepts a String
message, the exception is construed as
permanent. If, however, you use the two-
parameter constructor that accepts a String
message and an “int seconds,” the web
container should deem the exception as
temporary and try to call the Filter again
after the specifi ed number of seconds.

Filters and Wrappers (Exam Objective 3.3) 201

202 Chapter 3: The Web Container Model

Wrappers
In our LogFilter example, we were only interested in trapping the request to log a
URL to an audit fi le. No attempt was made to change the request or response. Fi-
nally in this chapter, we are going to consider how you should program a Filter when
you do want to make such an intervention. That’s where we need to deftly substitute
a wrapper class in the chain.doFilter() invocation.

Why We Need a Wrapper
Let’s consider the following snippet from a longer doFilter() method that doesn’t
use a wrapper, but nonetheless writes to the response object:

chain.doFilter(request, response);
PrintWriter out = response.getWriter();
out.write("
A line of text at the bottom of your web page");

If you try out this fi lter code in front of a servlet of your choosing, it stands a fair
chance of working — outputting the line of text promised. However, what if the
servlet code that is the target of the chain.doFilter call does the following?

PrintWriter out = response.getWriter();
out.write("
This is the servlet speaking");
out.close();

You don’t have to close the PrintWriter, but a scrupulous servlet developer might
well do so in the spirit of tidy resource management. In this case, the fi lter code will
run without failing, but the line of text will no longer appear at the bottom of the
web page. How can we ensure it does? Use a response wrapper, which in this case
will be a class you write that subclasses javax.servlet.http.HttpServletResponse
Wrapper.

Four Wrappers from Which to Choose
There are four wrapper classes that you might choose to subclass according to
circumstance:

■ javax.servlet.ServletRequestWrapper

■ javax.servlet.ServletResponseWrapper

■ javax.servlet.http.HttpServletRequestWrapper

■ javax.servlet.http.HttpServletResponseWrapper

It’s self-evident from the names which ones are used to wrapper requests and which
ones to wrapper responses, and which ones pertain to HTTP web containers as op-
posed to plain servlet containers.

So let’s return to that problem where we want to prevent the closing of the Print
Writer. The solution is a little involved, but not too challenging:

■ Write a subclass of PrintWriter called MyPrintWriter. Override the close()
method — to do nothing. Optionally, write a trueClose() method that calls
the superclass close() method (i.e., the one in PrintWriter that actually does
the closing).

■ Write a subclass of HttpServletResponseWrapper called MyHttpServletResponse
Wrapper. This should contain an instance variable of MyPrintWriter type. Over-
ride the getWriter() method to return this instance variable. Make sure you
reproduce the single-parameter constructor from HttpServletResponseWrapper
(which takes an HttpServletResponse as its argument).

■ Back in the doFilter() method of the Filter class, create a MyHttpServlet
ResponseWrapper using the single-parameter constructor. Pass to this the
response that comes as a parameter to the doFilter() method.

■ Call the chain.doFilter() method, with the request (unchanged) and the
wrappered response.

We’ll see the code for this in a moment, but let’s briefl y refl ect on the design pattern
in use here, known most often as the “decorator” pattern (if “pattern” is an unfamil-
iar term, then take comfort that patterns are the subject of Chapter 10). You take
a class, then wrap around it another class, which might mimic, extend, or change
the functionality. It’s exactly the same principle at work as in those java.io classes
that you learned about for your SCJP exam, where you used constructors to nest
InputStreams in BufferedStreams (one of the myriad possibilities). So you have the
genuine response muffl ed by your own response wrapper class, like this:

MyHttpServletResponseWrapper

Substitute MyPrintWriter

Original PrintWriter

HttpServletResponse (passed to doFilter)

Filters and Wrappers (Exam Objective 3.3) 203

204 Chapter 3: The Web Container Model

Now we’ll see how this looks in code. First MyPrintWriter. This shows the essen-
tial “do nothing” close() method, and also one constructor. This copies a signature
from one of its parent PrintWriter constructors, and simply calls the parent construc-
tor using super().

public class MyPrintWriter extends PrintWriter {
 public MyPrintWriter(Writer out) {
 super(out);
 }
 public void close() {
 // do nothing
 }
}

More interesting is the MyHttpServletResponseWrapper class. This also calls its
superclass constructor because the parent HttpServletResponseWrapper is already set
up to do the response wrappering part. Then comes the crafty code to do some more
wrappering: creating a new MyPrintWriter object by passing in the writer from the
original HttpServletResponse. This is held as an instance variable. Now any unsus-
pecting call to getWriter() will return a MyPrintWriter object —unbeknown to
the other servlets and fi lters using it somewhere down the chain.

public class MyHttpServletResponseWrapper extends
HttpServletResponseWrapper {
 private MyPrintWriter out;
 public MyHttpServletResponseWrapper(HttpServletResponse response) {
 super(response);
 try {
 out = new MyPrintWriter(response.getWriter());
 } catch (IOException ioe) {
 ioe.printStackTrace();
 }
 }
 public PrintWriter getWriter() throws IOException {
 return out;
 }
}

Now here’s the relevant code from the doFilter() method of the Filter that wants
to do the wrappering.

01 HttpServletResponse httpResponse = (HttpServletResponse) response;
02 MyHttpServletResponseWrapper wrapperedResponse =
 new MyHttpServletResponseWrapper(httpResponse);

03 chain.doFilter(request, wrapperedResponse);
04 PrintWriter out = wrapperedResponse.getWriter();
05 out.write("
This was put here by the WrappingFilter");

Because the response passed into the doFilter() method is a ServletResponse,
line 1 does some discrete casting to an HttpServletResponse, for we know that this
fi lter will be used only in an HTTP environment. Line 2 creates the wrapper for the
response, by passing in the HttpResponse instance to the constructor of our newly
created response wrapper class. Line 3 actually does the call to the next doFilter()
in the chain —but notice that while the request is left alone, the wrapperedResponse
is put in place of the response variable. On return from whatever is invoked by the
chain, the fi lter proves it has worked by adding an extra line of HTML text to the
response. Finally, here’s some servlet code that won’t be able to close the writer when
invoked through this fi lter code:

response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.write("<HTML><HEAD><TITLE>ItsAWrap Servlet</TITLE></HEAD><BODY>");
out.write("<H1>This servlet attempts to close the PrintWriter!</H1>");
out.write("<P>But as the response is wrappered, it doesn't succeed.</P>");
out.write("</BODY></HTML>");
out.flush();
out.close();

Because the response received by the servlet is a MyHttpServletResponseWrapper
object, the PrintWriter obtained by the code is in fact of type MyPrintWriter. So
when —at the end — the overridden close() method is called, it does nothing.
Here’s the output as I see it in my browser:

One thing you might observe about the code above is that it results in improperly
formed HTML. The page has already been terminated with </body> and </html>
tags, and then the fi lter adds an additional line of text. Most browsers are fault-
tolerant of such sloppiness, and just display the text anyway. But the real point is
that the response wrappers you write should be more sophisticated than this simple

Filters and Wrappers (Exam Objective 3.3) 205

206 Chapter 3: The Web Container Model

ON THE CD

example; you should unpick and rework responses as is necessary for well-formedness
or other requirements.

EXERCISE 3-4

Using a Filter for Micropayments
This exercise gets you to build a fi lter that makes micropayments. It’s software to
support fortune-making referral schemes. You know the kind: If someone makes
a request to your web application, the fi lter will deposit a fraction of a cent in the
referrer’s PayPal account. We’ll set the fi lter up to make the payment when you
invoke a servlet called MicroPaymentServlet in your web application. The context
directory for this exercise is ex0304, so set up your web application structure under a
directory of this name.

For this exercise, there’s a solution in the CD in the fi le sourcecode/ch03/ex0304
.war —check there if you get stuck.

Set Up the Deployment Descriptor

 1. Declare a servlet named MicroPaymentServlet, with a generic URL mapping
(e.g., “/MicroPayment /*”) so that you can trap path information. If needed,
refer to Chapter 2 to refresh yourself on <servlet> element setup.

 2. Declare a fi lter named MicroPaymentFilter that is tied to the named servlet
MicroPaymentServlet in its fi lter mapping. It doesn’t actually matter if
the <filter> and <filter-mapping> elements come before or after the
<servlet> and <servlet-mapping> you have already set up. However,
to stay compatible with the old rules, I would be inclined to place fi lter ele-
ments before servlet elements.

Write the MicroPaymentFilter

 3. Create a Java source fi le MicroPaymentFilter.java in / WEB-INF/classes or an
appropriate package directory. Write the class declaration in the source fi le,
ensuring that it implements the Filter interface.

 4. Override the doGet() method in MicroPaymentServlet.

 5. Supply “do nothing” init() and destroy() methods. You may prefer at
least to put in some code to hang on to the FilterConfi g object even though
we won’t use it in this exercise, but it gets you into good habits:

private FilterConfig filterConfig = null;
public void init(FilterConfig filterConfig)
 throws ServletException {
 this.filterConfig = filterConfig;
}
public void destroy() {
 this.filterConfig = null;
}

 6. Write a doFilter() method. As the fi rst thing you do in this method, take
the path information from the request: Use this as the value for a request at-
tribute you set up called “referrer.” You may want to strip out the leading slash
from the path information.

 7. Still in the doFilter() method, call the doFilter()on the FilterChain
object. Pass on the request and response (unwrappered).

 8. Still in the doFilter() method, and after the chain call in step 7, get the
PrintWriter from the response object. Output some text to indicate that the
micropayment has been made.

Write the MicroPaymentServlet

 9. Create a Java source fi le MicroPaymentServlet.java in / WEB-INF/classes or
an appropriate package directory. Write the class declaration in the source
fi le, extending HttpServlet.

 10. Override the doGet() method in MicroPaymentServlet.

 11. Get hold of the referrer name — this will be the value pulled from the request
attribute “referrer” that you set up in the fi lter during step 6.

 12. Write some HTML output (set the response appropriately and obtain the
response’s writer). It doesn’t matter what the web page says, but at least in-
clude the referrer name.

Run the Application

 13. Deploy and run the application. Use a URL containing appropriate path
information such as the one below —in place of “referrerName” at the end
of the path, substitute your own fi rst name:

 http://localhost:8080/ex0304/MicroPayment/referrerName

Filters and Wrappers (Exam Objective 3.3) 207

208 Chapter 3: The Web Container Model

 14. Optional: Alter the MicroPaymentServlet so that it closes the response’s
PrintWriter, and redeploy and run the code again. My fi ndings are that no
exceptions are thrown, but the words that MicroPaymentFilter writes to the
web page do not appear. This is because the writer is already closed by the
time the fi lter code gets hold of it —and demonstrates why you are better off
working with wrapper classes. With a (response) wrapper that is a subclass of
HttpServletResponseWrapper, you can substitute your own writer. This writer
can override the close() method to prevent closing; you can always have a
method of a different name that truly closes the writer back in the fi lter code.

 15. Optional: Have the fi lter operate on any servlet in the web application by
changing the <servlet-name> element to a <url-pattern> of “/” instead.
Create another servlet that dispatches to the MicroPaymentServlet. Change
the fi lter so that it comes into play only when another servlet dispatches to
the MicroPaymentServlet, but not when the MicroPaymentServlet is re-
quested directly. Hint: You’ll want appropriate <dispatcher> elements in
your fi lter mapping defi nition.

 16. The following illustration shows how typical output looks with a referrer
name (see step 13) of David:

CERTIFICATION SUMMARY
In this chapter we covered a great deal of ground —all under the umbrella subject
of the “web container model.” We started with an easy topic: how to set up initial-
ization parameters on the ServletContext object. We saw that the process is not
dissimilar from setting up servlet initialization parameters. We met a new deploy-
ment descriptor element —<context-param>—which houses a <param-name> and
<param-value> element pairing and can appear for as many parameters as you need
inside the <web-app> root element. We covered the two ServletContext methods
you can use —getInitParameter(String name), to get hold of individual param-
eters by name, and getInitParameterNames(), to get an Enumeration of all names
of context parameters to be found in a web application.

We widened the scope then —in every sense!—by looking at the three scopes
available in a web application: request, session, and context. We saw that request
scope addresses a single client request to the web application. Request scope begins
on entry to a servlet’s service() method, ends on exit from the method, and lasts
through whatever else the servlet might invoke during the service() method. We
had a tantalizing, pre – Chapter 4 glimpse of session scope, and learned that this
offers continuity over a series of requests from the same client. Finally, we discussed
context scope, represented by a single ServletContext object, and saw that this
object is available during the whole of a web application’s life.

We saw that a principal reason for having scopes —and objects representing
them —is to hold information important to the application, in the form of attri-
butes. We saw that attribute values aren’t restricted to Strings; an object of any type
can be held as an attribute. We met the fundamental methods used to manipulate
attributes —getAttribute(String name), to get hold of the object value for a
single named attribute, and setAttribute(String name, Object value), to
put a key/value pairing into a given scope. We also saw getAttributeNames(),
returning an Enumeration of all the names of attributes for a scope, and remove
Attribute(String name), to delete an attribute from a scope. We saw that these
four methods are available on each of the three objects representing scopes: Servlet
Request (for request scope), HttpSession (for session scope), and ServletContext
(for context scope).

We then touched on the web container as a multithreaded environment, able
to service many client requests simultaneously. We saw the impact this has on the
attributes set up in different scopes. We saw that because a single request is confi ned
to a single thread in the web application, request attributes are thread safe. You took
my word for it that session attributes are not quite thread safe and that we would

Filters and Wrappers (Exam Objective 3.3) 209

210 Chapter 3: The Web Container Model

learn more about session scope and multithreading in Chapter 4. You appreciated
that context attributes cannot possibly be thread safe, for they are available to any
thread running in the web application — or even in other web applications, because
one web application can get hold of another’s context.

We then moved on to the subject of dispatching. We found that it was possible
to use a RequestDispatcher object to obtain the services of some other resource in
the web application. We also saw that this could be any resource, static (such as an
HTML page) or —more usually —dynamic (another servlet or JSP). You learned
that there are two ways of getting a RequestDispatcher object: either through the
getRequestDispatcher() method on ServletRequest or through the getRequest
Dispatcher() or getNamedDispatcher() method on ServletContext. We dis-
cussed the nuances of these methods: how the getRequestDispatcher() method
on ServletRequest is the most fl exible because it can accept paths beginning with a
forward slash or not, and how the same method on ServletContext can accept only
paths beginning with a forward slash. We also saw how getNamedDispatcher()
on ServletContext is used in an entirely different way — to obtain a servlet or JSP
identifi ed by <servlet-name> within the deployment descriptor’s <servlet>
elements. We also learned that it might make sense to have a <servlet> without
a <servlet-mapping> so that any access to this can be controlled through the
getNamedDispatcher() method, while it remains impervious to direct client
requests.

We identifi ed that all paths fed to the getRequestDispatcher() methods are
bound to be inside the web application to which the request dispatcher belongs.
Paths beginning with a forward slash (“/”) are relative to the context root of the
web application. Paths without the initial forward slash are relative to the path of
the resource invoking the RequestDispatcher, and can’t use “..” (double dot: go up
to parent directory) to escape the context root. However, we did learn that request
dispatchers can come from other web application contexts, if web server security
allows access to them through the ServletContext.getContext(String other
Context) method.

After a lot of discussion about how to get RequestDispatcher objects, we fi nally
learned how to use them —by invoking the forward() or include() method. We
saw that the forward() method effectively hands responsibility to the target of
the request dispatcher: The forwarded-to servlet (or JSP) has sole responsibility for
producing the response. We learned that the include() method does as its name
implies —it includes the output of the target inside the response of the servlet doing
the including. We saw that the forwarded-to or included servlets have access to spe-
cial request attributes (such as javax.servlet.forward.context_path and javax.servlet

.include.path_info). We found that the information in these attributes supplements
methods on the request, such as getContextPath() and getServletPath(),
because these methods cannot return information both about the request to the
dispatching and the request to the dispatched-to servlet at one and the same time.
As an aside, we learned that these special request attributes are not present when
the dispatcher is obtained as a named dispatcher —because this is seen as an internal
request, not properly associated with a request URL. Finally, we saw how important
it is not to call forward() after a response has been committed, and that doing so
leads to an IllegalStateException.

The fi nal topic in this web container model chapter —and the most complex—
was about fi lters and wrappers. We learned how fi lters can be used to pre-process a
request for a web resource, or to completely transform the response, even supplying
entirely alternative responses when the need arises. We listed common uses for fi l-
ters, such as encryption, caching, logging, authentication, and XML transformation.
We then looked at the mechanics of fi lter creation: the classes you have to write
and the deployment descriptor elements you have to set up. We saw that a fi lter is a
class that implements the Filter interface, with its three life cycle methods: init(),
doFilter(), and destroy(). We learned that init() and destroy() are called
only once apiece: init() before the fi rst request for a fi lter and destroy() after the
last request has been processed (on web application shutdown). We saw that every
request to the fi lter results in a call to the doFilter() method. We learned about
the FilterConfi g object, passed to the fi lter’s init() method, and saw how this can
be used to get at the fi lter name, the servlet context, and information about any
initialization parameters set up for the fi lter.

We then looked at the deployment descriptor requirements for fi lters, compris-
ing <filter> and <filter-mapping> elements. We saw that <filter> has some
minor and some crucial subelements, the mandatory ones being <filter-name>
(to supply a logical name for the fi lter) and <filter-class> (for the fully qualifi ed
class name of the fi lter); <init-param> is a nonmandatory subelement for setting
up initialization parameters. We tried out <filter-mapping> elements, which
have to have a <filter-name> subelement matching an existing fi lter, and most
crucially, a <url-pattern> or <servlet-name> subelement as the means for mak-
ing a match to the fi lter. We learned that the rules for a <url-pattern> mapping
are identical to those for servlets. We saw that multiple fi lter mappings can match
a given request and that the web container assembles these into a chain, with the
web container processing matches by <url-pattern> fi rst and <servlet-name>
next —both sweeps based on the order of the matching <filter-mapping> ele-
ments in the deployment descriptor.

Filters and Wrappers (Exam Objective 3.3) 211

212 Chapter 3: The Web Container Model

We saw then how the chain is started by the web container calling the fi rst fi lter’s
doFilter() method, passing in the request, response, and FilterChain object — this
last parameter representing the next item in the chain. We learned that this next
item can be another fi lter or the resource targeted by the request when there are
no more fi lters left in the chain. We wrote code that executed chain.doFilter()
(from within Filter’s doFilter() method) and learned that only by including this
call would the next item in the chain execute.

We learned that when a fi lter wants to alter the request or response, it should
wrapper up the original request and response objects passed as parameters to the
doFilter() method. We saw how to subclass an appropriate wrapper class and
override methods on this class (or add new ones) if we want to customize request or
response behavior. We saw how to replace the original request or response with the
wrappered class in the chain.doFilter() method call.

Finally, we learned that fi lters will—by default — trigger only on direct client re-
quests. However, we saw that we can make fi lters trigger through request dispatcher
calls to forward or include, and through the error page mechanism. We learned that
this can be achieved by adding <dispatcher> subelements to <filter-mapping>,
with appropriate values of FORWARD, INCLUDE, or ERROR. We saw that as a
consequence of this, we have a fourth valid value for <dispatcher> of REQUEST
and that this has to be included whenever one of the other three values is used, if
the fi lter is still to trigger on direct client requests.

Two-Minute Drill 213

✓ TWO-MINUTE DRILL

ServletContext
❏ The ServletContext is the closest thing your application has to an object that

represents the web application itself.

❏ You can use the deployment descriptor to set up initialization parameters at
ServletContext level. Each initialization parameter is housed in a <context-
param> element; each one of these elements contains a mandatory <param-
name> and <param-value> set of elements.

❏ The parent element for <context-param> is the root element <web-app>:
This makes perfect sense, for ServletContext parameters belong at the web
application level.

❏ The getInitParameter(String parmName) method on ServletContext is
used to retrieve a parameter value whose name is known.

❏ The getInitParameterNames() method on ServletContext is used to
retrieve an Enumeration of all context parameter names known to the web
application.

❏ You can have as many context parameters as you want (none, one, several,
or many).

Attributes, Scope, and Multithreading
❏ Attributes are a two-way street: You can set them as well as get them in

your code.

❏ The web container can set attributes as well as your code.

❏ Attributes are not the same thing as parameters. Parameters fl ow into your
application —from the client request or from deployment descriptor ele-
ments —and are read-only. Attributes fl ow within your application and can
be read, created, updated, and deleted.

❏ There are three fundamental scopes — request, session, and context. (There
is a fourth scope — page —which you learn about with JavaServer Pages from
Chapter 6 onward.)

❏ Attribute manipulation methods look and behave almost identically, what-
ever the scope. There are four relevant methods: getAttribute(String

214 Chapter 3: The Web Container Model

name), getAttributeNames(), setAttribute(String name, Object
value), and removeAttribute(String name).

❏ Attribute methods don’t throw exceptions (with one small exception for ses-
sion-related attribute methods).

❏ A call to getAttribute(String name) can result in a null object reference
being returned when the object doesn’t exist.

❏ A call to getAttributeNames() will always result in a valid reference to an
Enumeration, though the Enumeration itself may be empty if there are no
attributes for the scope.

❏ You can only have one attribute of a particular name. Subsequent calls to
setAttribute(String name, Object value) for the same name will
overwrite the previous value. A value of null will remove the attribute (hav-
ing the same effect as a call to removeAttribute(String name)).

❏ Request scope begins on entry to a servlet’s service() method and ends on
exit from that method.

❏ Request scope is bound to a single thread, so it’s thread safe.

❏ Request scope is represented by the HttpServletRequest (or ServletRequest)
object.

❏ Session scope exists across multiple requests from the same client to the same
web application.

❏ Session scope is represented by the HttpSession object, obtainable using the
HttpServletRequest.getSession() method.

❏ There is no “non-HTTP” equivalent of session scope.

❏ Context scope is sometimes thought of and referred to as web application
scope.

❏ Context scope is represented by the ServletContext object, obtainable
through the getServletContext() servlet method.

❏ The web container provides one ServletContext object per web application
per JVM. So if the web application is distributed, the servlet context objects
in different clones of the application are separate.

❏ Context scope lasts from when a web application is put into service to the
point where it is removed from service.

❏ Context attributes are not thread safe: Practically every thread in your web
application can access them.

Two-Minute Drill 215

Dispatching
❏ Dispatching is a means of delegating control from one web resource to

another.

❏ You use a RequestDispatcher to represent the web resource to which you want
to delegate. A RequestDispatcher can be obtained from one of two places: the
ServletRequest or the ServletContext.

❏ ServletContext has two methods for obtaining a RequestDispatcher:
getRequestDispatcher(String pathFromContextRoot) and
getNamedDispatcher(String nameOfServlet).

❏ ServletRequest has only one method for obtaining a RequestDispatcher,
which is also getRequestDispatcher(String path). The difference from
the ServletContext method of this name is that the method will accept a
path relative to the context root or a path relative to the current resource.

❏ A path relative to the context root begins with a forward slash (“/”) . You
don’t include the context root name itself when forming a path like this.

❏ A path relative to the current resource does not begin with a forward slash
and is relative to the client request URI within the context. So for a cli-
ent request to /webappname/servlet /ServletA, a relative path of “ServletB”
would translate to a path relative to the context root of /servlet /ServletB.

❏ Paths used as parameters to the three RequestDispatcher methods are re-
stricted to the context to which the RequestDispatcher belongs. You can’t
go outside a single web application.

❏ You can obtain RequestDispatchers for other web applications by obtaining
another web application’s context and getting a RequestDispatcher from that
(but note that your web container’s default security settings may prevent you,
by causing request dispatchers returned from other contexts to be null).

❏ Having obtained a request dispatcher, you can call either the forward()
or include() methods on it, passing in the ServletRequest and Servlet
Response objects.

❏ The forward() method passes responsibility to another web resource. The
response will come entirely from the target of the forward. Any work that the
forwarding servlet has done on the response will be discarded.

❏ The include() method includes the output of the included web resource
inside the including servlet. On return from the include() call, the includ-
ing servlet can still add more to the response.

216 Chapter 3: The Web Container Model

❏ If a response has already been committed in a servlet, a call to forward()will
result in an IllegalStateException.

❏ If a response has already been committed in a servlet, a call to include()
will still work.

❏ A forwarded-to servlet has access to fi ve special request attributes, which de-
scribe the state of the request in the forwarding servlet. The special attribute
names all begin javax.servlet.forward.

❏ An included servlet has access to fi ve different special request attributes,
which describe the state of the request in the included servlet. The special
attribute names all begin javax.servlet.include.

Filters and Wrappers
❏ Filters are used for pre-processing requests or post-processing responses, before

they reach a target resource in a web application.

❏ Common uses for fi lters include authentication, logging, data compression,
encryption, and caching.

❏ Filters you write must implement the javax.servlet.Filter interface. This has
three methods—init(FilterConfig config), doFilter(ServletRequest
request, ServletResponse response, FilterChain chain), and

destroy().

❏ A fi lter’s init() method is called only once, at some point between server
startup and defi nitely before the fi rst request is intercepted by the fi lter.

❏ A fi lter’s doFilter() method is called by the web container whenever it
intercepts an appropriate request for the fi lter.

❏ A fi lter’s destroy() method is called only once, at some point after the last
fi lter request is processed in the doFilter() method, and before the web ap-
plication closes down.

❏ A typical use of the init() method is to capture the FilterConfi g object
passed in as a parameter and keep this as an instance variable on the fi lter
for later use.

❏ The FilterConfi g object has a getServletContext() method to return the
current servlet context , a getFilterName() method to get the fi lter name
as declared in the <filter-name> element in the deployment descriptor,
and getInitParameter(String paramName) and getInitParameter

Two-Minute Drill 217

Names() methods to return initialization parameters set up as <init-param>
elements within the <filter> element.

❏ Filters are declared in the deployment descriptor using <filter> elements. The
mandatory embedded elements are <filter-name> and <filter-class>.

❏ Filters are accessed by the web container dependent on matches to URL pat-
terns or servlet names, set up in <filter-mapping> elements of the deploy-
ment descriptor.

❏ If a request is made for a servlet, the web container will fi rst match this
request to each <filter-mapping> with a matching <url-pattern>. Each
fi lter will be processed in the order that each matching <filter-mapping>
appears in the deployment descriptor.

❏ After processing <url-pattern> matches, the web container will match a
servlet (or JSP) request against <filter-mapping> elements with a corre-
sponding <servlet-name>. Again, the web container observes the order
of matching <filter-mapping> elements in the deployment descriptor.

❏ Several fi lters can execute before a request reaches a resource — this sequence
of fi lters (and the web resource requested) is known as the fi lter chain.

❏ The FilterChain object, passed as parameter to the fi lter’s doFilter()
method, represents the next thing in the chain —either another fi lter or the
web resource ultimately requested. Thus, the fi lter’s doFilter() method
accepts three parameters — the request, the response, and the FilterChain
object.

❏ The FilterChain object passed to the doFilter() method also has a do
Filter() method. This has only two parameters: the request and response.
You call this method —chain.doFilter()—if you want to keep the request
passing through the chain. The chain is broken if you don’t make this call
(so this can be a mechanism for denying access to a resource, for whatever
reason).

❏ Whenever you need to use a Filter to change the request or the response
(which you typically do, though it’s not inevitable), you are encouraged to
“wrapper” the request or response in a suitable wrapper object.

❏ Suitable wrapper objects extend appropriate wrapper classes in javax
.servlet — ServletRequestWrapper or ServletResponseWrapper, or corre-
sponding wrapper classes in java.servlet.http —HttpServletRequestWrapper
or HttpServletResponseWrapper.

218 Chapter 3: The Web Container Model

❏ You pass the real request or response to the constructor of the wrapper class,
hence the wrappering effect (an example of the decorator design pattern).

❏ The wrapper class may override methods in the request or response and add
specialized methods of its own — to transform output to XML, for example.

❏ The <dispatcher> subelement of <filter-mapping> can be used to allow
fi lters to trigger on certain routes into the fi lter: via a client request, through
a request dispatcher’s forward or include, or as the result of a web container
directing to an error page. The valid values are REQUEST, FORWARD,
INCLUDE, and ERROR, respectively.

Self Test 219

SELF TEST
The following questions will help you measure your understanding of the material presented in this
chapter. Read all the choices carefully because there might be more than one correct answer. The
number of correct choices to make is stated in the question, as in the real SCWCD exam.

ServletContext

 1. What is the result of loading the web-app with the following deployment descriptor and
attempting to execute the following servlet? (Choose two.)

<web-app>
 <context-param>
 <paramname>author</paramname>
 <paramvalue>Elmore Leonard</paramvalue>
 </context-param>
</web-app>

public class ContextInitParms extends HttpServlet {
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.write("<HTML><HEAD></HEAD><BODY>");
 ServletContext sc = getServletContext();
 out.write(sc.getInitParameter("auther"));
 out.close();
 }
}

 A. ParameterNotFoundException is thrown.

 B. Some other exception is thrown.

 C. “Elmore Leonard” is output on the web page.

 D. An application failure occurs.

 E. null is output on the web page.

 F. A 404 error occurs in the browser.

 G. Some other error (status code in the 500s) occurs in the browser.

220 Chapter 3: The Web Container Model

 2. What results from a call to the getInitParameterNames() method on ServletContext when
there are no context parameters set up in the deployment descriptor? (Choose two.)

 A. A NoParametersExistException is thrown.

 B. An empty Enumeration object is returned.

 C. null is returned.

 D. An ArrayList object of size zero is returned.

 E. No exceptions are thrown.

 F. An empty Iterator object is returned.

 3. Identify true statements about context parameters from the list below. (Choose one.)

 A. The deployment descriptor elements used to describe context parameter names and values
are unique to the context parameter element.

 B. Context parameters must be declared in the deployment descriptor before servlets.

 C. Context parameters are available to all web applications loaded by an application server.

 D. In distributable applications, context parameters are duplicated between JVMs.

 E. None of the above.

 4. Given a servlet containing the following code, what is the outcome of attempting to compile
and run the servlet? (Choose one.)

ServletContext context = getServletContext();
String s = context.getAttribute("javax.servlet.context.tempdir");

 A. The servlet won’t compile.

 B. The servlet won’t run.

 C. String s has a null value.

 D. String s has a valid directory as its value.

Attributes, Scope, and Multithreading

 5. What is the likely result from attempting to compile and execute the following servlet code?
(Choose one.)

HttpSession session = getSession();
String s = session.getAttribute("javax.servlet.session.tempdir");

Self Test 221

 A. Won’t compile for one reason.

 B. Won’t compile for more than one reason.

 C. Runtime exception when attempting to get access to the attribute.

 D. s contains null.

 E. s contains a valid String, denoting a temporary directory.

 6. Identify true statements from the list below. (Choose two.)

 A. Attribute methods don’t throw exceptions.

 B. You cannot remove request parameters.

 C. Attributes can be set by the web container or by application code.

 D. Attribute values are String objects.

 E. “malhereusement” is an illegal name for an attribute.

 7. (drag-and-drop question) In the servlet code shown in the following illustration, fi ll in all the
concealed (lettered) parts of the source code with (numbered) choices from the right-hand side,
such that the output when the servlet is run is:

nulltwothree

protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 PrintWriter out = response.getWriter();
 response.setContentType("text/plain");
 HttpSession session = request.getSession();
 session.setAttribute("one", "one");
 ServletContext context = getServletContext();
 context.setAttribute("two", "two");
 request.setAttribute("three", "three");
 session.s e t Attribute("one", null);
 out.print(session.getAttribute("one"));
 out.print(context.getAttribute("two"));
 out.print(request.getAttribute("three"));
}

A

B
C D E

8 null

7 delete

6 get

5 remove

11 context

10 request

9 “”

4 set

3 HttpSession

2 session

1 Session

222 Chapter 3: The Web Container Model

 8. What is result of attempting to run the following code? (Choose one.)

public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 request.setAttribute("a", "request");
 System.out.print(request.getAttribute("a"));
 request.setAttribute("a", "2nd request");
 System.out.print(",");
 System.out.print(request.getAttribute("a"));
 request.removeAttribute("a");
 request.removeAttribute("a");
 System.out.print(",");
 Object o = request.getAttribute("a");
 System.out.print(o);
}

 A. “request, request, 2nd request, null” written to standard output

 B. NullPointerException at line 22

 C. AttributeAlreadyRemovedException at line 22

 D. NullPointerException at line 24

 E. “request, 2nd request, null” written to standard output

 F. “request, 2nd request” written to standard output

 G. “request, request, 2nd request” written to standard output

 9. From the following list, what is a probable outcome from a call to the ServletContext
.getAttributeNames() method? (Choose one.)

 A. A null reference is returned.

 B. An empty Enumeration is returned.

 C. A nonempty Enumeration is returned.

 D. An empty ArrayList is returned.

 E. A nonempty ArrayList is returned.

 F. A NoAttributesFoundException is thrown.

 G. Some other exception is thrown.

 10. Identify true statements about scope from the following list. (Choose two.)

 A. Context scope can span JVMs.

 B. Session scope can span JVMs.

Self Test 223

 C. Requests can span web apps.

 D. Sessions can span web apps.

 E. Requests can span JVMs.

Dispatching

 11. What is the outcome of executing ServletA? You can assume that (1) ServletB has a mapping
of “/ServletB” and a name of “ServletB,” and (2) imports have been omitted from the code for
brevity; the code will compile successfully. (Choose one.)

public class ServletA extends HttpServlet {
 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {
 RequestDispatcher rd = getServletContext().getNamedDispatcher(
 "ServletB");
 rd.forward(req, resp);
 }
}

public class ServletB {
 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {
 String attr = (String)
req.getAttribute("javax.servlet.forward.servlet_path");
 PrintWriter out = resp.getWriter();
 out.write("Attribute value: " + attr);
 }
}

 A. NullPointerException thrown

 B. “Attribute value: null” output to the web page

 C. A blank web page

 D. ServletNotFoundException thrown

 E. “Attribute value: /ServletB” output to the web page

 F. “Attribute value: ServletB” output to the web page

 G. ClassCastException thrown

224 Chapter 3: The Web Container Model

 12. Identify which of the following are names of special attributes associated with the dispatching
mechanism. (Choose two.)

 A. java.servlet.include.servlet_name

 B. javax.http.servlet.include.query_name

 C. javax.servlet.include.servlet_path

 D. javax.servlet.forward.request_url

 E. javax.servlet.include.path_info

 F. java.servlet.forward.context_path

 13. What are possible outcomes from executing the doGet method in ServletC below?
(Choose two.)

public class ServletC extends HttpServlet {
 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {
 RequestDispatcher rd = getServletContext().getRequestDispatcher(
 "ServletB");
 rd.forward(req, resp);
 }
}

 A. HTTP 500 error (error in 500s).

 B. NullPointerException.

 C. HTTP 404 error.

 D. Some other exception.

 E. ServletNotFoundException.

 F. ServletB runs.

 G. A fi le called ServletB is served from the context directory.

 14. What is the web page output from executing ServletD with the URL below? (Choose one.)

http://localhost:8080/myapp/ServletD?fruit=orange
public class ServletD extends HttpServlet {
 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

Self Test 225

 RequestDispatcher rd = getServletContext().getRequestDispatcher(
 "/ServletE?fruit=pear");
 rd.forward(req, resp);
 }
}

public class ServletE extends HttpServlet {
 public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
 response.setContentType("text/plain");
 PrintWriter out = response.getWriter();
 String[] valueArray = request.getParameterValues("fruit");
 for (int i = 0; i < valueArray.length; i++) {
 if (i > 0) {
 out.write(", ");
 }
 out.write(valueArray[i]);
 }
 String queryString = (String)
request.getAttribute("javax.servlet.forward.query_string");
 int pos = queryString.indexOf("=") + 1;
 String values = queryString.substring(pos);
 out.write(", " + values);
 }
}

 A. pear, pear

 B. pear, orange, orange

 C. orange, pear, orange

 D. orange, pear, pear

 E. orange, pear

 F. pear, orange, null

 G. orange, pear, null

 H. pear, orange, pear, orange

 15. ServletA forwards to ServletB, which includes Servlet C, which forwards to ServletD, which
includes ServletE. When ServletA is requested, which servlets might contribute to the fi nal
response? (Choose one.)

226 Chapter 3: The Web Container Model

 A. ServletD and ServletE

 B. ServletB, ServletC, ServletD, and ServletE

 C. ServletD only

 E. ServletB only

 F. All of them

Filters

 16. Identify true statements about fi lters. (Choose one.)

 A. You cannot work directly with the request object that is passed as a parameter to the
fi lter.

 B. The order of fi lter processing is arbitrarily determined by the web container.

 C. Only URL patterns can be used by fi lters to target specifi c web resources.

 D. You must implement the doChain(request, response) method to pass control from
fi lter to fi lter, or fi lter to servlet.

 17. Which of the following is a legal fi lter mapping declaration in the deployment descriptor?
(Choose one.)

 A.

<filter-mapping>
 <filter-name>MicroPaymentFilter</filter-name>
 <servlet-name>MicroPaymentServlet</servlet-name>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>

 B.

<filter>
 <filter-name>MicroPaymentFilter</filter-name>
 <filter-class>webcert.ch03.MicroPaymentFilter</filter-class>
 <filter-mapping>
 <url-pattern>/MicroPaymentServlet</url-pattern>
 </filter-mapping>
</filter>

Self Test 227

 C.
<filter-mapping>
 <filter-name>MicroPaymentFilter</filter-name>
 <url-pattern>MicroPayment/*</url-pattern>
</filter-mapping>

 D.
<filter>
 <filter-name>MicroPaymentFilter</filter-name>
 <filter-class>webcert.ch03.MicroPaymentFilter</filter-class>
 <filter-mapping>
 <servlet-name>MicroPaymentServlet</servlet-name>
 </filter-mapping>
</filter>

 18. (drag-and-drop question) In the following illustration, FilterA chains to Servlet1, which ex-
tends HttpServlet. Neither of these components is loaded on startup. Imagining that this is the
fi rst invocation for each of these components, match the numbered method calls to the lettered
sequence if Servlet1 is requested.

G

F

E

D

C

B

A

FilterA Servlet1

6 doFilter(ServletRequest request,
ServletResponse response,
FilterChain chain)

7 doChain(ServletRequest request,
ServletResponse response, Filter
filter)

8 doPost(ServletRequest request,
ServletResponse response)

10 service(HttpServletRequest request,
HttpServletResponse response)

11 service(ServletRequest request,
ServletResponse response)

9 doGet(HttpServletRequest request,
HttpServletResponse response)

5 init(FilterContext fc)

4 init(ServletContext sc)

3 init(ServletConfig sc)

2 init(FilterConfig fc)

1 init()

228 Chapter 3: The Web Container Model

 19. From the available options, what is the likely outcome from running the code below?
(Choose one.)

protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException, IOException {
 RequestDispatcher dispatcher =
 getServletContext().getNamedDispatcher("/ServletB");
 dispatcher.forward(request, response);
}

 A. DispatcherNotFoundException.

 B. Runtime error because of incorrectly formed parameter to getNamedDispatcher()
method.

 C. NullPointerException.

 D. ServletB can obtain request attribute javax.servlet.forward.request_uri.

 20. Given the following deployment descriptor, identify the sequence of fi lters that execute on a
direct client request for ServletA. (Choose one.)

<filter-mapping>
 <filter-name>LogFilter</filter-name>
 <servlet-name>ServletA</servlet-name>
</filter-mapping>
<filter-mapping>
 <filter-name>AuditFilter</filter-name>
 <url-pattern>/ServletA</url-pattern>
 <dispatcher>FORWARD</dispatcher>
</filter-mapping>
<filter-mapping>
 <filter-name>EncryptionFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>
<servlet-mapping>
 <servlet-name>ServletA</servlet-name>
 <url-pattern>/ServletA</url-pattern>
</servlet-mapping>

 A. LogFilter, AuditFilter, EncryptionFilter

 B. LogFilter, EncryptionFilter

 C. LogFilter

 D. EncryptionFilter, AuditFilter, LogFilter

 E. EncryptionFilter, LogFilter

 F. AuditFilter, EncryptionFilter, LogFilter

LAB QUESTION
We’ll use this lab as an opportunity to put together several of the concepts you have encountered in
this chapter in order to write a censorship fi lter. If there are any words in a web page you disapprove
of (such as “massive executive pay bonus”), your fi lter will throw a fi t of pique, suppress the response
entirely, and substitute an alternative message.

Have an AttributeSetter servlet, which will pick up a properties fi le name and location from serv-
let context initialization parameters. AttributeSetter should load the fi le as a properties object and
write each named property as a request attribute. This mainly uses techniques you covered in the
fi rst two exercises in this chapter. Then have AttributeSetter forward to another servlet, Attribute
Displayer —which simply displays all the request attributes it knows about.

Then write a fi lter — CensorshipFilter —which triggers on access to the AttributeSetter servlet.
The fi lter should scan the (wrappered) response for any words it doesn’t like. If any are encountered,
the fi lter should clear the response completely and write its own response instead. Turn the fi lter on
and off using a fi lter initialization parameter.

As a more subtle form of censorship, have the CensorshipFilter scan all the request attributes and
remove any containing words it doesn’t like —before passing control down the chain to Attribute
Displayer. Then AttributeDisplayer will display as normal, but of course, the offensive attributes have
already been purged.

Lab Question 229

230 Chapter 3: The Web Container Model

SELF TEST ANSWERS

ServletContext

 1. � D and F. D is correct because the application will not load. The deployment descriptor
is incorrectly formed: The element names should be <param-name> and <param-value>,
with hyphens. F is also correct. The question says that you attempt to execute the servlet.
In the event of the web application simply not being available, a “page not found” (404) error
results.

 � A is incorrect because you never get any kind of exception (including the made-up
ParameterNotFoundException) from the getInitParameter method —even though the
requested parameter name (“auther”) doesn’t match what is set up in the deployment descrip-
tor. B is incorrect because the servlet code is perfectly fi ne in all respects and in any case never
executes! Because the servlet is never loaded and never executes, C and E can be discounted
(though had the deployment descriptor been correctly formed, E would have described the
output correctly: null). Finally, G is incorrect because an error in the 500s results only when the
target resource is actually found, but runs incorrectly.

 2. � B and E. B is correct because you do get an Enumeration object returned that has no ele-
ments. No exceptions are thrown just because there are no context parameters, so E is correct
as well.

 � A is incorrect because you never get any kind of exception (including the made-up
NoParametersExistException) from the getInitParameterNames method. C is incorrect
because you don’t get a null object reference; the Enumeration returned has a valid reference,
just no elements. D and F are incorrect because it is an Enumeration that’s returned, not an
ArrayList or Iterator (or Vector or any other sort of thing from the myriad Collection classes
Java has available).

 3. � E is the correct answer: There are no true statements in the list!
 � A is incorrect because <param-name> and <param-value> are used for servlets’ initializa-

tion parameters as well as ServletContext initialization parameters. B was correct in previous
versions of the exam and servlet specifi cation. However, the XSD for servlet specifi cation 2.4
gives you latitude to place context parameters wherever you like in the deployment descriptor
(provided, or course, that each <context-param> element is bedded directly under the root
element <web-app>). I have to say that I prefer to respect the old order when setting up the de-
ployment descriptor —for backward compatibility if nothing else. But for exam answer purposes,
you should identify answer B as false. C is incorrect: Context parameters are available only

to the web application to which they belong, no others. D is incorrect because an important
limitation of servlet context information is that there is no mechanism to duplicate parameter
information from one JVM to another in distributed apps. (Of course, chances are you have
identical deployment descriptors with the same parameters declared in other JVMs supporting
the distributed application — so, effectively, the data are available wherever the application
runs. However, that doesn’t make answer D any truer!)

 4. � A is the correct answer. The compilation fails with a ClassCastException. The output of
the ServletContext.getAttribute() method is an object. Since the value of the standard
attribute named javax.servlet.context.tempdir is a String, the output is safe to cast to a String.

 � B is incorrect because the servlet never gets as far as running, which of course also discounts
C and D. If the ClassCastException were corrected, then D should be the correct answer, for
this standard attribute should always have a valid value set by the web container.

Attributes, Scope, and Multithreading

 5. � B is the correct answer. Although this looks like a question about attributes, it is also about
session API knowledge. You retrieve a session from a request, not from the servlet itself, so that’s
one error. Furthermore, whatever scope you use the getAttribute() method in (in this case,
session scope), you have to cast the object retrieved back to the type of variable you are using in
the assignment (in this case, String). So there are two compilation errors.

 � A is incorrect because there are two compilation errors. C is incorrect because the code
never gets to run. If the compilation error were fi xed, then D is likely to be correct: s would be
null. The web context shouldn’t have set up an attribute of this name, nor should your code (as
javax.<anything> is reserved for web container attributes). E is incorrect, a deliberate attempt
to confuse you with the context attribute javax.servlet.context.tempdir.

 6. � B and C are the correct answers. You can’t remove request parameters: There are no meth-
ods to do this (don’t confuse this with the fact that you can remove attributes). And attributes
can be set up in two places: by the web container or in your code.

 � A is incorrect because although most attribute methods don’t throw exceptions, session
attribute methods can throw an IllegalStateException. D is incorrect because you can hold any
kind of object as an attribute value, not just Strings. E is incorrect: Although your attribute
names should begin with a reverse domain name (e.g., com.myco.malhereusement), they don’t
have to do so —it’s only a suggestion in the servlet specifi cation, not a requirement.

 7. � A maps to 3 (you retrieve an HttpSession type, not Session), B maps to 10 (must be the
request parameter), C maps to 2 (must be the session parameter), D maps to 4 (must be

Self Test Answers 231

232 Chapter 3: The Web Container Model

setAttribute, for there are two parameters; removeAttribute takes only one), and E maps
to 8 (null literal— so that session.getAttribute(“one”) will fail to fi nd an attribute and thus
return null).

 � There are no other correct combinations.

 8. � E is the correct answer. The fi rst value of the attribute is printed out, then the changed
second value, then null, for the attribute has been removed.

 � A is incorrect: The answer tries to persuade you that values added to attributes accumulate
(a bit like parameters) instead of being totally replaced. B and C are incorrect — there’s no
reason for a NullPointerException, and there’s no such thing as an AttributeAlreadyRemoved
Exception. It doesn’t matter how many times you remove the same-named attribute; the code
doesn’t blow up. D is incorrect —you don’t get a NullPointerException from passing a null
object reference into System.out.print. F is incorrect —you might think it was correct if the
System.out.print at line 24 did go wrong. G is yet another red herring that plays on some of the
wrong assumptions already described.

 9. � C is the correct answer: It’s the only probable outcome. There should be at least one con-
text attribute set by the servlet container; hence, the Enumeration is unlikely ever to be empty.

 � A is incorrect; you will always get a valid reference. B is remotely possible, but not probable
(it could occur because your code removed all context attributes, including ones set up by the
web container). D and E are incorrect —you get old-fashioned Enumerations from this method,
not any newer collection class such as ArrayList. Finally, the method shouldn’t throw any excep-
tions, so F and G are incorrect.

 10. � B and C are correct answers. Session scope can span JVMs in a distributable application.
Requests can span web applications when a request dispatcher is used from another context.

 � A is incorrect; there is one context per web application per JVM. D is incorrect; threads
dispatching across web applications fi nd themselves dealing with separate session objects in
each web application. E is incorrect; there is no mechanism to carry requests across JVMs, even
in distributable applications.

Dispatching

 11. � B is the correct answer. The code executes correctly. However, because the method used to
obtain a RequestDispatcher in ServletA is getNamedDispatcher(), the attribute javax.servlet
.forward.servlet_path is not set up in the servlet that is the target of the forward, ServletB.

 � A, D, and G are incorrect, for the code runs perfectly well. In ServletA, the line rd
.forward() has the potential to throw a NullPointerException —but not when a valid servlet
is found. The getAttribute() output cast to a String in ServletB is quite correct, hence no

ClassCastException. ServletNotFoundException does not exist. C is incorrect because there
is output on the web page. E and F are incorrect —E would have been a correct version of the
servlet path had the dispatcher used arisen from a getRequestDispatcher() method.

 12. � C and E are the correct answers.
 � A, B, and F are incorrect: You can eliminate them immediately, for all the special attributes

begin javax.servlet, which is then followed by .forward or .include. D is almost right —but the
attribute name should end request_uri, not request_url.

 13. � A and D are the correct answers. An IllegalArgumentException occurs because the
getRequestDispatcher method on ServletContext cannot accept a path that begins from
somewhere other than the context root —in other words, the path parameter must begin
with a forward slash. As a consequence, a server side error (error in 500s) will be returned
to the client.

 � B is incorrect. There won’t be a NullPointerException from the rd.forward() line be-
cause it will never be reached. C is incorrect because there won’t be a search for a fi le that
cannot be found. E— ServletFoundNotException —is as made up now as it was in a previous
bogus answer. F and G are incorrect, but would both be possible outcomes if the getRequest
Dispatcher() call were legal.

 14. � B is the correct answer. The parameter named “fruit” is passed as part of the query string
to ServletD, with a value of “orange.” When the request path is set for ServletE in the call to
getRequestDispatcher, the query string contains the same-named parameter with a value of
“pear.” This doesn’t overwrite the original parameter value. You can have multiple parameter
values of the same name. Instead, it inserts the “pear” value ahead of the “orange” value, but
both are valid parameter values for “fruit.” So when the ServletE code prints out the parameter
value for “fruit” obtained with request.getParameterValues(“fruit”), it outputs “pear, orange” in
that order. Then the query string is obtained from javax.servlet.forward.query_string. This con-
tains the query string as it was in the forwarding servlet, ServletD, so fruit=orange. After some
judicious string manipulation, the value “orange” is extracted from the query string and added
to the response output, so “pear, orange, orange” is the fi nal result.

 � A, C, D, E, F, G, and H are all incorrect because of the reasoning above.

 15. � A is the correct answer. The last servlet in the dispatching sequence that is forwarded to is
ServletD, so anything that previous servlets did to the response is ignored. ServletD includes
ServletE, so both might contribute to the response.

 � B is incorrect because the forward to ServletD obliterates the contribution of ServletB
and ServletC, which also excludes answer D. C is incorrect, for ServletD includes ServletE,
so ServletE’s work on the response should be taken into account. E is incorrect because of the
reasoning in the correct answer.

Self Test Answers 233

234 Chapter 3: The Web Container Model

Filters

 16. � A is the correct answer (the only true statement). The request object passed as parameter to
the fi lter must be wrappered in a ServletRequestWrapper or HttpServletRequestWrapper object.

 � B is incorrect because the order of fi lters is determined by their placement in the deploy-
ment descriptor. C is incorrect because fi lters can target servlets by name as well as by URL pat-
tern. D is incorrect: The thing you are implementing is a chain of fi lters, but the method used to
pass control along the chain is called doFilter(request, response), not doChain().

 17. � A is again the correct answer. A fi lter mapping can be legally expressed with a fi lter name
and a servlet name. Although the dispatcher element with a value of REQUEST is what you get
by default when no dispatcher element is specifi ed, there’s nothing wrong with explicitly includ-
ing the element like this.

 � B is very incorrect; you don’t include <filter-mappings> within <filter> elements.
They are separate elements nested in the root element <web-app>. This makes answer D incor-
rect as well. C is incorrect, not because of incorrectly stacked elements, but because of an illegal
value for the URL pattern —which should begin with a forward slash (“/”).

 18. � A maps to 2 (init with FlterConfi g parameter), B maps to 6 (doFilter method), C maps to
3 (init with ServletConfi g parameter), D maps to 1 (init with no parameters), E maps to 11
(service method passing ServletRequest and ServletResponse), F maps to 10 (protected ser-
vice method passing HttpServletRequest and HttpServletResponse), and G maps to 9 (doGet
method). This is as much a question about servlet life cycle as fi lter life cycle —mean, but you
do get questions that cross over different objectives from time to time.

 � This is the only sequence that can be guaranteed to occur.

 19. � C is the correct answer from the available options. If the getNamedDispatcher()
method fails to fi nd the path to ServletB, the dispatcher reference will be null, so a Null
PointerException will result on executing the forward() method.

 � A is incorrect —DispatcherNotFoundException is made up (dispatcher methods that fail
to fi nd a dispatcher simply return null). B is incorrect because the parameter to getNamed
Dispatcher() is legal. The name used begins with a forward slash, so looks more like a servlet
name than a servlet mapping. However, while it is inadvisable to have a servlet name in this
form, it does work. D is incorrect. Although the special attribute is correctly named, it is not
available when the forward is on a named dispatcher.

 20. � E is the correct answer. First, the processing works through the fi lter-mappings with a
matching URL pattern. EncryptionFilter runs because the URL pattern of “/*” matches any
request. Then processing works through the fi lter mappings with matching servlet names.

LogFilter has a matching name, so it executes. Note that fi lters mapped by URL pattern are
executed before fi lters mapped by servlet name.

 � A, B, C, D, and F are incorrect because of the reasoning in the correct answer above. Note
that AuditFilter doesn’t execute through a direct client request. AuditFilter will only be invoked
as the result of calling ServletA via the forward() method on a RequestDispatcher object.

LAB ANSWER
Deploy the WAR fi le from the CD called lab03.war, in the /sourcecode/chapter03 directory. This con-
tains a sample solution. If you look in the deployment descriptor web.xml, you’ll fi nd a defi nition for
a fi lter named CensorshipFilter. This has an initialization parameter named censorship. As delivered,
this has its value set to “off.” When you run the application using the URL

http://localhost:8080/lab03/AttributeSetter

You should see a list of attributes like this:

Lab Answer 235

Some attributes arise from container-provided “forwarding” attributes (because AttributeSetter
executes a forward() method on a request dispatcher object).

236 Chapter 3: The Web Container Model

It also displays some attributes that originate from the properties fi le lab03.properties. If you
change the censorship initialization parameter in web.xml to have a value of “on,” restart your server,
and call AttributeSetter with the same URL, you should see a screen like this:

This message comes about because the fi lter class (CensorshipFilter) has logic that discovers
“banned words” in the attributes that subsequent servlets would otherwise display, so it suppresses
the call to those servlets. If you look in the source of CensorshipWrapper.java, you’ll fi nd out what
the banned words are. You can change the text of the lab03.properties fi le (in the / WEB-INF direc-
tory) to avoid the banned words — see then if a refresh of your browser will display the properties
from the fi le.

