
CERTIFICATION OBJECTIVES

4
Sessions
and Listeners

 • Session Life Cycle

 • Session Management

 • Request and Context Listeners

 • Session Listeners

 ✓ Two-Minute Drill

 Q&A Self Test

238 Chapter 4: Sessions and Listeners

If you need a way to associate a series of related requests—and let’s face it, most web ap-
plications do—then you need a session. Sessions are a central plank in the web container
framework. We began to explore them in Chapter 3, but they have enough facets to justify

this chapter (almost) to themselves.

We have already learned that sessions provide one of the three principal “scopes”
of the web container model, the other two being request and context. We have also
seen that (like requests and contexts) an object represents each session and that you
can attach attributes to this object representing information of any sort. What we
will do in this chapter is to more fully explore the boundaries of session scope and
fi nd out exactly what causes the beginning and end of a session. We’ll fi nd out when
a session is regarded as “new,” and what happens to make it lose that newness.

We’ll also see what mechanisms a web container might employ to maintain its
sessions. The mechanism of choice uses a cookie, a small fi le traded between the web
container and the client browser and containing a unique identifi er for the session.
A poor man’s substitute (in environments where cookies are disallowed or unsup-
ported) is “URL rewriting”—having the session ID embedded in the URL —and
we’ll explore that also.

Then we’ll cover “listeners,” an aspect of the web container model deferred
from Chapter 3. These are classes with methods called by the web container under
particular circumstances —when an attribute is changed, for example, or when a
context comes into being. We’ll depart from the session focus for a section to fi nd
out how listeners pertain to the request and context life cycles. But we then return
to session with a vengeance, which boasts the most listeners to support its more
complex life cycle. And that will round off the exploration both of sessions and the
web container model.

CERTIFICATION OBJECTIVE

Session Life Cycle (Exam Objective 4.2)
Given a scenario, describe the APIs used to access the session object, explain when the ses-
sion object was created, and describe the mechanisms used to destroy the session object, and
when it was destroyed.

In this section, you’ll learn what you need to know about session basics for the
exam. You’ll see how the J2EE spec gets around the fundamental problem of HTTP
communication: a series of unconnected requests and responses between client and
server, often described as “fi re and forget.” What if you’re the client and you don’t
want to be forgotten? Or if you’re the server, and want to know when the client
last got in touch with you? What if the client has fi nished with you the server: How
do you know, and once you do know, how can you gracefully let go of that client
knowledge?

The Life History of a Session
Of course, a session isn’t just about continuity across a series of requests — though
we’ll have plenty to say about that. There are good application reasons for wanting
sessions —usually to store information to ensure the smooth running of your applica-
tion. You will often have a transaction running over several requests. Perhaps I set
up a new order header on one page but don’t want to commit the results until I’ve
set up order lines on a separate page. My application could hold the order header
information in attributes attaching to a session. Only after hitting the button on the
order line setup page would header and line information be taken out of the session’s
memory and planted permanently in the database.

And this is mostly what session APIs are about. Besides that, it’s about control
of a session —dictating when it will end. You have mechanisms to time out a ses-
sion if no requests are received for a certain time. Or you can use session APIs to
apply more stringent timing rules. You might want to ensure that the session will not
exceed a certain time limit, regardless of the requests it receives — perhaps in a game
application. And you’ll see in this chapter that your scope is wider than that: You
can invalidate a session for any reason you see fi t.

But fi rst we’ll explore a fundamental question: How can you get hold of a session
in the fi rst place?

Getting Hold of a Session
When a client makes its very fi rst request to a particular web application, neither
party knows about each other. How could they? It’s as if the client has just rung the
doorbell. At this point, there’s no session. And there doesn’t need to be a session. If
the person on the doorstep is merely asking you to sign for a parcel delivery, then it’s
a one-off request. If he wants you to participate in a survey about your buying habits
(and you agree), that requires a series of interactions —in other words, a session.

Session Life Cycle (Exam Objective 4.2) 239

240 Chapter 4: Sessions and Listeners

So a session exists only if your servlet decides it needs one. The servlet gets hold
of that session from the HttpServletRequest object. This has a getSession()
method, which returns an HttpSession object. And the idea is that a series of calls to
HttpServletRequest.getSession() from a related set of requests (ones emanat-
ing from the same client) will always retrieve the same session object, as shown in
the following illustration.

Web App 1

Web container (app server / JVM)

Client

First request

Second request

Third request

n th request

Request object

Request object

Request object

Request object

Session
object

Attribute

Attribute

Attribute

As far as the J2EE servlet API is concerned, sessions and session scope belong to
the world of HTTP. HttpSession is an interface that lives in the javax.servlet
.http package. You can get HttpSession objects only from HttpServletRequest, not
from ServletRequest. There is no equivalent in the non-HTTP servlet world —for
example, a Session interface provided in the javax.servlet package. Of course, there’s
nothing stopping you from providing your own infrastructure, but outside of HTTP,
you’re on your own.

Actually, HttpServletRequest.getSession() is an overloaded method.
It exists in the no-argument form, or can accept a single boolean parameter:
HttpServletRequest.getSession(boolean create). First you should know that

HttpSession session = HttpServletRequest.getSession();

is a shorthand form of

HttpSession session = HttpServletRequest.getSession(true);

These two calls are functionally equivalent. These calls will return an HttpSession
come what may, returning the existing object if it already exists or creating a session
object if one does not exist already.

Alternatively, you might call

HttpSession session = HttpServletRequest.getSession(false);

This call will return a session object, but only if one already exists. Why might you
want to do this? Perhaps your application is designed so that initial requests should
pass through a “Login” servlet, which establishes a session. As a security measure,
all other servlets in the application make a getSession(false) call when they
need the session object. Only if the user has legitimately passed through the “Login”
servlet will the other servlets get the session object they need for the application to
function.

Session Scope Revisited
Let’s now revisit session scope, which we briefl y explored in Chapter 2. Figure 4-1
shows a possible session “lifetime.” At (1) in Figure 4-1, a client (web browser win-
dow) makes its fi rst request to your web application —as it happens, for ServletA.
ServletA obtains a session object through the request, supplied by the web container
((2) in Figure 4-1). At this point, the session is deemed to be “new.” The client
doesn’t yet know about the session’s existence —after all, it has only just come into
being. You can test the session state as follows:

HttpSession session = request.getSession();
if (session.isNew()) {
 // Do something conditional on session newness
}

At (2) in Figure 4-1, the boolean value returned by HttpSession.isNew()
will be true. So how does a session lose its newness? Along with the response to
ServletA, the web container (at (3) in Figure 4-1) returns some sort of tracking
information that uniquely identifi es the session that has just been created.

Session Life Cycle (Exam Objective 4.2) 241

242 Chapter 4: Sessions and Listeners

What constitutes a “new browser session”? Here’s an observation on Internet
Explorer’s behavior. If you launch Internet Explorer afresh, then access a ses-
sion-aware servlet—that’s a new session. If Internet Explorer itself launches a
new Internet Explorer window (e.g., by running File | New Window or by run-
ning some appropriate script) and that new window accesses a session-aware
servlet—it shares the session object with the Internet Explorer window from
which it was launched. This makes reasonable sense, and it’s probably not the
only browser that exhibits this behavior. I point it out for two reasons. First, for
the sake of your application logic, you will need to know what circumstances
cause the client software on a particular PC to maintain or drop the session.
Second, this behavior makes session attributes offi cially not thread safe. It is
imaginable that your user might toggle between two Internet Explorer win-
dows, one spawned from the other, and set off a long-running request from
each. Both these request threads could access the same session object.

1

5

7

7

6

6

3 2

4

NEW

Client makes its first request to web
container (for ServletA).

ServletA requests session object: web
container provides new session object.

Web container passes back session tracking
info to client.

Client returns acknowledgment of tracking
info on next request to ServletB: this flags
session as no longer new.

ServletB accesses (no longer new) session
object.

Overall application server architecture
replicates session object from one app
server to another (separate JVM).

Client doesn’t access session for specified
time interval: web container removes
session objects.

1.

2.

3.

4.

5.

6.

7.

Session object
Web App 1

Web container (app server / JVM)

 Web container (app server / JVM)

ServletA

ServletB

Web App 1

(First running
instance of
distributed
web app)

(Second
running
instance of
distributed
web app)

Client

NOT NEW

OVERALL APPLICATION SERVER ARCHITECTURE

FIGURE 4-1 Session Scope

The client now makes another request (at (4) in Figure 4-1), this time to
ServletB (though for the purposes of this account, it wouldn’t matter if the re-
quest were made to the same servlet again, ServletA). The client has agreed to
join the session, which is typically achieved by passing the tracking information
(the session key) back to the web container along with the new request. ServletB
(at (5) in Figure 4-1) obtains the session from the request. This is exactly the same
session object that ServletA had access to, but now —as the client knows about the
session and has agreed to join it — the session is no longer new (as tested with the
isNew() method).

Distributed Sessions
That’s normally as far as a session gets. However, it is possible —for the sake of
load balancing or fail-over or both — to mark a web application as distributable,
if it is supported by your application server. All you need do is place the element
<distributable /> (or <distributable></distributable>) somewhere un-
derneath parent element <web-app> in your deployment descriptor. Note that this
step may have no effect whatsoever: This element works if and only if your applica-
tion server supports distributed applications. If it does, the effect should be as shown
in Figure 4-1: The same web application running in two (or more) different JVMs.
In Figure 4-1, there are two “clones” of the same web application. The lower half of
the fi gure depicts a second running instance of Web App 1.

Why would you do this? If the fi rst running instance should fail, your architecture
might have a fail-over mechanism in place to divert requests to the second running
instance. Would this disrupt a client session if the failure came between two requests
from a client? Not if the architecture had migrated your session object from one JVM

You will often encounter
questions where you need to know the two
circumstances whereby sessions remain
“new.” The fi rst is when the client doesn’t
yet know about the session because this is
a fi rst request to a web application. The
second is because a client declines to join

the session, which it typically does by refus-
ing to return the session tracking informa-
tion. Under these circumstances, the web
application treats each later request from
the client as if it were the fi rst, providing a
new session each time.

Session Life Cycle (Exam Objective 4.2) 243

244 Chapter 4: Sessions and Listeners

to another. And this is what is shown at (6) in Figure 4-1: The session is replicated
from the fi rst running instance of Web App 1 to the second running instance of Web
App 1. And with the session go all the objects attaching to the session. The only
condition is that the attributes you place in a session should implement the Serializ-
able interface.

The exact mechanism by which this is achieved varies from one application
server to another and is beyond the scope of the exam. The phrase in Figure 4-1
“overall application server architecture,” is deliberately vague. There might be some
direct communication in place between the two application servers shown in Fig-
ure 4-1. There might be some additional application server process polling each web
application clone, and maybe a database that stores session objects. You don’t need
to care at this point —all that’s required is that you understand the implications for
sessions when a web application is marked distributable.

A session is available to be
shared between web resources in a single
web application. Note I say a single web
application: A session cannot cross web
application boundaries. If you use the

RequestDispatcher mechanism to get at a
servlet in another web application and that
servlet accesses the session object, it will be
a different session object, as shown in the
following illustration.

Web App 1

Web container (app server / JVM)

ServletA accesses session object ...

Client requests ServletA ...

ServletB accesses session object ...

ServletA dispatches to ServletB
in separate web app ...

ServletB

Web App 2

Client

It’s a different
session object!

ServletA

Session Death
So how does a session die? There is no obvious trigger. As we well know, servlets
work on a series of requests and responses. The protocol doesn’t demand a continu-
ous connection between the client making the request and the server providing the
response. So how do you know when the client has made its last request, and take
this as a cue to free up the session?

The answer is that you don’t necessarily know. The HttpSession API provides an
invalidate() method — so if your application has a “Log Off ” button and the user
clicks it, a LogOff servlet should summon the session and call the method. But what
if this user, despite repeated and prolonged training followed up with heavy threats,
just closes the browser window? The session is over because the client has gone.
Even if the user reopens the browser and connects back to the same web applica-
tion, the web container will interpret this as a new session. Yet the server is blissfully
unaware that the original client (aka browser session) won’t be making any more
requests.

The solution is to have a time-out mechanism, and that’s precisely what is built
into the web container model. If a session has not been used for a prescribed amount
of time, the web container invalidates the session itself. This is what’s illustrated at
(7) in Figure 4-1. For the clock to start ticking for a session’s time-out, all requests
using the session must have come to an end — that is, their servlets must have
exited their service() method, and any enclosing fi lters exited their doFilter()
method.

The time-out value is controlled in one of three ways.

Application Server Global Default Most application servers provide their
own mechanism for imposing a global default on session length. The specifi cs of this
don’t matter for the exam, and they vary by server in any case.

Web Application Default You can set up a default value in the deployment
descriptor. Here’s an example of how to do this:

<web-app>
 <session-config>
 <session-timeout>60</session-timeout>
 </session-config>
</web-app>

The value in the <session-timeout> element is expressed as whole minutes.
Any integer value is fi ne. A value of 0, or a negative value, denotes that the de-
fault for sessions created in the web application is to never expire. Note that

Session Life Cycle (Exam Objective 4.2) 245

246 Chapter 4: Sessions and Listeners

<session-timeout> is <session-config>’s only subelement, and <session-
config> is a direct child of the root element <web-app>.

Individual Session Setting On obtaining a session, your servlet code can set
the time-out value for that individual session only using the HttpSession
.setMaxInactiveInterval(int seconds) API. Note that the unit of time is in
seconds—contrasting with the deployment descriptor <session-timeout> element,
which contains a value in minutes. Again, a negative value supplied as an argument
causes the session to never expire. But by contrast with the deployment descriptor, a
value of zero doesn’t have the same effect. setMaxInactiveInterval(0) causes the
session to expire immediately —which is rarely desirable!

Let’s set the deployment descriptor and API characteristics side by side in a table,
for you can pretty much count on seeing a question on this theme:

<session-timeout> element
in deployment descriptor

HttpSession.setMaxInactive
Interval(int seconds) API

Scope: The default value for all sessions
created in the web application.

The value for the session for which the
method is called only.

Unit: Minutes. Seconds.

Zero
value
denotes:

Sessions should never expire. Immediate expiration of session.

Negative
value
denotes:

Sessions should never expire. Session should never expire.

Note that there is a corresponding HttpSession.getMaxInactiveInterval()
method. This returns an int primitive representing the number of seconds permit-
ted between client requests before the web container invalidates the related ses-
sion. It doesn’t matter which of the three time-out-setting approaches you use for
this method to return a value. So —for example —you might use the deployment
descriptor and set a 30-minute time-out: <session-timeout>30</session-
timeout>. The getMaxInactiveInterval() method will then return a value of
1800 — the equivalent in seconds.

A fi nal word of warning: Don’t try to prolong a session’s life by artifi cial means —
or, at least, don’t hold me responsible for the consequences! How could you contrive
such an infringement? Perhaps by attaching a session object as an attribute to your
context, then trying to get it back when the session scope has passed. The results are
likely to be unpredictable, or even catastrophic to your web application.

That’s not to say that an application server might not preserve session objects.
Just as for request objects, it is probably more effi cient to maintain a pool of session
objects instead of going through instantiation and garbage collection whenever a
new session is required or jettisoned. The web container just has to provide the
appearance of a new session object, stripped of attributes and returning “true” to
isNew() requests. Whether this is a session object that has been newly constructed
or has already been through many previous incarnations is something about which
you should not have to know or care. As a web developer, confi ne yourself to the
session APIs you have at your disposal.

Multithreading and Session Attributes
In most circumstances you can regard session objects and their associated attributes
as thread safe. The following illustration shows how this looks for the client request
threads to a web application.

Web App 1

Web container (app server / JVM)

ClientA

ClientB

Request thread

Request thread

Request thread

Attribute

Attribute

Attribute

Session
object

Attribute

Attribute

Attribute

Session
object

ClientC Request thread Attribute

Attribute

Attribute

Session
object

However, as far as the servlet specifi cation goes —and therefore the exam as
well—you can’t rely on session attributes being thread safe. You see in the preceding
illustration —for ClientA— two requests, which both access the same session object.
Nothing strange about that: After all, that’s the point of the session object — to
provide continuity between requests. The issue is whether those two requests from
the client could ever overlap. It’s my experience that in normal web browser usage,

Session Life Cycle (Exam Objective 4.2) 247

248 Chapter 4: Sessions and Listeners

you don’t (and mainly, can’t) overlap requests from the same main browser window.
However, it is a theoretical possibility: See the “On the Job” feature (see page 242)
to learn how it might happen. So you should design your web applications such that
access to session attributes is synchronized. Or if you don’t — perhaps for perfor-
mance reasons —ensure that multithreaded access to your session attributes will not
compromise the well-being of your web application.

Other Session APIs
We touched on HttpSession.invalidate() above. This invalidates the session
and then removes any attributes associated with the session. Invalidation works by
making (almost) all of the methods on HttpSession unworkable: If you try to use
them, an IllegalStateException is thrown. This is even true on the invalidate()
method itself: You can’t use this method on an already invalid session! The three
HttpSession methods that don’t throw this exception are get and setMaxInactive
Interval(), and getServletContext()— quite why these are unlike the other
methods is not clear to me —but I point it out in case some meaner-than-usual exam
question tries to trip you up.

There are two methods that return a date and time (as a long primitive that you
will most likely feed to the appropriate java.util.Date constructor):

■ getCreationTime()—unsurprisingly, the time the session was created.

■ getLastAccessedTime()— the last time the client sent a request associated
with the session. Clearly, this API is useful to the web container itself in deter-
mining when to invalidate the session according to the time-out value.

This leaves getServletContext(), getId(), and a sprinkling of deprecated
methods. HttpSession.getServletContext() returns the SessionContext to
which the session is attached, so it can be used as an alternative to ServletConfig
.getServletContext() (the method you normally invoke directly from a servlet).
HttpSession.getId() we explore in the next section. You won’t be tested on the
deprecated APIs. That said, you might want to familiarize yourself with them if you
are maintaining older code (supporting Servlet Spec 2.2 and before). Most have to
do with a standardization of method names whereby session attributes used to be
known as session values —for example, get and putValue() were used once upon
a time instead of get and setAttribute().

ON THE CD

EXERCISE 4-1

Displaying the Session Life Cycle
In this exercise, you’ll write a servlet that associates itself with a session and displays
information about the session: how many times the session has been accessed, the
session’s age, and whether it’s a new session.

Create the usual web application directory structure under a directory called
ex0401, and proceed with the steps for the exercise. There’s a solution in the CD
in the fi le sourcecode/ch04/ex0401.war —check there if you get stuck.

Set Up the Deployment Descriptor

 1. Declare a servlet named SessionDisplayer, with a suitable servlet mapping.
If needed, refer to Chapter 2 to refresh yourself on <servlet> element
setup.

Write the SessionDisplayer Servlet

 2. Create a Java source fi le SessionDisplayer.java in / WEB-INF/classes or an
appropriate package directory. Write the class declaration in the source fi le,
extending HttpServlet.

 3. Do the necessary preliminaries to obtain the reponse’s PrintWriter, and set
the content type to “text /html.”

 4. Check for a parameter called getSession (request.getParameter
("getSession")). Most of the remaining steps should depend on the
value of getSession being “true.”

 5. Get hold of the session from the request.

 6. If this is a new session, display the fact. Also, if the session is new, set up a
session attribute that records the number of accesses to the session, initialized
to a value of 1.

 7. Increment this session attribute on every subsequent access to the session.

 8. Display the number of times this session has been accessed, retrieving the
information from the session attribute.

 9. Get the time the session was created. Display the session’s age in minutes
and seconds by obtaining the current time and by working out the difference
between this and the session creation time.

Session Life Cycle (Exam Objective 4.2) 249

250 Chapter 4: Sessions and Listeners

Run the SessionDisplayer Servlet

 10. Deploy and run the servlet, using a URL such as

 http://localhost:8080/ex0401/SessionDisplayer?getSession=true

 11. Try recalling the servlet with the above URL, sometimes changing the
getSession parameter to a value of “false.”

Optional Experiments

 12. Add capabilities to the servlet to reset the maximum inactive interval and to
immediately invalidate the session. These could be controlled by parameters
into the session.

 13. Try various session method calls immediately after the session is invalidated.
Remind yourself which three methods can (strangely but legally) still be
called even though the session is invalid.

CERTIFICATION OBJECTIVE

Session Management (Exam Objective 4.4)
Given a scenario, describe which session management mechanism the web container could
employ, how cookies might be used to manage sessions, and how URL rewriting might be
used to manage sessions, and write servlet code to perform URL rewriting.

So now you have a good grasp of session scope. To complete your understanding
of the session life cycle, we need to look at the actual mechanisms used to keep a
session up and running. So far we have talked about exchanging tracking informa-
tion between the client (browser) and the web application. Now we’ll see precisely
what that tracking information might consist of, according to which type of session
management mechanism is in force.

Session Management
There are two principal methods for session management “offi cially” recognized by
the servlet API. One method is management by cookie exchange, and the other is
management by rewriting URLs. In this section we’ll explore in some detail what
these mean.

That’s not to say that these are the only approaches. Secure Sockets Layer (SSL),
which ensures secure communications between browsers and web applications, has
its own session data built into it. You can always manufacture your own mechanism:
A typical technique involves holding session data in hidden fi elds on a web form.
However, you don’t need understanding of these other approaches for the web com-
ponent exam.

Session Management: General Principles
Whatever session management approach you take, the end game is the same: to as-
sociate a group of requests. Each of these requests needs to carry a unique ID, which
identifi es the session to which it belongs. Indeed, once you have a handle to the ses-
sion, you can display this ID using the HttpSession.getId() method. This returns
a String whose contents will depend on the application server you use —you can
usually expect it to be long!

The web application will allocate this unique ID on the fi rst request from the
client (at which point the client has no idea about its value). The ID must be passed
back to the client so that the client can pass it back again with its next request. In
this way, the web application will know to which session the request belongs. This
implies that the client must need to store the unique ID somewhere —and that’s
where session management mechanisms come in.

Cookies
The preferred way for a web application to pass session IDs back to a client is via
a cookie in the response. This is a small text fi le that the client stores somewhere.
Storage can be on disk but is just as likely to in memory: This is the case with a
“transient” cookie, which is useful for a short time only. You are no doubt well aware
of cookies just from your general use of the Internet, for many web sites employ
them. Cookies are used to support all kinds of session-like activity on the Web,
regardless of whether the back-end technology is Java based.

In the case of J2EE web applications, the cookie returned has a standard name —
JSESSIONID —all uppercase, just as written here. Even if you can’t inspect the
cookie at the browser end (because it’s probably transient —in memory, and not avail-
able to view from the hard disk using a text editor), you can catch the cookie coming
back from the browser using the HttpServletRequest.getCookies() method that
we examined in Chapter 1. You can then prove to your own satisfaction that the value
of the cookie matches the session ID you can view with HttpSession.getId().

You probably know also that client browsers —mostly —have the ability to switch
cookies off. Although most cookies are benign in nature, and designed to enhance a

Session Management (Exam Objective 4.4) 251

252 Chapter 4: Sessions and Listeners

user’s web experience, the malign few have given cookies a bad name. So for privacy
reasons, a user may choose to reject cookies completely. For this reason, you might
need to use the second (and second-best) standard session-tracking mechanism —
URL rewriting.

URL Rewriting
We have already seen in earlier chapters how to pass information to a web applica-
tion via the URL. This might take the form of path information (supplementary
“directory” information appended to a servlet path) or parameters in a query string
(name/value pairs after a question mark).

URL rewriting is an extension of this idea. A “pseudo-parameter” called jsessionid
is placed in the URL between the servlet name (with path information, if present)
and the query string. Here’s an example — note that this would be one continuous
line on your browser address line with no breaks:

http://localhost:8080/examp0401/SessionExample;jsessionid=
58112645388D9380808A726A27F92997?name=value&othername=othervalue

You see a semicolon after the servlet mapping name (SessionExample), then the
jsessionid pseudo-parameter (jsessionid=verylongstring), followed by a question
mark, which introduces the query string information.

This is fi ne, but it gives your web application a real problem. Every web page your
application returns in the response is likely to have a number of hyperlinks within it
of one sort or other — regular links, buttons, image links, or whatever. Each one of
these links must contain jsessionid=<correctLongString> as part of the URL.

This is very hard to achieve, unless you have servlets dynamically generating
those web pages. There is a method —HttpServletResponse.encodeURL()—
which accepts a String (representing the URL link on the web page minus session
information) and returns a String (the same URL link, but now with the session
information embedded). This method is, in fact, clever enough to know that if some
other session mechanism is in force —at least one it recognizes, such as cookies —
then there is no need to bother embedding any session information. Under these
circumstances, it returns the String representing the URL unchanged. Best prac-
tice dictates that every URL link you create in a servlet should be put through this
method. Then, even if you are expecting your application to operate in a cookie-
friendly environment, it will still survive when it unexpectedly fi nds itself in cookie-
hostile territory.

As a postscript to this, there is another method, HttpServletResponse
.encodeRedirectURL(), which operates in pretty much the same way as

encodeURL(). You give it a URL String; it gives back a URL String, with jsessionid
embedded where necessary. This resulting URL String should then be used to plug
into the HttpServletResponse.sendRedirect() method. The output String
will look no different from a similar call to encodeURL(); the reason for provid-
ing encodeRedirectURL() is that the logic for determining whether or not to
embed session information may be different when considering normal URLs versus
redirect URLs.

Beware of the deprecated
methods encodeUrl() and encode
RedirectUrl(). These have “Url” in
mixed case and were deprecated in a Java
standardization exercise that mandated
capitals for the abbreviation URL wherever

it appeared in method or other names.
It would be a mean exam question that
attempted to trip you up on this arcane
point, but you have to remember that
examiners are entitled to get their kicks
in any way they can.

Request Methods
There are a couple of HttpServletRequest methods that identify which of the two
standard session mechanisms are in use —cookies or URL rewriting. You might fi nd
it surprising that these methods belong to the request object — not to HttpSession.
There’s a minor advantage in that you can execute these methods without having to
fi rst access the session object via the request. Here are the two methods:

■ HttpServletRequest.isRequestedSessionIdFromCookie()

■ HttpServletRequest.isRequestedSessionIdFromURL() (and yes, there
is a deprecated version of this method, where “URL” is in mixed case: “Url”)

Never use a pithy name for a method when you can use a sentence instead! Both
methods return a primitive boolean, set to true if the session mechanism specifi ed is
in force. There can be circumstances where both of these methods, called consecu-
tively for the same request, both return false—even though a session is present. This
will happen:

■ for SSL sessions.

■ for bespoke session mechanism logic (hidden form fi elds, for example).

■ when the session is new! Because at this point, the session ID isn’t coming from a
URL or a cookie —but it has been generated by the web container.

Session Management (Exam Objective 4.4) 253

254 Chapter 4: Sessions and Listeners

ON THE CD

EXERCISE 4-2

Displaying the Session Management Mechanism
This exercise builds on the SessionDisplayer servlet that you wrote in Exercise 4-1.
You’ll now add some capabilities to display what kind of mechanism is in use for
supporting the session.

Create the usual web application directory structure under a directory called
ex0402, and proceed with the steps for the exercise. There’s a solution in the CD in
the fi le sourcecode/ch04/ex0402.war —check there if you get stuck.

Set Up the Deployment Descriptor

 1. Copy the web.xml deployment descriptor from Exercise 4-1. You’ll recall that
this declared the SessionDisplayer servlet.

 2. Change each occurrence of SessionDisplayer (name of servlet, name of class,
URL pattern for mapping) to SessionDisplayer2.

Update the SessionDisplayer2 Servlet

 3. Copy the Java source fi le for SessionDisplayer.java from ex0401/ WEB-INF/
classes (or its appropriate package directory) to ex0402/ WEB-INF/classes
(or appropriate package directory), and rename it to SessionDisplayer2 (make
sure the class declaration refl ects this as well).

 4. In the code —if you haven’t done so already — put an <a href> link that
recalls this same SessionDisplayer2 servlet. Encode the URL using the appro-
priate HttpServletResponse method.

 5. In the web page, display some text that shows whether the session came from
the JSESSIONID cookie or from the URL.

 6. Optionally, use the request.getCookies() method to get hold of the
JSESSIONID cookie, and display all the attributes of the cookie that you
can on the web page.

Run the Updated SessionDisplayer2 Servlet

 7. Deploy and run the servlet, using a URL such as

http://localhost:8080/ex0402/SessionDisplayer2?getSession=true

 8. You’re most likely to fi nd that your browser uses cookies as the session
mechanism. To test out the URL redirection method, try turning off cook-
ies altogether in your browser — or target the domain where your web server
(Tomcat) is running, usually localhost / 127.0.0.1, and turn off cookies for
that. Ensure that you restart your browser before expecting URLs to be used
instead of cookies.

 9. The screen print below shows part of the output from the solution code,
when the session information is delivered through the JSESSIONID cookie.

Session Management (Exam Objective 4.4) 255

256 Chapter 4: Sessions and Listeners

CERTIFICATION OBJECTIVE

Request and Context Listeners (Exam Objective 3.4)
Describe the web container lifecycle event model for requests, sessions, and web applications;
create and confi gure listener classes for each scope lifecycle; create and confi gure scope at-
tribute listener classes; and, given a scenario, identify the proper attribute listener to use.

We’re going to take a brief departure from sessions now and begin to explore the
world of listeners. The certifi cation objective actually pertains to the “web container
model” and so is a leftover from Chapter 3. For veterans of the old Sun Certifi ed Java
Programmer (SCJP) exam —which included Swing user interface mechanisms on its
syllabus —listeners will not be a new idea. The idea is simple and elegant: Some-
thing of interest happens in your framework, and the framework lets the interested
parties know. The interested parties are called “listeners” in Java (and design pat-
tern) parlance. And whereas the Swing framework has listeners for mouse move-
ments and keyboard strokes, the J2EE web application model has a set of server-side
events that you can listen for. These are what we’re going to cover in the next two
sections.

Listeners
We’ll start in this section with the listeners that apply to request and context ob-
jects. There are two for each object, and their function is very similar. The following
table shows the listeners, what objects they apply to, and the listener function.

Listener Interface Name Applies to Function

ServletRequestListener Request objects Responds to the life and death of each
request.

ServletContextListener The context object Responds to the life and death of the
context for a web application.

ServletRequestAttributeListener Request objects Responds to any change to the set of at-
tributes attached to a request object.

ServletContextAttributeListener The context object Responds to any change to the set of at-
tributes attached to the context object.

Listener Preparation
There are two things you need to do to set up a
listener in a web application:

■ Write a class that implements the appro-
priate listener interface.

■ Register the class name in the web appli-
cation deployment descriptor, web.xml.

Let’s fi rst deal with the deployment descrip-
tor aspects, which are reasonably trivial. All

you need to do is to place a <listener> element somewhere underneath the root
element, and with this embed a <listener-class> element. The value held in the
<listener-class> element is the fully qualifi ed class name of a listener class. No
need to specify which type of listener you’re talking about: The web container just
works this out through Java’s refl ection capabilities. This neatly covers the fact that
the same class could, potentially, implement more than one kind of interface. Here’s
how some listener declarations might look in web.xml:

<listener>
 <listener-class>com.osborne.RequestTrackingListener</listener-class>
</listener>
<listener>
 <listener-class>com.osborne.SessionLoggingListener</listener-class>
</listener>

It could be that you have more than one listener class implementing the same
interface. Moreover, you might care about the order in which the classes are called
when a triggering event occurs. Simply list your listener declarations in the desired
order in the deployment descriptor, and let the web container ensure the correct
invocation sequence.

Closedown of a web ap-
plication triggers a call to the matching
closedown events in session and context
listeners. The order in which listeners are

called is then in reverse order of deploy-
ment description declaration, with session
listeners being processed before context
listeners.

There is no getting away
from it—you have to memorize the
names of all the listeners, together with
their methods and their purpose: what
events trigger calls to them and what ob-
ject they affect. It’s a lot to ask—and the
SCWCD asks it.

Request and Context Listeners (Exam Objective 3.4) 257

258 Chapter 4: Sessions and Listeners

Writing a listener class simply involves providing the requisite methods to satisfy
the interface you are implementing. You can always write a “do-nothing” method if
there are some events that don’t interest your web application. It’s worth remember-
ing that listener classes must have a no-argument constructor. You can let the Java
compiler supply one automatically if no other constructors are present. However,
this approach is vulnerable if constructors with arguments are added later. (But it’s
not obvious why they would be — the web container is going to instantiate your
listener only through the no-argument constructor. And there wouldn’t be a good
reason to instantiate a listener in your own web application code.)

The Request Listener
So now that we’ve explored the general features of listener classes, it’s time to start
looking in detail at each listener in turn. We’ll start with ServletRequestListener.
A class implementing this interface has two methods to implement: request
Initialized() and requestDestroyed(). The names of the methods pretty
much describe the events that trigger the web container to call them. So request
Initialized() is called the moment that any request in the web container be-
comes newly available —in other words, at the beginning of any request’s scope. This
is at the beginning of a servlet’s service() method — or earlier than that if a fi lter
chain is involved (the request’s scope begins at the fi rst doFilter() method call of
the chain). Conversely, requestDestroyed() is called for each request that comes
to an end —either at the end of the servlet’s service() method or at the end of the
doFilter() method for the fi rst fi lter in a chain. This is shown diagrammatically in
Figure 4-2.

Each of these ServletRequestListener methods accepts a ServletRequestEvent as a
parameter. This event object has two methods for access to useful objects:

■ getServletContext() returns the ServletContext for a web application.

■ getServletRequest() returns the ServletRequest object itself (cast this to
HttpServletRequest if you need to).

You write code like the following in your ServletRequestListener class to preload an
attribute into every request made to your web application:

public void requestInitialized(ServletRequestEvent requestEvent) {
 HttpServletRequest request = (HttpServletRequest)
 requestEvent.getServletRequest();
 request.setAttribute("com.osborne.bookrecommendation",
 "Core JSPs 2.0");
}

The Request Attribute Listener
So we’ve now dealt with our fi rst listener — ServletRequestListener —which deals
with the life cycle of each request object. What about the life cycle of the attributes
attached to request objects? For these we have classes that implement the Servlet
RequestAttributeListener interface. Here are the methods to implement:

■ attributeAdded(ServletRequestAttributeEvent srae) is called when-
ever a new attribute is added to any request. In other words, any call (from any
request object at any time) to ServletRequest.setAttribute() will trigger
a call to this method — provided that the name of the attribute being added to
the request is a not a name already in use as an attribute of that request.

■ attributeRemoved(ServletRequestAttributeEvent srae) is called
whenever an attribute is removed from a request (as a result of any call to
ServletRequest.removeAttribute()).

ServletRequestListener

requestInitialized(){}

requestDestroyed(){}

Web container

Filter2

doFilter(){
 //...
}

ServletA

service() {
 doGet();
 //...
}

doGet() {
 //...
}

ServletB

service() {
 doGet();
 //...
}

doGet() {
 //...
}

Filter1

doFilter(){
 //...
}

Begin
request

Begin
request

End
request

End
request

Client

Key

Progress of request

Call to request listener

FIGURE 4-2 Two Requests Triggering Request Events

Request and Context Listeners (Exam Objective 3.4) 259

260 Chapter 4: Sessions and Listeners

■ attributeReplaced(ServletRequestAttributeEvent srae) is called
whenever an attribute is replaced (as a result of any call to ServletRequest
.setAttribute() for an attribute name already in use on the request whose
call this is).

Again, there are two useful methods on the event object passed as a parameter
to these methods. The method getName() is straightforward: It returns the String
holding the name of the attribute being added, removed, or replaced. getValue() is
less clear-cut, for what’s returned varies slightly in meaning:

■ attributeAdded(), getValue() returns the Object that is the value param-
eter on the setAttribute() call.

■ attributeRemoved(), getValue() returns the Object that has been removed
as a value from the request as a result of a removeAttribute() call.

■ attributeReplaced(), getValue() returns the old value of the attribute be-
fore a call to setAttribute() changed it. Why not the new value? Because —
as we’ll see in a moment —it’s possible to get at the new value by alternative
means. But there’s no other way of trapping the old value at this point.

Because ServletRequestAttributeEvent inherits from ServletRequestEvent, you get
the two handy methods we looked at in the previous section —which allow you to get
the context object and the request object. Having the request object, you can always
get to the current value of an attribute that’s just been replaced. Here’s some code
that displays to the server console the old and new values for a replaced attribute:

public void attributeReplaced(ServletRequestAttributeEvent event) {
 String name = event.getName();
 Object oldValue = event.getValue();
 Object newValue = event.getServletRequest().getAttribute(name);
 System.out.println("Name of attribute: " + name);
 System.out.println("Old value of attribute: " + oldValue);
 System.out.println("New value of attribute: " + newValue);
}

The inheritance chain for ServletRequestAttributeEvent doesn’t stop there —as you
can see in the illustration on the following page:

The “grandparent” of ServletRequestEvent is java.util.EventObject. You might
remember this from user interface programming, for it features in the hierarchy of
Swing events also. This has one method —getSource()—which returns the ob-
ject that is the source of the event. This — surprisingly perhaps — proves to be the
ServletContext object: It represents the web application framework, which is, ulti-
mately, the source of all events.

The Context Listener
Now that you’ve learned about ServletRequest
Listeners, you’ll fi nd the ServletContextListener
easy to learn, for it follows just the same pattern.
Instead of requestInitialized() and request
Destroyed(), you have contextInitialized()
and contextDestroyed() as the two methods to
implement. And in life cycle terms, these are called
at the beginning and end of scope — this time of
the context, of course, rather than of the request.
And as we learned previously, the context life cycle
matches that of the web application: It’s the fi rst
object made available on web application startup
and the last to disappear at shutdown. So the
contextInitialized() method gets called
before any servlet’s init() method or any fi lter’s
doFilter() method. And every fi lter and servlet
destroy() method must have executed before the
contextDestroyed() method is called.

Both the methods get passed a ServletContextEvent object, which just has the
one method, getServletContext(), to get at the context object itself. So in
contextInitialized(), you have a chance to attach context attributes before
any servlet gets a crack of the whip.

The contextInitialized() method of a ServletContextListener is a
great place to read in parameters from initialization fi les that are fundamen-
tal to the operation of your application. It’s a better alternative than relying
on the init() method in a servlet that loads on startup. Although you can
confi gure your servlet to be the fi rst one that loads in the application, that’s
vulnerable to later confi guration changes. But you can guarantee that the
contextInitialized() method will be the fi rst piece of your code to run
on startup of the web application.

The Context Attribute Listener
The ServletContextAttributeListener has the same trio of methods as the Servlet
RequestAttributeListener: namely attributeAdded(), attributeRemoved(),
and attributeReplaced(). They have the same function as their request equiva-
lents —except, of course, that they fi re when things happen to context attributes:

java.util

ServletRequestEvent

ServletContext getServletContext()
ServletRequest getServletRequest()

EventObject

Object getSource()

ServletRequestAttributeEvent

String getName()
Object getValue()

javax.servlet

Request and Context Listeners (Exam Objective 3.4) 261

262 Chapter 4: Sessions and Listeners

ON THE CD

■ attributeAdded(ServletContextAttributeEvent scae) is called
whenever a new attribute is added to the servlet context. In other words, any
call (from any web application code that has access to the servlet context) to
ServletContext.setAttribute() will trigger a call to this method —
provided that the name of the attribute being added to the context is a not
a name already in use as an attribute of the context.

■ attributeRemoved(ServletContext
AttributeEvent scae) is called when-
ever an attribute is removed from the context
(as a result of any call to ServletContext
.removeAttribute()).

■ attributeReplaced(ServletContext
AttributeEvent scae) is called whenever
an attribute is replaced (as a result of any call
to ServletContext.setAttribute() for
an attribute name already in use by the servlet
context).

And lo — the ServletContextAttributeEvent
received as a parameter by these methods has the
same two methods as the equivalent ServletRequest
AttributeEvent — namely getName() (to get the
name of the attribute affected) and getValue()
(to get the value of the attribute: added, removed,
or —in the case of replacement — the old value of
the attribute).

There’s an inheritance hierarchy for this as well, back through ServletContext
Event and java.util.EventObject, as illustrated.

EXERCISE 4-3

Proving the Execution Order of Listeners
In this exercise you’ll write code to explore context listeners. In particular, you
will prove that the contextInitialized() method is called before any servlet is
initialized. You’ll also write code to trap changes to context attributes.

Create the usual web application directory structure under a directory called
ex0403, and proceed with the steps for the exercise. There’s a solution in the CD
in the fi le sourcecode/ch04/ex0403.war —check there if you get stuck.

java.util

ServletContextEvent

ServletContext getServletContext()

EventObject

Object getSource()

ServletContextAttributeEvent

String getName()
Object getValue()

javax.servlet

Set Up the Deployment Descriptor

 1. Declare a servlet named SetContextAttributes, with a suitable servlet map-
ping. Ensure that it loads on startup of the web server. If needed, refer to
Chapter 2 to refresh yourself on <servlet> element setup.

 2. Declare two listeners, MyContextListener and MyContextAttributeListener.

Write the SetContextAttributes Servlet

 3. Create a Java source fi le SetContextAttributes.java in / WEB-INF/classes or
an appropriate package directory. Write the class declaration in the source
fi le, extending HttpServlet.

 4. Write an init() method, using System.out.println() to send a message
to the console.

 5. Write a doGet() method, which adds, replaces, and removes one or more
context attributes. Optionally, output some text on the response so that you’ll
know when the servlet has been called successfully (to be useful, this might
list all the context attributes).

Write MyContextListener

 6. Create a Java source fi le MyContextListener.java in / WEB-INF/classes or an
appropriate package directory. Write the class declaration in the source fi le,
implementing javax.servlet.ServletContextListener.

 7. Write a contextInitialized() method, which sends a message to the
console and creates a context attribute.

 8. Write a contextDestroyed() method, which sends a message to the console
and removes the context attribute you added in the contextInitialized()
method.

Write MyContextAttributeListener

 9. Create a Java source fi le MyContextAttributeListener.java in / WEB-INF/
classes or an appropriate package directory. Write the class declaration in the
source fi le, implementing javax.servlet.ServletContextAttributeListener.

 10. Write an attributeAdded() method, which displays the name and value of
the added attribute on the server console.

 11. Write an attributeReplaced() method, which displays the name, old
value, and new value of the replaced attribute on the server console.

Request and Context Listeners (Exam Objective 3.4) 263

264 Chapter 4: Sessions and Listeners

 12. Write an attributeRemoved() method, which displays the name and value
of the removed attribute on the server console.

Deploy and Run

 13. Deploy the WAR fi le. Check the console messages you get on deployment:
Do they match what you expected to get?

 14. Call the SetContextAttributes servlet with a URL such as

 http://localhost:8080/ex0403/SetContextAttributes

 15. Again, check the console messages —do the methods get called in My
ContextAttributeListener as you would expect?

 16. Undeploy the WAR fi le (for instructions on how to do this for Tomcat, see Appen-
dix B). Yet again, check the console messages. Does the contextDestroyed()
method in MyContextListener still have access to context attributes?

 17. Here is sample browser output from the SetContextAttributes servlet:

CERTIFICATION OBJECTIVE

Session Listeners (Exam Objective 4.3)
Using session listeners, write code to respond to an event when an object is added to a ses-
sion, and write code to respond to an event when a session object migrates from one VM
to another.

We covered request and context listeners in the last section —both those for the
requests and context themselves, and separate pairs of listeners for their attributes.
Now we’re going to meet the set of listeners available to session objects. Because
the session has — potentially —a more exciting and diverse lifetime than requests
or contexts, it may not surprise you to learn that the session has some additional
listener interfaces that don’t occur in other scopes.

Session-Related Listeners
Sessions have two listeners that are equivalent in every way to the lifetime and at-
tribute listeners we’ve already met for context and request:

■ HttpSessionListener, which is very like ServletContextListener and Servlet
RequestListener

■ HttpSessionAttributeListener, which is very like ServletContextAttribute
Listener and ServletRequestAttributeListener

But there are also a couple of extra listeners related to sessions — or more cor-
rectly, session attribute value objects. In a typical web application, session attributes
are more numerous and volatile than the attributes attached to request or context.
Consequently, the value objects that might be attached to a named session attribute
can implement a couple of interfaces of their own:

■ HttpSessionBindingListener receives events when a value object is used as a ses-
sion attribute.

■ HttpSesssionActivationListener receives events when a value object is trans-
ported across JVMs. This happens when the object is an attribute of a session
in a distributed environment.

So now we’ll look in a little more detail at each of these listener interfaces in turn.

HttpSessionListener
Like every other listener we have looked at so far, a class implementing HttpSession
Listener must be set up in the deployment descriptor. The rules are described in the
“Listener Preparation” section of the chapter.

HttpSessionListener has two methods, like its request and context counter-
parts —and again these fi re at the beginning and end of scope. There’s a nasty
little difference in the naming convention for these methods, though. The method
sessionDestroyed()matches the pattern of requestDestroyed() and context
Destroyed(), and it marks the end of a session. However, the beginning of a session

Session Listeners (Exam Objective 4.3) 265

266 Chapter 4: Sessions and Listeners

is marked by a sessionCreated() event —which doesn’t follow the pattern of
requestInitalized() and contextInitialized().

Let’s look at the methods in more detail.

sessionCreated(HttpSessionEvent event) This method is called
by the web container the moment after a request fi rst calls the getSession()
method —in other words, whenever a new session is provided. All the subsequent
HttpServletRequest.getSession() calls will return the same existing session —
which is, of course, not a cue for fi ring a call to this event. The sessionCreated()
method receives an event, of type HttpSessionEvent. This has only the one method
of its own, which is getSession()— to return the HttpSession object that has just
been created.

sessionDestroyed(HttpSessionEvent event) This method is called
by the web container at the moment a session is about to be invalidated —within
the call to HttpSession.invalidate(), but before the session becomes invalid
and unusable. Just as for sessionCreated(), an HttpSessionEvent object is passed
as a parameter to the method, which gives access to the about-to-be-invalidated
session through its getSession() method. Whether the call to HttpSession
.invalidate() comes about as a result of your own explicit call, or the web
container timing out a session, the effect is the same: The sessionDestroyed()
method will fi re.

The behavior of this
method has changed since previous ver-
sions of the exam! It used to be that the
call to sessionDestroyed() came
after the session had been invalidated.

This isn’t the case anymore. The method is
now called before the invalidation process
begins—before any attributes are stripped
from the session and their corresponding
life cycle events are called.

HttpSessionAttributeListener
HttpSessionAttributeListener is just like ServletRequestAttributeListener. Here are
the methods to implement:

■ attributeAdded(HttpSessionBindingEvent hsbe) is called whenever a
new attribute is added to any session. In other words, any call (from any session

object at any time) to HttpSession.setAttribute() will trigger a call to this
method — provided that the name of the attribute being added to the session is a
not a name already in use as an attribute of that session.

■ attributeRemoved(HttpSessionBindingEvent srae) is called whenever
an attribute is removed from any session (as a result of any call to HttpSession
.removeAttribute()).

■ attributeReplaced(HttpSessionBindingEvent srae) is called
whenever an attribute is replaced (as a result of any call to HttpSession
.setAttribute() for an attribute name already in use on the session whose
call this is).

Again, the event object passed as parameter — this time HttpSessionBinding
Event — serves as a conduit to the name and value of the attribute affected, through
the getName() and getValue() methods — see the notes above on ServletContext
AttributeEvent and ServletRequestAttributeEvent for a full explanation: The rules
are the same. You might expect HttpSessionBindingEvent to inherit from Http
SessionEvent —following the pattern of ServletContextAttributeEvent inheriting
from ServletContextEvent and ServletRequestAttributeEvent inheriting from
ServletRequestEvent —and indeed it does. See the comparative inheritance hier-
archies in Figure 4-3.

java.util

javax.servlet.httpjavax.servlet

EventObject

ServletContextEvent ServletRequestEvent HttpSessionEvent

ServletContextAttributeEvent

ServletRequestAttributeEvent HttpSessionBindingEvent

FIGURE 4-3

Comparative
Inheritance
Hierarchies for
Event Classes

Session Listeners (Exam Objective 4.3) 267

268 Chapter 4: Sessions and Listeners

Session-Related Listeners Not Declared
in the Deployment Descriptor

Now we move on to two other session-related listeners which are different in charac-
ter to the listeners we have previously encountered, whether on session, request, or
context. These listeners are:

■ HttpSessionBindingListener

■ HttpSessionActivationListener

Classes implementing these listener interfaces are not declared in the deployment
descriptor. They become known to the web container through a different mechanism
entirely. We learn about this and other aspects of session binding and activation
listeners in the following sections.

HttpSessionBindingListener
HttpSessionBindingListener is the next listener interface we’ll consider. It’s very
easy to misunderstand its function and confuse it with HttpSessionAttributeListener.
You’ll see that its methods even receive the same kinds of event, namely HttpSession
BindingEvent (so this time, the name of the event does match the listener name).
However, this listener is not declared in the deployment descriptor web.xml. Instead,
it’s implemented by an object you intend to use as the “value” parameter in a call to
HttpSession.setAttribute(String name, Object value). So whereas any
HttpSessionAttributeListener classes are funnels for any update to any attribute on
any session, an HttpSessionBindingListener class has methods that are called only
on the individual object being used as a session attribute. Let’s fi rst fi nd out what
the methods are and next see an example of HttpSessionBindingListener:

Most of the time, you can
rely on listeners and events having match-
ing names. So HttpSessionListener
goes with HttpSessionEvent, Servlet
RequestListener goes with Servlet
RequestEvent, and ServletContext
AttributeListener goes with Servlet

ContextAttributeEvent. But there’s a
mismatch for HttpSessionAttributeListener.
Its methods take an HttpSessionBinding
Event as a parameter. HttpSession
AttributeEvent does not exist—except
in fallacious exam answers!

■ valueBound(HttpSessionBindingEvent hsbe) is called whenever the
object implementing the interface is the value object passed to an HttpSession
.setAttribute() call.

■ valueUnbound(HttpSessionBindingEvent hsbe) is called whenever the
object implementing the interface is removed from the session as a result of an
HttpSession.removeAttribute() call.

Now let’s look at the full code for a class that implements HttpSessionBinding
Listener. It’s called SessionAttrObject: It has one private instance variable (a
String called data) and prints this to the console when the valueBound() or
valueUnbound() methods are called:

public class SessionAttrObject implements HttpSessionBindingListener {
 private String data;
 public SessionAttrObject(String value) {
 data = value;
 }
 public String getData() {return data;}
 public String toString() {return data;}
 public void setData(String data) {
 this.data = data;
 }
 public void valueBound(HttpSessionBindingEvent event) {
 System.out.println("valueBound() call on object " + getData());
 }
 public void valueUnbound(HttpSessionBindingEvent event) {
 System.out.println("valueUnbound() call on object " + getData());
 }
}

Let’s now consider some servlet code that adds, replaces, and removes session
attributes — some of whose values are of type SessionAttrObject:

11 SessionAttrObject boundObject1 = new SessionAttrObject("Prometheus1");
12 SessionAttrObject boundObject2 = new SessionAttrObject("Prometheus2");
13 HttpSession session = request.getSession();
14 session.setAttribute("bound", boundObject1);
15 session.setAttribute("bound2", boundObject2);
16 session.setAttribute("nonBound", "Icarus");
17 session.setAttribute("bound", boundObject2);
18 session.setAttribute("bound", null);
19 session.removeAttribute("bound2");
20 session.removeAttribute("nonBound");

Session Listeners (Exam Objective 4.3) 269

270 Chapter 4: Sessions and Listeners

The output when we execute this code (on the console) looks something like this
(line numbers don’t appear — they’re for reference in the text):

01 >B>B> valueBound() called for object Prometheus1
02 >B>B> valueBound() called for object Prometheus2
03 >B>B> valueBound() called for object Prometheus2
04 >U>U> valueUnbound() called for object Prometheus1
05 >U>U> valueUnbound() called for object Prometheus2
06 >U>U> valueUnbound() called for object Prometheus2

How does this work? Let’s consider what happens in the lines of code:

■ In lines 11 and 12, we create two local variables —boundObject1 and bound
Object2— of our new HttpSessionBindingListener-implementing class, Session
AttrObject.

■ At line 13, we obtain the session.

■ At line 14, we set up a new attribute called bound and use boundObject1 as the
value for this. This triggers a call to the valueBound() method for boundObject1
(fi rst line of output).

■ At line 15, we set up a new attribute called bound2 and use boundObject2 as the
value for this. This triggers a call to the valueBound() method, this time for
boundObject2 (second line of output).

■ At line 16, we set up another new attribute called nonBound and use a plain
String literal as a value for this. There are no listener calls at this point; unsur-
prisingly, String doesn’t implement HttpSessionBindingListener.

■ At line 17, we change our fi rst attribute. We replace the existing value (bound
Object1) with a different value (boundObject2). This causes two lines of output.
The valueBound() method is called for boundObject2— sensible enough, as
it’s being bound to another attribute (third line of output). And because bound
Object1 is displaced from this attribute, there’s a call to valueUnbound for
boundObject1 (fourth line of output). So at this point, boundObject1 isn’t tied
to any session attribute, but boundObject2 is tied both to the bound and bound2
attributes.

■ At line 18, we remove session attribute bound by setting its associated value to
null, which has the same effect as a removeAttribute() call. So boundObject2
is no longer associated with attribute bound, and as a result its valueUnbound()
method fi res (fi fth line of output).

■ At line 19, we remove session attribute bound2 with a straight (no chaser) call
to removeAttribute(). Now boundObject is no longer associated with bound2,
and its valueUnbound() method is called again (sixth and last line of output).

■ At line 20, we remove the nonBound attribute with its plain String value; this has
no effect in terms of calls on HttpSessionBindingListener-implementing classes.

What happens if you
have one or more objects implementing
HttpSessionBindingListener, and have
an HttpSessionAttributeListener defi ned
in the deployment descriptor as well? Both
have methods that are potentially called
when session attributes are added, re-
placed, or removed—so which is called

fi rst? The answer is that the web container
must call all appropriate HttpSession
BindingListener valueBound() and value
Unbound() methods fi rst, and only then
call HttpSessionAttributeListener methods
attributeAdded(), attribute
Replaced(), or attributeRemoved().

HttpSessionActivationListener
HttpSessionActivationListener is the second example of an interface that is not
declared in the deployment descriptor. Like HttpSessionBindingListener, which we
just examined, it’s an interface that objects are welcome to implement if they are
going to be attributes of a session. This time, however, the event methods that might
be called have nothing to do with the addition, replacement, or removal of the attri-
butes themselves. The methods are called in distributed environments, at the point
where a session is moved from one JVM to another. In the source JVM, all objects
bound to the session need to be serialized, and — of course —deserialized in the JVM
that is the destination for the moved session. Armed with this information, we can
make sense of the methods:

All listener classes (and
that’s request and context ones as well as
session) have to be declared in the de-
ployment descriptor, web.xml. All, that is,
except two—which the session attribute

“value object” implements, not a class that
is part of the container. These interfaces
are HttpSessionBindingListener and Http
SessionActivationListener.

Session Listeners (Exam Objective 4.3) 271

272 Chapter 4: Sessions and Listeners

ON THE CD

■ sessionWillPassivate(HttpSessionEvent hse) is called on each im-
plementing object bound to the session just prior to the serialization of the ses-
sion (and all its attributes). In Star Trek terms, this is the point just before the
characters in the transporter go fuzzy and dematerialize.

■ sessionDidActivate(HttpSessionEvent hse) is called on each imple-
menting object bound to the session just after deserialization of the session (and
all its attributes). To press the Star Trek analogy further than it should boldly go,
this is the point where the characters have lost their fuzziness and materialize on
the planet’s surface.

We’ve met HttpSessionEvent as a parameter
before —it’s used as the parameter for methods
on the HttpSessionListener interface. So you’ll
no doubt recall that it has the one method —
getSession()—which returns a handle to an
HttpSession. In this case, it’s the one that is
either about to start or has fi nished migration.

There is a logical condition that any object
implementing this interface must fulfi ll if the
web container is to call the sessionWill
Passivate() or sessionDidActivate()
method. The object must be bound to the

session as one of its current attributes. It’s no good if the object has never been the
subject of an HttpSession.setAttribute() call; equally, if it was once bound to
a session but has now been removed, the HttpSessionActivationListener methods
will never get called.

EXERCISE 4-4

Session Listeners and Order of Execution
In this exercise you’ll write code to explore some of the session listeners. As in Exer-
cise 4-3, where you explored the order of execution of different methods in listeners,
you’ll look in some detail at the more involved rules for session listeners. You’ll start
with code you’ve already seen in the “SessionBindingListener” section.

Create the usual web application directory structure under a directory called
ex0404, and proceed with the steps for the exercise. There’s a solution in the CD in
the fi le sourcecode/ch04/ex0404.war —check there if you get stuck.

HttpSessionActivation
Listener is yet another of those interfaces
whose methods don’t have a matching
parameter name. HttpSessionActivation
Listener methods take an HttpSession
Event object as a parameter—and there’s
no such thing as an HttpSessionActivation
Event.

Set Up the Deployment Descriptor

 1. Declare a servlet named SetSessionAttributes, with a suitable servlet map-
ping. Ensure that it loads on startup of the web server. If needed, refer to
Chapter 2 to refresh yourself on <servlet> element setup.

 2. Declare two listeners, MySessionListener and MySessionAttributeListener.

Write the SessionAttrObject Object

 3. Create a Java source fi le SessionAttrObject.java in / WEB-INF/classes or an
appropriate package directory. Write the class declaration in the source fi le:
It’s a plain object (doesn’t extend anything), but it should implement Http
SessionBindingListener.

 4. You can steal the code for this object wholesale from the “HttpSession
BindingListener” section (see page 269). This contains implementations of
the valueBound() and valueUnbound() methods (as required for Http
SessionBindingListener), as well as a few utility methods. The object is a
simple wrapper for a String, with additional listener features.

Write the SetSessionAttributes Servlet

 5. Create a Java source fi le SetSessionAttributes.java in / WEB-INF/classes or an
appropriate package directory. Write the class declaration in the source fi le,
extending HttpServlet.

 6. Write a doGet() method, which adds, replaces, and removes one or more
SessionAttrObject instances as attributes of the session. Again, you can crib
this code from the “HttpSessionBindingListener” section, but don’t remove
all the session attributes (so you can see what happens when the session is
later destroyed).

 7. Write additional code in the doGet() method that will terminate the session
according to some trigger —a request parameter, perhaps.

Write MySessionListener

 8. Create a Java source fi le MySessionListener.java in / WEB-INF/classes or an
appropriate package directory. Write the class declaration in the source fi le,
implementing javax.servlet.http.HttpSessionListener.

 9. Write a sessionCreated() method, which sends a message to the console
and creates a session attribute.

Session Listeners (Exam Objective 4.3) 273

274 Chapter 4: Sessions and Listeners

 10. Write a sessionDestroyed() method, which sends a message to the console
and removes the session attribute created in the sessionCreated() method.

Write MySessionAttributeListener

 11. Create a Java source fi le MySessionAttributeListener.java in / WEB-INF/
classes or an appropriate package directory. Write the class declaration in the
source fi le, implementing javax.servlet.http.HttpSessionAttributeListener.

 12. Write an attributeAdded() method, which displays the name and value of
the added attribute on the server console.

 13. Write an attributeReplaced() method, which displays the name, old
value, and new value of the replaced attribute on the server console.

 14. Write an attributeRemoved() method, which displays the name and value
of the removed attribute on the server console.

Deploy and Run

 15. Deploy the WAR fi le, and call the SetSessionAttributes servlet. You are likely
to use this URL:

 http://localhost:8080/ex0404/SetSessionAttributes

 16. Check the console messages —in particular, the order of method calls for
the HttpSessionBindingListener objects and the one HttpSessionAttribute
Listener object. Do the methods get called in the order you expected?

 17. Terminate the session, using whatever mechanism you put into the Set
SessionAttributes servlet to do so (step 7). What further listener method
calls do you get, and in what order?

 18. The following screen shot shows the solution code console output after point-
ing a browser to the URL in step 15:

 19. The following screen shot shows the solution code console output after
invalidating the session, which is achieved with a URL of

http://localhost:8080/ex0404/SetSessionAttributes?invalidate=true

CERTIFICATION SUMMARY
In this chapter you started by learning about the session life cycle. You saw that a ses-
sion is something that belongs to the HTTP world (java.servlet.http package) and
doesn’t have an equivalent in the “naked” servlet environment. Hence, the interface
defi ning session behavior is called “HttpSession.” You learned that sessions are ob-
tained from the request (HttpServletRequest.getSession())— perhaps not too
surprisingly, for the function of a session is to tie a number of requests together.

You learned that a session is created — quite simply —when a request from a
particular client (browser session) fi rst asks for a session. At this point, you learned
that the session is “new” and stays that way while the client doesn’t know about the
session, or if it’s told about the session and refuses to join it. You saw that you test for
newness of a session with the HttpSession.isNew() method. You then got to grips
with different ways in which you can get hold of the session, dependent on whether
one is there already or not. You saw that a getSession() call with no parameters
is equivalent to a getSession(true) call (single boolean parameter)—and that
this will create a session if one does not exist already. You then learned that a
getSession(false) call can be used if you want only to get hold of a session if
one exists already — perhaps because creation of a session can be done only in a
servlet validating a user ID and password, for example.

Having seen how sessions live, you learned how they die: either through your
servlet code invalidating them explicitly (HttpSession.invalidate()) or through
a time-out mechanism. You learned about three possible time-out mechanisms. The

Session Listeners (Exam Objective 4.3) 275

276 Chapter 4: Sessions and Listeners

fi rst is a global default provided by some web container-specifi c mechanism. The
second is in a web application’s deployment descriptor — setting a time in minutes
in the deployment descriptor like this: <session-config><session-timeout>30
</session-timeout></session-config>. The third sets a particular session’s
time-out in code, using the HttpSession.setMaxInactiveInterval(int sec-
onds) method. You learned that a session — once invalidated —is pretty much use-
less: Nearly all methods, if used, will throw an IllegalStateException.

You learned that you can attach attributes to a session in very much the same
way as you can for request and context scopes. You saw the boundaries of session
scope: that a session is confi ned to a particular web application and that a Request-
Dispatcher call across web applications will meet a new session. You learned that
session information is not strictly thread safe, for two requests can come concur-
rently from the same client —and that although this is unusual, you might want to
take suitable precautions.

You looked then at the tracking information for sessions, and how this is passed
between client and server. You saw that there is support for two principal mecha-
nisms: cookies and URL rewriting —although you appreciated that other mecha-
nisms are possible (such as SSL and hidden form fi elds). You found that cookies are
the default mechanism for session support, with URL rewriting a moderately poor
second. You learned that the cookie used in session support is called JSESSIONID
and that the name part of the name/value pair passed in URLs is jsessionid. The
uppercase/ lowercase difference is signifi cant. With cookies, you saw that there is
no particular action you need to take in your code to provide support — the web
container does it for you. By contrast, you learned that URL rewriting requires
every link you encode in your servlets to be run through one of two methods —
HttpServletResponse.encodeURL (for regular links) or HttpServletResponse
.endcodeRedirectURL (for redirect links). You also saw that HttpSession has
methods to determine if the session requested is supported by cookies or by URL
rewriting —from the long-named isRequestedSessionIdFromCookie() and
isRequestedSessionIdFromURL() methods.

From there, you left sessions for a while to explore the world of request and con-
text listeners, followed up by session listeners. You saw that listeners are classes that
implement interfaces known to the web container framework, with methods called
under particular circumstances. You saw that (with a couple of exceptions we’ll
mention again later) listener classes are declared in the deployment descriptor —
each class having a separate <listener> element, with a class declared like this:
<listener><listener-class>com.osborne.ListenerClassName</listener-

class></listener>. You met listeners that cover beginning and end of scope:

ServletRequestListener, HttpSessionListener, and ServletContextListener —with
corresponding initialized (or created) and destroyed methods, called as the scopes
begin and end. You also met listeners covering attributes attached to each scope:
ServletRequestAttributeListener, HttpSessionAttributeListener, and ServletContext
AttributeListener. You saw the same trio of methods on each of these listeners —for
the addition, replacement, and removal of attributes.

You also learned that listener methods invariably accept a listener event class as
a parameter. Each one of these listener event classes has methods that yield infor-
mation about appropriate scope-level objects — such as ServletRequestEvent (with
getServletRequest() and getServletContext() methods), HttpSessionEvent
(with a getSession() method), and ServletContextEvent (with a getServlet
Context() method). You saw how the corresponding attribute listener events in-
herit from the scope-level event classes: ServletRequestAttributeEvent from Servlet
RequestEvent, HttpSessionBindingEvent from HttpSessionEvent, and Servlet
ContextAttributeEvent from ServletContextEvent. You saw how all these attri-
bute/binding event classes have getName() and getValue() methods — to obtain
the name or value of the attribute added, removed, or replaced. It’s obvious what the
value is in the case of addition and removal—you saw that it is less obvious in the
case of replacement, where getValue() gets the old value (the value that has been
replaced).

You learned that session scope has a couple of additional listeners that are
not declared in the deployment descriptor. Both are interfaces designed to be
implemented by classes to be used as the values of session attributes. These are
HttpSessionBindingListener, whose valueBound() and valueUnbound() methods
are called on the value object as it is added or removed from use as a session attri-
bute. You learned that calls to HttpSession.setAttribute() and HttpSession
.removeAttribute() are typical triggers for calls to the methods both on
HttpSessionBindingListener and HttpSessionAttributeListener —and in that
case, the HttpSessionBindingListener valueBound/Unbound() methods are called
fi rst. You also saw that valueBound/Unbound() accepts the HttpSessionBinding
Event as a parameter —again like the attributeAdded/Replaced/Removed()
methods of HttpSessionAttributeListener.

Finally, you met the HttpSessionActivationListener. You found that the web
container uses classes of this type for distributed applications and will call methods
in this class when sessions migrate from one JVM to another. You saw that it is like
the HttpSessionBindingListener, in that classes implementing this interface are in-
tended for use as session attributes. You learned that when a session is about to be se-
rialized (prior to migration), the web container calls the sessionWillPassivate()

Session Listeners (Exam Objective 4.3) 277

278 Chapter 4: Sessions and Listeners

method on each object implementing this interface that is currently attached to the
session as an attribute. And you saw that when the session is deserialized in a differ-
ent JVM, the web container ensures that the sessionDidActivate() method is
called on the same set of objects. You fi nally learned that these methods receive an
HttpSessionEvent (giving access to the session — the same parameter as received by
methods on HttpSessionListener methods).

Two-Minute Drill 279

✓ TWO-MINUTE DRILL

Session Life Cycle
❏ A session is begun when servlet (or fi lter) code invokes the HttpServlet

Request.getSession() method.

❏ A session object is of type HttpSession, in the javax.servlet package. Sessions
exist only in the HTTP servlet model; there is no non-HTTP equivalent
such as javax.servlet.Session.

❏ getSession() can be called without parameters or with a single boolean
parameter.

❏ A call to getSession() is equivalent to the call to getSession(true).
Both these calls will create a session if none exists already.

❏ The call getSession(false) will not create a session, but it will return a
session if one exists already.

❏ A newly created session is deemed to be “new.” This can be tested with the
HttpSession.isNew() method, which returns a boolean—true for new,
false for old.

❏ There are two possible conditions for “newness”: Either the client doesn’t
know about the session yet or the client has refused to join the session.

❏ A session is normally confi ned to one web application and one JVM. How-
ever, if a web application is marked <distributable /> in the deployment
descriptor, a session may be cloned into a second running copy of the same
web application, in a separate JVM.

❏ A session cannot cross web applications (unlike a request). A request that
gets a session inside of one application, then dispatches to a different web ap-
plication (different context), and then gets hold of the session in the separate
application will get hold of a separate session object.

❏ Session death can come about through an explicit call (in servlet code) to
HttpSession.invalidate().

❏ Session death is more likely to come about through a time-out mechanism.
If there is no activity on a session for a predefi ned length of time, the web
container invalidates the session. There are three time-out mechanisms.

❏ Time-out mechanism 1: Most J2EE containers establish a “global default” for
time-out. How this is specifi ed and achieved is container-specifi c.

280 Chapter 4: Sessions and Listeners

❏ Time-out mechanism 2: A web application can specify a time-out period —
in minutes —in the deployment descriptor, using a <session-timeout>
element nested inside a <session-config> element.

❏ A negative or zero value for <session-timeout> denotes that the session
should not ever expire.

❏ Time-out mechanism 3: Servlet (or fi lter) code can override the time-out
period for any individual session by calling the HttpSession.setMax
InactiveInterval(int seconds) method.

❏ A negative (but not zero) value as a parameter to setMaxInactive
Interval() denotes that the session should not expire.

❏ Note the difference in units: minutes in the deployment descriptor (mecha-
nism (2)) and seconds in the HttpSession method (mechanism (3)).

❏ Apart from three methods, all HttpSession methods fail with an IllegalState
Exception if any attempt is made to use them after the session has been
invalidated.

❏ You can attach attributes to a session (in the same way as you can for a re-
quest or context).

❏ Session attributes are not — strictly speaking — thread safe. It is possible to
have two client windows open making concurrent requests, both sharing the
same session.

Session Management
❏ Sessions are maintained by passing tracking information between the

client and the web application server. There is no alternative, for the
connection between client and server is almost always broken after each
HTTP request.

❏ When you obtain a session (using HttpServletRequest.getSession()),
the web container manufactures a unique ID string for the session. This is
passed as a token between the client and server.

❏ The servlet API recognizes two mechanisms for this token-passing session
management —cookies and URL rewriting —but that is not to say that these
are the only two.

❏ Other session mechanisms you might encounter include SSL (Secure Sockets
Layer) and hidden form fi elds.

Two-Minute Drill 281

❏ With cookies, the unique ID generated by the web container is embedded as
the value of a cookie whose name is JSESSIONID. This name is mandated by
the servlet specifi cation and must be spelled exactly as shown (all uppercase).

❏ Cookies are the preferred mechanism for J2EE web container session manage-
ment. Where they can’t be used (because the client doesn’t support them or
has switched off cookies because of privacy concerns), URL rewriting is used
instead.

❏ With URL rewriting, every HTML link written by a servlet has the unique
session ID embedded in the URL itself. The session information is in the
form of a name/value pair: jsessionid=1A2B3C4D (etc.). The name is always
jsessionid, spelled exactly as shown (all lowercase).

❏ URL rewriting looks very much like parameter passing in the query string,
except that the jsessionid=1A2B3C4D part comes after a semicolon instead of
the question mark denoting the query string. This example shows the session
ID appearing before the query string: http://localhost:8080/ex0402
;jsessionid=1A2B3C4D?user=david.

❏ As a servlet code developer, you put any URL for HTML links through the
method HttpServletResponse.encodeURL(String myURL). This returns
your URL with jsessionid information inserted —but only when necessary (if
cookies are used, there is no need).

❏ URLs that act as parameters for the HttpServletResponse.sendRedirect()
method should use the HttpServletResponse.encodeRedirectURL()
method to insert jsessionid information. The rules for when its appropriate to
insert jsessionid may be different from those used in HttpServletResponse
.encodeURL(String myURL).

❏ The HttpServletRequest object can determine which standard session mech-
anism is in use through the methods isRequestedSessionIdFromCookie()
and isRequestedSessionIdFromURL(). Both methods return a boolean.

Request and Context Listeners
❏ Listeners are part of the web container model. They work in much the same

way as listeners in the Swing user interface environment. For both frame-
works (web containers and Swing), the listener methods are called in re-
sponse to relevant events (examples: for Swing, a mouse movement; for the
web container, an attribute added).

282 Chapter 4: Sessions and Listeners

❏ There are listeners pertinent to every scope.

❏ Nearly all listeners (with a couple of exceptions we cover in the session sec-
tion) should be declared in the deployment descriptor.

❏ The <listener> element has the root element <web-app> for its parent.
Within the <listener> element, you include a <listener-class>
element — the value for this is the fully qualifi ed class name of a class
implementing one or more listener interfaces.

❏ You need one <listener> (with embedded <listener-class>) for each
listener class you wish to declare in the deployment descriptor.

❏ Request scope possesses two sorts of listener: ServletRequestListener and
ServletRequestAttributeListener. Both of these are interfaces in the javax
.servlet package.

❏ ServletRequestListener listens for the life and death of each request. The cor-
responding methods called on these events are requestInitialized() and
requestDestroyed().

❏ The call to requestInitalized() comes at the point where a client
request is about to reach its target servlet’s service() method (or alterna-
tively, where the client request is about to reach the fi rst fi lter’s doFilter()
method, if the request is intercepted by a fi lter chain).

❏ The call to requestDestroyed() comes at the point where the request’s
target servlet service() method ends (or alternatively, where the fi rst fi lter
in a chain reaches the end of its doFilter() method, with the fi rst fi lter in
the chain being the last to fi nish executing).

❏ These methods receive a ServletRequestEvent object as a parameter. From
this you can obtain the ServletRequest itself (with getServletRequest())
or obtain the web application context (with getServletContext()).

❏ The ServletRequestAttributeListener listens —as you might expect —for any
update to the attributes attached to a request.

❏ A call to ServletRequest.setAttribute() with a new name causes a call
to the attributeAdded() method on ServletRequestAttributeListener.

❏ A call to ServletRequest.setAttribute() with an existing name causes
a call to the attributeReplaced() method on ServletRequestAttribute
Listener.

Two-Minute Drill 283

❏ A call to ServletRequest.removeAttribute() (or ServletRequest
.setAttribute()with a null value) with an existing name causes a call to
the attributeRemoved() method on ServletRequestAttributeListener.

❏ Each of the attributeAdded/Replaced/Removed() methods receives a
ServletRequestAttributeEvent object as a parameter.

❏ ServletRequestAttributeEvent inherits from ServletRequestEvent (giving
access to methods to get at the request and the context). The class also adds
two methods of its own: getName() and getValue() (which return the
String name or Object value for the attribute in question).

❏ getValue() returns the old value of the attribute in the attribute
Replaced() method.

❏ Context (web application) scope possesses two sorts of listener: Servlet
ContextListener and ServletContextAttributeListener. Both of these are
interfaces in the javax.servlet package.

❏ ServletContextListener listens for the life and death of each request. The
corresponding methods called on these events are contextInitialized()
and contextDestroyed().

❏ The call to contextInitalized() comes at the point where a web appli-
cation starts up, before any request has been processed by a fi lter’s init()
method or a servlet’s service() method.

❏ The call to contextDestroyed() comes at the point where a web applica-
tion is taken out of service. This could be because of the controlled close-
down of the server or because the server allows the application to be taken
out of service. Every fi lter and servlet destroy() method must execute
before this method is called.

❏ These methods receive a ServletContextEvent object as a parameter. From
this you can obtain the ServletContext itself (with getServletContext()).

❏ The ServletContextAttributeListener listens for any update to the attributes
attached to a context.

❏ This listener works in just the same way as ServletRequestAttributeListener:
Review the rules above for this and substitute “Context” for “Request” as
appropriate.

❏ The parameter to the listener methods is a ServletContextAttributeEvent
object; this inherits from ServletContextEvent (giving access to the get

284 Chapter 4: Sessions and Listeners

ServletContext() method). Following the request pattern, this class adds
two methods of its own: getName() and getValue() (which return the
String name or Object value for the attribute in question).

Session Listeners
❏ There are four listeners related to sessions.

❏ HttpSessionListener: very like ServletContextListener and ServletRequest
Listener.

❏ HttpSessionAttributeListener: very like ServletContextAttributeListener and
ServletRequestAttributeListener.

❏ Also HttpSessionBindingListener and HttpSessionActivationListener, which
have no counterpart in request and context scope.

❏ Classes implementing HttpSessionListener and HttpSessionAttributeListener
should be set up in the deployment descriptor (like request and context scope
listeners).

❏ Classes implementing HttpSessionBindingListener and HttpSession
ActivationListener are intended for use by objects that are used as attribute
values on a session, and are not declared in the deployment descriptor.

❏ HttpSessionListener has sessionCreated() and sessionDestroyed()
methods, designed to be called at the beginning and end of a session’s life.

❏ sessionCreated() is called when a request from a particular client fi rst
asks for a session.

❏ sessionDestroyed() is called when a session object is explicitly invalidated
in servlet code (through the HttpSession.invalidate() method) or when
the web container times the session out because there have been no requests
for it for a predefi ned length of time.

❏ An HttpSessionEvent object is passed as a parameter to these two meth-
ods — this has a getSession() method to access the session.

❏ The HttpSession object is still accessible with all its attributes in the
sessionDestroyed() method through the HttpSessionEvent object
passed as a parameter. This is a change from past implementations of the
servlet specifi cation.

❏ HttpSessionAttributeListener works in the same way as ServletRequest
AttributeListener and ServletContextAttributeListener. It has the same

Two-Minute Drill 285

three methods —attributeAdded/Replaced/Removed()—called in the
same circumstances (but obviously for session attributes, not request or
context).

❏ The parameter passed to these three methods is an HttpSessionBindingEvent
object. Like ServletRequestAttributeEvent and ServletContextAttribute
Event, this provides getName() and getValue() methods —which work in
the same way.

❏ HttpSessionBindingEvent inherits from HttpSessionEvent, though which it
has a getSession() method — to get at the session object whose attributes
are affected.

❏ HttpSessionBindingListener is an interface defi ned by objects that are used as
the values of attributes attached to a session.

❏ It has two methods: valueBound() and valueUnbound().

❏ valueBound() is called when an object is attached as an attribute to a
session.

❏ valueUnbound() is called when an object is removed as an attribute from a
session.

❏ These methods on HttpSessionBindingListener are called before any methods
on any HttpSessionAttributeListener (which are often triggered by the same
events).

❏ These methods also receive an HttpSessionBindingEvent as a parameter —
just as the HttpSessionAttributeListener methods do.

❏ The fourth and fi nal listener interface for sessions is HttpSessionActivation
Listener.

❏ This has two methods: sessionWillPassivate() and sessionDid
Activate().

❏ Both methods receive an HttpSessionEvent object as a parameter (discussed
above — this type is a parameter for HttpSessionListener methods as well).

❏ sessionWillPassivate() is called just before a session is serialized to be
cloned to another JVM.

❏ sessionDidActivate() is called just after a cloned session is deserialized in
a target JVM.

286 Chapter 4: Sessions and Listeners

SELF TEST
The following questions will help you measure your understanding of the material presented in this
chapter. Read all the choices carefully because there might be more than one correct answer. The
number of correct choices to make is stated in the question, as in the real SCWCD exam.

Session Life Cycle

 1. (drag-and-drop question) A complete doGet() method for a servlet is listed next. Match
the circumstances in which the servlet is called with the possible outputs (there are more
possible outputs listed than are needed, and any of the possible outputs may be used more
than once).

protected void doGet(HttpServletRequest request,
 HttpServletResponse response)

 throws ServletException, IOException {
 PrintWriter out = response.getWriter();
 response.setContentType("text/html");
 out.write("<HTML><HEAD>");
 out.write("<TITLE>Session Aspects</TITLE>");
 out.write("</HEAD><BODY>");
 HttpSession session = request.getSession();
 out.write("
" + session.isNew());
 out.write("
" + request.isRequestedSessionIdFromURL());
 out.write("
" + request.isRequestedSessionIdFromCookie());
 out.write("</BODY></HTML>");
}

A 1 True
True
False

2 True
False
False

3 True
False
True

4 False
True
True

5 False
True
False

6 False
False
True

B The servlet is called for the second time by the
client. The client has refused to join the session.

C

The servlet is called for the second time by the
client.

The servlet is called for the second time by the
client. The client has agreed to join the session,
and cookies are used as the request mechanism.

D The servlet is called for the second time by the
client. The client has agreed to join the session,
and rewritten URLs are used as the request
mechanism.

Circumstances Outputs

Self Test 287

 2. What is the outcome of attempting to compile, deploy, and run the following servlet code? Line
numbers are for reference only and should not be considered part of the code. (Choose one.)

10 import java.io.*;
11 import javax.servlet.*;
12 import javax.servlet.http.*;
13 public class Question2 extends HttpServlet {
14 protected void doGet(ServletRequest request,
15 ServletResponse response) throws ServletException, IOException {
16 HttpSession session = request.getSession(false);
17 session.invalidate();
18 session.setAttribute("illegal", "exception thrown"");
19 }
20 }

 A. Won’t compile

 B. NullPointerException at line 16 on client’s fi rst call to servlet

 C. IllegalStateException at line 18

 D. Some other runtime exception

 E. None of the above

 3. Identify the two equivalent method calls in the list below. (Choose two.)

 A. HttpServletRequest.getSession()

 B. ServletRequest.getSession()

 C. ServletRequest.getSession(true)

 D. HttpServletRequest.getSession(false)

 E. ServletRequest.getSession(false)

 F. HttpServletRequest.getSession(true)

 G. HttpServletRequest.getSession("true")

 H. ServletRequest.getSession("false")

 4. Identify true statements about sessions from the list below. (Choose two.)

 A. Sessions can span web applications.

 B. Sessions can be cloned across JVMs.

 C. Sessions are destroyed only after a predefi ned period of inactivity.

 D. Sessions can be set to never time out.

 E. You can use the deployment descriptor to cause sessions to expire after a set number of
requests.

288 Chapter 4: Sessions and Listeners

 5. Which of the following mechanisms will guarantee that every session in a web application will
expire after 1 minute? You can assume that for each answer below, this is the only session time-
out mechanism in force for the web application. (Choose two.)

 A. In the deployment descriptor:

<session-config>
 <session-timeout>1</session-timeout>
</session-config>

 B. In the deployment descriptor:

<session-config>
<session-timeout>60</session-timeout>
</session-config>

 C. In the doFilter() method of a fi lter that has the following <url-pattern> mapping in
the deployment descriptor: “/.” request is an instance of HttpServletRequest, cast from the
ServletRequest parameter passed to the method.

HttpSession session = request.getSession();
session.setMaxInactiveInterval(60);

 D. In the doGet() method of a servlet. request is an instance of HttpServletRequest, passed as
a parameter to the method.

HttpSession session = request.getSession();
session.setMaxInactiveInterval(1);

 E. In the init() method of a servlet that loads on start up of the web application. request is
an instance of HttpServletRequest, passed as a parameter to the method.

HttpSession session = request.getSession();
session.setMaxInactiveInterval(60);

Session Management

 6. Identify the default mechanism for session management from the list below. (Choose one.)

 A. URL rewriting

 B. Hidden Form Fields

 C. Cookies

Self Test 289

 D. SSL

 E. jsessionId request parameter

 7. Identify correct statements about session management from the list below. (Choose two.)

 A. Session management is usually dependent on a hidden form fi eld called JSessionId.

 B. The unique identifi er for a session may be passed back and forward through a name/value
pair in the URL. The name is jsessionid.

 C. If a cookie used for default session management, there is some fl exibility with the name
used for the cookie.

 D. The cookie used for default session management must be added to the response using the
HttpServletResponse.addCookie(Cookie theCookie) method.

 E. The rules for rewriting URLs for links may be different from those for rewriting URLs for
redirection.

 8. (drag-and-drop question) In the following illustration, match the concealed parts of the code
(lettered) with appropriate choices (numbered) on the right.

protected void doGet(HttpServletRequest
 request, HttpServletResponse response) throws
 ServletException, IOException {

 PrintWriter out = response.getWriter();
 response.setContentType("text/html");
 out.write("<HTML><HEAD>");
 out.write("<TITLE>Session Aspects</TITLE>");
 out.write("</HEAD><BODY>");
 HttpSession session = request.getSession();
 out.write("\n<P>Session id is " +
 session.getId() + ".</P>");
 if (request.isRequestedSessionIdFromCookie())
 {
 out.write("\n<P>Session id comes from
 cookie JSESSIONID.</P>");
 }
 if (request.isRequestedSessionIdFromURL())
 {
 out.write("\n<P>Session id comes from
 URL element jsessionid.</P>");
 }
 String URL = response.encodeURL("Q8");
 out.write("\n<P><A HREF=" + URL
 + ">Link to summon this servlet again.");
 out.write("</BODY></HTML>");
}

E

C

F

G

D

B
A

H

14 getId()

13 getSessionID()

12 ServletResponse

11 isRequestedSessionIdFromUrl()

10 jsessionid

9 isRequestedSessionIdFromURL()

8 JSESSIONID

7 getHttpSession()

6 HttpServletRespons

5 getSession()

4 HttpServletRequest

3 ServletRequest

2 Session

1 HttpSession

290 Chapter 4: Sessions and Listeners

 9. Given the following servlet code called with this URL —http://127.0.0.1:8080/

examp0402/Q9—and also given that URL rewriting is the session mechanism in force,
identify the likely output from the servlet from the choices below. (Choose one.)

PrintWriter out = response.getWriter();
response.setContentType("text/html");
out.write("<HTML><HEAD>");
out.write("<TITLE>Encoding URLs</TITLE>");
out.write("</HEAD><BODY>");
HttpSession session = request.getSession();
out.write("\n<P>Session id is "
 + session.getId() + ".</P>");
String URL1 = response.encodeURL("Q9");
String URL2 = response.encodeURL
 ("http://127.0.0.1:8080/examp0401/Q1");
out.write("\n<P>URL1: " + URL1 + "</P>");
out.write("\n<P>URL2: " + URL2 + "</P>");
out.write("</BODY></HTML>");

 A. Output:

Session ID is 4EDF861942E3539B1F3C101B71636C1A.

URL1: Q9;JSESSIONID=4EDF861942E3539B1F3C101B71636C1A

URL2: http://127.0.0.1:8080/examp0401/Q1

 B. Output:

Session ID is 4EDF861942E3539B1F3C101B71636C1A.

URL1: Q9

URL2: http://127.0.0.1:8080/examp0401/Q1? jsessionid=4EDF861942E3539B1F3C101B71636C1A

 C. Output:

Session ID is 4EDF861942E3539B1F3C101B71636C1A.

URL1: Q9;jsessionid=4EDF861942E3539B1F3C101B71636C1A

URL2: http://127.0.0.1:8080/examp0401/Q1

 D. Output:

Session ID is 4EDF861942E3539B1F3C101B71636C1A.

URL1: Q9;jsessionid=4EDF861942E3539B1F3C101B71636C1A

URL2: http://127.0.0.1:8080/examp0401/Q1;jsessionid=4EDF861942E3539B1F3C101B71636C1A

Self Test 291

 E. Output:

Session ID is 4EDF861942E3539B1F3C101B71636C1A.

URL1: Q9?JSESSIONID=4EDF861942E3539B1F3C101B71636C1A

URL2: http://127.0.0.1:8080/examp0401/Q1

 10. Which of the following statements contain accurate advice for web developers? (Choose two.)

 A. Because the server determines the session mechanism, there is no need to rewrite URLs
when cookies are switched on.

 B. Rewrite every URL embedded in your servlets and JSP code with the HttpServlet
Response.encodeURL() method.

 C. Cookies are not necessarily supported by J2EE-compliant web containers, so always use
URL rewriting as an additional precaution.

 D. Because the client determines whether cookies are permitted or not, it’s a good idea
always to encode URLs as a fallback session mechanism.

 E. Static pages in your web application can disrupt session management.

Request and Context Listeners

 11. Identify actions that won’t fi x a potential problem in the following ServletRequestListener code.
(Choose two.)

01 public void requestDestroyed(ServletRequestEvent reqEvent) {
02 HttpServletRequest request = (HttpServletRequest)
03 reqEvent.getServletRequest();
04 HttpSession session = request.getSession();
05 session.setAttribute("name","value");
06 }

 A. Ensure that an HttpSession is created in the requestInitialized() method of the same
ServletRequestListener.

 B. Ensure that any servlet in your web application obtains a session.

 C. Substitute the code below for lines 04 and 05:

HttpSession session = request.getSession(false);
if (session != null) session.setAttribute("name", "value");

 D. Take no action, for the code will work in all circumstances.

 E. Place lines 04 and 05 inside a try/catch block.

292 Chapter 4: Sessions and Listeners

 12. What is the outcome of attempting to compile and run the servlet code below? (Choose one.)

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class Question12 extends HttpServlet {
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 ServletContext context = getServletContext();
 context.addAttribute("mutable", "firstvalue");
 context.replaceAttribute("mutable", "secondvalue");
 context.removeAttribute("mutable");
 context.removeAttribute("mutable");
 }
}

 A. There will be three method calls to any ServletContextAttributeListener classes registered
to the web application.

 B. An exception will be thrown on trying to remove the same attribute for a second time.

 C. There will be four method calls to any ServletContextAttributeListener classes registered
to the web application.

 D. An exception will be thrown if the context cannot be obtained.

 E. None of the above.

 13. Identify true statements about listener interfaces and related classes from the list below.
(Choose three.)

 A. It is possible to add context attributes in the contextDestroyed() method.

 B. During controlled closedown of a web application, the last listener whose methods are
potentially called is the ServletContextListener.

 C. You can access the current session from methods in classes implementing the Servlet
RequestListener interface.

 D. You can access the current session from methods in classes implementing the Servlet
ContextAttributeListener interface.

 E. The ServletContextAttributeEvent class extends java.util.EventObject.

 F. It is unwise to change request attributes in the attributeReplaced() method of a class
implementing the ServletRequestAttributeListener interface.

Self Test 293

 14. Identify the number and nature of the errors in the code below, which is taken from a class
implementing the ServletRequestAttributeListener interface. (Choose one.)

01 public void attributeAdded(ServletRequestAttributeEvent event) {
02 HttpServletRequest request = event.getServletRequest();
03 Object o = event.getSource();
04 System.out.println("Source of event is: "
05 + o.getClass().getName());
06 String name = event.getName();
07 String value = event.getValue();
08 System.out.println("In ServletRequestAttributeListener."
09 + "attributeAdded() with name: "
10 + name + ", value; " + value);
11 }

 A. No compilation errors, no runtime errors

 B. No compilation errors, one runtime error

 C. One compilation error

 D. Two compilation errors

 E. Three compilation errors

 15. If a request attribute has been replaced, which of the following techniques will not obtain
the current (new) value of the attribute? (Choose two.)

 A. Use the ServletRequest.getAttribute() method anywhere in servlet code following
the replacement.

 B. Use the ServletRequestAttributeEvent.getValue() method anywhere in the
attributeReplaced() method of a class implementing ServletRequestAttributeListener.

 C. Use the ServletRequest.getAttribute() method anywhere in fi lter code following the
replacement.

 D. Use the following code in a class implementing ServletRequestAttributeListener:

01 public void attributeReplaced(ServletRequestAttributeEvent event) {
02 String name = event.getName();
03 Object newValue = event.getServletRequest().getAttribute(name);
04 }

 E. Use the ServletRequestAttributeEvent.getValue() method anywhere in the
attributeUpdated() method of a class implementing ServletRequestAttributeListener.

294 Chapter 4: Sessions and Listeners

Session Listeners

 16. The code below is from a class implementing the HttpSessionListener interface (you can assume
that the whole class compiles successfully). What will happen when the class is deployed in a
web application and servlet code requests a session? (Choose one.)

public void sessionInitialized(HttpSessionEvent event) {
 System.out.println("Session Initialized...");
 HttpSession session = event.getSession();
 Boolean loginOK = (Boolean) session.getAttribute("login");
 if (loginOK == null || !loginOK.booleanValue()) {
 session.invalidate();
 }
}

 A. A runtime exception.
 B. Session will be invalidated dependent on the “login” attribute.
 C. Session will always be invalidated.
 D. Can’t determine what will happen.

 The code below shows code for the class MySessionAttribute (Listing A). An instance of this
class is attached to an HttpSession (Listing B). From the list below, pick out the things that will
happen when this session is migrated from a source JVM to a target JVM. (Choose four.)

LISTING A
import java.io.*;
import javax.servlet.http.*;
public class MySessionAttribute implements
 HttpSessionActivationListener, Serializable {
 private static String data;
 public String getData() { return data; }
 public void setData(String newData) {
 data = newData;
 }
 public void sessionWillPassivate(HttpSessionEvent arg0) {
 System.out.println(data);
 }
 public void sessionDidActivate(HttpSessionEvent arg0) {
 System.out.println(data);
 }
}

LISTING B
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

Self Test 295

public class TestMySessionAttribute extends HttpServlet {
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException, IOException {
 HttpSession session = request.getSession();
 MySessionAttribute msa = new MySessionAttribute();
 msa.setData("My Data");
 }
}

 A. sessionWillPassivate() method called in the source JVM
 B. sessionWillPassivate() method called in the target JVM
 C. sessionDidActivate() method called in the source JVM
 D. sessionDidActivate() method called in the target JVM
 E. “My data” written to the source JVM’s web server console
 F. “My data” not written to the source JVM’s web server console
 G. “My data” written to the target JVM’s web server console
 H. “My data” not written to the source JVM’s web server console

 18. (drag-and-drop question) Match the lettered missing pieces of code with choices from the num-
bered list. The choices may be used more than once.
import javax.servlet.http.*;
public class SessionAttrListener implements
HttpSessionAttributeListener {
public void
attributeAdded(HttpSessionBindingEvent event)
{
 String name = event.getName();
 String value = "" + event.getValue();
 }

public void
attributeRemoved(HttpSessionBindingEvent
event) {
}
public void
attributeReplaced(HttpSessionBindingEvent
event) {
 HttpSession session = event.getSession();
 String newValue = "" +

session.getAttribute(name);
 }

}

E

C

F

G

D

B

A

I

H

14 Listener

13 getSessionID()

15 getHttpSession()

12 javax.servlet

11 AttributeListener

10 HttpSesssionBindingEvent

9 HttpSession

8 javax.servlet.http

7 getSession()

6 event.getName()

5 AttrListener

4 HttpSessionAttributeEvent

3 getValue

2 getAttribute

1 event.getValue()

296 Chapter 4: Sessions and Listeners

 19. Pick out true statements from the list below. (Choose two.)

 A. Classes implementing HttpSessionBindingListener must be declared in the deployment
descriptor.

 B. More than one session listener interface may take effect from the same deployment descrip-
tor declaration.

 C. HttpSessionAttributeEvent is a parameter for methods on more than one of the session
listener interfaces.

 D. A single class cannot implement both the interfaces ServletRequestAttributeListener and
HttpSessionAttributeListener.

 E. sessionDidPassivate() is one of the methods of the HttpSessionActivationListener
interface.

 F. An HttpSessionListener’s sessionDestroyed() method will be called as a result of a cli-
ent refusing to join a session.

 20. A web application houses an HttpSessionAttributeListener and an object (SessionAttrObject)
that implements HttpSessionBindingListener. Pick out the correct sequence of listener
method calls that follows from executing l the servlet code below inside this web applica-
tion. (Choose one.)

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class Question20 extends HttpServlet {
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException, IOException {
 HttpSession session = request.getSession();
 session.invalidate();
 HttpSession newSession = request.getSession();
 SessionAttrObject boundObject = new SessionAttrObject("value");
 newSession.setAttribute("name", boundObject);
 newSession.setAttribute("name", "value");
 newSession.setAttribute("name", null);
 }
}

 A. attributeAdded(), valueBound(), attributeRemoved(), valueUnbound(),

attributeReplaced(), attributeRemoved()

 B. valueBound(), attributeAdded(), valueUnbound(), attributeRemoved(),

attributeReplaced(), attributeRemoved()

 C. valueBound(), attributeAdded(), valueUnbound(), attributeReplaced(),

attributeRemoved()

 D. attributeAdded(), valueBound(), attributeReplaced(), valueUnbound(),

attributeReplaced()

 E. valueBound(), attributeAdded(), valueUnbound(), attributeRemoved(),

valueBound(), attributeAdded(), valueUnbound(), attributeRemoved()

 F. None of the above.

LAB QUESTION
Let’s use the skills you have learned in this chapter for a practical purpose —well, nearly practical!
You’re going to design a memory game. Someone setting up the game will use your application to type
in ten words. These are presented back in the order in which they were entered.

The person playing the game signs on to a fresh browser session. She has an allotted number of sec-
onds to remember the words and their order. She presses a button to begin the game. After she tries
her best guess at the words, the application tells her how well she has done.

Some technical suggestions on achieving this: The words put in by the person setting up the
game might be transferred from request parameters to session attributes — or a single session attri-
bute whose value is a collection class, maintaining the order of the words entered. When the setup
is done, transfer the session attribute(s) to context attribute(s). Make this happen as a consequence
of invaliding the session, doing the transfer in an HttpSessionListener’s sessionDestroyed()
method. When playing the game, the request parameters (for the guesses) can again be transferred to
session attributes. On conclusion of the game, compare the session attributes with the context
attributes to come up with a mark.

Feel free to add as much needless complexity as you like. For example, you could pass each request
parameter to a request attribute, listen for the removal of the request attribute, and transfer the word
to a session attribute. This is just to explore the capacities of listener classes in preparation for the
exam —in your real development life, keep it simple!

Lab Question 297

298 Chapter 4: Sessions and Listeners

SELF TEST ANSWERS

Session Life Cycle

 1. � A matches to output 2. The session is new, and because it’s newly established by the web
container, the isRequestedSessionId* methods both return false. B matches to output 2
also; if the session is refused by the client, it is still new —and the session ID can’t come from
a URL or cookie (it hasn’t been returned by the client). C matches to output 6; the session is
not new (it’s the second request). Because the ID has been returned with a cookie, the session is
not from a URL and is from a cookie — so false, false, true. D matches to output 5; the session
is again not new (false output), and the session has come from a URL (true output) and not a
cookie (false output).

 � All other combinations are wrong, as shown by the reasoning for the correct answers.

 2. � A is the correct answer: The code will not compile. The parameters of the doGet method
are defi ned as types ServletRequest and ServletResponse — not HttpServletRequest and
HttpServletResponse. Hence, when at line 16 the code tries to get a session from the request,
there’s a compiler error saying that ServletRequest has no such method (all the session infra-
structure is part of the javax.servlet.http package).

 � B is incorrect but sounds plausible; however, even if the compiler error were corrected, the
NullPointerException would occur at line 17 (when the code might try to use a null session
reference). C is incorrect but would be true if the compiler error were corrected: An Illegal
StateException would result from trying to use setAttribute() on an invalidated session. D is
incorrect because we never get as far as any runtime exception. E is excluded because A fi ts the
bill here.

 3. � A and F are the correct answers. A call to HttpServletRequest.getSession() with no
parameters is equivalent to a call to HttpServletRequest.getSession(true). Both calls will
create a session if none exists already.

 � B, C, E, and H are incorrect and can be dismissed straightaway, because the method for
retrieving sessions is associated with HttpServletRequest, not ServletRequest. D is incorrect —
a call to HttpServletRequest.getSession(false) is the odd one out —and under these
circumstances, a session will not be created; the method obtains a session only if there is one
already. G is incorrect because HttpServletRequest.getSession() does not accept a String
parameter.

 4. � B and D are the correct answers. In distributed applications, session objects are cloned
across JVMs. And sessions can be set to never time out, using HttpSession.setMaxInactive

Interval() with a negative parameter or using a zero or negative number as the value for the
<session-timeout> element in the deployment descriptor.

 � A is incorrect: Session objects are scoped to a single web application. C is incorrect because
you can use code to explicitly invalidate a session as well as allowing its destruction after a
predefi ned period of inactivity. E is incorrect: There is no deployment descriptor mechanism to
specify that sessions will end after a set number of requests (you could, of course, write servlet
code to achieve this end).

 5. � A and C are the correct answers. A is a correctly constructed part of the deployment de-
scriptor fi le, and it correctly specifi es a time-out of 1 minute. C is also correct. Because the fi lter
has a mapping of “/,” it will receive every request to the web application. The code correctly
obtains the session from the request parameter and uses the right method —setMaxInactive

Interval—using the correct number of seconds, 60.
 � B is incorrect: The deployment descriptor is correctly constructed, but the value for

<session-timeout> is specifi ed in minutes (not seconds), and the value of 60 represents a
whole hour. D is incorrect on two counts. Although the code is correct, the only sessions af-
fected will be those invoking this servlet (nowhere are we told that it has a generic mapping).
Also, a value of 1 passed to setMaxInactiveInterval represents just 1 second for time-out.
E is incorrect because the init() method called on the startup of a web application does not
receive an HttpServletRequest as a parameter. True, you could construct an overloaded init()
method that did this —bizarre as this would be —but the answer would still be wrong, for only
the sessions involved in calls to this servlet would be affected.

Session Management

 6. � C is the correct answer. Cookies are used by default for session management.
 � A is incorrect: URL rewriting is a substitute mechanism when cookies are disallowed.

B is incorrect: You can do your own session management with hidden form fi elds, but it’s not
a standard mechanism supported by J2EE web containers (let alone the default). D is incorrect:
SSL does have its own session management features, but it is used only for secure transactions.
E is a complete red herring: jsessionId looks like something used in URL rewriting (yet it is in
the wrong case), but is not strictly speaking a request parameter and is in any case only part of
the mechanism.

 7. � B and E are the correct answers. jsessionid is the unique identifi er for the session ID passed
in URL rewriting —and it must be all lowercase, as shown. It’s also true that you should use dif-
ferent methods to rewrite URLs for links versus URLs for redirection (HttpServletResponse
.encodeURL() vs. HttpServletResponse.encodeRedirectURL()).

Self Test Answers 299

300 Chapter 4: Sessions and Listeners

 � A is incorrect: You could write a mechanism as described, but it would not be the usual way
of managing sessions. C is incorrect: The cookie used for default session management must be
called JSESSIONID (exactly that, all capitals). D is incorrect: If you are using the default ses-
sion management mechanism, the web container adds the JSESSIONID cookie automatically
to the response —you don’t need to explicitly code for it.

 8. � A matches to 4, and B matches to 6: HttpServletRequest and HttpServletResponse are
the appropriate parameter types for the doGet() method. C matches to 1: It’s an HttpSession
type the code needs. D matches to 5: the request method that obtains an HttpSession is
getSession() (not any variant). E matches to 14: The simple HttpSession method getId()
returns the unique session identifi er. F matches to 8: JSESSIONID in capitals is the name of
the cookie for session management. G matches to 9: isRequestedSessionIdFromURL() is the
correctly named method (not “Url” in mixed case). H matches to 10: jsessionid is the URL ele-
ment that names the unique session ID when URL rewriting is used for session management.

 � All other matches are red herrings, based on the correct choices above.

 9. � C is correct. The session ID is encoded in URL1 (with correct syntax), but the session ID is
not encoded in URL2. Because URL2 is clearly located in a different context from URL1, then
it’s not appropriate for the encodeURL() logic to attach the session ID. Sessions do not cross
contexts (i.e., they don’t span different web applications).

 � A is incorrect because JSESSIONID is the name reserved for session management cookies;
it should be jsessionid in URL rewriting, all lowercase. B is incorrect because the wrong URL
has been rewritten (URL2 instead of URL1)—and also, jsessionid should be separated from
the main part of the URL with a semicolon, not (as here) a question mark, which denotes the
beginning of the query string. D is incorrect: Although syntactically OK, the session number
is attached to URL2 (and the correct answer explains why this is wrong). Finally, E is incor-
rect because JSESSIONID is in capitals, and again a question mark is used where a semicolon
should be.

 10. � D and E are the correct answers. D correctly states that it’s the client that determines
whether cookies are allowed or not: Because you may not have control over all the clients using
your web application, it’s always a good idea to rewrite URLs as a fallback. E is also correct:
Static pages won’t disrupt cookie management during sessions, but they will disrupt a URL-re-
writing approach (static pages can’t possibly contain a just-generated session ID in their links).

 � A is incorrect: Although there isn’t, strictly speaking, a need to rewrite URLs if cookies
are used for session management, it’s not true to say that this is determined by the server —it’s
the client’s choice to accept or reject cookies. B is incorrect because there is a separate method
(HttpServletResponse.encodeRedirectURL()) for URLs rewritten for redirection. C is in-

correct: Cookies are the default session support mechanism, and they must always be supported
by J2EE-compliant web containers.

 Request and Context Listeners

 11. � B and D are the correct answers, for neither suggestion will fi x the potential problem. The
issue is that by the time the requestDestroyed() method has been reached, the response has
been committed. At this point, it’s illegal to attempt to create a new session (an IllegalState
Exception is thrown)—but still OK to get hold of a session that exists. The method call at
line 04 —request.getSession()—will obtain a session if it already exists (no problem),
but will also attempt to create a session if none exists already (which is the problem). Hence,
D is an incorrect suggestion, for there will be a problem with the code in some circumstances.
B might go a long way to solving the problem (ensuring that all servlets in your application
obtain a session). But if the request is for some other type of resource (a static HTML page, for
example), the request listener will still kick in, so the solution doesn’t cover all circumstances.

 � A is a correct suggestion, hence an incorrect answer. By creating a session in the corre-
sponding requestInitialized() method, there will defi nitely be a session to obtain in the
requestDestroyed() method. C will also fi x the problem (hence is an incorrect answer) by
explicitly passing false to the getSession() method: A session will be returned only if one
exists already. The potential NullPointerException on session.setAttribute() is avoided
by testing the session reference returned. E will also work, by trapping the potential IllegalState
Exception.

 12. � E is the correct answer. In fact, there will be two compilation errors: The context methods
addAttribute() and replaceAttribute() do not exist. You use the method setAttribute()
for adding and replacing attributes.

 � A is incorrect, for the code never runs (though if the compilation errors were corrected, this
would be a true statement). B is incorrect —apart from the code not running, it’s perfectly OK
to remove the same attribute name as many times as you like. C is incorrect —were the code
to be corrected and run, even, the second removeAttribute() call would not cause a method
call to a listener (as the attribute has already gone). D is incorrect: It’s inconceivable that you
wouldn’t get a context, anyway.

 13. � A, C, and F are the correct answers. A is counterintuitive, but you can indeed add con-
text attributes (or replace or remove them) in the ServletContextListener.context
Destroyed() method —however pointless this may seem. C is correct —you have access to
the current session via the current request, which is available from the event object passed as
a parameter to ServletRequestListener interface methods. F is also correct —if you change a

Self Test Answers 301

302 Chapter 4: Sessions and Listeners

request attribute in the ServletRequestAttributeListener.attributeReplaced()
method, this will itself cause a call to that same method again — so you have the potential for a
perpetual loop (or, more accurately, a StackOverfl owError).

 � B is incorrect: The last listener methods potentially called are those in those classes imple-
menting ServletContextAttributeListener. The web container removes attributes from the
context after the ServletContextListener.contextDestroyed() method has completed,
which may cause calls to ServletContextAttributeListener.attributeRemoved().
D is incorrect: You can access the context only in a context listener (not the request or ses-
sion). E is incorrect: ServletContextAttributeEvent extends ServletContextEvent —which
in turn extends java.util.EventObject.

 14. � D is the correct answer: There are two compilation errors. Both have to do with casting. In
line 02, the getServletRequest() method returns a ServletRequest object. In an HTTP envi-
ronment (i.e., most of the time!), this is safe to cast to an HttpServletRequest —which is what’s
required here. In line 07, the getValue() method returns an Object, not a String. If you know
the attribute value is a String, then it’s safe to cast to String here.

 � A, B, C, and E are incorrect because of the reasoning in the correct answer.

 15. � B and E are the correct answers, for neither approach will get the new value. E is an in-
vented method (attributeUpdated())—you can defi ne such a method in a listener class, but
the web container framework won’t call it! B is a good approach —but use it for getting the old
value of the attribute, not the new one.

 � A is incorrect; it’s a perfectly standard way to get hold of the current attribute value. C is
incorrect for the same reason. D is incorrect; although it’s a more convoluted way, you will get
hold of the new value that has just been added.

Session Listeners

 16. � D is the correct answer: You can’t determine from this code what will happen. The nasty
trick here is that the method shown —sessionInitalized()—is not one defi ned in the
HttpSessionListener interface. Sure, you can defi ne such a method in a class implementing the
interface, but the method is never called by the web container. The method that IS called on
the creation of a session is the sessionCreated() method.

 � A is incorrect because the code never gets to run —at least not automatically on creation of
a session. Also, there is nothing in the code likely to cause an exception. B and C are incorrect
for the same reason — though had the method actually been the sessionCreated() method,
C would have been the correct answer. Because the sessionCreated() method is called as
soon as a session is fi rst accessed, there can’t have been an opportunity to add any session at-

tributes. This means that there won’t be a session attribute named “login,” and so the Boolean
local variable called “loginOK” will be null. According to the logic, this will cause the session to
invalidate itself.

 17. � A, D, E, and H are the correct answers. When the session is about to migrate from the
source JVM, any session attribute objects implementing the HttpSessionActivationListener get
a call to their sessionWillPassivate() method; hence, A is correct. When the session has
materialized in the target JVM, the migrated session attribute objects have their sessionDid
Activate() method called (answer D). As to why “My data” is written to the source JVM’s
console (E) but not the target JVM’s console (H), that’s because the data is a class variable.
Only instance variables are serialized, and so reconstituted in the target JVM. Note that the
code in MySessionAttribute employs the dubious practice of returning static data using instance
methods.

 � B, C, F, and G are incorrect because of the reasoning you see in the correct answer.

 18. � A matches to 8; all the types declared come from the javax.servlet.http package. B
matches to 11; given the other information, this can only be an HttpSessionAttributeListener.
C matches to 10, as does F and G: An HttpSessionBindingEvent is passed as parameter to each
of the three methods. D matches to 6, and E matches to 1: obvious method names for get-
ting hold of the attribute name and value. H matches to 7: another obvious method name for
getting hold of the session. I matches to 2 (for the new value, simply get hold of the current
attribute from the session).

 � The remaining answers are eliminated because of the correct answers above. Look out for
“faux” method names (such as answer 15: getHttpSession()).

 19. � B and F are the correct answers. B is correct because there is no problem with a single class
implementing more than one sort of session listener interface —and that single class will only
require a single <listener> declaration in the deployment descriptor. F is correct because a
client’s refusal to join a session effectively “orphans” the session: The session will then time out
according to the usual criteria, at which point sessionDestroyed() will be called. However,
beware of any suggestions that the client’s refusal to join immediately invalidates the session, for
that is not necessarily true.

 � A is incorrect because it’s not appropriate to declare classes implementing HttpSession
BindingListener in the deployment descriptor: Its methods will be called by virtue of having
the class as a value object for a session attribute. C is incorrect because HttpSessionAttribute
Event —while sounding like a logical enough name —is made up. HttpSessionBindingEvent is
the type passed to the HttpSessionAttributeListener and HttpSessionBindingListener interface
methods. D is incorrect: Although ServletRequestAttributeListener and HttpSessionAttribute

Self Test Answers 303

304 Chapter 4: Sessions and Listeners

Listener have the same trio of methods (attributeAdded/Replaced/Removed()), these
accept different types as parameters. So a single class can have methods for both request and
session just by overloading the methods. E is incorrect: The correct name is sessionWill
Passivate()—which better refl ects the exact timing of the method call (i.e., just before the
session is serialized).

 20. � C is the correct answer. First, valueBound() is called. This is because you’re adding an
attribute whose value implements the HttpSessionBindingListener interface. This takes pre-
cedence over the HttpSessionAttributeListener.attributeAdded() call, which follows
immediately afterward. You then change the attribute, replacing the HttpSessionBinding
Listener-implementing object; hence, the next call is valueUnbound(). Because you’re replac-
ing the value of the attribute, next comes an attributeReplaced() call. No more calls now
to HttpSessionBindingListener methods, for you have added a plain String as the attribute value
(and that doesn’t implement that interface). However, by nullifying the attribute’s value, you
remove the attribute —hence the fi nal call to attributeRemoved().

 � A, B, D, E, and F are incorrect, following the reasoning above.

LAB ANSWER
Deploy the WAR fi le from the CD called lab04.war, in the /sourcecode/chapter04 directory. This con-
tains a sample solution. You can call the initial servlet to start the test setup and taking process with a
URL such as http:// localhost:8080/ lab04/Reset.

