Security

CERTIFICATION OBJECTIVES

. Security Mechanisms v Two-Minute Drill

° Deployment Descriptor Security Q&A Self Test
Declarations

° Authentication Types

306 Chapter5: Security

p until now, we have considered the essential mechanics of servlet applications. In this
chapter you will explore how you can attach a layer of security to the web applications
that you have learned about so far.

This chapter will take you through the three security objectives for the SCWCD
exam. The first section is devoted to the “simple” definition of terms. It’s straight-
forward enough, but be warned that your grip on these terms needs to be firm enough
to recognize when they apply to any given security requirement.

The second section returns to the deployment descriptor—with a vengeance. Most
web application security can be defined without writing a line of code. Although we do
touch on a few Java APIs, you are encouraged to do as much as possible “declaratively.”
And you'll find that there are any number of elements that concern resources, users,
and roles, and yet more that cover security across a network.

The third section will look at how you can cater for “logging in” to a web
application (the proper term for this as we’ll shortly discover is “authentication”).
You'll see how this is also achieved through deployment descriptor configuration,
through yet more elements.

A rough count reveals that of the 18 or so top-level deployment descriptor
elements you need to learn for the exam (that’s the elements that are direct children
of <web-app>), 3 of those are explicitly about security. So that’s one-sixth. However,
when you look at all the elements (including subelements), around 20 out of 60 are
security related. That accounts for a third of your deployment descriptor knowledge

for the SCWCD! All this and more are covered in this chapter.

CERTIFICATION OBJECTIVE

Security Mechanisms (Exam Objective 5.1)

Based on the servlet specification, compare and contrast the following security mechanisms:
(a) authentication, (b) authorization, (c) data integrity, and (d) confidentiality.

We start off with definitions of four terms. These aren’t here for background:

The exam explicitly tests this knowledge. The definitions used all come from the
servlet specification, so what you’re learning is J2EE’s take on security. That said,
the explanations that the servlet specification provides for security terms are more
or less standard in any security environment.

Security Mechanisms (Exam Objective 5.1) 3 Q7

Security Mechanisms

There are four terms you need to know. “Authentication” is the first: This is
the process of identifying some party to a web application. The term “party” is
deliberately vague, for authentication can occur not only between human users
and web applications, but also between other systems and web applications.

Once authentication has taken place, “authorization” comes into play.
Authorization rules determine what an identified party is allowed to do within a
web application —which resources can be accessed and what can be done with
those resources. Authentication and authorization go hand in hand. For one thing,
you can’t have authorization without authentication happening first. For another,
it’s rare to find a system that goes to the trouble of authenticating someone without
employing some kind of authorization rule as well—even if it’s all or nothing
(authenticated users can use anything in the web application; unauthenticated users
can’t). In fact, as we’ll discover, the base mechanics of web application security
invite you to authenticate only if you attempt to access a resource protected by
authorization rules.

[t’'s an obvious point to make, but security is really necessary only because of a
network. Accepted, if you have a stand-alone PC, you might want to have password
protection in place. But who has a stand-alone PC these days? And in the context
of J2EE and web applications, we are always considering a network. And a network
provides an open invitation to malcontents and evildoers: What is a network packet
for if not to have its contents spilled open and perhaps repackaged in some twisted
form? This is where the other two security concepts come in. There’s “data integrity,”
which is the business of proving that what you sent to or from a web application
has not been tampered with on the way. And in addition, you're likely to want
“confidentiality” (or “data privacy”)—mechanisms to encrypt your network traffic
so that no code-cracking approach can reveal the plain contents.

Security Definitions in Detail

So now let’s consider these four security mechanisms in a bit more detail, including
the definitions as found in the servlet specification. These may seem a bit formal,
but they’re precise—and very often, this wording is directly quoted in exam
questions.

Authentication As we've said, authentication is the process of proving you

are who (or what) you claim to be. The servlet specification puts it this way: “The
means by which communicating entities prove to one another that they are acting
on behalf of specific identities that are authorized for access.” In the web application

308 Chapter5: Security

sense, “communicating entities” typically indicates a client web browser on one end
of the telephone and a J2EE web container on the other.

What does the spec mean, though, when it talks about “acting on behalf of
specific identities”? It’s most obvious from the client-to-server perspective. The
server (web application) wants to know that you (the browser user) are a paid-up
and registered member of the exclusive club the web application serves. In technical
terms, the server is simply interacting with a piece of software described as a Mozilla-
compatible browser, but clearly, it wants some means of knowing that behind that
browser is a “specific identity,” perhaps a human being called David Bridgewater.
Let’s not neglect the other direction, though. If 'm using a web application to check
on my personal bank accounts, I need the server to prove to me at every step of the
way (with every request /response) that it is acting on behalf of my bank.

Various means exist for trading authentication details. At the simplest and most
insecure end, authentication involves a user providing a user ID and a password,
sent unencrypted over the network. This is absolutely fine for the server to establish
trust in the client, as long as some provision is made to protect the network between
them (maybe through a virtually private network, or through an internal network
unconnected with the wider world). More secure approaches might go for encrypting
the authentication information, or even the entire request and response. The most
secure means of authentication is through digital certificates—which contain rather
more information than a mere user 1D and password, and which can be used to estab-
lish trust in either direction: for the server in the client, or the client in the server.

In the final section of this chapter, we’ll see how web applications ask the web
container for authentication support. This is through the <1ogin-config> element
in the deployment descriptor, and we’ll learn that this element makes provision for
everything from basic user/password authentication to full-blown digital certificates.

Authorization Our simple definition of authorization stated that it’s the
mechanism controlling what you are allowed to do in a system. Again, the servlet
specification is a little more formal and precise —it uses the term “access control for
resources” to spell out what authorization does, and it defines this term as “The means
by which interactions with resources are limited to collections of users or programs for
the purpose of enforcing integrity, confidentiality, or availability constraints.”

When talking about “interactions with resources,” we are mostly concerned with
HTTP requests and responses to specific URLs (the “R” in this stands for “resource”).
The process of authentication tells us what user (or program —i.e., system) is
attempting to interact with our protected resource. But what does the definition
mean by “collections of users or programs”? What this acknowledges is that you have

Security Mechanisms (Exam Objective 5.1) 3 Q9

within your J2EE web server some means or other of associating those users and
systems with particular roles. The J2EE specification doesn’t say how this is to be
achieved —it’s server specific. For once, it’s not something that’s defined in the web
application’s deployment descriptor. Using Tomcat as an example, we find within it a
configuration file called tomcat-users.xml. This contains a list of roles, followed by a
list of users together with a comma-separated list of the roles to which they belong.
Here’s the file from my very simple configuration:

<?xml version='1l.0' encoding='utf-8'?>

<tomcat-

<role
<role
<role
<role
<user
<user
<user
<user

users>

rolename="tomcat" />

rolename="rolel" />

rolename="lowlife"/>

rolename="manager" />

username="tomcat" password="tomcat" roles="tomcat"/>
username="rolel" password="tomcat" roles="rolel"/>
username="both" password="tomcat" roles="tomcat,rolel"/>
username="david" password="tomcat" roles="lowlife,manager"/>

</tomcat-users>

You can see that the last user listed, “david,” has a password of “tomcat” and belongs
to both the “lowlife” and “manager” roles.

Other servers offer more sophisticated user registries, but whatever one you use,
the important thing—in J2EE terms—is the association of someone or something
you can authenticate with a given role. When you come to protecting resources
in your web application, you say nothing about individual users in the deployment
descriptor: What you do is associate a URL with a particular role. Only users within
that role can use that URL. There are a few more nuances that we’ll visit when we
look at the <security-constraint> deployment descriptor security declaration,
but here we have the essence of how to enforce “availability constraints” as talked
about in our servlet specification definition of access control to resources above.

The only aspect of the definition we haven’t covered is the enforcing of integrity
and confidentiality constraints—but that has less to do with authorization and
everything to do with the next two security terms: data integrity and data privacy.

Data Integrity The servlet specification is straightforward: “The means used to
prove that information has not been modified by a third party while in transit.” The
means themselves may be complex—and invariably involve some kind of encryption.
If a client encrypts its request in a way that only the server will understand (and vice
versa), that’s a guarantee that no modification has occurred. If there was some kind of

3 10 Chapter5: Security

tampering, the request could not be de-encrypted: One byte out of place will ruin the
whole.

You could rightly point out that encryption is an over-the-top method to prove
the integrity of data. A client could, for example, use a “checksum” algorithm to
compute a unique number dependent on the request contents. The server could
verify integrity by running the same checksum algorithm over the request on arrival.
The problem is that anyone snooping on the request could easily work out the
algorithm and, having tampered with the request body, recalculate an appropriate
checksum to fool the server. So encryption is invariably used, blurring the line
between data integrity and data privacy (our next security term).

Before we move on, know that the deployment descriptor is again used when
requesting data integrity for a particular resource: Look out for the line <transport-
guarantee>INTEGRAL</transport-guarantee> in web.xml. We’ll see how this
fits into the wider scheme when we look at the deployment descriptor in more detail.

Confidentiality (Data Privacy) The servlet specification defines this last term
as “The means used to ensure that information is made available only to users who
are authorized to access it.” The means is always encryption — translating your plain
text into indecipherable code. This usually involves the use of a pair of matching
keys, termed private and public. The public key (for a server or client) can be issued
to any interested party. The private key is held absolutely privately: client’s private
key by the client and server’s private key by the server. It’s impossible to deduce what
the private key is from the public key (or vice versa). You can encrypt plain text
with (say) the public key, but then you'll need the matching private key to decrypt
the enciphered message.

Let’s consider the case of sending data that must remain confidential from the
server to the client: Figure 5-1 shows this scenario. In (1) the client asks the server
for a secure resource. So the server responds (2) by sending its public key. This can
be used to encrypt messages in such a way that only the server will understand —
only its private key can decode the messages. So the client takes advantage of this
in (3) to send its own public key to the server, but encrypted in such a way that
only the server can make use of it. Because it’s a public key, the client doesn’t have
to encrypt it, but it gives an added layer of security: Why give your public key to
anyone except those who want to make legitimate use of it? Then the server can
encrypt the secure resource using the client’s public key (4) and transmit it to the
client. Now the resource can pass through the insecure medium of the Internet in
the comfortable knowledge that nobody can de-encrypt it—except the intended
client, using its private key.

Encryption

Security Mechanisms (Exam Objective 5.1) 3 | |

I. Client makes request for secure resource.

3. Client provides its public key,
encrypted with the server’s public key.

4. Server provides secure resource,
encrypted with the client’s public key.

This is a somewhat simplified picture of the full set of likely security interactions
between the client and server. For one thing, private /public (asymmetric) key
encryption takes a great deal of computing power. What usually happens is that
asymmetric encryption is used as a secure means for exchanging symmetric keys
(same one encodes and decrypts); then the symmetric keys are used for communi-
cation beyond this point. Why? Symmetric key encryption is that much faster—
and still just as secure, provided you can be absolutely sure nobody other than the
intended parties has hold of the symmetric key. And because new symmetric keys
can be manufactured for each request /response pairing as necessary . . . well, you get
the picture that security is an involved business. | am content to be a humble web
component developer, not a security programmer. And for purposes of the SCWCD,
we have gone as deep as we need to into encryption mechanisms!

Note that you might want to encode a message with your own private key instead
of someone else’s public key. That may not make sense at first: Surely, anyone with
your public key can read the message. And the whole point of a public key is that
it’s—well—public? The point is that you’re encrypting for a different purpose. As
long as those who have your public key are sure it’s your public key and no one else’s,
then they can be sure that a message you encoded with your private key comes from
you. So that’s how encryption solves the integrity issue.

And just as for data integrity, confidentiality in a web application is ensured by
the deployment descriptor element <transport-guarantee>, this time with a

312 Chapter5: Security

value of CONFIDENTIAL. The actual medium used by web containers is very
often SSL —secure sockets layer (you know when you're using SSL because the
URL your browser points to begins “https”— the secure version of HTTP). SSL is

a private /public key technology for communicating privately over the Internet that
was originally developed by the Netscape Communications Corporation and is now
incorporated in practically every web device under the sun.

.

ON THE CD

Security Mechanisms You Have Encountered

Because we haven't looked at any specific web application technology yet, this exercise
is one of recollection. Note down all the application security mechanisms you have
met in the past (at least, those that you can remember). For each one, identify which
parts had to do with each of the four “big ideas”: authentication, authorization, data
integrity, and confidentiality.

For the authorization part, sketch out the structure of the steps involved: How
exactly were authorized users, groups, or principals tied to specific resources? From this,
imagine how web applications might solve the authorization problem. The combined
exercise of memory (or imagination!) will prepare you well for the specifics that we
encounter in the next two sections.

You can look at my take on the above exercise by deploying the web application

ex0501.war, found in the CD in /sourcecode /ch05. Point to the following URL:

http://localhost:8080/ex0501/security.html

CERTIFICATION OBJECTIVE

Deployment Descriptor Security Declarations
(Exam Objective 5.2)

In the deployment descriptor, declare a security constraint, a Web resource, the transport
guarantee, the login configuration, and a security role.

Most applications that I worked with in the past have their own security structure
described in program code. J2EE web applications make a valiant attempt to separate

Deployment Descriptor Security Declarations (Exam Objective 5.2) 3 | 3

out the security layer. The idea is that application developers can hand over their
work to deployers, who can then construct a security mechanism without touching
the program code. In business terms, the deployer has to know what each resource
in the web application does but can remain thankfully oblivious of program code
details.

The mechanism is “declarative”: In other words, you declare the security you
want in the deployment descriptor instead of enshrining it in code. Declarative
mechanisms bring everything to the surface and keep management simpler. That
said, it’s not altogether simple — there are three top-level deployment descriptor
elements that we explore in this section. The first is <security-constraint>, the
most complex of the three —it defines what resource we'’re securing, what roles can
access the resource, and how the resource is to be transmitted across the network.
The second is <login-config>, which defines what authentication mechanism is
to be used. The third (and easiest) is <security-role>, which simply catalogues
any security roles in use by the web application. We’ll look at these in turn in the
headings that follow.

Datch
You should not be asked role>. | would advise you to stick to this for

about the order of the three top-level compatibility with servers enforcing the
security elements, for order at this level old servlet level 2.3 DTD. However, do
doesn’t matter—as we have previously note that order of the subelements within
noted. However, the traditional order the three top-level elements does still
(that used to be enforced) is <security- matter in servlet level 2.4 and that you
constraint>, <login-config>, then <security- could well be quizzed on this.

The <security-constraint> Element

The <security-constraint> element has three parts to it, each represented by a
subelement:

B Web resource collection (<web-resource-collection>) defines the
resource to be protected and also the HT TP methods by which it can be
accessed (GET, POST, PUT, DELETE, etc.).

B Authorization constraint (<auth-constraint>) determines which roles are
allowed access to the resource.

3 14 Chapter 5: Security

The
<security-
constraint>
Element

B User data constraint (<user-data-constraint>) decides what protection
(if any) is required when transporting the resource over the network.

We're going to look at each of the three parts in detail. Figure 5-2 maps out where
these fall and what subelements each contains.

Web Resource Collections

The one thing a security constraint must contain is one (or more) web resource
collections. Figure 5-2 shows you that a <web-resource-collection> consists
of a name, some optional description lines, one or more URL patterns, and an
optional list of HT TP methods. Let’s look at each of these in turn.

<web-resource-name> This is just a logical name for the web resource
collection. You have to include it, but it has no technical significance —it’s just
a memory aid to help you understand why you have grouped what are potentially
many URL patterns together.

<description> Any number of description lines contained by <description>
tags can follow —including none at all. This is no different from the many other
appearances we have seen for the <description> element. A pop quiz question
(don’t worry, I don't see this one appearing in an exam, but it will encourage you

<securlty-constraint> <display-name> 0 or many

| or many Always |

N - - 1
<web-resource-collection> <web-resource-name >

<description> 0 or many

<ur1—pattern>

<http-method> 0 or many
Oorl

N - ; L
<auth-constraint> i<descr1ptlon> 0 or many

<role-name> 0 or many
Oor |l

~— <user-data-constraint >[

<description> 0 or many

<transport-guarantees

Always |

Deployment Descriptor Security Declarations (Exam Objective 5.2) 3 | §

to look at the deployment descriptor). Where else have you encountered the
description element?

<url-pattern> Thisisa URL pattern just like the ones you have seen in
<servlet-mapping> and <filter-mapping>: The same rules apply —see the
section on URL pattern strategies for a refresher on these (see Chapter 2). You can
define a URL pattern for any resource in your web application. You're not restricted
to matching URL patterns with those for servlets (though you may well want to do
that)—you can also reference static HTML or JSP pages in the directly available
web content for your application.

There must be at least one <url-pattern> included for the web-resource-
collection, and you're quite likely to include a whole list in a full-sized production
application. These will then all be governed according to the same security rules
defined elsewhere in the security constraint.

<http-method> Finally, you can include a list of HT TP methods. More

often, you're likely to miss out this element, which means that any HT TP method
(that’s the “big seven” we discussed in Chapter 1 plus any other more obscure ones)
executed against the resources defined by your URL patterns will be subject to the
same rules. No matter if you POST or GET or DELETE or PUT, the same roles will
be needed for access, and the same transport guarantees will apply.

However, you can specify individual methods as needed. For example, you might
want to impose a blanket ban on the use of dangerous HT TP methods on resources
in your web application. You could achieve that with the following <security-
constraint> configuration:

<security-constraint>
<web-resource-collection>
<web-resource-name>All Resources</web-resource-name>
<url-pattern>/</url-pattern>
<http-method>DELETE</http-method>
<http-method>PUT</http-method>
</web-resource-collection>
<auth-constraint />
</security-constraint>

The URL pattern here (/) encompasses all resources within the context for the
current web application. The HT TP methods listed are DELETE (to remove a
resource at the requested URL) and PUT (to place a resource at the requested URL,

3 16 Chapter5: Security

on the

Qob

overwriting what’s there). We’ll meet <auth-restraint /> next—suffice to say
for now that this is the configuration setting you use to deny access to any request for
these HTTP methods to this web resource collection.

If you use a browser that can generate DELETE methods (such as the one you
used in the exercises in Chapter 1), and target a resource protected as above, you’ll
get an HTTP 403 error (access forbidden).

It’s a really good idea to be as restrictive as possible. Limit any given resource
to only the HT TP methods that are reasonable to execute on that resource.
This usually means GET and HEAD, with POST thrown in only when required.

Authority Constraint

So second up in subelements of <security-constraint> is <auth-constraint>.
If you refer back to Figure 5-2, you'll see that it’s an optional element with the
security constraint and contains two elements of its own— the ubiquitous
<description> element and the crucial <role-name>. The purpose of an authority
constraint is to list permitted roles: Any users within the roles can operate on the
resources defined in the web resource collection.

The normal use of this element might look like this:

<auth-constraint>
<role-name>employee</role-name>
<role-name>supervisor</role-name>

</auth-constraint>

Anyone falling within the employee or supervisor roles— or both—will have access
to the resource. Even more simply, the following definition:

<auth-constraint>
<role-name>supervisor</role-name>
</auth-constraint>

restricts resource access to only those in the supervisor role.

The roles names that you choose must (according to the servlet specification)
be listed in the <security-role> element, which we have yet to meet.

You'll recall that the mapping of specific users to these roles is not a job for the
deployment descriptor. The server must provide some way of achieving the mapping,
but the exact mechanism is server specific. We met the tomcat-users.xml file earlier
on, which showed you one way in which the Tomcat server resolves this need.

There are three special cases to consider with regard to <auth-constraint>:

Deployment Descriptor Security Declarations (Exam Objective 5.2) 3 | 7

Absent from the Security Constraint What if there is no <auth-
constraint> for your security constraint? That’s fine—it simply means that

the web resource collection is open to all, regardless of role or authentication. You
may wonder what the point of this is—why go to the trouble of setting up a web
resource collection if you're not going to ascribe it to any role? We'll discover one
possible reason when we look at <user-data-constraint>.

Present with No Role Names The <auth-constraint> element might be
present in the security constraint, but with no role names listed. It might manifest

itself like this:
<auth-constraint></auth-constraint>
Or this:

<auth-constraint />
which is the XML shorthand for an opening and closing tag with no value, or this:

<auth-constraint>
<description>Trust No-one!</description>
</auth-constraint>

The effect in every case is to deny access to the resource for any role whatsoever.
We saw an example of this when we looked at the <http-method> element a little
earlier and discovered a technique to deflect any DELETE or PUT methods executed
against any resource in our web application.

When more than one security constraint is set up for the same web resource
collection—which can happen — the effect of the no-value authority constraint is
overriding. No matter if you set up a web resource collection open to the world —if
the same URL patterns (for the same HT TP methods) are protected elsewhere with
the no-value authority constraint, access will be denied.

Present with the Special Role Name of “*” You might want to use an
<auth-constraint> element that uses the special role name of “*”:

<auth-constraint>
<role-name>*</role-name>
</auth-constraint>

3 18 Chapter5: Security

This role name is a shorthand way to include all the roles defined within the
web application. These are all the roles that appear in all the <security-role>
elements (which we will be discussing very shortly).

Datch . L.
What HTTP response are potential roles, then authentication

codes result from the authentication and must happen. If it hasn’t happened
authorization process? When a resource is already, the web server sends a 401
requested to which access is always denied (SC_UNAUTHORIZED) response code,

(because of the “no-value” authorization which causes the browser to supply
constraint), the web server rejects the authentication information in some form
request with a 403 (SC_FORBIDDEN) or other. If subsequent checking shows that
response code. Authentication (identifi- the authenticated user is not a role entitled
cation of the user) may not even have to the resource, the web server rejects
happened at this point: There’s no need, the request with a 403 (SC_FORBIDDEN)
for any user would be forbidden. If there response code.

User Data Constraints

In addition to— or as well as—authority constraints, you can impose user data
constraints. These apply to the requests and responses that pass to and from the
web container. Figure 5-2 shows you that when you include a <user-data-
constraint>, you must have a <transport-guarantee> element within it.
This has three valid values, as shown next.

NONE No constraints are applied to the traffic in and out of the container.
The requests and responses can pass in plain text over the network. Setting
the transport guarantee to this value is the same as leaving out <user-data-
constraint> altogether.

INTEGRAL The web container must impose data integrity on requests
and responses: That’s the term we defined earlier as meaning that messages
are not tampered with in transit. How it does this is up to the web container,
but typically it will use SSL (secure sockets layer) as the communication
medium.

Deployment Descriptor Security Declarations (Exam Objective 5.2) 3 | 9

CONFIDENTIAL The web container must ensure that communicated data
remains private—no one must be able to understand the secret messages passed
between the client and the web container. In theory, the CONFIDENTIAL
guarantee is stronger than INTEGRAL: If you have confidentiality, integrity

is implied. However, web containers again mostly achieve the guarantee by
using SSL—and so may look no different from a transport guarantee of
INTEGRAL.

Let’s return to that question we posed earlier—what’s the point of a web
resource collection without an <auth-constraint>—such that any user (even
an unathenticated user) can access the resource!? Well, you might still protect your
resource collection with a <user-data-constraint> but allow open access.
Consider a web page for a user to register personal details. Anyone can access this
page, but it’s best to ensure that their details remain private when transmitted back
to the web server. By specifying a CONFIDENTIAL transport guarantee without
any authority constraint, you achieve this end.

INSIDE THE EXAM

Addition with Security Constraints identically defined web resource collections.
The exam might well test your knowledge on Suppose you have two security constraints

adding together security constraints for declared as follows:

<security-constraint>
<web-resource-collection>
<web-resource-name>Employee Page</web-resource-name>
<url-pattern>/EmployeeServlet</url-pattern>
<http-method>PUT</http-method>
<http-method>DELETE</http-method>
<http-method>POST</http-method>
</web-resource-collection>
<auth-constraint>
<description>Administrator Permissions</description>
<role-name>administrator</role-name>
</auth-constraint>
</security-constraint>

320 Chapter5:

Security

)E THE EXAM (conti

<security-constraint>
<web-resource-collection>

<web-resource-name>Employee Page</web-resource-name>
<url-pattern>/EmployeeServlet</url-pattern>

<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<description>Any Authenticated Permissions</description>

<role-name>*</role-name>
</auth-constraint>
</security-constraint>

<!—Other details like login configuration omitted for brevity . . . —

<security-role>

<role-name>administrator</role-name>

</security-role>

<security-role>
<role-name>employee</role-name>

</security-role>

The same URL pattern is protected in both
cases (/EmployeeServlet). There are two valid
roles for users to be in when logging on to the
application—administrator and employee.
It’s clear from the first security constraint that
users in the administrator role can execute
the HTTP PUT, DELETE, or POST methods
on this URL. But from the second security
role, we can see that a user in any valid role
(administrator or employee) can GET or
POST to the URL—both roles are part of
the “*” (all roles defined) role name. So the

second security constraint extends the range
of things that an administrator can do: GET
as well as PUT, DELETE, and POST from

the first security constraint. An employee is
covered only by the second security constraint
and so can only GET or POST.

And don’t forget that if <auth-
constraint /> appears against a URL
pattern /HT TP method combination, this
“addition of permissions” rule is irrelevant:
The resource is blocked.

on the

Qob

Deployment Descriptor Security Declarations (Exam Objective 5.2) 32 |

Enforcing security by HT TP method is fine, but it can be obscure to the
hapless deployer charged with imposing security. At least when a deployer
provides security for E|Bs (Enterprise JavaBeans), he or she is likely

to be confronted with method names that reflect a business process:
transferFunds () might be an example. HT TP methods are—well—
HTTP methods; they say nothing by themselves about a business process.
Two design practices may help your deployer: (1) make it obvious what a
resource does, and (2) keep the scope of any one resource narrow. For
(1), this usually comes down to naming your resources well—if a deployer
is faced with the name “TransferFundsServlet,” it’s pretty clear what the
resource does—all that’s left is to protect all HT TP methods (or at least
GET and POST). Achieving (2) is trickier. After all, the TransferFundsServiet
may be capable of transferring funds in one direction, from customer to
branch accounts, and also in the other direction, from branch to customer.
However, different security roles may well apply to the two different
directions of fund transfer. Separate resources—a BranchToCustomer
Servlet and a CustomerToBranchServlet—may make security easier

to impose. (And if you’re thinking this might lead to code duplication,
you’re right—but remember that the same underlying servlet class can

be declared twice in the deployment descriptor, with different initiali-
zation parameters and with independent servlet mappings that can be
protected separately.)

The <login-config> Element

Now we move on to the next top-level deployment descriptor element governing
security, which is <login-config>. This governs authentication: how you “log
on” to the web application. We're going to see one way we can use <login-config>
to control authentication here, just to get us going, but revisit it more fully in
the next section, for authentication methods are an exam objective in their own
right.

The simplest way to ensure that some kind of authentication occurs is to have
<login-config> set up as follows:

<login-config>
<auth-method>BASIC</auth-method>
</login-config>

3272 Chapter5: Security

This works as follows: When a browser (or other client) requests a secure

resource from a web application for the first time, the web application doesn’t
return the resource straightaway (naturally enough!). Instead, the server requests
authentication from the browser. Nearly all browsers are built to understand such
a request, and they respond by popping up a dialog box that requests a user ID and
password — the following illustration shows how this looks in Internet Explorer in
Windows XP.

—— The user fills in the details and
Connect to localhost BSIEIN presses ok, and the server checks the
= user ID and password against whatever
database or other registry it is set up
to use. Assuming that it finds a match
(and other valid criteria are met—

Beabnct BiaT such as the user being in the correct

role), the server returns the resource
3 | to the user.

Lser narme: | | 5§

Passward: | |

[]remember my passwaord

E Ok i [Cancel

Datch

Whenever a Request (plain HTML)—the security model does
Dispatcher is used to forward or include a not apply. It is applicable only to web
resource—be it dynamic (servlet) or static resources requested by a client.

The <security-role> Element

As we've noted already, <security-role> is the simplest of the “big three”
security-related deployment descriptor elements. We use it to catalogue all the
security roles in use in an application. You can see in the following illustration

DMatch

Deployment Descriptor Security Declarations (Exam Objective 5.2) 323

that it has only one functional subelement, called <role-name>. (I'm not counting
<description>, which is just for documentation purposes.)

<security-role> t <description> 0 or many

<role-name> |Always |

The current specification the name. Characters and numbers are

says this about valid role names: They have fine (and you can even begin the role name
to obey XML “name token” (NMTOKEN) with a number).

rules. (Actually, this is a throwback to This might also be a good time to point
the old style of DTD validation for the out that the web container matches role
deployment descriptor, but if the current names case sensitively when determining
specification still says it, who am | to access to secured resources, so “rolename”
argue?) This means that you should not is not the same as “RoleName.”

have embedded spaces or punctuation in

on the

Qob

You only include one role name per security role, but <security-role> can
appear as many times as needs be in the deployment descriptor.

The idea is that any role names used anywhere in the deployment descriptor must
appear here. This means any role names you use for authority constraints within a
security constraint, and any for role links in the security role reference in the servlet
element.

The servlet specification insists that role names “must” appear as a role name
here. I find Tomcat’s default behavior is to treat the absence of a security role in this
list as a warning-type message on startup. However, for exam question purposes, you
should go with the servlet specification version of the truth.

Programmatic security—that is, using APIs in your code to enforce
authentication and authorization rules—is not officially covered by the
exam. Why not? Perhaps to encourage J2EE application builders to place
their trust in declarative security. However, programmatic security is

more flexible, and there are often good reasons to use it. Http Servlet
Request has three methods: getRemoteUser (), isUserInRole(), and
getUserPrincipal (). getRemoteUser () returns a String containing

324 Chapter 5: Security

the name of the authenticated user. getUserPrincipal () is essentially
a replacement for getRemoteUser (). Instead of returning a plain String,
it returns a java.security.Principal object, partly because Java prefers to call
authenticated parties “principals” rather than “users.” Users tend to be
human beings; principals might be human beings or other computer systems.
However, ultimately the only useful thing you can do with a Principal object
is to call getName () to return a String with the user’s (sorry—principal’s)
name. The third method—isUserInRole(String roleName)—returns
a boolean indicating if the user is in the role name passed as a parameter
to the method. Note that you don’t first have to discover the user’s name

to make use of this method. isUserInRole () will take account of the
roles you have set up in security constraints in your deployment descriptor.
However, it also takes account of some subelements in the <servlet>
element. You might find declarations such as the following:

<servlet>
<servlet-name>EmployeeDetails</servlet-name>
<servlet-class>com.osborne.EmployeeDetails</servlet-class>
<security-role-ref>
<role-name>MGR</role-name>
<role-link>manager</role-link>
</security-role-ref>
</servlet>

Suppose that anyone can access the EmployeeDetails servlet but that
certain sensitive details are viewable only by managers. So there’s no

need to associate the servlet with a security constraint, but we do have

a reason to use programmatic security to limit some of the output. For

this to work, in addition to the servilet’s deployment declarations above,

the role name “manager” should be defined as an allowed security role

for the application—i.e., as a <role-name> in the <security-role>
element. The servlet code has the option of using isUserInRole(“manager”)
or isUserInRole(“MGR”) as a check on whether the authenticated user is a
manager of not. The <role-name> of MGR in the <security-role-ref>
is mapped on to the <role-1link> of manager, which is a real security role
defined in the deployment descriptor. What this facility allows for is taking
servlets coded against one set of role names, then deploying them in an
environment where a different set of role names is defined—without having
to revisit the code.

EXERCISE 5-2

Deployment Descriptor Security Declarations (Exam Objective 5.2) 32§

Ar

Securing a Servlet

In this

ONTHECD

exercise, we'll take a servlet and make it a secured resource. Just for good

measure, we'll include some programmatic security inside the servlet so that some
of the web page will display itself only if the user belongs to a specific role. Because
we don't yet officially know how to turn on authentication, we'll see what happens
when you try to access this servlet in an unauthenticated manner. This will be a

frustrat
authen

The

ing experience, for the web page will not display properly until we introduce
tication in the next exercise.
context directory for this exercise is ex0502, so set up your web application

structure under a directory of this name.

Set Up the Deployment Descriptor

Define a servlet called CheckedServlet, with a suitable servlet mapping.

[doubt you'll need to refer back to Chapter 2 now for this—you’ve done it
many times!

However, by way of a departure, include a <security-role-ref> subele-
ment within <servlet>, with a <role-name> of MGR and a <role-1link>
of manager.

Define a <security-constraint> element.

Define a <web-resource-collection> for the <security-constraint>.
The <web-resource-name> must be included, but it’s immaterial what text
you choose. However, the <url-pattern> should match the <uri-
pattern> of the <servlet-mapping> for CheckedServlet—that’s the
resource we are trying to protect.

Define an <auth-constraint> for the <security-constraint>. Set the

value of <role-name> to *.

Write CheckedServlet

6.

Create a Java source file CheckedServlet.java in / WEB-INF/classes or in an
appropriate package directory. Write the class declaration in the source file,
extending HttpServlet.

Override the doGet () method in CheckedServlet.

326 Chapter5: Security

8. Obtain the authenticated user name —you can use the HttpServlet
Request.getRemoteUser () method or the more tortuous (but preferred)
approach to HttpServletRequest.getUserPrincipal () to return a
Principal object, on which you can execute the getName () method. Protect
yourself from null values—when we run the servlet in this exercise, there
won’t be an authenticated user (that comes in the next exercise).

9. Werite out some text to the response’s writer, including the user name (even if
it will be null at present).

10. Use the HttpServletRequest.isUserInRole() as the condition for
writing some additional text to the web page. The role to check is MGR.

Run the Application

I'l. Once you're satisfied that the servlet is compiled, deploy the application, and
run it with an appropriate URL, such as

http://localhost:8080/ex0502/CheckedServlet

12. You should get output much like that shown in the following illustration.
Because there’s been no attempt to authenticate a user, no user name can be
displayed. Also, the extra text that appears by virtue of being an authenti-
cated user in the MGR role fails to appear.

‘A Security Checked Servlet - Microsoft Internet Explorer

File Edit “iew Favorites Tools Help

eBack - -\) B @ {:j pSearch ‘:{:{Favorites @

Address |@ http: ! localhost:5080/ex0502 CheckedServlet

Hi, null!

If you are authorized, you'll see more text below:

Revise the Application

I3. Now revisit the deployment descriptor web.xml. Change the <role-name>
of <auth-constraint> to say lowlife. Remake the WAR, and redeploy the
application.

Authentication Types (Exam Objective 5.3) 327

14. Note any startup messages your web container produces. Do you get an infor-
mational /warning message complaining about the absence of a <security-
role> element for the lowlife role in your deployment descriptor? I do with
Tomcat, though it doesn’t stop the servlet from being deployed.

I5. Try running the servlet with an appropriate URL, such as

http://localhost:8080/ex0502/CheckedServlet

16. Note the error that you get. Tomcat gives me an HTTP 403 error (shown in
the following illustration), and tells me that the resource is not available to
an unauthenticated user. We’ll fix this in the next exercise.

HTTP Status 403 - Configuration

error: Cannot perform access control
ithout an authenticated principal

BT Status report

Confiquration error: Cannot perform access control without an
authenticated principal

Access to the specified resource (Configuration error: Cannot
performn access control without an authenticated principal) has been
forbiddern.

CERTIFICATION OBJECTIVE

Authentication Types (Exam Objective 5.3)

Compare and contrast the authentication types (BASIC, DIGEST, FORM, and
CLIENT-CERT); describe how the type works; and, given a scenario, select an

appropriate type.

328 Chapter5: Security

As | intimated earlier, there is more to be said about the <login-config> element,
which we saw in the last section. We met the simplest authentication type it
supports —BASIC —which we're going to find out is also the least secure. In fact,
this element allows for four authentication types in all. We’ll discuss all of these

in this section —how to set up their configuration, how they work, and what their
benefits and drawbacks are.

Authentication Types

The four authentication types are BASIC, FORM, DIGEST, and CLIENT-CERT.
Let’s do a quick survey of the types before exploring in detail. BASIC, as we’ve
seen, forces the appearance of a dialog box in browsers inviting user and password
details. Behind the scenes, we'll see that although these details aren’t quite sent
over the wire in plain text, they’re not very secure either. FORM is more or less

a cosmetically improved version of BASIC —you supply your own design of web
page to solicit user and password details, instead of being stuck with the browser’s
dialog box. The behind-the-scenes transmission details are just the same. DIGEST
imposes encryption rules on the password, improving this situation. CLIENT-CERT
goes a step further—all security details are kept in an electronic document called a
certificate. We’ll see how this is the most secure arrangement but also the most work
to set up.

Let’s first of all have a look at the full layout of the <login-config> element,
which controls authentication. You see in Figure 5-3 that this element has several
subelements but that the only one common to all authentication types is <auth-
method>, which describes which of the four authentication types is in force for the
web application.

Datch , .

In common with all the makes sense for it to appear once. So
other top-level deployment descriptor although it’s legal (in XML terms) for
elements (those directly under the root <login-config> to appear more than
element, <web-app>), <login-config> once, the container is supposed to do
is described in the schema as being able additional validation to trap and reject
to appear “0 or many” times. The truth such a faux pas. Indeed, this is true for all
is that <login-config> should appear the top-level elements that end in -config,
0 or I time only: If present, it applies including <session-config> and <jsp-

to the whole web application, so it only config>.

Authentication Types (Exam Objective 5.3) 329

m <login-config> <auth-method> Oor |

<realm-name> Oor |

The <login- <form-login-config>
config> Element o t<form—logln—page> Always |
or <form-error-page> |Always |

BASIC Authentication

We saw BASIC authentication at work in the last section. There isn’t that much
left to say, except for a subelement we bypassed called <realm-name>. Here’s the
deployment descriptor for BASIC authentication, this time with the realm name
included:

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>MyUserRegistry</realm-name>
</login-config>

The realm is simply the registry used to store user account information. It could be
that your server has more than one realm at its disposal and that a deployer will
need to specify which one is meant here in web.xml. However, it’s not mandatory —
mostly, servers are concerned only with validating against one realm, so there is no
need to specify. Another quirk of realms is that they are applicable only to BASIC
and DIGEST forms of authentication.

When you press the ok button on the browser dialog and transmit your user [D
and password over the Internet, there is a token attempt made to fool prying eyes.
The password is not sent as plain text but is passed through a process called Base64
encoding. This turns the password into something that is no longer human-readable.
But it’s not the same as encryption: A hacker with any level of sophistication will
have a Base64 decoder to turn the password back into plain text. (Base64 encoding
and decoding tools are freely available on the Web—there’s even one in the J2SDK,
though it’s pretty well hidden and lacks Javadoc.)

This doesn’t make BASIC authentication useless, however. It’s perfectly secure
when you provide a transport guarantee to ensure encryption. That way, all parts of the
request —including password details—are concealed from theft across the network.

DIGEST Authentication

DIGEST authentication improves a little on BASIC by using a secure algorithm to
encrypt the password and other security details. When the browser tries to access a
secure resource, the server generates a random value called a “nonce” and passes this

330 Chapter5: Security

to the browser. The nonce can be based on anything— often, a unique identifier for
the server (such as an IP address) and a timestamp.

The browser uses this value and, together with other pieces of information — always
the user ID and password, sometimes URI and HT TP method as well —applies the
digest encryption algorithm (usually the very secure MD5 algorithm). This is a one-
way process: The idea is to turn the seed information into junk, which can never be
translated back into human-readable text. This junk is called the digest, and the client
sends it to the server.

The server can’t use the digest to decode security details. What it can do, though,
is to generate its own digest—using the nonce value it provided and known user and
password details—and compare this with the digest passed from the browser. If they
match, the client is considered authenticated. The process is shown in Figure 5-4.

Because nonces are generated on the fly from transient information, each session
(and sometimes each request) uses unique digests— the possibility of intercepting
and using an existing digest to fool a server is practically nonexistent. So it’s
very secure. What it does rely on, though, is that the server and browser have
identical expectations about the digest: which algorithm to use and which pieces
of information to apply the algorithm to. And there’s the rub—different browser
vendors do different things in support of DIGEST authentication. You need to
know (and test) the clients you expect your web application to support, and that
may not be easy (or even possible) to predict. Hence, DIGEST lags behind other

m Digest Authentication

3. User prompted
to provide user id
and password.

1. Client makes request for secure resource.

20040930 11:10 GMT

| Digest algorithm | I AB95CE458ESF...
VwProvides “nonce.” 5. Server runs digest algorithm

with same nonce and known
authentication details—

4. Client sends digest of nonce, o X
if digest from client matches,

user id, and password.

| 100010001 1110000... }

A authentication is approved.

6. Server provides secure resource
(probably encrypted).

Authentication Types (Exam Objective 5.3) 33 |

authentication types in terms of adoption, though it is much more widely supported
than it used to be.

FORM Authentication

FORM authentication is primarily provided for aesthetic purposes. Why be at the
mercy of an ugly browser dialog when you can provide your own nicely designed
logging-in page? There are only a few rules you have to abide by when constructing
such a page:

B The HTML form must use the POST method (GET is not acceptable).

B The form must have “j_security_check” as its action.

B The form must include an input-capable field for user called “j_username.”
[

The form must also include an input-capable field for password called
“j_password.”

Here’s an example form that puts all the rules together (though in aesthetic terms,
it’s more minimalist than the authentication dialog box my browser provides):

<html>

<head><title>Login Form</title></head>

<body>

<form action="j_security check" method="POST">

Name: <input type="text" name="j_ username" />

Password: <input type="password" name="j password" />

<input type="submit" value="Log In" />

</form>

</body>

</html>

The above is a static HTML page, but dynamic JSP pages are just as valid.

Form-based authentication also demands that you provide an error page. There
are no rules for the content of such a page. Once the pages are designed, you need
to look at how to plug them into the deployment descriptor. This is a variant of
<login-config> that fits the criteria:

<login-config>
<auth-method>FORM</auth-method>
<form-login-config>
<form-login-page>/login.html</form-login-page>
<form-error-page>/error.html</form-error-page>
</form-login-config>
</login-config>

332 Chapter5: Security

The <auth-method> is FORM, as you might expect. <realm-name> has gone:
It’s not used for form authentication. However, form authentication has an
element that is unique to its type: <form-login-config>. This in turn has two
subelements —<form-login-page> and <form-error-page>—whose values
point to the location and name of these pages within the web context.

The mechanism of logging in works like this: The first secure resource you attempt
to access in a web application will not be sent to you directly. Instead, the server

caches the URL you are trying to reach and
XN redirects you to the form login page. You supply

Tatch a user 1D and password; assuming that the
For login and error pages, server is happy with these credentials, you are
the path you specify must begin with a then passed on to the URL you requested in
forward slash (“/”’). This denotes the root the first place. However, if your login fails for
of the web context any reason, the server redirects you to the error
page you specified.

Assuming successful login, access to subsequent secure resources will not require
re-authentication. It’s the web server’s business to achieve this in any way it
can—the servlet specification doesn’t mandate an approach. Most of the time, this
comes down to attaching some additional information to the JSESSIONID cookie.
This implies that invalidating the session will log you out of the system, but this
implication can’t be guaranteed.

One of the frustrations of form-based authentication is that you can’t go directly
to the login form. You have to attempt to access an otherwise secured resource
and let the server redirect you to the login page. Try putting the address for your
login page directly in your browser address line—experience the error that you
get (usually something along the lines of “cannot perform j_security_check
directly”). So if you want to design an unsecured home page with a login field for
registered users in the top right-hand corner, then form-based authentication is not
for you.

Also in common with BASIC authentication, there is no intrinsic protection for
security information. You don’t even get the Base64 encoding of the password. But
again, as for BASIC authentication, you can get around that by using a virtually
private network, or a secure protocol such as SSL for your transport guarantee.

CLIENT-CERT Authentication
The fourth and final method to discuss is CLIENT-CERT, which uses digital

certificates to achieve authentication. This is the most secure form of authen-
tication, but it also requires the most understanding and the most setup.

Authentication Types (Exam Objective 5.3) 33 3

When we talked about data privacy earlier in the chapter, we introduced the idea
of public and private keys for encryption. Digital certificates build on this idea by
providing a home and an identity for a public key. Anyone can create a certificate,
using specialized (but publicly available) software such as “keytool,” which is shipped
with the J2SDK. By passing the right parameters, keytool (or the equivalent)
generates a private key and a matching public key, usually stored in some fully
encrypted form on the creating computer’s hard drive.

From this “keystore” you can extract a certificate file that is fully technically
valid. But if anybody can mint one of these things, what trust can be placed in it?
The usual procedure is to pass on your “self-signed” certificate details to a properly
established certificate authority. The VeriSign Corporation (http://www.verisign
.com) is well known, as is Thawte Consulting (http://www.thawte.com). These
companies verify your identity (with different grades of background checking
possible, reflecting different levels of cost and trustworthiness) and “rubber-stamp”
your certificate — or, more correctly, produce a new certificate based on the details
you supplied, vouched for by them. The most important action they take is to use
their own private keys to digitally sign your certificate. Practically all browsers and
web servers are in possession of these company’s public keys. This gives them the
means to check a digital signature (from VeriSign, Thawte, or whomever) on your
certificate, verifying that your certificate is at least vouched for by a trusted third
party. Here’s what you can expect to find in an X.509 certificate (X.509 is the most
popular standard):

B Version of the X.509 standard (v1, v2, or v3).

B A serial number unique to the certificate authority (VeriSign, Thawte)
issuing the certificate. (The certificate authorities can use these numbers to
maintain a “blacklist” of revoked certificates.)

The signature algorithm used to digitally sign the certificate.

Validity period: when the certificate will start and expire.

B The subject: in other words, you, the requester of the certificate. This is held
as a “distinguished name”—nothing to do with your social standing, but more
about uniqueness. A distinguished name has several components, including a
common name (an individual —“David Bridgewater”), organizational unit
(department), organization name (company), locality name (often, city),
state name (or province), and country (two-character ISO code).

B Issuer name: the name of the certificate authority, again held as a
distinguished name.

334 Chapter 5: Security

on the

Qob

B A digital signature, encoded with the certificate authority’s private key. This
will be a digest of information within the certificate—which also means
that tampering with the certificate (not just the digest itself) will render it
immediately invalid.

B Last but very much not least: the subject’s (your) public key.

Once you have your certificate, you can install it into your browser. Every browser
is different, but most have a relatively simple mechanism for installation. Then,
when you access a web application that demands client certification, your browser
can supply a client certificate. If this is on the approved list of the server’s allowed
certificates, the transaction can continue.

From general use of the Internet, you're probably fairly used to this process
working in reverse —where the server provides a certificate to your browser.
Depending on your browser’s security settings, you generally see a dialog box asking
whether or not you want to trust the certificate the server is offering you (we hope
signed by Thawte, VeriSign, or whomever). If you accept, the transaction can
continue, and the server’s public key can be used to encrypt communications
between you. So certificates provide the foundation for secure transport as well
as dealing with the issue of identify.

There’s nothing stopping a web server vendor from supporting its own style
of authentication and permitting new values (other than BASIC, FORM,
DIGEST, and CLIENT-CERT) for the <auth-method> element. Of
course, a web application subscribing to a vendor-specific authentication
mechanism will almost certainly not transfer cleanly to a different

vendor’s web container.

N,

_ONTHECD

Setting Up FORM Authentication

In this exercise you'll set up authentication for the servlet you built in the previous
exercise. You'll use a custom web page for the login, so the <auth-method> will be
FORM.

The context directory for this exercise is ex0503, so set up your web application
structure under a directory of this name.

Authentication Types (Exam Objective 5.3) 33§

Set Up the Deployment Descriptor

I. Copy the deployment descriptor web.xml from the previous exercise
(ex0502) into the WEB-INF directory for this exercise (under ex0503).
You'll still be using CheckedServlet, declared in the deployment descriptor.
When you copy it forward to this web application (in a few steps’ time), you
may choose to change the package structure (as the solution code does). In
that case, don’t forget to change the package name in the <servlet-class>
element here in web.xml.

2. Define a <login-config> element.

3. Within <login-config>, define an <auth-method> element with the value

FORM.

4. Still with <login-config>, define a <form-login-config> element, using
the appropriate subelements to set up a login page called “login.html” and an
error page called “error.html.” Predictability may be boring, but your support
staff will love you for it!

Define Error and Login Pages

5. Create a web page called “error.html.” Put any text you like into this page,
just so that you will recognize it as the error page.

6. Create a web page called “login.html.” Include a form with a method of
POST and an action of j_security_check. Within the form, include a text
field (named j_username) for the login name, and a password field (named
j_password) for the password. See Chapter 1 if you need a refresher on
constructing form fields. Don’t forget a submit button in the form.

Copy CheckedServlet

7. Copy CheckedServlet from the previous exercise (it should be somewhere
under ex0502/ WEB-INF/classes), and paste it into the current web applica-
tion’s directory structure. If you follow the pattern of the solution code, you'll
copy the source and change the package structure to reflect this exercise. If
you do that, don’t forget to change the package statement in the source code,
or you won't be able to compile the servlet!

336 Chapter5: Security

Run the Application

8. Deploy the application —it should start up without error or warning
messages.

9. Try running the servlet with an appropriate URL, such as

http://localhost:8080/ex0503/CheckedServliet

10. You should be redirected to the login page. Log in with an invalid user ID
and for password. Make sure that you get the error page. If you don’t get the
expected result (at any point), close down all browser windows and restart
the browser —in case the browser is caching users and passwords for the
duration of the session.

I'l. Now add a user into your server’s user directory, for the lowlife role. For
Tomcat, this means editing the tomcat-users.xml file in the <TOMCAT-
INSTALL-LOCATION>/conf directory. You can see my additions (for user
“david”) to this file in bold:

<?xml version='1l.0' encoding='utf-8'?>

<tomcat-users>

<role rolename="tomcat"/>

<role rolename="rolel"/>

<role rolename="lowlife"/>

<user username="tomcat" password="tomcat" roles="tomcat"/>
<user username="both" password="tomcat" roles="tomcat,rolel"/>
<user username="rolel" password="tomcat" roles="rolel"/>

<user username="david" password="tomcat" roles="lowlife"/>
</tomcat-users>

I2. Restart the server. Re-access the servlet, and log on using your user ID and
password. At this point, the servlet should display properly —everything
except the text protected by the isUserinRole () method. Unlike our run
of the servlet in the previous exercise, you should also see your authenticated
user name displayed in the text. Refresh your memory of the source code if all
this seems strange and unfamiliar.

I3. To make the protected text visible, give your user the role of manager as well
as lowlife. My tomcat-users.xml user entry now looks like this:

<user username="david" password="tomcat" roles="lowlife,manager" />

Authentication Types (Exam Objective 5.3) 337

14. Restart the server (with Tomcat, this will in fact automatically add in the role
of manager into the roles list in tomcat-users.xml).

I15. Access the servlet again. Now all text should display. The solution page is
shown in the following illustration.

A Security Checked Servlet - Microsoft Internet Explorer

File Edit Wiew Favorites Tools Help

eBack - I\.;;l @ @ \:_/lj pSaarch ":,/"ntsv‘Favurites @

Address |a http:) flocalhast: 8080/ ex<0503, CheckedServlet

Hi, david!
If you are authorized, you'll see more text below:

You're OK, vou belong,

CERTIFICATION SUMMARY |

In this chapter you explored the world of web application security. First of all, you
met some fundamental security terms as defined by the servlet specification:

B Authentication: proving you are who (or what) you claim to be

B Authorization: ensuring that an authenticated party gains access only to the
resources he or she is entitled to

B Data Integrity: ensuring that any messages passed through a network have not
been tampered with in transit

B Confidentiality (data privacy): ensuring that the information in a message is
available only to users authorized to see that information

You learned that there were several methods for supplying authentication, ranging
from the simple (user IDs and passwords) to the sophisticated (digital certificates).
You saw that authorization —in web application terms—first of all involves
identifying resources as identified by their URLs and the HT TP methods used

to access them. Second, you saw that these can be associated with logical roles.

338 Chapter5: Security

Third, you learned that each web server has its own method for associating those
logical roles with specific users in a registry of users. You learned that encryption is
a key component for both data integrity and confidentiality, and that at the root of
encryption lie matching pairs of public and private encryption keys (often known as
asymmetric keys). You learned that one of the matching pair can encrypt a message,
but then only the other half can do the de-encryption. You saw that private keys
are held very private and secure by their owners but that public keys can be shared
with any interested parties. Armed with private and public key knowledge, you
learned that data integrity can be ensured by encrypting a message with a private
key. Anyone with the public key can de-encrypt such a message — provided no
tampering has taken place, for that would render the message useless. You further
learned that confidentiality can be ensured by using keys in the other direction.
Using someone’s public key to encrypt the message, you can rest assured that only
that someone can read the message —as only that person will have a private key.

We then moved on to look at web applications in more detail—and in particular,
the role played by deployment descriptor definitions. You learned that the preferred
way of providing web application security is through “declarative” means—in other
words, putting information inside the deployment descriptor instead of in code.

You had a glimpse of programmatic security, using such methods as HttpServlet
Request.getRemoteUser () and HttpServletRequest.isUserInRole(String
roleName)—but quickly dismissed those because they are not core SCWCD syllabus
items!

Back in the deployment descriptor, you met three top-level elements controlling
security: <security-constraint>, <login-config>, and <security-role>. You
saw that a <security-constraint> consists of the subelements <web-resource-
collection>, <auth-constraint>, and <user-data-constraint>. You learned
that the web resource collection defines the actual resources to protect, that the
authority constraint associates the resources with logical roles (the authorization
element), and that the user data constraint can provide guarantees of data integrity
and probably, in addition, confidentiality.

You went on to learn that the <web-resource-collection> element has
several subelements: a mandatory <web-resource-name>, some optional
<description> lines, at least one <url-pattern>, and some optional <http-
method>s. You heard that the web resource name has no technical significance
and is simply there to help administrators. You learned that the <url-pattern>
element behaves in just the same way as it does within servlet and filter mappings,
with the same four possibilities for values: exact path (fexactmatch), path prefix
(longest match first) (/partial/*), extension matching (*.jsp), and default (/). You

Authentication Types (Exam Objective 5.3) 339

saw that you can protect this URL pattern for specific HT TP methods, but leaving
out the <http-method> element implies that every HT TP method used on this
URL will be subject to the same authority and user data constraints.

From there, you looked at <auth-constraint>, which simply consists of an
optional number of <role-name>s. You learned that leaving out any role names
and supplying a “no value” authority constraint is equivalent to saying that no user
in any role can access the resource. You saw that this is an overriding setting: Even
if other security constraints give permissions to the same resource, this “no-value”
authority setting takes precedence and blocks access. You also met the special <role-
name> with a value of asterisk (*), and learned that this is a shorthand way of saying
that all role names defined in the <security-role> element are allowed access to
the resource. You learned that when you have separate web resource collections but
with the same URL pattern/HT TP methods, protected by separate sets of authority
constraints, that the authority constraints should be considered “added together.”

After that, you examined <user-data-constraint> and found that this has
one subelement—<transport-guarantee>—which dictates how communication
between client and server should be handled. You learned that <transport-
guarantee> has three possible values—NONE (which is equivalent to using
no user data constraint at all; there are no guarantees made about client /server
communication), INTEGRAL (which promises data integrity between client and
server), and CONFIDENTIAL (which promises confidentiality, i.e., data privacy, in
addition to data integrity). You also saw that web servers generally use SSL (secure
sockets layer) as the network transport layer to deal with encrypted messages passed
in INTEGRAL and CONFIDENTIAL communication.

Before looking at the next top-level deployment descriptor element, <login-
config>, in any detail, you were introduced to <security-role>. You learned that
there can be as many <security-role> elements in the deployment descriptor as
required, each containing a single <role-name> element. You saw that the function
of this is simply to list all the valid logical authorization roles known to the web
application. You also learned that the web container is supposed to validate the use
of role names elsewhere in the deployment descriptor (in authority constraints, and
as the <role-1link> in <servlet> elements) by reference to this list of security
roles. You incidentally learned that a valid role name value can contain characters
and numbers—even begin with a number—but should not contain embedded white
space or punctuation.

In the third and final section of the chapter, you learned in more detail about
authentication types and saw how these are controlled by the <login-config>
element. You learned that the first and most crucial subelement of <login-config>

340 Chapter5: Security

is called <auth-method> (authentication method) and that this has four valid values:
BASIC, DIGEST, FORM, and CLIENT-CERT—and vendor-specific values are
possible.

You learned about BASIC authentication and saw that this works by the server
issuing a standard response to a browser requesting a secure resource. You saw that
this will prompt any standard browser to launch a dialog box, requesting a user 1D
and password. You learned that this dialog box can display a piece of text called a
realm name and that this text can be set using the <realm-name> subelement of
<login-config>. Although no server-side validation is performed on the realm
name text, you saw that it should in some way describe the server-side registry that
is used to validate user authentication credentials. You learned that by itself, BASIC
authentication provides practically no security for authentication details— that this
is limited to encoding the password with an easily-reversed Base64 algorithm.

Then you met DIGEST authentication. You saw how this is a more secure method
as far as the transmission of authentication details go. You saw that this security is
provided by a one-way encryption process (the digest algorithm) and that the resulting
“digest” will reveal nothing. You learned that the principle of authentication using
digests goes like this: Both the client and server use the same digest algorithm on the
same input data, which includes user and password details. You saw that the server can
compare both digests, and if they match, the client is deemed to be authenticated.

To prevent anyone sending an old digest to the server (pretending to be the real
client), you saw that the digests are never repeated, because part of the input data is

a semirandom “nonce” value generated by the server. You learned in passing that a
realm name (<realm-name>) can be associated with DIGEST authentication, which
then appears in the browser’s dialog box requesting user name and password —and
that BASIC and DIGEST are the only forms of authentication for which realm names
are used.

You then moved on to perusing FORM authentication and were introduced to
the idea that this represents little more than a cosmetic improvement over browser
dialog boxes. You learned that this method of authentication demands its own
subelement within <login-config>, called <form-login-config>. You saw that
this comprises two subelements, <form-login-page> and <form-error-page>.
You learned that the value of <form-login-page> points to the location of a
custom login page for the input of user ID and password, and that the <form-
error-page> defines the location of a custom error page. You were warned that
these values hold a path to a filename and must begin with a forward slash (“/”)
to denote the root of the web context. You learned the mechanism of FORM
authentication: that when a user accesses a secure resource in a web application for

Authentication Types (Exam Objective 5.3) 34 ||

the first time, he or she is redirected to the custom login page. If the user provides a
bona fide user ID and password, the server redirects the user to the secure resource,
and subsequent access to secure resources in the same web application should not
require re-authentication. You also learned that on failure to authenticate through
the custom login page, the server redirects the user to the custom error page. You
learned that the custom error page doesn’t obey any particular rules, but that there
are some formalities for the custom login page: It must contain an HTML <FORM>
whose method is POST; the action of the form must be called j_security_check
(exactly that, all lowercase and complete with underscores); and that there must
be two input fields on the form, one named j_username and the other j_password
(no prizes for guessing their purpose). You learned that FORM authentication is no
more secure than BASIC, for authentication details are passed in plain text in the
request body.

You had seen by now that the three authentication methods—BASIC, DIGEST,
and FORM —are generally supplemented with SSL encryption when used anywhere
but over a very secure network. You finally met CLIENT-CERT authentication and
saw that certificates are always transmitted over a secure network using SSL (so a
transport guarantee of CONFIDENTIAL is firmly implied, even though the servlet
specification doesn’t say you have to have one). You learned that a client certificate
contains a public key and attaches identification details to the public key. You saw
that the identification details can be underwritten by a third-party certification
authority, who can digitally sign your certificate —meaning that anyone using your
certificate is assured that you are who you say you are, at least in the eyes of the
certification authority. You learned that you supply your client certificate in place
of a user ID and password to a server that secures resources—and that the server
checks this certificate against a known list of certificates.

342 Chapter5: Security

TWO-MINUTE DRILL

Security Mechanisms

;|

There are four security mechanisms detailed by the servlet specification:
authentication, authorization (access to controlled resources), data integrity,
and confidentiality (data privacy).

Authentication is the process of proving you are who (or what) you claim
to be.

The servlet specification has much to say on client-to-server authentication:
clients (human beings or other systems) proving their identity to our web
applications.

The servlet specification has little to say about server-to-client authentication
(do I trust this web application?); however, it is still an aspect you should be
aware of.

Authentication can be achieved through basic means (user IDs and
passwords) versus complex means (digital certificates). The trade-off is usually
simplicity versus security.

Authorization is the process of ensuring that an authenticated party gains
access only to the resources it is entitled to.

In servlet spec terms, this process means identifying resources by their URLs
(and the HTTP methods used to access them), and associating these with
logical roles.

It’s the web server’s job to supply some means or other for relating these
logical roles to specific users or groups of users. There’s no standard way to
achieve this—it is server specific. Indeed, a web server may have more than
one way of approaching this, for the registries (databases) of users with which
it has to interact may be quite diverse.

Data integrity is the process of ensuring that any messages passed through a
network have not been tampered with in transit.

Data integrity very often involves encrypting the contents of a message.
Integrity comes about because any tampering with an encrypted message
will render the message impossible to decrypt.

Confidentiality (data privacy) goes one step further than data integrity,
by promising that the information in a message is available only to users
authorized to see that information.

Two-Minute Drill 343

Again, encryption is the key to confidentiality. The encryption used by any
particular web server may be stronger than the encryption used to ensure
integrity, though very often the same algorithms are used for integrity and
confidentiality.

The encryption process usually involves public and private keys (sometimes
called asymmetric— they’re a matched pair, but not identical).

Private keys are kept strictly private, whether client-side or server-side.

Public keys are broadcast to interested parties.

If a server uses a client’s public key to encrypt a message, only the client’s
private key can decode it.

Deployment Descriptor Security Declarations

a

Inside the root element <web-app>, there are three top-level elements
devoted to security: <security-constraint>, <login-config>, and

<security-role>.
<security-constraint> is the biggest and most complex of these three.

Its purpose is to associate resources (and HT TP methods executed on those
resources) with logical roles for authorization, and also with guarantees on
resource security in transit over a network.

<security-constraint> has three main subelements—<web-resource-
collection>, <auth-constraint>, and <user-data-constraint>.

The first of these main subelements, <web-resource-collection>, defines
the resources to be secured.

1 The first element inside <web-resource-collection> must be <web-
resource-name>, whose value is a logical name to describe the group of
resources protected.

d Next, <web-resource-collection> defines the URL patterns to
protect using one or more <url-pattern> subelements.

d The value of a URL pattern is a path to a resource (or resources) within
the web application.

1 Valid values for URL patterns are the same as for servlet mappings and
filter mappings: exact path (/exactmatch), path prefix (longest match
first) (/partial /*), extension matching (*.jsp), and default servlet (/).
As for servlet mappings, web resource collection URL patterns types are
processed in that order.

344 Chapter5:

Security

O Any resource can be protected —static or dynamic.

O <web-resource-collection> optionally contains <http-method>
elements (zero to many).

0 Use <http-method> to associate given HT TP methods with the resource

protected. You may want to associate specific protection on certain
resources just for the HTTP POST method, for example.

The second subelement of <security-constraint> is <auth-costraint>.

<auth-constraint> lists the named roles authorized to the resources
defined in the web resource collection.

O Each named role is placed in a subelement called <role-name>.

An authority constraint with no value (e.g., <auth-constraint />)
denotes that there should be no permitted access whatsoever to the resource.

Identical URL patterns are protected, for the identical HT TP methods may
appear in separate web resource collections —effectively protecting the
same resource. In this case, all the role names specified in all the authority
constraints are “added together”—a user in any one of those roles can access
the resource with the given HTTP method.

There’s an exception to this authority constraint addition rule: If the no-
value authority constraint (e.g., <auth-constraint />) is one of several
authority constraints protecting the same resource, it overrides everything
else—mno access is allowed.

The third and final subelement of <security-constraint> is <user-data-
constraint>.

<user-data-constraint> serves to define guarantees on the network used
to transmit resources to clients.

0 <user-data-constraint> contains the element <transport-
guarantee> for this purpose.

0 <transport-guarantee> has three valid values: NONE, INTEGRAL,
and CONFIDENTIAL.

0 A value of NONE means that no guarantee is offered on the network
traffic—and is equivalent to omitting <user-data-constraint>
altogether (the default).

0 A value of INTEGRAL means that the web server must be able to detect
any tampering with HT TP requests and responses for protected resources.

a

Two-Minute Drill 348

A value of CONFIDENTIAL means that the web server must ensure
the content of HT TP requests and responses so that protected resources
remain secret to all but authorized parties.

[It is common practice for a web server to employ SSL (secure sockets
layer) as the network transport layer to fulfill INTEGRAL and
CONFIDENTIAL guarantees.

Neither <auth-constraint> nor <user-data-constraint> is a
mandatory element of <security-constraint>. Either or both may be used
to protect resources. It makes little sense to go to the trouble of defining a
<web-resource-collection>, then to omit both these elements, but it is
legal to do so.

After <security-constraint>, the next security-related deployment
descriptor element is <login-config>. This determines how users (or other
systems) authenticate themselves to a web application.

The last security-related deployment descriptor element is <security-role>.
Each <security-role> element (there can be as many as you like) must
contain one <role-name> element.

The value of <role-name> is a logical role name against which resources are
authorized.

Role names listed here may be used in the <role-name> element in <auth-
constraint> and in <security-constraint>, and in the <role-1link>

element in <security-role-ref> in <servlet>.

A logical role name must not contain embedded spaces or punctuation.

Authentication Types

a

a

Authentication types are set up in the <login-config> deployment
descriptor element.

The subelement <auth-method> names the authentication scheme. There
are four standard values: BASIC, DIGEST, FORM, and CLIENT-CERT.

[t’s possible to name a vendor-specific authentication scheme not covered by
the four standard values above (but then your web application will be tied to
that vendor’s application server).

The simplest <auth-method> of BASIC will trigger a browser to show a
standard dialog when accessing a secure resource for the first time in your

346 Chapter5:

Security

web application. The dialog allows entry of a user name and password, and
displays a realm name.

The realm name (appearing in the browser dialog) can be set with the
<realm-name> subelement of the deployment descriptor and should name

a registry of user credentials accessible from your web server.

The password details are Base64-encoded when passed from the browser to
your web application. This provides a small measure of protection, but very
little— Base64 decoders are freely available to hackers.

BASIC is not useless, however, if SSL is used to encrypt all network traffic
from browser to web server.

DIGEST authentication (<auth-method>DIGEST</auth-method>) imposes
better security by encrypting authentication information.

The encryption process uses as input transient server information (often
called a “nonce”) and authentication information (including the user ID and
password).

The output from the encryption process is called a digest.

The digest can’t be de-encrypted.

The digest is sent to the server. The server has access to all the same input
values to make its own digest. If the digests match, the user is authenticated.
Not all browsers support digests or make the digests in the same way — this
makes adoption of the DIGEST method more difficult.

FORM authentication associates a custom web page with the login process, as
an alternative to a browser dialog.

The custom web page for logging in must contain an HTML <FORM> whose
action is j_security_check and whose method is POST.

The form must include input fields named j_username and j_password.

A custom error page must also be provided — there are no rules about the
HTML for this.

The login and error pages are then specified in the deployment descriptor

in the <form-login-config> element, which is a subelement of <login-
config>.

The login page goes in the <form-login-page> subelement of <form-
login-config>.

Two-Minute Drill 347

The error page is specified in the <form-error-page> subelement of <form-
login-config>.

The values for these elements must begin with a forward slash, which denotes
the root of the web context.

<form-login-config> is— obviously — only relevant when the <auth-

method> is FORM.

The first secured resource you request in a web application will cause you to
be redirected to the login page.

If there is an error logging in, you are redirected to the error page.
Log-in information (user, password) is not protected in any way across the

network with FORM authentication. As for BASIC authentication, you need
to also use a secure protocol such as SSL if greater protection is needed.

CLIENT-CERT is the fourth and final authentication method. It is the most
secure but also the trickiest to set up.

This method relies on asymmetric keys— that is, a pair of keys, one public
(available to anyone) and one private (kept secure on the key owner’s
hardware). Anything encrypted with the public key can be decrypted with
the private key—and vice versa.

The client (and would-be digital certificate owner) first generates a private
and public key. The client sends the public key—and other information —
to a third-party certificate authority. The certificate authority binds this
information and the client public key into a certificate.

The certificate authority adds a digital signature encrypted with its private
key, which makes a digest of information already in the certificate.

This process serves two purposes: (1) to prove the certificate is vouched

for by the certificate authority (only its public keys can be used to read the
signature) and (2) to prevent tampering with any aspect of the certificate.
The certificate is returned to the client, who installs it in his or her browser
(or other client device).

When the server requests authentication from the client browser, the browser

supplies the certificate. If the certificate is on the server’s approved list of
certificates, authentication takes place.

348 Chapter 5: Security

SELF TEST

The following questions will help you measure your understanding of the material presented in this
chapter. Read all the choices carefully because there might be more than one correct answer. The
number of correct choices to make is stated in the question, as in the real SCWCD exam.

Security Mechanisms

I. Which security mechanism proves that data has not been tampered with during its transit
through the network? (Choose one.)

A. Data validation
Data integrity
Authentication
Packet sniffing
Data privacy

TmoO QoW

Authorization

2. Which security mechanism limits access to the availability of resources to permitted groups of
users or programs? (Choose one.)

Authentication
Authorization
Data integrity
Confidentiality

Checksum validation

mmogQnNw>»

MD5 encryption

3. Which of the following deployment descriptor elements play some part in the authentication
process? (Choose three.)

<login-config>

<transport-guarantee>

<role-name>

<auth-method>

<form-error-page>

mmQgQnNw>»

<security-role-ref>

Self Test 349

4. In a custom security environment, for which security mechanisms would a filter be incapable of
playing any useful part? (Choose one.)

A. Authentication
B. Authorization
C. Data integrity
D. Confidentiality
E. All of the above
F.

None of the above

5. Review the following scenario; then identify which security mechanisms would be important to
fulfill the requirement. (Choose two.)

An online magazine company wishes to protect part of its web site content, to make that
part available only to users who pay a monthly subscription. The company wants to keep client,
network, and server processing overheads down: Theft of content is unlikely to be an issue, as is
abuse of user IDs and passwords through network snooping.

Authorization
Authentication
Indication

Client certification

Data integrity

mmonw®»

Confidentiality

Deployment Descriptor Security Declarations

6. Identify which choices in the list below show immediate subelements for <security-
constraint> in the correct order. (Choose two.)
<security-role-ref><auth-method><transport-guarantee>
<web-resource-name>,<auth-constraint>
<web-resource-collection><auth-constraint><user-data-constraint>
<auth-method><web-resource-name>
<web-resource-collection><auth-constraint>

<auth-constraint><web-resource-name>

OomMmoNw® >

<web-resource-collection><transport-guarantee><auth-method>

350 Chapter5: Security

7. Identify valid configurations for the <transport-guarantee> element in the deployment
descriptor. (Choose four.)

<transport-guarantee>CONFIDENTIAL</transport-guarantee>
<transport-guarantee>ENCRPYTED</transport-guarantee>
<transport-guarantee>FAILSAFE</transport-guarantee>
<transport-guarantee>ENCIPHERED</transport-guarantee>
Absent altogether from the deployment descriptor
<transport-guarantee />

<transport-guarantee>NONE</transport-guarantee>

IomMmoUO®»

<transport-guarantee>INTEGRAL</transport-guarantee>

8. Given the following incomplete extract from a deployment descriptor, what are possible ways of
accessing the protected resource named TheCheckedServlet? (Choose three.)

<security-constraint>
<web-resource-collection>
<web-resource-name>TheCheckedServlet</web-resource-name>
<url-pattern>/CheckedServlet</url-pattern>
</web-resource-collection>
<auth-constraint />
</security-constraint>
<security-constraint>
<web-resource-collection>
<web-resource-name>TheCheckedServlet</web-resource-name>
<url-pattern>/CheckedServlet</url-pattern>
<http-method>GET</http-method>
</web-resource-collection>
<auth-constraint>
<role-name>bigwig</role-name>
</auth-constraint>
</security-constraint>

Via another URL pattern (if one is set up elsewhere within the deployment descriptor).
Any authenticated user can access the resource.

Any user (authenticated or not) can access the resource.

Via RequestDispatcher.include().

Via RequestDispatcher.forward().

Via the URL pattern /CheckedServlet, provided the user is authenticated and has bigwig as
a valid role.

mmogQNn®>»

9. Which of the following might a web server consider important in ensuring a transport guarantee

of CONFIDENTIAL? (Choose four.)

Self Test 351

Base64 encoding

Server-side digital certificates
Symmetric keys

Asymmetric (public/private keys)
SSL

Client-side digital certificates

mmonw®»

10. (drag-and-drop question) The following illustration shows the declaration of a security
constraint in a deployment descriptor. Match the lettered blanks in the declaration with
numbered choices from the list on the right.

<security-constraints>

| 1 | collection |
<[A >
< B > | 2 | check
TheCheckedServlet
</ c > | 3 | url-collection |
< D >/MyServlet</ E >
<http-method>[F J</http-method> | 4 | transport-guarantee
<http-method>[G J</http-method>
</l H > | 5 | resource-collection
<auth-[T >
<role-name>Jl/role-name> | 6 | N |
</auth-[X > .
<user-data-constraint> | 7 | method |
<[L |>
CONFIDENTIAL | 8 | web-resource-name
</| M >
</user-data-constraints> | 9 | POST
</security-constraint>
| 10 | transport-constraint
| 11 | web-resource-collection |
| 12 | url-pattern
| 13 | constraint
Bk |
| 15 | GET |

Authentication Types

Il. The following web page is defined as the custom form login page for authentication.
Assuming that you have attempted to access a protected resource and been redirected to
this web page, what is the result of filling in the user name and password fields and pressing
subMIT! (Choose one.)

352 Chapter 5: Security

<html>

<head><title>Login Form</title></head>

<body>

<form action="jsecuritycheck" method="POST">

Name: <input type="text" name="jusername" />

Password: <input type="password" name="jpassword" />

<input type="submit" value="Log In" />

</form>

</body>

</html>

You will not be redirected to this page in the first place.
HTTP 401 or 403 error (forbidden /not authorized).
HTTP 404 error (page not found).

HTTP 500 error (server error).

The page is redisplayed.

moOw>

12. (drag-and-drop question) The following illustration shows the declaration of a login configura-
tion in a deployment descriptor. Match the lettered blanks in the declaration with numbered
choices from the list on the right.

<login-config>

| 1 | error.html |
A easic</[B
{C—cPosborne D} [2 [ervor-page |
</login-configs>
. i | 3 | realm |
<login-config>
<[E [>[F J</I G > | 4 | domain
</login-configs>
) . | 5 | realm-name |
<login-config>
" PprorM/[T] (& [/iogin] |
6 login.js
4 = / /login.jsp
< K > L </ M > | 7 | auth-method |
< N >| [¢) J</[P |>
</|. 9 > | 8 | auth-constraint
</login-configs>
9	form-login
10	CLIENT-CERT
11	CONFIDENTIAL
12	form-login-config
13	form-error-page
14	login-page
15	form-login-page
16	login.html
17	/error.jsp

Self Test 3853

3. What is the result of the following login configuration? (Choose one.)

oNw® >

<login-config>
<auth-method>FORM</auth-method>
<form-login-config>
<form-login-page>login.html</form-login-page>
<form-error-page>error.html</form-error-page>
</form-login-config>
</login-config>

Application fails to start.
Application starts with warning errors.
Application runs, but access to a protected resource results in an HTTP 404 error.

Application runs and presents login form on a user’s first access to a protected resource.

Which of the following subelements might you expect to find in the <login-config> for
BASIC authorization? (Choose two.)

A
B
C.
D.
E.
F.
G

<auth-constraint>
<form-login-config>
<role-name>
<form-login-page>
<realm>
<auth-method>

<realm-name>

Which of the following subelements would you not expect to find in the <login-config> for

CLIENT-CERT authorization? (Choose four.)

A.

mgOo w

<auth-constraint>
<role-name>
<form-login-page>
<auth-method>

<realm-name>

354 Chapter5: Security

LAB QUESTION

In this lab, you’re going to attempt to set up secure transport over SSL using a server-side certificate.
Exactly how you do this is somewhat dependent on your environment. Because I’'m working with
the Tomcat server running under Windows XP, my instructions are biased toward that environment.
However, even if you're using another server and operating system, it shouldn’t be too hard to
discover your local equivalents for what I describe below.

First, we need a certificate, and we'll use Java’s J2SDK facilities for creating one. Here are the
(Windows XP) blow-by-blow instructions for this:

B Get to a command prompt. You'll need access to the keytool command (in <your J2SDK
installation directory>\bin).

B Enter the following command:

keytool -genkey -alias webcert -keyalg RSA

B Follow the on-screen prompts — the questions are straightforward! Take careful note of the
password you create —you’ll need it later.

B By default (on a Windows machine), the key information you have just generated is stored in your
home directory—for me, that’s C:\Documents and Settings \ David. Look for a file there called
keystore.

B In the absence of involving (and paying for) the services of a VeriSign or Thawte, you are going
to self-certify your key information. Do this by entering the command

keytool -selfcert -alias webcert

B You'll be prompted for the password you created earlier.

That’s your certificate, created and safely stored in a Java-style keystore.

Next, you need your server to recognize the certificate you have just set up. For Tomcat, that means
pointing a configuration item called a “connector” toward your keystore file. Find Tomcat’s main
configuration file —server.xml—in <Tomcat Installation Directory>/conf. Because you are going to
make changes to this file—and restore the original configuration later—make a copy of server.xml.

I’m running the 5.5 version of Tomcat, which meant I had to find the lines referring to the secure
connector shown below. By default, this connector configuration is commented out (with <!-- -->
tags), so I uncommented the element and added the lines in bold:

<!—Define a SSL Coyote HTTP/l.1l Connector on port 8443—>

<Connector port="8443"
maxThreads="150" minSpareThreads="25" maxSpareThreads="75"

Lab Question 355§

enableLookups="false" disableUploadTimeout="true"
acceptCount="100" debug="0" scheme="https" secure="true"
clientAuth="false" sslProtocol="TLS"
keystoreFile="C:\Documents and Settings\David\.keystore"
keypass="passwordyouchose">

Note that the value for the keypass attribute is the password you supplied when making the keystore,
so substitute the right value in the XML above. I'm hoping the steps for you are very similar— they're
slightly different for earlier versions of Tomcat (but then why are you using an earlier version?)—and
clearly, on a different server you'll need to find your own salvation!

All that remains is to implement a web application with a resource that’s protected by a
CONFIDENTIAL transport guarantee. Install this on your server, point your browser to the protected
resource, and see what happens.

356 Chapter 5: Security

SELF TEST ANSWERS

Security Mechanisms

I. M Bis the correct answer. The process of ensuring that data has not been tampered with in
transit through a network is described as proving the integrity of the data.
X A is incorrect: Data validation is not a term generally applied to security (it’s more usually
applied to checking the input data on a form, for example). C is incorrect: Authentication is
the process of proving you are who you claim to be. D is incorrect: Packet sniffing is a technique
for monitoring TCP/IP network traffic, used for good or evil—so is not in itself any kind of
security mechanism. E is incorrect—just because data has not been tampered with in transit
does not mean it’s remained private. Finally, F is incorrect: Authorization is the process of
determining what resources an authenticated user can use.

2. M Bis the correct answer. Authorization is the security mechanism that limits the availability
of resources to permitted groups.
X A is incorrect, even though authentication (identifying who you are) is a prerequisite for
authorization. C and D are incorrect: The integrity and confidentiality of network traffic have
no bearing on resources to which you may or may not be authorized. E and F are incorrect —
checksum validation is a (weak) technique for proving integrity, whereas MD5 encryption is
a (strong) technique to assist in encryption (often of passwords), but neither has to do with
authorization.

3. M A,D,andE are the correct answers. The deployment descriptor element that has to do
with authentication is <login-config>, and <auth-method> and <form-error-page> are
subelements (or sub-sub-elements) of <login-config>.

X B is incorrect, for <transport-guarantee> has to do with specifying data integrity and
confidentiality. C is incorrect: <role-name> turns up in several places in the deployment
descriptor. But regardless of position, its role (no pun intended) is always in authorization. F is
incorrect: <security-role-ref> can be found as a subelement of <servlet>, and has to do
with programmatic authorization (not authentication).

4. M Fis the correct answer. Filters can potentially play a part in all four aspects of security;
hence, they are not excluded from any aspect listed, and “none of the above” is the correct
answer. Filters can intercept user and password data on requests, and perform look-ups on
appropriate user directories, and hence perform authentication. Because filters are tied to
resources by URL pattern, and can in any case look at the requested URL, they can further
make a determination about whether a user is authorized to a resource. Furthermore, filters
can perform any check you want on incoming data to prove its integrity and perform any
amount of encryption and de-encryption in a chain of confidentiality. Of course, to do any or

Self Test Answers 3 87

all of this yourself in filter code might involve ignoring what your web container provides for
free, but the point remains that a filter can be used for almost any security purpose when a web
container mechanism is insufficient. And to go further than that—it could well be that your
web container (under the covers) is already making use of filters to provide the standard J2EE
security requirements described in this chapter.

& A, B, C, D, and E are incorrect according to the reasoning in the correct answer.

5. M A and B. A (authentication) is necessary to identify subscribed users. B (authorization) is
necessary to tie in the protected content with subscribing users.
C is incorrect and is simply a red herring word: “indication” is not a security mechanism. D
is incorrect—although client certification is a form of authentication (which will be required
in some form), it’s the least likely to be used in this circumstance —certificates imply heavy use
of encryption, which will add to processing overheads on client and server (and this is contrary
to the company’s requirements). E and F are incorrect, for while they are bona fide security
mechanisms, the requirements make it clear that absolute data integrity and privacy are not
crucial.

Deployment Descriptor Security Declarations

6. M CandE are the correct answers. C gives the full set of the three top-level elements; E
has only the first two (you don’t have to have a <user-data-constraint>— the default of
NONE for <transport-guarantee> is implied when this element is missing).

A is incorrect, for it mixes in security elements from wholly different parts of the
deployment descriptor and has <transport-guarantee> as an immediate child of
<security-constraint> when it is a grandchild. B is close, but still incorrect —<web-
resource-name> is a subelement of <web-resource-collection>, which would be
correct. D is incorrect: again, because of <web-resource-name>, and <auth-method>,
which has strayed over from <login-config>! F is incorrect for similar reasons; G is
incorrect: Only the first element is correct, and the other two are repeats of errors in
earlier choices.

7. M A,E, G, and H are correct. The valid values for <transport-quarantee> are
CONFIDENTIAL, INTEGRAL, and NONE. In addition, having the element absent
altogether is just fine (provided the parent element, <user-data-constraint>, is absent
also)—and will be interpreted as equivalent to the element being present with a value of
NONE.

B, C, and D are incorrect—all have bogus values. F is incorrect: To have the element
present with no value at all is illegal, and —even if not caught on application startup—may
cause unpredictable results.

358 Chapter 5: Security

8. M A,D,andE are the correct answers. D and E are correct because authority constraints are
applicable only for direct client requests. Internal web application servlet code that forwards
or includes a resource (even with the same URL pattern) entirely bypasses authority checking.
Of course, you can protect the method calls to forward and include with your own program-
matic authority checking if you wish. A is correct because it’s not the actual resource you are
protecting—rather, it’s a URL pattern to a resource. Authority checking on another URL
pattern is completely independent.

& B and C are both incorrect and show a misunderstanding of a “blank” <auth-constraint
/> element. The significance is that the URL pattern is denied to any user in any role—and
because as the <http-method> element is missing, this applies to any HT TP method used to
access the resource. F is incorrect: Although additional <security-constraint> elements
for the same URL pattern are generally compounded together, the effect of the “blank” <auth-
constraint /> element is to override any other specification.

9. M B,C,D,andE are the correct answers. B is correct— to establish SSL between client and
server, the server has to supply the client with its public key—and the best way of doing that
is typically through supplying a digital certificate. D is correct because asymmetric (public/
private) keys are part and parcel of encryption. C is also correct— symmetric keys (usually of
128 bits) are usually used for secure communication once asymmetric keys have been used to
pass the symmetric keys confidentially! Symmetric key encryption is faster than asymmetric
encryption, hence the attraction of this approach. E is correct because SSL (secure sockets
layer) is the usual network transport layer used for encrypted traffic.

X A is incorrect—the one thing in the list that won’t do anything toward confidentiality is
Base64 encoding, which is a highly insecure (but better than nothing) approach to obfuscating
the password when BASIC authentication is used. F is also incorrect —client-side digital cer-
tificates may well contribute to confidentiality, but their use has more to do with highly secure
authentication of clients. They are not essential for ensuring transport guarantees.

10. M The correct pairings are A, 11; B, 8; C, 8; D, 12; E, 12; F, 9; G, 15 (or F, 15; G, 9);
H,11;1,7;], 14; K, 7; L, 4; and M, 4. Either you know your <security-constraint>
elements or you don’t!

& Beware of almost correct but plausible choices such as <transport-constraint> instead

of <transport-guarantee>.

Authentication Types

Il. ™ E is the correct answer. The key to the question is noticing that the form HTML has
something close to the right values for the form action, user name, and password fields—but

Self Test Answers 3 59

not close enough. The proper attribute values have underscores: j_security_check, j_username,
j_password. So the form submits to the server. Instead of (as you might expect) an HTTP 404
error (because the resource jsecuritycheck doesn't exist), the server sees that no authorization
data has been provided, so it simply redirects to the log-in page again.

& A is incorrect— only a deployment descriptor error would prevent forwarding to the

page, not the HTML of the page itself. B is incorrect because you haven't had a chance to
access anything with incorrect authentication information —you’re still in the process of
gathering that information. C is incorrect for reasons explained in the correct answer. And
finally, D is incorrect: The server doesn't get to run a resource that is likely to terminate in

an error.

M The correct pairings are A, 7; B, 7; C, 5; D, 5; E, 7; F, 10; G, 7; H, 7; 1, 7;], 12; K, 15;
L, 6; M, 15; N, 13; O, 16; P, 13; and Q, 12. Again, there’s no real wiggle room here —you just
have to know what permutations of <login-config> make sense.

& No other combinations for <login-config> make sense from the choices that are
available.

M A is the correct answer— the application fails to start, for the application loading process
ends (or should end) in a deployment descriptor parsing error. The values for <form-login-
page> and <form-error-page> must begin with a forward slash (“/”).

& B, C, and D are incorrect because of the reasoning in the correct answer.

M F and G are the correct answers. F is correct because you must have an <auth-method>
element set to a value of basic. G is correct because you might (optionally) expect to find a
<realm-name> specified for BASIC (or DIGEST) authentication.

A is incorrect because an <auth-constraint>—while being a valid element name —

is part of <security-constraint>, not <login-config>. B and D are incorrect because
they are valid <login-config> elements, but are only appropriate for FORM authentication.
C is incorrect because the role-name element—while appearing in several places in the
deployment descriptor—has no “role” in login configuration. Finally, E is incorrect— the
element is <realm-name>, not <realm>.

M A, B, C, and E are the correct answers. A and B belong to other elements entirely. C

and E do belong to <login-config> but are appropriate to other forms of authentication, not
CLIENT-CERT.

D is incorrect, for <auth-method> is the one and only subelement of <login-config>

that should appear when client certification is used for authentication (with the appropriate
value of CLIENT-CERT, of course).

360 Chapter 5: Security

LAB ANSWER

There is a WAR file from the CD called lab05.war, in the /sourcecode [chapterQO5 directory. This
contains a sample web application, with a servlet called ConfidentialServlet appropriately protected
in the deployment descriptor. Call the servlet using a URL such as

http://localhost:8080/1lab05/ConfidentialServlet

You should find that you're prompted to accept a certificate in your browser (suitably dubious, given
that you signed it yourself —but at least you know where it came from!). Then you gain access to the
servlet, but you should notice the address line in your browser will subtly change to something like

https://localhost:8443/1lab05/ConfidentialServliet

In other words, you have been redirected to the secure port, and https gives you the clue that SSL is
being used for the transport layer. The solution page is shown in the following illustration:

A Highly Confidential Servlet - Microsoft Internet E

File Edit Miew Faworites Tools Help

Qs - © X B G P 5

Address |@ https:,l',l"ﬂta"'ll:lst.‘é‘_}q’a‘abDEICDnFidEntiaEEI"\.-"Et

This all assumes that you managed to create your certificate and configure your server correctly —
and there, 'm afraid, I can’t give you more help than I did in the lab instructions.

Don’t forget to restore Tomcat to its original state without security. Stop Tomcat. Take server.xml
in the conf directory and rename this to server.xml.secure. Take the copy you made of server.xml,
and replace this in the conf directory (if you renamed the copy, make sure you rename it back to
server.xml). Restart Tomcat.

