
CERTIFICATION OBJECTIVES

6
JavaServer Pages

 • JSP Life Cycle

 • JSP Elements

 • JSP Directives

 • JSP Implicit Objects

 ✓ Two-Minute Drill

 Q&A Self Test

362 Chapter 6: JavaServer Pages

In the previous chapters, you completed a thorough exploration of servlets. In most of the
remaining chapters, we will explore a technology that turns servlets on their head: JavaServer
Pages, also known as JSP technology, JSP pages, and sometimes simply JSPs. In the pure servlet

model, servlet writing is at the front of the development process. JavaServer Pages, by contrast,
place servlet creation at the back end of development. Servlets still play a crucial part, but they are,
in fact, generated and compiled from JavaServer Page sources.

This is such an important subject that you’ll fi nd a big emphasis placed on it in
the exam —you’re likely to encounter JSP technology in almost half the questions.
If you’re already familiar with JavaServer Pages at version 1.2, you’ll know that they
already contain an abundance of neat features. The current exam tests you on
version 2.0, which roughly doubles what you need to know about JSPs. If that’s
the bad news, then the good news is that the enhancements built into version 2.0
make JSP technology an ever more practical and fl exible choice for web application
development, so the skills you’re learning should be both useful and marketable.

CERTIFICATION OBJECTIVE

JSP Life Cycle (Exam Objective 6.4)
Describe the purpose and event sequence of the JSP page life cycle: (1) JSP page
translation, (2) JSP page compilation, (3) load class, (4) create instance, (5) call the
jspInit method, (6) call the _jspService method, and (7) call the jspDestroy method.

So is JSP technology “better” than servlets? Should you now forget what you learned
in the fi rst fi ve chapters (except for passing the exam, of course!) and hone your JSP
skills instead? I prefer to view servlets and JavaServer pages as complementary. You
might fi nd that a typical web application consists 90 percent of JavaServer pages
to encapsulate individual pages or “screens,” with 10 percent servlets to control
interaction between pages and business components.

The best way to understand when each approach is appropriate to use is to dive
into the detail. We’ll start with the above exam objective concerning page life cycle:
not actually the fi rst in Sun’s list, but the one I view as fundamental to getting a
handle on JSP technology.

JSP Translation and Execution
So why turn the servlet pattern on its head? Through the exercises, you have written
numerous servlets that produce HTML, generally by peppering a liberal sprinkling
of out.write() statements throughout the doGet() or doPost() method. By
contrast, JavaServer Page technology allows you to write snippets of Java code
between HTML statements. Here’s an example page that displays the current date
and time (note that the line numbers are not part of the source —imagine that you’re
looking in a text editor that displays line numbers):

01 <%@ page language="java" %>
02 <%@ page import="java.util.*" %>
03 <html><head><title>Simple JSP Example</title></head>
04 <body>
05 <h1>Simple JSP Example</h1>
06 <%= new Date() %>
07 </body>
08 </html>

Let’s just look at the overall “mix” of the lines. Lines 01, 02, and 06 are a bit
peculiar, so we’ll ignore them for now. However, the remaining fi ve lines are straight
HTML. Clearly, this approach confers a huge advantage. You’ll fi nd that JavaServer
Page source can consist primarily —even wholly — of HTML syntax. So the process
of page design is much more natural than writing HTML within a Java servlet source
fi le. And although the majority of JSP pages are designed to produce HTML, you’ll
see in later chapters how much work has been done to allow JSP pages to create
XML output.

JSP pages were intended to be a boon for project management—the web
designer could concentrate on the page design (without requiring Java
knowledge), and the Java programmer could later insert the dynamic Java
elements within the page design. Certainly this approach can work, although
it throws up a change control issue, for there will be occasions when both the
page designer and the Java programmer want to make changes to the same
page at the same time. You’ll see through the following chapters that there
is more and more emphasis in JSP technology on taking Java out of the page
and replacing it with other elements (Expression Language, custom tags) that
can—at least in theory—put the dynamic side of page construction in the
hands of the nonprogrammer.

JSP TLife Cycle (Exam Objective 6.4) 363

364 Chapter 6: JavaServer Pages

The JSP Translation Phase
As it stands, our JSP example above (displaying the date and time) doesn’t look much
like something that could one day become a Java object. How might this happen?
You deploy a JSP page into a JSP container (servlet containers such as Tomcat
are invariably JSP containers as well). The JSP container has mechanisms that
“translate” the page into something we do recognize as Java code: namely, a servlet.
The process is shown in Figure 6-1.

The translation occurs only when necessary, at some point before a JSP page has
to serve its fi rst request. Translation doesn’t have to happen again —unless the JSP
source code is updated and the page redeployed. A JSP container has discretion
regarding when the translation occurs. It can occur on demand: as late as the fi rst time
a user requests a JSP page. At the other extreme, JSP pages can be translated on
installation into a JSP container (a process often referred to as JSP precompilation).
Any point in between is possible (though less usual)—for example, when a web
application is loaded, a JSP container might choose to translate any new or changed
JSP pages.

FIGURE 6-1

The JavaServer
Page Translation
Phase

Syntax checking

Code generation

Generated servlet
source code

Compilation

Compiled servlet
class

JSP source code

Figure 6-1 shows that there are two outputs within the translation phase. The
fi rst is an interim output: a Java source fi le for a servlet. The second is the compiled
class fi le from the servlet source. The class fi le is retained for future use, and most JSP
containers give you an option whereby you can retain the servlet source for debugging
purposes (the default is generally to discard the source within the translation phase).
The servlet created isn’t just any old servlet —it has some special characteristics. In
particular,

■ The servlet (or one of its superclasses) must implement the javax.servlet.jsp
.HttpJspPage interface, or . . .

■ For the tiny minority of non-HTTP, specialist JSP containers, the servlet (or one
of its superclasses) must implement the javax.servlet.jsp.JspPage interface.

How does this work? Well, you get an individual servlet based on your Java
source—naturally, every JavaServer Page is different. And remember it’s the container
that provides this, through very clever code generators. Because it’s a servlet, the
code is likely to inherit from GenericServlet, which incorporates lots of useful servlet

behavior. But because JSP servlets have to obey
some special rules, a vendor will typically have a
specialized JSP base servlet—perhaps extending
HttpServlet or GenericServlet, and extended
by all generated JSP servlets. In Tomcat, this is
called org.apache.jasper.runtime.HttpJspBase.
The inheritance tree for the Tomcat-generated
servlet from JSP source is shown in Figure 6-2.
Although it’s “vendor-specifi c,” showing it is

instructive. You can see Tomcat makes as much use as possible of existing classes and
interfaces in the standard javax.servlet and javax.servlet.http packages.

What did I mean when I mentioned non-HTTP JSP containers? HTTP is by far
the main protocol, but the JSP spec is fl exible enough to accommodate any request /
response protocol you wish to implement. The JspPage interface API documentation
says that you have to implement a _jspService() method, but it doesn’t include
the method defi nition in the interface code. In this way, you are free (as a JSP
container designer) to defi ne whatever types you like for the request and response
parameters. For the majority of us JSP developers, though, we’ll be more than happy
that our conventional HTTP containers implement the HttpJspPage interface —
which contains the following signature for the _jspService() method:

public void _jspService(HttpServletRequest request,
 HttpServletResponse response);

Note that the HttpJspPage
interface extends JspPage, so generated
JSP servlets (or their superclasses) always
implement the defi ned methods within
JspPage.

JSP TLife Cycle (Exam Objective 6.4) 365

366 Chapter 6: JavaServer Pages

As for the exact form the code in your
generated servlet takes, that’s vendor-specifi c.
The exercise at the end of this section tells you
where you might fi nd the Tomcat container’s
source code.

A fi nal note about translation: If a page
fails to translate, an HTTP request for the
page should give rise to a 500 (server error)
communicated back in the HTTP response.

org.apache.jsp.

myjspname_jsp

org.apache.jasper.runtime.

HttpJspBase

javax.servlet.http.

HttpServlet

javax.servlet.

Servlet

javax.servlet.

ServletConfig

javax.servlet.jsp.

JspPage

javax.servlet.jsp.

HttpJspPage

javax.servlet.

GenericServlet

java.lang.

Object

Key

Extends

Implements

Class

Interface
The generated
servlet from

myjspname.jsp
page source

FIGURE 6-2

Class Hierarchy
for Generated
Servlet from JSP
Source (Tomcat)

You’ll see that the exam
objective we’re covering talks about trans-
lation followed by JSP page compilation
as two separate stages. My understanding
of the JSP spec tells me that translation
includes servlet source compilation (as
well as syntax checking and servlet source
generation). You’re unlikely to encounter
a question in which this distinction
matters—just be aware that “translation”
is slightly ambivalent, even within
documentation originating from Sun.

The JSP Request /Execution Phase
The request (or execution) phase of a JSP page is remarkably similar to the servlet life
cycle. You can remind yourself of this by looking at Figure 1-9 in Chapter 1— then
comparing this with Figure 6-3. Of course, because JSP pages are —ultimately —
servlets, the request life cycle of a JSP page is controlled from within a servlet’s life
cycle, and we’ll need to discuss how the two relate.

Just as for any other servlet, the JSP page’s servlet class is loaded, and an instance
of it is created. Generally speaking, there will only be one instance corresponding
with a JSP. One of the delights of JSP pages is that they don’t have to be registered at
all. Just place them in the accessible area of a web application directory structure, as
shown in the following illustration.

FIGURE 6-3

The JavaServer
Page Request
Phase

1

2

3

Multiple requests for same JSP
(may be concurrent)

http://www.osborne.com/lifecycle.jsp

http://www.osborne.com/lifecycle.jsp

http://www.osborne.com/lifecycle.jsp

http://www.osborne.com/lifecycle.jsp

http://www.osborne.com/lifecycle.jsp

http://www.osborne.com/lifecycle.jsp

JSP container

Single instance
of a servlet
translated from
lifecycle.jsp

Multiple
threads

1

2

3

(a) Servlet representing lifecycle.jsp loaded, static
initialization
(b) Instance of representing servlet created
(c) jspInit() called
Rules: must happen in order (a), (b), (c) (though
these don’t have to happen in quick succession)

Must happen before 2

Requests to lifecycle.jsp processed by calling the
_jspService() method on the corresponding
servlet. May occur in multiple concurrent threads.

Servlet representing lifecycle.jsp taken out of service:
• jspDestroy() called
• instance of servlet garbage collected

_jspService()

jspInit()

jspDestroy()

JSP TLife Cycle (Exam Objective 6.4) 367

368 Chapter 6: JavaServer Pages

And, provided they have a fi le extension (usually .jsp) recognized by your
application server, no further work needs to be done. However, you can register a
JSP page in the same way as a servlet. You even use the <servlet> element, with
one vital difference —where the <servlet-class> would appear, you substitute
<jsp-file> instead. Here’s part of web.xml fi le that registers the same JSP twice
over, under separate names and with separate mappings:

<servlet>
<servlet-name>JspName1</servlet-name>
<jsp-file>/instanceCheck.jsp</jsp-file>

</servlet>
<servlet-mapping>

<servlet-name>JspName1</servlet-name>
<url-pattern>/jspName1</url-pattern>

</servlet-mapping>
<servlet>

<servlet-name>JspName2</servlet-name>
<jsp-file>/instanceCheck.jsp</jsp-file>

</servlet>
<servlet-mapping>

<servlet-name>JspName2</servlet-name>
<url-pattern>/jspName2</url-pattern>

</servlet-mapping>

So I have a JSP page called “instanceCheck.jsp” installed directly in the root
of my web application. Suppose that I install this under Tomcat using a context

</appSvrRoot/webapps>

/catalogapp

/morejsps

/WEB-INF

index.html

web.xml

catalog.jsp

<web-app>

<jsp>

another.jsp<jsp>

/classes

/lib

JSPs tend to go here…
in the user-accessible

part of the web application,
either in the context root or
in their own named directory

off the context root.

directory called examp0601. I have three valid URLs for accessing this JSP. This
is the normal way, which ignores any registration details —just use the name of the
JSP itself:

http://localhost:8080/examp0601/instanceCheck.jsp

Alternatively, I can use the servlet mapping corresponding to my fi rst registered
name for the JSP page, JSPName1:

http://localhost:8080/examp0601/jspName1

Or, of course, I can use the second mapping:

http://localhost:8080/examp0601/jspName2

The point to note is that just like servlets (and after all, a JSP page is —
ultimately —a servlet), each of these three methods of access establishes
three separate instances of the servlet class within the web container. Multiple
instances will occur like this only when the JSP page is registered in more than
one way. The following illustration shows how this might look inside the JSP
container’s JVM.

Instance 1

Web application

JSP container JVM

Concurrent requests for
http://.../instanceCheck.jsp

Class
instanceCheck_jspInstance 2

Concurrent requests for
http://.../jspName1

Instance 3

Concurrent requests for
http://.../jspName2

Multiple
threads

JSP TLife Cycle (Exam Objective 6.4) 369

370 Chapter 6: JavaServer Pages

It’s worth noting that you can exploit all the other <servlet> elements in web
.xml for your JSP page. Most usefully, you can set up initialization parameters exactly
as you would for a normal servlet.

If you want to suppress direct access to a JSP (so that users have to go
through a registered name and a servlet mapping), locate the JSP page
under WEB-INF.

Having established how instances of a JSP’s servlet get created, let’s return to the
life cycle diagram in Figure 6-3. At 1 in the fi gure, we see that three things happen
(very often in succession, but not always). The servlet class is loaded, and any static
initialization occurs. Then an instance of the servlet comes into being through
normal construction processes. After this, the servlet’s init(ServletConfig
config) method is called by the servlet container (as per normal servlet life cycle
rules)—which must call the jspInit() method. So jspInit() becomes a JSP
page’s equivalent of init(ServletConfig config)—it gets called once when the
JSP page’s servlet instance is created, and never again for that instance. So you
are welcome to use this method for any one-off setup processes required for the
JSP page.

Then at 2 in Figure 6-3, we see multiple requests being made to the JSP. Under
the covers, this calls the generated servlet’s service(request, response)
method, which in turn is obliged to call the method _jspService(), passing
on the request and response parameters. _jspService() constitutes the bulk of
your generated JSP servlet. For one thing, all that HTML text in our original JSP
source —lines such as

<html><head><title>Simple JSP Example</title></head>

has to be turned into servlet code equivalent —for example,

out.write("<html><head><title>Simple JSP Example</title></head>");

The same applies to the dynamic elements of the JSP source as well. So

<% = new Date() %>

might become

out.write(new Date());

in the _jspService() method.

ON THE CD

Multiple threads may access _jspService() at the same time, so all the
comments about thread safety and the servlet’s service() method are just as
applicable to the _jspService() method.

Ultimately, a JSP container will decide to discard your generated servlet
instance — the circumstances are the same as for servlets. It could be to save
resources, because the web application or entire server is being closed down, or
for arbitrary reasons of its own. At this point, the servlet’s destroy() method is
called (nothing new here)—which, because it’s a JSP page servlet, must call the
jspDestroy() method. So jspDestroy() is called before the instance of the JSP
servlet is nullifi ed and garbage collected, giving you the opportunity to reclaim
resources in a controlled fashion. The container guarantees that jspService() will
have completed for all requesting threads on the instance before jspDestroy() is
called —unless this is overridden by a server-specifi c timeout.

If you want to harness
jspInit() and jspDestroy() for
your own setup and tear-down processes,
you can—by overriding either or both
in a JSP declaration, which we explore
a little later in this chapter. What if you
decided to override the servlet equivalents,
init(ServletConfig config) and
destroy()? Well, the JSP spec says
you can’t and mustn’t do this. Most JSP
container providers prevent this happening
by making all Servlet interface methods
fi nal in the base JSP servlet that they

provide—your generated JSP servlet that
inherits from this can’t possibly override
them.

And while on the subject of overriding,
you can’t override _jspService() either.
This method represents your page source
in Java code form—it’s up to the clever
container’s page generators to worry about
the implementation and generation of this
method for each individual JSP. It makes no
sense for you to override it within the JSP
page itself.

EXERCISE 6-1

JSP Life Cycle
This exercise has you write a JSP that documents its own life cycle. We’ll also get
the JSP to indicate which class your JSP servlet inherits from. You’ll meet a couple
of concepts documented fully later in the chapter, but don’t worry: The steps in the
exercise give you enough explanation to follow through without reading ahead.

JSP TLife Cycle (Exam Objective 6.4) 371

372 Chapter 6: JavaServer Pages

If you haven’t removed any server security settings from the previous chapter, do
so now in case they interfere with this and subsequent exercises. The instructions
(for Tomcat) can be found with the lab solution at the end of Chapter 5.

For this exercise, create the usual web application directory structure under a
directory called ex0601, and proceed with the steps. There’s a solution in the CD
in the fi le sourcecode/ch06/ex0601.war —check there if you get stuck.

Create the JSP

 1. Create an empty fi le directly in your newly created context directory, ex0601.
Call it lifecycle.jsp.

 2. Within lifecycle.jsp, include simple HTML for a complete web page, such as
shown below:

 <html>
 <head>
 <title>JavaServer Page Lifecycle</title>
 </head>
 <body bgcolor="#FFFFFF">
 <h1>To illustrate JavaServer Page lifecycle</h1>
 </body>
 </html>

 3. Now you’ll add some Java code. This must be earmarked as a JSP
declaration —we learn what that is later in the chapter. Beneath the
HTML, type the syntax for opening a JSP declaration:

 <%!

 Then leave some blank lines (this is where you will type Java code, as
described in the next steps). Close the declaration after the blank lines
with the closing syntax:

 %>

 4. As described in the chapter already, your JSP page will be turned into a
servlet that extends some base class provided by your application server
(and we’ve been using Tomcat). This base class will implement the interface
HttpJspBase, which in turn extends interface JspBase. This means that the

methods jspInit() and jspDestroy() are available to override. Write the
jspDestroy() method between the <%! and %> exactly as if it were your
Java source editor, and type the Java in just as you would any other method in
a normal .java fi le. Make this method do something to indicate it has fi red —
System.out.println("This method is jspDestroy()") will do fi ne.

 5. Immediately after jspDestroy() and before the closing %> marker, write
a jspInit() method. This should also indicate (through a System.out
.println) which method has been called. However, also include some code
to show the type name of the class generated (a hint if you’re not familiar
with Java’s refl ection facilities: this.getClass().getName()). Also include
some code that shows at least the immediate superclass of this class (another
hint: The Class class has a getSuperClass() method). Again, make this
output visible through System.out.println().

 6. Now we’ll introduce more Java code, this time as “scriptlet” code. Again, you
won’t have to wait long for an explanation — the following section of this
chapter will furnish you with one. Like declarations, scriptlet code must go
between two markers: this time <% at the beginning and (as for declarations)
%> at the end. Put in these markers at the end of your lifecycle.jsp fi le,
leaving some blank lines between them.

 7. Scriptlet code doesn’t include any kind of method declaration, for the
resulting generated code is incorporated directly into the _jspService()
method. Type in code between the <% and %> markers that gives some
indication that it is the _jspService() method which is being executed.
Again, a simple System.out.println() statement will suffi ce.

 8. Ensure that you save the fi le lifecycle.jsp before exiting your text editor.

Deploy and Run the JSP

 9. Create and deploy a WAR fi le that contains lifecycle.jsp to your web server,
and start the web server.

 10. Use your browser to request lifecycle.jsp using a suitable URL, such as

 http://localhost:8080/ex0601/lifecycle.jsp

 11. Refresh your browser a few times to re-request the JSP page. Take a look at your
server console window. Here’s some (edited) output from the solution code:

JSP TLife Cycle (Exam Objective 6.4) 373

374 Chapter 6: JavaServer Pages

org.apache.jsp.lifecycle_jsp.jspInit(lifecycle_jsp.java:27)
Class org.apache.jsp.lifecycle_jsp
subclass of org.apache.jasper.runtime.HttpJspBase
 which implements interfaces: interface javax.servlet.jsp.HttpJspPage
subclass of javax.servlet.http.HttpServlet
 which implements interfaces: interface java.io.Serializable
subclass of javax.servlet.GenericServlet
 which implements interfaces: interface javax.servlet.Servlet, javax.servlet.
ServletConfig, java.io.Serializable
subclass of java.lang.Object
org.apache.jsp.lifecycle_jsp._jspService(lifecycle_jsp.java:108)
org.apache.jsp.lifecycle_jsp._jspService(lifecycle_jsp.java:108)

 12. Your jspInit() code should show you the inheritance hierarchy of your
servlet, as the solution code does above (the solution code also throws in a bit
extra, by showing the interfaces implemented by each class in the hierarchy).
You can see from the solution code output above that the generated servlet
for the JSP page is called lifecycle_jsp. Its immediate parent is org.apache
.jasper.runtime.HttpJspBase — supplied with Tomcat to act as a base class
for all generated JSP servlets. Note that this implements the HttpJspPage
interface (as per the rules for servlets of this kind). The hierarchy looks more
familiar after that. HttpJspBase inherits from HttpServlet, which —as you’ll
remember from the earlier chapters —inherits from Generic Servlet.

 13. You should also see a line of output for each time you refreshed your browser
window, to indicate that the _jspService() method executed.

 14. Causing the jspDestroy() method to execute is a little more diffi cult. You
could close your application server altogether, but then you lose your con-
sole window! You can probably track down the fi le containing the log from
console output (if your server is confi gured to save all console output). An
alternative —at least in Tomcat —is to remove the context for this exercise
but keep the server running. I achieve this by issuing a command to the
Tomcat manager application, which should be running by default. The URL
to issue the command looks like this, and you enter it as a regular address in
your browser:

 http://localhost:8080/manager/stop?path=/ex0601

 You may well be prompted to sign on, for the manager application is secured
by default. You need to choose a user in the manager role. The list of users
(as discussed in Chapter 5) is in the <TOMCAT_INSTALLATION

_DIRECTORY>/conf /tomcat-users.xml. If there isn’t a user already present
with the manager role ascribed, add a <user> entry under an existing <user>
entry, looking like this:

<user username="manager" password="tomcat" roles="manager"/>

 Restart the Tomcat server, and reissue the stop command. Now sign on as
user “manager” with password “tomcat,” and you should get this message in
your browser:

 OK—Stopped application at context path /ex0601

 Check the console. You should see some indication that the jspDestroy()
method has fi red. In the solution code output it looks like this:

org.apache.jsp.lifecycle_jsp.jspDestroy(lifecycle_jsp.java:54)

Check the Translation Output

 15. If you’re using Tomcat, the generated servlet Java source and compiled class
will, by default, be kept in the following directory:

<Tomcat Installation Directory>/work/Catalina/localhost/<context-directory>/
org/apache/jsp

 16. You are looking for a fi le called lifecycle_jsp.java. (Tomcat appears to name
the generated servlet source fi le according to the name of the JSP source fi le,
with a _jsp suffi x added. The extension becomes .java to denote that this is a
Java source fi le.)

 17. Browse lifecycle_jsp.java with a text editor. Find the jspInit(), jsp
Dstroy(), and _jspService() methods. Note how all the jspInit() and
jspDestroy() code comes from what you typed into the JSP page source.
Now look at _jspService(). You’ll see that the code you supplied in the
JSP page source is a relatively small percentage of the whole. There’s lots of
code dedicated to setting up “implicit” objects (we’ll come across these at the
end of this chapter) and plenty of code that simply writes out the template
HTML text to an output stream —just as would happen if you were writing a
servlet by hand. Here’s an extract:

JSP TLife Cycle (Exam Objective 6.4) 375

376 Chapter 6: JavaServer Pages

out.write("\n");
out.write("<html>\n");
out.write("<head>\n");
out.write("<title>JavaServer Page Lifecycle</title>\n");
out.write("</head>\n");
out.write("<body bgcolor=\"#FFFFFF\">\n");
out.write("<h1>To illustrate JavaServer Page lifecycle</h1>\n");
out.write("</body>\n");
out.write("</html>\n");

 18. That’s the end of the exercise —you’ve now seen the JSP life cycle in action
and seen fi rsthand how closely tied it is to the servlet life cycle.

CERTIFICATION OBJECTIVE

JSP Elements (Exam Objective 6.1)
Identify, describe, or write the JSP code for the following elements: (a) template text,
(b) scripting elements (comments, directives, declarations, scriptlets, and expressions),
(c) standard and custom actions, and (d) expression language elements.

The exam objective above covers almost everything that can legally appear in a JSP
page. When JSP technology was fi rst released, it contained only template text and
scripting elements —(a) and (b) in the objective in the section head above. This
section will focus on these aspects, for they are the most fundamental. Standard
and custom actions —(c)—came later, and will have a separate section (and exam
objective) of their own in Chapter 7, as will expression language —(d)—which is a
powerful but quite recent addition to the JSP repertoire.

Template text is easy to explain: It’s any HTML or XML (or indeed any type
of content at all) that you care to include in your JSP page. Template text is sent
unchanged to response output. This is not so with scripting elements: There are
several different sorts, and the JSP container works hard to turn these dynamic
elements into something else —usually a coherent string of HTML or XML.
Together with the template text, this completes the page response.

These are the topics we investigate in this chapter. In your own work
environment, you may fi nd such “traditional” scripting elements deemphasized in

favor of custom tags and expression language. This is even refl ected in the exam,
which concentrates more on the newer aspects of JSP syntax. However, you must
gain a sound knowledge of the older features. The exam still has plenty to say about
them (often in combination with the newer JSP features), and you will doubtless
be called upon to read, understand, and maintain JSP pages that rely heavily on
traditional scripting elements. And although you’re encouraged to use the newer
features, they are not in any sense deprecated — there are times when these elements
are the best or only approach to solving a problem.

Anatomy of a JSP Page
Before diving into the detail, take a look at Figure 6-4, which breaks down the
composition of a JSP page into all its possible constituents.

You can see in Figure 6-4 show a JSP page divides into template text and ele-
ments. Elements fall into three types: directive, scripting, and action. There are two
forms of scripting (EL or “traditional”) and two forms of action element (standard or
custom). The lightly shaded areas correspond to the topics covered in this chapter.

JSP page source

Template text

Elements
Directives

Scripting

Actions

Expressions, Scriptlets, Declarations, Comments

Language-based

Standard

EL

Custom

FIGURE 6-4

Anatomy of a
JSP Page

JSP Elements (Exam Objective 6.1) 377

378 Chapter 6: JavaServer Pages

Template Data
A JSP source page generally starts life as a regular piece of static HTML or XML. As
the JSP specifi cation puts it, JSP technology supports the “natural manipulation” of
text and XML —you can write it as it would appear in a normal document. And this
constitutes the template data in a JSP page —anything that’s static: source that the
JSP container doesn’t have to translate into anything else beyond String parameters
to simplistic “out.write()” servlet source code statements.

We saw how this worked at the end of the exercise in the previous section. Here’s
a further example, this time for XML. This is the opening of some JSP page source,
containing only XML template text:

<project name="webmodulebuilder" default="deploy" basedir=".">

 <!-- set global properties for this build -->
 <property file="build.properties" />
 <property name="dist" value="../../dist" />
 <property name="web" value="../" />

This manifests itself in the generated servlet I’m looking at (from Tomcat)
like this:

out.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
out.write("<project basedir=\".\" default=\"deploy\"
name=\"webmodulebuilder\">");
out.write("<property file=\"build.properties\"/>");
out.write("<property value=\"../../dist\" name=\"dist\"/>");
out.write("<property value=\"../\" name=\"web\"/>");

So the XML is more or less unchanged —apart from the addition of lots of back-
slashes in the Java source to escape double quotes. You’ll fi nd — particularly with
XML — that JSP containers give short shrift to ill-formed documents. We revisit
XML generation from JSP page source in Chapter 7.

Having dealt with the constant template aspects, let’s turn our attention to the
more interesting areas of JSP page source: page elements.

Elements of a JSP Page
In JSP page source, if it’s not template text, it must be an element. An element is
simply something that can’t stand as it is —it needs to be translated. An element is
always recognizable through a standard set of characters to mark its beginning and

end. Many elements use XML-style opening and closing tags for this purpose. Other
elements use different conventions —here’s a scriptlet element:

<% System.out.println("A scriptlet"); %>

However, the principle is the same — opening characters (<%) and closing
characters (%>).

There are three types of element possible in a JSP page:

 1. Directive elements. You most often use these to communicate global
information to your page, which is independent of any particular request.
For example, you might use an appropriate directive for importing classes you
need: These will translate to Java source import statement in the generated
servlets. We explore directive elements in the next section of this chapter.

 2. Action elements. These use XML-style tags for the inclusion of dynamic data.
You get many as “standard” with JSP containers, but can still build your own
“custom” actions. We start exploring actions at the beginning of Chapter 7.

 3. Scripting elements. There are two kinds. There is a newer, preferred syntax
called Expression Language, or EL. We meet this in Chapter 7. Then there is
the Java language-based approach. Either way, the purpose is to incorporate
dynamic information or execute presentation logic. We explore the “tradi-
tional” Java language approach in this section of the chapter.

So let’s look at the language-based scripting elements in more detail—all are
retained in JSP 2.0, despite the wealth of alternatives. There are four in all:

 1. expressions, which exploit Java code to place some output directly in the JSP
page. We’ve met an example already: <%= new Date() %>.

 2. scriptlets, for more extended pieces of Java code, as long as it’s legal Java
code that works in the context of the _jspService() method. The code
doesn’t necessarily contribute anything to the page output —for example,
you might write a scriptlet like this —<% System.out.println("in the

jspService() method"); %>—just to log some information to the server
console, as we did in the last exercise.

 3. declarations, for any piece of Java code that needs to exist in the generated
servlet but outside the _jspService() method. Declarations usually consist
of whole methods, more rarely of instance and class data members (and why

JSP Elements (Exam Objective 6.1) 379

380 Chapter 6: JavaServer Pages

would you use them? A JSP becomes a servlet with its related thread-safety
issues —you should be using session or context attributes instead!). Here’s
a short declaration example: <%! public void jspInit() { // Do
nothing } %>.

 4. comments, to denote any lines you want to be completely ignored by the JSP
page translation process. They’ll appear in the JSP page source but nowhere
else. Example: <%-- Author: David Bridgewater --%>.

You can see that all four of these scripting elements have similar syntax—all contain
angle brackets, percent signs, and some additional characters as well. Whichever
kind you’re using, there is a rule that the beginning and end markers (such as
<% and %> for a scriptlet) must appear in the same physical source fi le. Beyond
that, anything goes (well, most things): White space, carriage returns, and tabs
are all permissible, just as in normal source code.

With that preliminary survey complete, let’s look a little more closely at the
niceties of each of these four scripting elements.

Expressions
As we noted before, expressions use the result of evaluating a piece of Java code
directly in the page output. You might understand this better if you see how an
expression is dealt with in the generated servlet. Let’s take the example we’ve used
all along: including a call to the no-argument constructor of the java.util.Date object
in the JSP source. The Date object produced by the constructor call represents the
current date and time. Here’s how it looks when used in the JSP page source:

<%= new java.util.Date() %>

When this is generated into servlet code, the resulting Java statement will probably
look like this:

out.print(new java.util.Date());

out is an instance of a javax.servlet.jsp.JspWriter, and it is associated with the
response for the generated servlet. And you can see what happens: The contents of
your JSP expression are used directly as the parameter to the print() method. You’ll
see from the API documentation that this is an overloaded method. In this case,
we’re invoking the version that accepts an object. The object is turned into a String
through a call to the String.valueOf(Object) method, which ultimately uses
the toString() method on the object to return a String value. In the case of the

Date object, it will be the current date and time formatted according to the default
locale on the server running your JSP container. So the onus on you as the JSP page
developer is to ensure that whatever expression you use (and it can be as complex as
you like), the result is a String object.

JspWriter’s print()
methods are overloaded to accept
primitives, so you won’t run into diffi culties
including expressions that evaluate (for

example) to an int. However, you must at
all costs avoid void! If the expression you
use is a method with no return value, your
JSP page will fail the translation stage.

An expression must begin with <%= and conclude with %>. Whatever Java you
place inside the expression, remember not to terminate it with a semicolon! The
Java used will be employed as parameter code inside a method call (which is itself
inside the _jspService() method).

Scriptlets
Scriptlets allow you to include an extended series of Java statements inside the
_jspService() method that are executed on every request to the page. This
time, the Java statements are incorporated “as is,” so you must terminate each
with a semicolon, unlike expressions. A scriptlet begins with a <% and ends with
a %>. Here’s an example JSP page, which incorporates four scriptlets and two
expressions:

<html><head><title>The Planets</title></head><body>
<% /* Scriptlet 1 */
 String[] planets = {"Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn",
"Uranus", "Neptune", "Pluto"};
%>
<table>
 <tr><th>The Planets—in order by distance from the Sun </th></tr>
<% for (int i = 0; i < planets.length; i++) { /* Scriptlet 2 */
 if (i == 3) { // fourth rock from the sun %>
 <tr><td><%=(planets[i] + ", the red planet").toUpper
Case()%></td></tr>
<% } else { /* Scriptlet 3 */ %>
 <tr><td><%= planets[i] %></td></tr>
<% } /* Scriptlet 4 */
 } %>
</table></body></html>

JSP Elements (Exam Objective 6.1) 381

382 Chapter 6: JavaServer Pages

The output from this JSP page is shown in
the illustration on the left. You should see that
Mars (the fourth planet in the array) shows up
in capital letters with some extra description and
in a slightly different shade of gray to represent
the red writing! Better still, use the electronic
version of the book to copy the JSP source into
a .jsp fi le, and deploy it on your server.

Let’s analyze what the page source is doing.
Scriptlet 1 sets up a String array, containing a
list of planets. Some HTML follows, setting up
a table with a heading row. Scriptlet 2 begins a
loop to iterate through the planet names in the

array and a condition to do something different for Mars, while Scriptlet 4 —
consisting of only two closing braces —ends the condition and the loop. Scriptlet
3 provides the default behavior for all the planets that aren’t Mars. Interspersed
among the second and third scriptlet we fi nd two pieces of HTML containing
expressions — one for normal planets and the other for Mars.

You see here two principal reasons for using scriptlets:

 1. To set up data for display (fi rst scriptlet)

 2. To control the logic of what is displayed (second, third, and fourth scriptlets)

The template text (such as <tr><td>) is incorporated as
out.write() statements in the _jspService() method, and expressions (such as
<%= planets[i] %>) as out.print() statements —we’ve discussed both already.
To complete the picture, you must remember that template text, expressions, and
scriptlets are all translated and generated into _jspService() in order of their
appearance in the JSP page source. The power lies in mixing the three together. So
you can dictate —for example — that a particular piece of template text and an
expression lie within the body of a “for” loop.

There are some consequences following from this. For one thing, scriptlets don’t
have to comprise complete blocks of code. In the example, we saw a “for” loop
begun in the second scriptlet and ended in the fourth. Indeed, it’s mostly undesirable
to have scriptlets self-contained, for you can’t include expressions and template text
within one scriptlet: Within the <% and %> scriptlet boundaries, you can insert only
valid Java source code.

Another consequence: You can declare a local variable in one scriptlet and use
that in another scriptlet or expression —as long as that happens at some later point

in the code. So in the example, the fi rst scriptlet declares the local variable planets of
type String array, then uses this at two points in later expressions. You can imagine
(or try out!) what occurs if you move the fi rst scriptlet declaring the String array to
the end of the Java page source. Of course, scoping rules apply: If you have a complex
nesting structure with your braces, you have to be careful not to create visibility
problems for your local variables. The moral is this: Keep it simple!

Before leaving the topic of scriptlets: Note in the example page source that I have
been annoyingly inconsistent in my use of the <% and %> markers. Sometimes these
appear in a line to themselves and sometimes on the same line as some Java source
code. I have, of course, done this deliberately to make the point —it doesn’t matter.
The generated servlet code may have a few extra page breaks thrown in to correspond
with extra carriage returns, but syntactically it just doesn’t matter. However, I would
advise choosing or adopting a consistent style to avoid annoying your coworkers.

Any Java code can be
placed within scriptlets. Most scriptlet-
based questions in the exam are as much

a test on Java behavior as they are on JSP
syntax. So don’t forget all that hard-won
SCJP knowledge just yet!

Of course, because you can use the full power of Java within the JSP page
source, the temptation is to do so. There are very real objections to doing
this—though I have to say, less real than they used to be. JSP page source was
traditionally impossible to debug until the JSP page was deployed and turned
into a servlet. Then you would have to fi nd the servlet and debug that—not
generally easy, and sometimes impossible if the page translation process
didn’t result in a legal piece of Java source in the fi rst place. JSP page source
editors—again traditionally—had no capability to spot any Java syntax
errors you made in your script. However, that position has changed. Page
source editors—even free, open source ones (I use a product called Lomboz
plugged into the Eclipse IDE)—give instant feedback on compilation problems
before you get anywhere near deploying your page. Some commercial editors
(IBM Rational Application Developer, for example) even allow real-time
debugging of the Java page source: You can place breakpoints in the Java page
source and “step through” the page as if it were real Java code.

But with all of that, I would still maintain that if you are writing complex
Java code in your JSP page source, there is probably a better place for that
code—in a custom tag or even a servlet. Expression Language and JSTL

JSP Elements (Exam Objective 6.1) 383

384 Chapter 6: JavaServer Pages

(coming soon to your JSP page source!—see chapters 7 and 8) can usually
provide a more maintainable way of dynamically determining page contents
than can Java code. But the choice is still yours—and especially for “quick
and dirty” pages to achieve small localized tasks quickly, I can rarely resist the
temptation and ease of writing Java source directly into the JSP page.

Declarations
What if you want to place code in the generated servlet outside of the _jspService()
method? Use a declaration. How do you spot a declaration? It begins with a <%!
marker. The end marker is still %> (the same as it is for expressions and scriptlets).

You can place in your declaration any code that can legally appear in a servlet
source fi le: instance methods, static methods, static initialization code, static or
instance data members, inner classes — this covers just about everything. You can
also use declarations to override some methods that appear further up in the JSP
servlet hierarchy — namely jspInit() and jspDestroy().

We’ll look at an example that analyzes a sentence typed into a simple form, then
works out the average length of the words used. Here is the JSP page source:

<%
String userInput = (String) request.getParameter("sentence");
if (userInput == null) {
 userInput = "Antidisestablishmentarianism rules OK";
}
%>
<html>
<head><title>Sentence Analyzer</title></head>
<body>
<p>Type in a sample sentence to analyze:</p>
<form method="GET" action="sentenceAnalyzer.jsp">
<input size="80" name="sentence" type="text" value="<%= userInput %>" />

<input type="submit" />
</form>
<p>Average length of word is <%=avgWordLength(userInput)%>.</p>
</body>
</html>
<%!
private double avgWordLength(String sentence) {
 java.util.StringTokenizer st = new java.util.StringTokenizer(sentence, " ");
 double wordCount = st.countTokens();
 int totalChars = 0;

 while (st.hasMoreTokens()) {
 totalChars += st.nextToken().length();
 }
 return totalChars / wordCount;
}
%>

The output from this JSP page is shown in the following illustration.

You’ve seen several elements in this page already. The page starts with a scriptlet.
This sets up a local variable called userInput, whose value is derived from a request
parameter called sentence. If this parameter is missing (as happens when you fi rst load
the page), then local variable userInput is loaded with a default value. Some HTML
follows, notably a small form with one text fi eld and a button. The text fi eld has a
name of sentence, providing the request parameter of that name to the JSP. The text
fi eld’s value is loaded from the local variable userInput, which the page user can then
overtype as needed.

Beneath the form is an expression. This calls a method, avgWordLength(), and
passes the method the userInput local variable as a parameter. Where is the method
defi ned? Here we come fi nally to our declaration: at the bottom of the JSP page source.
The following shows the beginning of the declaration and the method signature:

<%!
private double avgWordLength(String sentence)

There’s nothing special about the method itself —you have no doubt written
dozens like it. The logic parses the sentence, works out the word and character
count, and returns a double to represent the average number of characters used
per word. Because the method call was in an expression, this value is displayed on
the web page.

JSP Elements (Exam Objective 6.1) 385

386 Chapter 6: JavaServer Pages

Although I have put the declared method at the end of the example, there’s no
particular signifi cance to this. All declarations are gathered up by the translation
process, and they are placed consecutively in the generated servlet source code.

Comments
You can include two types of comment in your JSP source code. One of these has
the following syntax: <%-- to start the comment and --%> to end it. The advantage
of this method is that the JSP translation process completely ignores the lines
between the comment markers. This is useful as a device during development for
temporarily commenting out code, as well as being useful for including comments
that should never be reproduced in the web page output. One thing you can’t do is
to nest one comment of this type within another: As soon as the translation phase
reaches the fi rst end marker (--%>), which goes with the inner comment, translation
recommences, as shown in the following illustration.

In the code example in the illustration, the grayed-out text is ignored in
translation. Translation begins again with the System.out.println() statement.
Does this cause a compilation error? Actually, no — the translation process sees no
marker denoting the beginning of a scriptlet, so it treats the ungrayed Java source as
template text —i.e., text that should be directly output in the web page.

<%-- <% for (int i = 0; i < 10; i++) {

<%-- if(i==3) System.out.println("i is 3!"); --%>

 System.out.println("i squared is " + i * i);

 } --%>

Declaration code has no
access to implicit objects; you have to pass
these as parameters to the methods you
declare. You can feel legitimately ignorant
about implicit variables—they haven’t yet

been introduced—although there is one
not very artfully concealed (request)
at the beginning of the previous code
example. Revisit this exam watch when
you get to the end of the chapter!

However, beware of using this style of commenting within a scriptlet or
declaration: It’s not allowed. Only valid Java syntax is allowed within a scriptlet or
declaration—and it doesn’t include this style of comment. Of course, you can still
use Java’s own commenting mechanisms: // for single-line comments, /* ... */ for
extended comments, and /** ... */ for JavaDoc comments. (How or why you would
extract JavaDoc comments from a piece of JSP page source or its generated servlet
is a different question.)

For the four scripting
elements we’ve talked about—expressions,
scriptlets, declarations, and comments—
none will nest inside each other or inside

themselves. You can’t have an expression
inside a scriptlet, or a scriptlet inside a
declaration, or a scriptlet in a scriptlet—
or any other combination.

If you want comments sent within the web page output, you can use regular
HTML comment syntax: Open the comment with <!-- and close with -->. Of
course, this text is not visible in the displayed web page of most browsers, but it is
available if you take your browser’s option to view the HTML source code. Why

would you do this at all? It can be a useful
technique to incorporate debugging or support
information. An HTML comment is treated
exactly like other HTML template text.
So it’s perfectly acceptable to include JSP
scriptlets, expressions, expression language, or
any other legal JavaServer Page syntax within
the comment —and it will be processed at
translation time.

Element
Type

 Starts
 with

 Ends
 with

Semicolons on End of
Java Source Statements?

Code Generated into the
jspService() Method?

Expression <%= %> No Yes

Scriptlet <% %> Yes Yes

Declaration <%! %> Yes No

Comment <%-- --%> Not applicable Not generated at all

Here’s a summary table
that shows the different forms of scripting
elements and key facts for each—many
exam questions revolve around a grasp of
these!

JSP Elements (Exam Objective 6.1) 387

388 Chapter 6: JavaServer Pages

ON THE CD

EXERCISE 6-2

JSP Elements
Putting this all together, you’re now going to write a JSP page that uses scripting
elements to work out and display a table that converts a distance in miles to a
distance in kilometers. You’ll display the results in an HTML table, so the result
will look something like that shown in the illustration on the left.

Create the usual web application directory structure under a directory
called ex0602, and proceed with the steps for the exercise. There’s a
solution in the CD in the fi le sourcecode/ch06/ex0602.war —check there
if you get stuck.

Create the JSP Page Source

1. Create an empty fi le directly in your newly created context directory,
ex0602. Call it milesToKilometers.jsp.

2. At the top of the page source, write a JSP declaration that includes
one method with the following signature:

private String convert(int miles)

In the method, take the miles value passed as a parameter, and
multiply this by a constant 1.6 to obtain a value in kilometers. From
the resulting numeric kilometers value, produce a suitably formatted

String with a sensible number of decimal places (java.text.DecimalFormat
may help you here). You don’t have to do the formatting —if you prefer, pass
back the double value instead.

 3. After this declaration, write a scriptlet that declares a local variable: a
primitive int array. Load the array with approximately a dozen values to
represent values in miles to convert (e.g., 1, 2, 3, 5, 10, 15, 20, . . .).

 4. Now write the HTML to display the output. Within the body of the page,
declare a table with two heading columns: the fi rst for the miles amount, the
second for the converted kilometers amount.

 5. Within the table, write a scriptlet to loop through all the elements in the
int array declared in step 3.

 6. Break the scriptlet into two scriptlets — the fi rst for the loop logic and the
second for the closing brace.

 7. Between these two scriptlets, include HTML to create a table row and two
cells. Within the fi rst cell, include an expression to show the miles value —
taken straight from an occurrence in your int array, this occurrence being
the value of your loop counter. Within the second cell, include another
expression that calls the convert() method and passes in the miles value.

Deploy and Run the JSP

 8. Create a WAR fi le that contains milesToKilometers.jsp, and deploy this to
your web server. Start the web server if it is not started already.

 9. Use your browser to request milesToKilometers.jsp using a suitable URL,
such as

http://localhost:8080/ex0602/milesToKilometers.jsp

CERTIFICATION OBJECTIVE

JSP Directives (Exam Objective 6.2)
Write JSP code that uses the directives: (a) “page” (with attributes “import,” “session,”
“contentType,” and “isELIgnore”), (b) “include,” and (c) “taglib.”

In the fi rst half of this chapter, you have already delved deeply into the mechanics
of JavaServer Pages. The second half of the chapter goes further and shows some
features that can make your JSP development tasks more convenient.

This section concentrates on directives, which —like scripting elements —are
pieces of JSP tag-like syntax. Like an XML or HTML tag, directives have attributes
that dictate their meaning and effect. In almost all cases, the effects produced by
directives can’t be replicated using expressions, scriptlets, or declarations.

We’ll consider the three directives mentioned in the above exam objective in this
section: page, include, and taglib.

JSP Directives (Exam Objective 6.2) 389

390 Chapter 6: JavaServer Pages

Directives
The page Directive
You can include a page directive anywhere in your JSP page source: beginning,
middle, or end. Here’s an example of how one looks:

<%@ page import="java.util.*" %>

The effect that this particular directive achieves is to introduce an import
statement into the source of the generated servlet. We’ll discuss the import of import
very shortly, but for now let’s just examine how the directive is made up:

■ An opening marker: <%@

■ The word “page,” which denotes that this is a page directive (as opposed to any
other kind —include or taglib, for example)

■ The word “import,” which is one of the valid attributes for the page directive

■ An equal sign after the attribute name

■ The value of the attribute itself, normally in double quotes

■ A closing marker—just like the one for scripting elements: %>

Don’t be thrown by weird
but legal variants for directive syntax. You
don’t need white space after the opening
marker or before the closing marker:

<%@page import="java.util.*"%>

You can also put extra white space before
or after the equal sign for the attribute:

<%@ page import = "java.util.*"%>

Single quotes are as acceptable
as double quotes for attribute
values:

<%@ page import=ʼjava.util.*ʼ %>

You’re not confi ned to having only one valid attribute for a directive. For
example, there’s a (mostly redundant) attribute for the page directive called language,
to denote what kind of scripting language your JSP uses. The only normally valid
value is Java, unsurprisingly. You could include this attribute alongside an import
attribute if you wanted to:

<%@ page import="java.util.*" language="Java" %>

However, it is common practice to keep one attribute per directive line:

<%@ page import="java.util.*" %>
<%@ page language="Java" %>

So now that we’ve seen the syntax for the page directive, let’s explore some of the
valid attributes.

import You use the import attribute to create import statements in the
generated servlet source produced by the JSP container’s translation phase. When
we were looking at declarations in the previous section of this chapter, we looked at
an example piece of code that used the java.util.StringTokenizer class. Because we
hadn’t examined the import mechanism for JSP pages at that point, we were forced
into some cumbersome source code:

<%!
private double avgWordLength(String sentence) {
 java.util.StringTokenizer st = new java.util.StringTokenizer(sentence, " ");
 //... rest of method omitted

By including a page directive such as the following anywhere in the JSP page source,

<%@ page import="java.util.StringTokenizer" %>

you can rewrite the source code in a more succinct and normal fashion:

<%!
private double avgWordLength(String sentence) {
 StringTokenizer st = new StringTokenizer(sentence, " ");
 //... rest of method omitted

If you hunt down the generated servlet source code, you will doubtless fi nd a
perfectly normal Java import statement:

import java.util.StringTokenizer;

There are some packages you get for free within the JSP, so it’s redundant to
import them (although it doesn’t matter if you do). There’s java.lang, of course:
All the classes in that are available to any piece of Java source, generated servlet or
otherwise. Then there are these:

■ javax.servlet

■ javax.servlet.http

■ javax.servlet.jsp

If you look closely at the generated servlet source, you’ll see that the boilerplate
code (i.e., anything you didn’t provide in the way of scriptlets, etc.) uses classes that
appear in these three packages.

JSP Directives (Exam Objective 6.2) 391

392 Chapter 6: JavaServer Pages

The value for the import attribute can be any of the following:

■ A fully qualifi ed class name

■ A generic package name (e.g., java.util.*)

■ A comma-separated list of either of the above (you can mix and match as
needed)

This is the only attribute of the page directive that can be specifi ed more
than once —either across separate page directives that contain import once or
even (silly as it is) using the import attribute more than once in the same page
directive.

session The session attribute of the page directive is used to determine whether
an HttpSession object is available within your JSP page source (if available, it’s
provided through an implicit variable called — surprise, surprise —session, which we
explore in the next section of this chapter). If you leave this directive out altogether,
the session is available — or you can explicitly say

<%@ page session="true" %>

This will have the equivalent effect of writing the following servlet code:

HttpSession session = request.getSession();

Truth to tell, the mechanism for getting hold of the session is usually a little more
convoluted in generated JSP servlet source. The reason for using this directive is to
eliminate the time spent on creating or obtaining an HttpSession object, in which
case you write the directive as follows:

<%@ page session="false" %>

If your JSP page genuinely doesn’t need access to the session (though most will),
there’s a small performance gain to be made.

You can’t include classes
from the default package. Every class

name used in a JSP must be qualifi ed (since
the advent of the JSP 2.0 specifi cation).

Valid values for the session attribute are “true” or “false”—like boolean literals in
plain Java source. Unlike boolean literals, however, these values are case insensitive
(so “TRUE” and “FaLsE” are also valid values).

contentType In the “Responses” section of Chapter 1, we encountered the
ServletResponse.getContentType(String type) method. Now you’re about to
learn the JSP way of achieving the equivalent of this method. By way of reminder,
the type parameter into this method is a String that specifi es the MIME type of the
response to be sent back.

Here is the solution code from the ImageLoader servlet in Exercise 1-4, reworked
as a JSP. The old servlet and the new JSP simply take an existing .gif from the web
application and write this to the response’s output stream. Before doing so, both
servlet and JSP set the appropriate MIME type for the response, namely “image/gif.”

<%@ page contentType="image/gif" %>
<%@ page import="java.io.*" %>
<% /* response.setContentType("image/gif"); */
String path = getServletContext().getRealPath("tomcat.gif");
File imageFile = new File(path);
long length = imageFile.length();
response.setContentLength((int) length);
OutputStream os = response.getOutputStream();
BufferedInputStream bis =
 new BufferedInputStream(new FileInputStream(imageFile));
int info;
while ((info = bis.read()) > -1) {
 os.write(info);
}
os.flush(); %>

The development of this page source was very simple. I took the code directly
from the doGet() method of the servlet and pasted this as a scriptlet into the JSP
page source. I added a page directive to import the java.io package. I also added
the page directive to set the content type to illustrate what we’re talking about
here. However, this is a case where scriptlet code works just as well as the page
directive — the commented-out line of scriptlet code

/* response.setContentType ("image/gif"); */

is the equivalent of the page directive

<%@ page contentType="image/gif" %>

JSP Directives (Exam Objective 6.2) 393

394 Chapter 6: JavaServer Pages

That’s almost true, anyway. You could remove the content-type page directive
and comment the line of source code back in. What you will then observe in the
generated servlet source — near the beginning of the _jspService() method —
are the following lines of Java:

response.setContentType("text/html");
// A few other lines of boiler-plate code, omitted...
response.setContentType("image/gif");

The second occurrence of response.setContentType() comes about because
of your commented-in scriptlet code. The fi rst occurrence comes about because
even if you omit the page directive for attribute contentType, the JSP container
is bound to set a default MIME-type of “text /html.” Because no content has been
committed, this doesn’t matter — the setting of “image/gif ” comes later, so it takes
precedence —but the moral is that you should use the page directive to do a proper
job of content-type setting.

isELIgnored The “EL” in this attribute name stands for “Expression
Language.” This is something we look at properly in Chapter 7. However, there’s
no harm in giving you a small foretaste here. As you have noted a few times now,
the scripting elements we have discussed so far —while not being deprecated —have
fallen out of favor. There are better options available, and Expression Language is
one of those options. Suppose you wanted to manipulate a request attribute that is
set up as follows:

<% request.setAttribute("squareIt", new Integer(7)); %>

To display the square of this number, you could use a scriptlet /expression
combination like this later in the JSP page source:

<% int i = ((Integer)
request.getAttribute("squareIt")).intValue(); %> <%= i * i %>

Using Expression Language, you could achieve the same result like this:

${squareIt * squareIt}

Whichever approach you use (or prefer), the result is the same: 49 is output on
the page.

At the moment, we’ll ignore the “magic” that makes EL work. The important
thing to note is that the JSP translation phase has a new piece of syntax to cope
with: the ${ to begin the EL expression, and the matching } to end it. In the
past, these symbols would have been rendered as template text in your JSP page
source. It could be that this is still the effect you want —in other words, you want
${squareIt * squareIt} to appear as just that string of characters instead of the
number 49. After all, if ${ appears in pre-JSP 2.0 source (i.e., JSP 1.2 or before), it’s
unlikely to be intended as EL.

So you can switch off EL evaluation and have the text be treated as template
text. There are several ways to do this (a topic we revisit in Chapter 7), but we’re
only interested in one of those here. If in your JSP page source you have the
directive:

<%@ page isELIgnored="true" %>

then any EL expressions remain unevaluated, and they appear as template text.
The other valid value is “false.” You might think this is the default —in other

words, this is what you get if you leave out the directive. However, the situation isn’t
quite that simple. Suppose that you stick an (old) JSP 1.2 application into a JSP 2.0
container. Chances are that the following is true:

■ Your web.xml fi le is at version 2.3.

■ You don’t want to be bothered including the isELIgnored attribute separately
in all your JSP page sources.

To deal with this, the JSP 2.0 sets a default of isELIgnored="true" so that any
occurrences of ${ in your old application will be correctly treated as template text.
Only if the deployment descriptor web.xml is at the up-to-date version level of 2.4
is the default of isELIgnored set to “false,” for an up-to-date web.xml implies an
application that is EL-aware.

Besides this directive, there are other ways to control EL-awareness —we’ll
complete the picture in Chapter 7.

There are several other attributes of the page directive that are not on the
exam syllabus as such. Following is a list with brief defi nitions so that you’re
not thrown when you encounter these attributes in real life.

JSP Directives (Exam Objective 6.2) 395

396 Chapter 6: JavaServer Pages

The include Directive
We’re done with the page directive; now let’s look at the include directive. The good
news is that there isn’t much to this directive: the directive name itself (include)
and one mandatory attribute (fi le). The purpose of include is to merge the contents
of one JSP source fi le into another (the one doing the including). This happens at
the point where the including JSP page source goes through translation. It’s not a
dynamic operation happening at run time!

A piece of terminology: A JSP source fi le and the pages it includes through
the include directive are collectively referred to as a “translation unit.” The fi le
type you include doesn’t have to be JSP page source, nor does it have to have a .jsp

language <%@ page language=“Java” %>

Denotes the scripting language. “Java” is the only value supported by all J2EE-
compliant containers. Your container might support something different and
specialized, but your page won’t in all likelihood be portable to other containers then.

extends <%@ page extends=“com.osborne.webcert.MyBaseJSPServlet” %>

If you want to override the base servlet that your container provides when generating
servlets, you can —and substitute your own through this directive. Do so at your own
peril; your container may not like you for it.

buffer, autoFlush <%@ page buffer=“none” autoFlush=“true” %>

You can use these attributes to control whether or not you have a buffer (you can
specify a size in kilobytes), and how this buffer is fl ushed. The example above causes
the response to be fl ushed as soon as it is generated.

isThreadSafe <%@ page isThreadSafe=“true” %>

Causes the generated JSP servlet to implement the deprecated SingleThreadModel
interface: not recommended. The default is, of course, false.

info <%@ page info=“My Clever Hacks Page” %>

Use this attribute to publish information about your JSP page, accessible through the
getServletInfo() method.

errorPage,
isErrorPage

<%@ page errorPage=“errorPage.jsp” %>

<%@ page isErrorPage=“true” %>

Use errorPage to set a URL pointing to another JSP within the same web applica-
tion. Should an exception occur, your users will be forwarded to this other JSP. The
page you forward to must have “isErrorPage” set to true, and is the only sort of page
to have access to the implicit variable exception.

extension. Once included, the fi le contents must make sense to the JSP translation
process, but this gives scope to include entire HTML or XML documents, or
document fragments.

The value you can attach to the fi le attribute is a fi lename together with its path.
The path is relative —either beginning with a forward slash: “/” or not. A path
beginning with a forward slash starts at the servlet context directory. Paths without
the initial forward slash are determined relative to the location of the page doing the
including, and they cannot stray beyond the current context. This obeys the same
rules as the ServletRequest.getRequestDispatcher(String path) method,
which you met in Chapter 3.

Here’s an example without the initial forward slash:

<%@ include file="stubs/header.html" %>

Suppose that this directive is found in a JSP located in directory ex0603/jsps
. ex0603 is the context directory. The JSP translator will expect to fi nd the following
fi le and path:

ex0603/jsps/stubs/header.html

To include the same fi le relative to the context root, the include directive would look
like this:

<%@ include file="/jsps/stubs/header.html" %>

Don’t spread complex logic across different included fi les—or any logic at all,
if you can help it. Doing so can land you in real trouble. Especially consider
the prospect of changing the logic in the included page—but translation
not picking this up. These days, most containers will reperform translation if
either the including or included fi le is updated. However, this is not mandated
by the JSP specifi cation, even though it states a preference for that behavior.
Imagine debugging a problem where you think an updated fi le has been
re-included into a top-level JSP page. Imagine then your frustration when half
a day later you discover that the page is in fact executing the old logic, based
on the old version of the fi le. Problems of this sort can be utterly baffl ing:
Plan to avoid them!

At the beginning of Chapter 7, you’ll come across a different mechanism for
inclusion: the <jsp:include> standard action. The key difference between this

JSP Directives (Exam Objective 6.2) 397

398 Chapter 6: JavaServer Pages

ON THE CD

and the include directive is that <jsp:include> executes afresh with every new
request to the including JavaServer Page. Don’t forget that the include directive
discussed here happens at translation time. You are almost certain to get an exam
question that relies on your knowledge of the difference between these two —but
we’ll save that piece of cruelty for Chapter 7!

The taglib Directive
The taglib directive makes custom actions available in the JSP page by referencing a
tag library. We don’t meet tag libraries until Chapter 8 and custom actions not until
Chapter 9, so this may not make much sense at this point. We’ll just briefl y touch on
the syntax of the directive at this point —you’ll get plenty of practice with it later.
There are two mandatory attributes, prefi x and uri. Every custom action you include
in your JSP page must use a prefi x specifi ed in one of the taglib directives in the page.
uri gives an indication where the tag library fi le (which defi nes the custom actions)
can be found. The exact retrieval mechanism will be explained later. So here’s an
example of the directive:

<%@ taglib prefix="mytags" uri="http://www.osborne.com/taglibs/mytags" %>

EXERCISE 6-3

JSP Directives
This exercise demonstrates a moderately useful application for the include directive:
providing a standard header and footer for your HTML JSP pages. Along the
way, we’ll practice with a couple of the page directive attributes and do a little bit
of preparatory work for the next section of the book, which talks about implicit
variables.

Create the usual web application directory structure under a directory called
ex0603, and proceed with the steps for the exercise. There’s a solution in the CD
in the fi le sourcecode/ch06/ex0603.war —check there if you get stuck.

Create JSP Page Source for a Standard Header

 1. Create an empty fi le directly in your newly created context directory, ex0603,
called header.jsp.

 2. In this fi le, include HTML tags for the start of the document, the start and
end of the head section, and the beginning of the body section.

 3. Include an HTML title tag within the head section to display some text say-
ing “Exercise 6-3 on ” and follow this with an expression showing the date
and time. If you use java.util.Date to assist you with this, then you will want a
page directive to import this class.

Create JSP Page Source for a Standard Footer

 4. Create an empty fi le in ex0603 called footer.jsp.

 5. In this fi le, put in the end of body and end of document HTML tags.

 6. Before the end of body, put in a copyright notice. Derive the text for
the copyright notice from a context-wide initialization parameter. If you
need a refresher on how to set one of these up in web.xml, check out the
beginning of Chapter 3. A programming hint for accessing the initialization
parameter in your JSP: You’ll need to make use of the application implicit
variable inside an expression scripting element. application is an instance
variable referencing the ServletContext object for this web application, so
it has access to the getInitParameter() method.

Create JSP Page Source for a Setup Page

 7. Create an empty fi le in ex0603 called setup.jsp.

 8. Use a page directive to import the java.util package.

 9. In a scriptlet, create a list of things (the solution code uses a TreeMap contain-
ing a short list of countries and capitals). Set the object representing the list of
things as an attribute of the ServletContext (use the application implicit object).

Create the JSP Page Source for a Master Page

 10. Create an empty fi le in ex0603 called master.jsp.

 11. Use a page directive to import the java.util.package.

 12. Use two include directives to include header.jsp, followed by setup.jsp.

 13. Use a combination of scriptlets and expressions to do the following:

■ retrieve the list you stored in an application attribute in setup.jsp (again,
you’ll want the application implicit variable).

■ display each item (or set of items) in the list as a table row.

 14. Conclude the page by including footer.jsp.

JSP Directives (Exam Objective 6.2) 399

400 Chapter 6: JavaServer Pages

Deploy and Run the Master Page

 15. Create a WAR fi le that contains the full directory structure for the exercise
context. You’ve created four JSP fi les and have amended the deployment
descriptor web.xml, so all these resources must be present in the WAR fi le.
Start the web server if it has not started already.

 16. Use your browser to request master.jsp using a suitable URL, such as

http://localhost:8080/ex0603/master.jsp

17. The solution code output is shown in the
illustrationon the left —yours may look a
little different.

CERTIFICATION OBJECTIVE

JSP Implicit Objects (Exam Objective 6.5)
Given a design goal, write JSP code using the appropriate implicit objects: (a) request,
(b) response, (c) out, (d) session, (e) confi g, (f) application, (g) page, (h) pageContext,
and (i) exception.

To fi nish this chapter, we’re going to look at another convenience provided by JSP
technology: implicit objects. A couple of these have been introduced by stealth
already in examples and exercises in the chapter so far. There are nine you need to
know in all.

However, the good news is that with only two exceptions, these implicit objects
are variables that reference classes you have learned about already. So your learning
burden is lighter than you might otherwise presume when presented with the raw
exam objective.

JSP Implicit Objects
The best way to get a handle (no pun intended) on implicit objects is to take a look
at the source for any generated servlet. You can use any JSP page source as the basis
for the generated code, even one that does nothing —it’s the boilerplate code at the
beginning of the _jspService() method that is of interest. Here’s how that code
looks for the version of Tomcat used in preparation of this book:

public void _jspService(HttpServletRequest request,
 HttpServletResponse response)
 throws java.io.IOException, ServletException {
JspFactory _jspxFactory = null;
PageContext pageContext = null;
HttpSession session = null;
ServletContext application = null;
ServletConfig config = null;
JspWriter out = null;
Object page = this;
JspWriter _jspx_out = null;
PageContext _jspx_page_context = null;
try {
 _jspxFactory = JspFactory.getDefaultFactory();
 response.setContentType("text/html");
 pageContext = _jspxFactory.getPageContext(this,
 request, response, null, true, 8192, true);
 _jspx_page_context = pageContext;
 application = pageContext.getServletContext();
 config = pageContext.getServletConfig();
 session = pageContext.getSession();
 out = pageContext.getOut();
 //... etc. rest of jspService() method

JSP Implicit Objects (Exam Objective 6.5) 401

402 Chapter 6: JavaServer Pages

So there’s nothing very taxing about implicit objects — they are just local
variables declared at the outset of the _jspService() method. Because they have
standardized names, they are available for use within your expressions and scriptlets.
By the end of this method opening, we have seen eight out of the nine implicit
objects. (The ninth —exception—is the exception: We’ll see how this implicit object
gets declared and initialized later.)

Two are parameters to the _jspService() method. In an HTTP context (i.e.,
most of the time), these represent HttpServletRequest and HttpServletResponse
objects. Most of the remainder consists of variables with class or interface types
known to us already, in familiar packages. The following table lists all nine, with
their types:

The only really new concepts are contained in the out and pageContext implicit
objects, whose types live in a package we haven’t had cause yet to examine: javax
.servlet.jsp. out is the equivalent of the PrintWriter you get from the response in
normal servlets. It’s not a PrintWriter, but rather another kind of Writer: javax
.servlet.jsp JspWriter. pageContext is entirely new: a master controlling object for JSP
pages. You can see from the tail end of the _jspService() source extract above
that this object plays a vital role in initializing several of the other implicit objects.

Hoping that this overview convinces you that there isn’t much new to take on
board, let’s look at each implicit object in a little more detail.

t

Implicit Object Name Type

request javax.servlet.http.HttpServletRequest interface
(rarely —javax.servlet.ServletRequest)

response javax.servlet.http.HttpServletRequest interface
(rarely —javax.servlet.ServletResponse)

application javax.servlet.ServletContext interface

confi g javax.servlet.ServletConfi g interface

session javax.servlet.http.HttpSession interface

out javax.servlet.jsp.JspWriter abstract class

pageContext javax.servlet.jsp.PageContext abstract class

page java.lang.Object class

exception java.lang.Throwable class

request and response
Because you don’t control the _jspService() method declaration, you need a
guarantee that the request and response parameters passed in will always be called by
a consistent name. The most obvious names have been guaranteed for you: request
and response. So wherever your scriptlet or expression code appears, you can make
reference to the methods on request and response. So, for example, the expression

<%= request.getMethod() %>

would display the HTTP method (generally GET or POST) used by the request for
the JSP. The following scriptlet code, using the response implicit object, would return
an HTTP 500 error from a JSP page:

<% response.sendError
 HttpServletResponse.SC_INTERNAL_SERVER_ERROR); %>

You can’t dictate exactly what class the request and response objects are going to
be, but you will know that 99.99% of the time that class will implement the javax
.servlet.http.HttpServletRequest or javax.servlet.http.HttpServletResponse interface
as appropriate. The remaining 0.01% will be taken up with JSP containers that don’t
implement the HTTP protocol. The request and response implicit variables are still
guaranteed to be there, provided the container is JSP-spec compliant. However, the
guarantee is that the objects they represent will implement the javax.servlet
.ServletRequest or javax.servlet.ServletResponse interfaces (so a subset of their
HTTP equivalents).

application
The application implicit variable is an object implementing the javax.servlet
.ServletContext interface. With it, you can save yourself the bother of defi ning
your own context variable using scriptlet code like this:

<% ServletContext context = this.getServletContext(); %>

You can use application to do all the things we saw in the servlet code from
Chapter 3. The following expression could be used to display the name of your web
application (as defi ned in the <display> element of the deployment descriptor,
web.xml):

<%= application.getServletContextName() %>

JSP Implicit Objects (Exam Objective 6.5) 403

404 Chapter 6: JavaServer Pages

session
The session implicit variable is an object implementing the javax.servlet.http
.HttpSession interface. As we saw with application, it’s a labor-saving device.
You can still get hold of the session with a scriptlet line such as

<% HttpSession mySession = request.getSession(); %>

but there is no need to, because it’s provided already. As we discussed in the
previous section of the chapter, you can make the session implicit object unavailable
using the following directive:

<%@ page session="false" %>

But by default (or with an explicit page directive where the session attribute is set to
“true”), it will be present in the _jspService() method.

As for straight servlets, the most common use of the session object is to store and
retrieve attributes. You can also control the session status using the same methods as
before. So a scriptlet like this:

<% session.invalidate(); %>

will invalidate your session, as you would expect.

page
This is a reference to the JSP page object
itself —in other words, the generated servlet.
You can see from the generated servlet source
that began this section on implicit objects
that it’s even set from the Java implicit
variable this.

Somewhat surprisingly, the type of the
variable is java.lang.Object. So in itself it is
pretty useless —you can call Object methods

only on page— nothing servlet-specifi c! You could safely downcast the reference
within the Tomcat container like this:

<%!
public String getServletInfo() {
 return "My Downcast Page :-(";
}

There is one other
circumstance in which you don’t get a
session implicit object. That is in the
shady hinterland of JSP containers that
don’t operate with the HTTP protocol.
session is an HTTP-protocol specifi c
concept.

%>
<% HttpServlet servlet = (HttpServlet) page; %>
<%= servlet.getServletInfo() %>

It might not be safe to cast page to an HttpServlet reference variable in all JSP
container environments: There’s always non-HTTP JSP containers to consider.
Even though nearly every servlet in the world derives from GenericServlet (even
non-HTTP ones), you couldn’t safely cast to this either —as a JSP container
author, you could still write a set of JSP-implementing servlet classes from scratch.
Consequently, java.lang.Object is the only safe choice for the page reference variable!

Not that this causes any practical diffi culty. You could equally well substitute the
following for the last two lines of the above mini-JSP:

<%= this.getServletInfo() %>

Or, of course, just:

<%= getServletInfo() %>

In summary, page is not —as most JSP books end up by telling you — terribly
useful to page authors.

confi g
While on the subject of not very useful implicit objects, let’s consider confi g next.
You may never have to use it. The only practical reason for using the confi g object,
which implements javax.servlet.ServletConfi g, is to get hold of initialization
parameters associated with the JSP page. If there are any, they will be in the
deployment descriptor, as <init-param> elements associated with the <servlet>
element for this JSP page.

Howerer, in a JSP, you can already inside an instance of a servlet--which is very
likely to implement the SerletConfi g interface, So under most circumstances your
can use the method getInitParameter() directly in a scriptlet. If you are feeling
ultracautionus, use config.getInitParameter() insted.

pageContext
Now to the pageContext implicit object. This will be your JSP container’s
implementation of the javax.servlet.jsp.PageContext abstract class, which in turn
inherits from the java.servlet.jsp.JspContext class. The PageContext class is only
really exciting to developers who implement JSP containers, not so much page

JSP Implicit Objects (Exam Objective 6.5) 405

406 Chapter 6: JavaServer Pages

authors. For example, pageContext provides a mechanism for handling exceptions on
a page, and forwarding to another page. The workings of this mechanism can be seen
in the generated servlet code, but as a page author and exam taker, you need only to
know how to take advantage of the mechanism (more on this when we examine the
exception implicit object).

The pageContext object knows about all the other implicit objects, and
it has methods to get hold of them. Again, as a page author, you don’t usually
bother with these, for the implicit variable names are available for use directly.
However, you can see several of these methods in action —getServletContext(),
getServletConfig(), getSession(), and getOut()—in the generated servlet
source that begins this section.

Most usefully, pageContext provides a new scope for attributes: unsurprisingly
called page scope. You’ve encountered three sorts of attributes already, here listed
from most local to most global:

■ Request attributes

■ Session attributes

■ Context attributes

Page scope attributes are more local still—confi ned as they are to the JSP page.
You’ll already have realized that request, session, and application implicit objects have
the requisite attribute methods that go with their types (HttpServletRequest,
HttpSession, and ServletContext). The pageContext implicit object goes further.
As you would expect, it has methods to access attributes in its own page scope.
However, pageContext also gives access to attributes in any scope, using slightly
modifi ed versions of the get, set, and removeAttribute() methods. Table 6-1
summarizes the operation of those methods.

Get clear in your mind
which methods belong to which class.
The pageContext object inherits
from PageContext, which inherits from
JspContext. The attribute methods
actually reside in JspContext. And while
you’re checking out the API documentation

for these two classes (javax.servlet.jsp
package), do take a look at the exceptions
that can be thrown by pageContext
attribute methods—don’t take for granted
that they are exactly the same as attribute
methods you have met before.

I

Method Signature Explanation

Object getAttribute
(String name, int
scope)

This is like the other getAttribute() methods you have
encountered —you supply a named attribute, and get back an
object in return. The difference is the addition of a second
parameter, scope. The allowed scopes are defi ned as public, fi nal,
static constants on the PageContext class:

PageContext.PAGE_SCOPE

PageContext.REQUEST_SCOPE

PageContext.SESSION_SCOPE

PageContext.APPLICATION_SCOPE

The method will search only the scope supplied as a parameter.
If the named attribute isn’t found, null is returned (there’s no
other penalty, such as an exception).

void setAttribute
(String name, Object
value, int scope)

Again like other setAttribute() methods, in that you pass
in a String name and an Object value. Other things in common:

■ If you pass in a null Object for the value, this has the same
effect as calling the equivalent removeAttribute()
method.

■ Attribute names are unique, so if a name already exists (in a
given scope, of course), a later value will overwrite the earlier
value.

The only difference is that you must pass the scope as well,
which uses the same set of PageContext constants as before.

void removeAttribute
(String name, int scope)

Removes the named attribute in the given scope. Has no effect
if no attribute of this name exists in the given scope.

Object fi ndAttribute
(String name)

This is the most interesting method. You merely pass in an attri-
bute name, and the method works through the scopes in order:
page, request, session, and application. The fi rst attribute found is
returned; consequently, an attribute in a more local scope (such
as page) will “shield” one of the same name in a less local scope
(such as session), so you can use this method only to get the most
local attribute value when names are duplicated across scopes. For
this among other reasons, I try to keep my attribute names unique
across scopes unless there is a very good reason to do otherwise.

If no attribute of the supplied name is found in any scope, null is
returned —as is the case for getAttribute().

get, set, remove
Attribute() without the
scope parameter. . .

get, set, and removeAttribute() are overloaded methods.
The signatures without the scope parameter specifi cally target
page scope and nowhere else.

TABLE 6-1

Some of the
pageContext
Attribute
Methods

408 Chapter 6: JavaServer Pages

out
The out implicit variable represents a writer associated with the response for
your JSP page. You would automatically think this is the same as the PrintWriter
you can get directly from the response object, but you would be wrong. Instead,
out is a javax.servlet.jsp.JspWriter. The main thing that JspWriter gives you is
buffering: The content in your page (template text, expressions, whatever) isn’t —at
least by default —committed to the response straightaway. What advantages does
this confer? As we learned earlier, there are things you can’t do once output has been
committed, such as setting response headers. So to absolve you from having to take
exceptional care —having to set all your response headers before even the tiniest
fragment of template text appears in your JSP page — the JspWriter is buffered.

You can control the buffering through page directives, but that’s a bit beyond
the scope of the exam. For amusement and instruction, though, let’s consider what
happens if you try to mix and match use of the out implicit object and the regular
PrintWriter from the response. Here’s a complete piece of JSP page source (use the
electronic version of the book to copy and paste into a fi le editor and deploy the JSP):

<%@ page import="java.io.PrintWriter" %>
<html><head><title>Wacky Alphabet</title></head>
<body><h4>Why you shouldn't mix your Writers</h4>
<p>JspWriter buffer size: <%= out.getBufferSize() %></p>
<% PrintWriter direct = response.getWriter();
char[] alphabet = {'a','b','c','d','e','f','g','h',
'i','j','k','l','m','n','o','p','q','r','s','t','u',
'v','w','x','y','z'};
for (int i = 0; i < alphabet.length; i++) { %>
 <% out.print(alphabet[i]); %>
<%i++;%>
 <% direct.print(alphabet[i]);
}// end loop%>
</body></html>

Here are the main things the JSP does:

■ Uses the out implicit variable to display the buffer size —just to prove that there
is a buffer involved.

■ Gets hold of the response’s PrintWriter into a local variable called direct.

■ Puts the letters of the alphabet into a char array called alphabet.

■ Loops around the array, printing all the letters of the alphabet with spaces in
between, alternately using the implicit object out followed by the forbidden
PrintWriter direct.

The page compiles and runs just fi ne, but the output is surprising, as shown in the
following illustration.

As you can see, every other letter (the ones written using the forbidden
PrintWriter) has appeared at the very beginning of the web page! This is because
PrintWriter is unbuffered, so the response output is sent to the page directly. The
buffered JspWriter output is appended to the end once the page is complete.

The other thing to be aware of is that every time you use an expression, or
template text, the generated servlet uses the heavily overloaded out.print()
method — so even though you may make no explicit use of out, chances are that
it’s still the most often used of all the implicit objects.

exception
The fi nal implicit object to consider is exception, whose type is java.lang
.Throwable — the parent of the Exception class hierarchy in Java. This is present
only in the generated servlet for a JSP page designated as an error page, meaning
that it contains the following directive:

<%@ page isErrorPage="true" %>

Furthermore, you never call such a page directly. Instead, you include another
directive in all those JSP pages that might give rise to an error. This is in the form:

<%@ page errorPage="/jsps/myErrorPage.jsp" %>

The value for the errorPage attribute is the name of a JSP page where isErrorPage
is set to true, and can give a path to that page. The path can begin with a forward
slash, in which case it is relative to the context root.

This gives you more control over the presentation of errors to the user. You
can make as much or as little use of the exception implicit object as you wish. The
following error page uses the exception object to print the main error message in a

JSP Implicit Objects (Exam Objective 6.5) 409

410 Chapter 6: JavaServer Pages

ON THE CD

visible way, and again to print the stack trace. However, the stack trace is confi ned
to an HTML comment. In this way, the error may appear not so scary for an
application user, but support staff can still view the HTML source of the output
for details.

<%@ page isErrorPage="true" %>
<%@ page import="java.io.*" %>
<html><head><title>Error Page</title></head>
<body><h1>You're here because an error occurred</h1>
<p>The main error message is: <%= exception.getMessage() %></p>
<p>To see the error message detail, view the source of this web page.</p>
<!--<% exception.printStackTrace(new PrintWriter(out)); %>--!>
</body></html>

EXERCISE 6-4

JSP Implicit Objects
In this exercise, we’ll use Java refl ection techniques to investigate all the implicit
objects and display information about them on a web page. You’ll write a Java
class called Refl ector to do most of the hard work, and separately a JSP page called
implicitObjects.jsp to display the results.

Create the usual web application directory structure under a directory called
ex0604, and proceed with the steps for the exercise. There’s a solution in the CD in
the fi le sourcecode/ch06/ex0604.war —check there if you get stuck. For this exercise,
there’s also a halfway-house cheat. If you’re not comfortable writing Java refl ection
code (and you won’t be asked about that in the exam!), you could take the webcert
.ch06.ex0604.Refl ector class ready-made from the solution package — this leaves you
free to concentrate on writing the JSP (which is more germane to your aspirations to
be a web component developer).

Create the Refl ector Class

 1. Create a source fi le called Refl ector.java, under your WEB-INF/src directory
in an appropriate package directory. It must be in some named package, for
the JSP that is going to use it can’t use classes in the default package. You can
choose any package name you like, or use the solution package name, which
is webcert.ch06.ex0604.

 2. Defi ne three private instance variables in the class:

■ a String called className

■ a Set called interfaces

■ a Set called methods

 Write “getter” methods for each of these three variables (no need for
“setters”).

 3. Defi ne a constructor for Refl ector.java that accepts an Object as a parameter.

 4. Within the constructor (or using linked methods from the constructor), write
code that will

■ Extract the Class object from the Object passed in (using the Object
.getClass() method).

■ From the Class object, extract the name (Class.getName()) and store
this in the className instance variable.

■ From the Class object, extract the interfaces implemented by the class, and
add the names of each of these to the interfaces instance variable. (There’s
a Class.getInterfaces() method that returns an array of classes.)

■ From the Class, extract the methods implemented by the class, and add
the names of each of these to the methods instance variable. (There’s a
Class.getMethods() method that returns an array of methods.)

 5. Compile Refl ector.java just as you would compile servlet code (so that
Refl ector.class ends up under the WEB-INF/classes directory — see Appen-
dix B if you need refreshing on this).

Create the implicitObjects.jsp JSP Page Source

 6. Create an empty fi le called implicitObjects.jsp directly in the context
directory ex0604.

 7. Use a page directive to import your Refl ector class and the java.util package.

 8. Next, include a scriptlet that defi nes a String array initialized with the names
of the eight implicit objects (all except exception, which we’re not going to
bother with). In the same scriptlet, defi ne an Object array initialized with the
eight implicit objects —make sure that these appear in the same order as the
names in the String array.

JSP Implicit Objects (Exam Objective 6.5) 411

412 Chapter 6: JavaServer Pages

 9. Defi ne the appropriate elements to begin your HTML document. Then
include a table with four headings: Implicit Object Name, Class Name,
Interfaces Implemented, and Methods Available.

 10. Write the beginning of a for loop to iterate around the eight implicit objects
in the Object array. At the beginning of the loop, instantiate a Refl ector
object, passing the implicit object from the Object array into its constructor.
Now you have a Refl ector object loaded with the information you want to
display. Close this scriptlet.

 11. Within the for loop you will write out the rows of your table, each containing
four cells.

 12. In the fi rst <td> cell, use an expression to display the name of the implicit
object. This is taken from the String array you established earlier, using the
loop counter for the appropriate occurrence.

 13. In the second cell, use an expression to display the name of the class imple-
mented by the implicit object. Use the getClassName() method from your
Refl ector object.

 14. In the third cell, use a combination of a scriptlet and an expression to display
the names of all the interfaces implemented by the implicit object. You’ll want
to use the getInterfaces() method from your Refl ector object. This returns
a Set, from which you can derive an Iterator—structure the loop around this.

 15. In the fourth cell, use a similar technique to display the names of all the
methods implemented by the implicit object. This time, use getMethods()
on Refl ector, and again derive an Iterator from the Set returned.

 16. Finally, don’t forget a separate scriptlet to close off the for loop with a
terminating curly brace.

 17. Round off the table with </table> and any other closing HTML document
tags as appropriate

Deploy and Run the JSP Page

 18. Create a WAR fi le that contains the contents of ex0604.

 19. Start the web server, if it is not started already.

 20. Use your browser to request implicitObjects.jsp using a suitable URL, such as

http://localhost:8080/ex0604/implicitObjects.jsp

CERTIFICATION SUMMARY
This chapter gave you a lot of basic grounding in JSP technology. In the four major
sections of the chapter, you fi rst learned about the life cycle of JSP pages within a
JSP container, then about scripting elements, then page directives you can use to
infl uence mainly global aspects of your page, and fi nally the nine implicit objects
available to you in JSP source code.

You fi rst saw how JSP pages turn servlets on their head. You learned that instead
of putting HTML inside Java code (the servlet pattern), you place Java code (and
other bits of syntax) inside an otherwise normal HTML page. You also saw that
JSP technology is not limited to HTML: XML is viable to include in a JSP page.
You learned that a JSP container (usually just another facet of the servlet container

 21. A truncated extract from the solution code output is shown in the following
illustration, for the request implicit object. You can see how the implement-
ing class is Tomcat-proprietary: something called CoyoteRequestFacade!
However, it’s J2EE-standard in that the one interface this class implemented is
javax.servlet.http.HttpServletRequest. The methods implemented are legion
(I cut the list short)—all the methods from superclasses (including Object)
can be found in the list. There are plenty of refi nements you could make to
this code — showing all the superclasses, the interfaces they implement, and
so on.

JSP Implicit Objects (Exam Objective 6.5) 413

414 Chapter 6: JavaServer Pages

you use, as with Tomcat) takes JSP page source and turns this into a working
program —in fact, a generated and compiled servlet. This puts the HTML (or XML)
back inside Java code. You learned that this phase is called “translation” of a JSP
page and that it incorporates the code generation and compilation. You experienced
translation fi rsthand in the exercise and saw that it usually occurs on fi rst request to
a JSP (or on request to a JSP that has changed), but can in fact happen at any time a
JSP container chooses before the fi rst request is received.

You saw that generated servlets implement the interface JspPage or, much more
likely, its subinterface, HttpJspPage. You learned that this involves providing three
methods:

■ jspInit()

■ jspService()—with request and response parameters

■ jspDestroy()

You learned that the JspPage interface keeps the request and response parameters
nonspecifi c, whereas the HttpJspPage interface narrows these down to HttpServlet
Request and HttpServletResponse. You saw that this means that the _jspService()
method ends up looking very much like the signature of a servlet’s service()
method —and it came as no surprise to you that the generated servlet’s service
method does indeed call _jspService(). You learned that the parallels between
servlet life cycle and JSP life cycle go further: init(ServletConfig config)
calls jspInit(), service() calls _jspService(), and destroy() calls
jspDestroy().

Having explored the JSP page life cycle, you went to look at the composition of
JSP page source. You learned that the source subdivides into template text and
elements. Of elements, there are three kinds: directive, scripting, and action. Of
actions, you confi ned your knowledge to the fact that they divide into standard or
custom types. You learned that there is a recent innovation in scripting called
Expression Language, but that the traditional language-based scripting you explored
in this chapter is still retained in JSP 2.0. You met the four traditional scripting
elements:

■ expressions (for displaying data)

■ scriptlets (for logic embedded in the request method, _jspService())

■ declarations (for separate code outside of _jspService())

■ comments (for the translation phase to ignore)

You saw that expressions are demarcated with <%= at the beginning, and %> at
the end. You learned that any Java expression can be inserted in the middle of this,
provided that it evaluates to any primitive or object. You learned that an expression,
although being Java source, cannot terminate in a semicolon, for expressions are
actually incorporated inside existing statements in the generated Java source (usually
out.print(your expression goes here); statements). You also learned that
expressions are inserted into the _jspService() method and so are potentially
executed on every request to a page.

You saw that scriptlets can be long or short, and contain complete Java
statements —as many as required. You learned that <% denotes the beginning of a
scriptlet and %> the end. You saw that scriptlets can be used for several purposes,
but typical ones include local data setup, presentation logic (e.g., dynamically
generating HTML table rows), and, more occasionally, direct output to the page
using the implicit object out. You also learned that scriptlet code, like expression
code, is incorporated directly into the _jspService() method at the point of
insertion into the JSP page source.

You then explored declarations and found that the Java code in them goes into
the generated servlet but outside the _jspService() method. You discovered that
you can include all sorts of things in declarations —instance and class variables,
for example —but that their best use is for defi ning complete methods. You learned
that you can use declarations to override the life cycle methods jspInit() and
jspDestroy(). You found that a declaration begins with <%! characters and ends
the same as expressions and scriptlets —with %>.

Finally, in scripting elements, you looked at comments. You learned about two
styles — the fi rst beginning with <%-- and ending with --%>. You saw that the
translation phase completely ignores everything between these two markers and
that anything can go within such a comment —except <% (in other words, you can’t
nest comments of this style). You also learned that you can use HTML /XML-style
comments (<%-- commented out words --%>) and that anything within such a
comment (expresson, scriplet, declaration) is translated normally. You saw that the
advantage of this style is for sending back comment text in the response.

In the next section, you learned about directives. You saw that they have a
style that is similar to scripting elements (<%@ opening characters and %> closing
characters) but play no direct role in producing response output. You met the
three sorts of directive: page, include, and taglib. You saw that every directive has
one or more attributes, consisting of name/value pairs —very much like HTML or
XML tags. You found that page is the most complex directive, having a dozen or so
possible attributes (of which you only need know four in detail for the exam). You

JSP Implicit Objects (Exam Objective 6.5) 415

416 Chapter 6: JavaServer Pages

used the import attribute to have import statements in your generated servlet code.
You learned that the session attribute can be used to make the session implicit
object unavailable in a page (<%@ page session="false" %>). You saw that the
contentType attribute determines the MIME type of the response sent back. And
you learned that the isELIgnored attribute can be used to stop translation evaluating
Expression Language.

You then met the include directive and saw that it is far simpler —having only
one mandatory attribute, fi le. You learned that you can use include to incorporate
entire fi les within your JSP page source —crucially, at translation time. You then saw
the third and fi nal directive —taglib. You learned that this is used to allow the page
access to custom actions defi ned in a tag library, whose location is hinted at in the
uri attribute. You also learned that custom actions used within the page use the value
for the prefi x attribute specifi ed in the taglib directive.

In the fi nal section of this chapter, you explored implicit objects. You saw
that these are nothing more or less than local variables defi ned at the beginning
of the _jspService() method and that since the names of these variables are
standardized, you can rely on them in your expressions and scriptlets. You were able
to greet many of these as old friends from the servlet chapters: request (almost always
an HttpServletRequest object), response (almost always HttpServletResponse),
application (invariably ServletContext), session (HttpSession), and confi g
(ServletConfi g). You also learned that out is nothing more than a writer, albeit a
buffered JspWriter — not the PrintWriter directly available from the response. You
saw that exception is just a Throwable object, available only in page designated for
error handling (having a page directive where the attribute isErrorPage is set to true).
This left only page and pageContext. You saw that page represents the generated
servlet (so as a page author, you don’t really need it). You found that pageContext
supplies a very localized set of attribute functions for page scope but can also be used
to access the attributes in request, session, or application scope. You learned that
pageContext performs other vital functions that are generally of more use to JSP
container designers than to page authors.

Two-Minute Drill 417

✓ TWO-MINUTE DRILL

JSP Life Cycle
❏ Servlets are typically Java programs containing HTML elements. JavaServer

Pages are HTML or XML documents containing Java elements.

❏ JavaServer Page source is “translated” into a servlet class fi le, thanks to the
JSP container (part of a J2EE application server such as Tomcat).

❏ If a page fails to translate, an HTTP 500 error is given back to the requester.

❏ HTTP is not the only protocol: It is possible (but rare) to have JSP contain-
ers that implement other request /response protocols.

❏ Every servlet generated in this way must contain a _jspService() method,
which receives two parameters: a request object and a response object.

❏ In a typical HTTP implementation, the two parameters are of types
HttpServletRequest and HttpServletResponse.

❏ Every generated servlet must contain a jspInit() and jspDestroy()
method (or inherit these through one of its superclasses).

❏ Every generated servlet must implement (itself or in superclasses) at least the
JspPage interface.

❏ Most implement HttpJspPage (whose super-interface is JspPage).

❏ A JSP container can translate a page at any time but often does so at the
point when a page is fi rst requested.

❏ Once requested, a JSP page enters the request or execution phase.

❏ Class loading and initialization of static information occur, as for any other
Java class.

❏ An instance of the JSP page servlet is made.

❏ jspInit() is called once, before any requests for an instance of the JSP page
are serviced.

❏ _jspService() is called for every request made to the page.

❏ Concurrent container threads can call the same _jspService() method
on the same JSP page instance at the same time.

❏ jspDestroy() is called once after all requests to the JSP page have
completed — no further requests are admitted once jspDestroy() has
been called.

418 Chapter 6: JavaServer Pages

❏ There is usually only one instance of a JSP page servlet.

❏ A JSP page can be explicitly registered in the <servlet> element of a de-
ployment descriptor, but it doesn’t have to be.

❏ The same JSP page can be registered more than once, under a different
<servlet-name>.

❏ A different instance of the same JSP page servlet is created for each separate
<servlet-name>.

❏ You must not override servlet life cycle methods (init(ServletConfig
config), service(), destroy()) in your JSP pages.

JSP Elements
❏ A JSP page is composed of template text and elements.

❏ Template text is any content in a JSP page that is not a scripting element,
standard or custom action, or expression language syntax.

❏ Template text normally comprises HTML or XML, but there are no con-
straints on the type of content.

❏ Template text doesn’t require “translation,” beyond the insertion of some
escape characters when necessary.

❏ There are three sorts of elements: directive, scripting, and action.

❏ There are two sorts of action: custom and standard.

❏ There are two families of scripting element: “traditional” and “modern”
(Expression Language).

❏ There are four sorts of “traditional” scripting element: expressions, scriptlets,
declarations, and comments.

❏ An expression displays output in the response and looks like this:

 <%= expression %>

❏ A scriptlet is generally for more extended Java logic and looks like this:

 <% scriptlet statement 1; scriptlet statement 2; %>

❏ A declaration is typically used to include complete methods in the generated
servlet and looks like this:

 <%! methodSignature() { method content } %>

❏ A comment is for any area translation should ignore and looks like this:

 <%-- Anything at all goes here --%>

Two-Minute Drill 419

❏ Expressions can contain any valid Java code that returns something, primitive
or object (i.e., not void).

❏ Expression code is incorporated in out.print() statements in the
_jspService() method.

❏ Expression code must not end in a semicolon (expression code forms part of a
statement).

❏ Scriptlets can contain most valid Java code.

❏ Scriptlet code is generated into the _jspService() method, at the point of
insertion into JSP page source, so don’t use scriptlets to defi ne whole methods.

❏ Scriptlet code can contain multiple statements, a single statement, or even a
single curly brace ({ or }—block delimiter).

❏ Local variables declared in one scriptlet can be accessed in another later in
the page source.

❏ Declarations are for Java syntax that appears in the generated servlet source
outside of the _jspService() method.

❏ Declarations can be used to override the life cycle methods jspInit() and
jspDestroy().

❏ Comments of the <%-- lines commented out --%> variety must not be
nested.

❏ Use the <!-- comment lines --> HTML /XML style of commenting for a
comment that is returned in the response.

JSP Directives
❏ Directives have similar syntax to scripting elements: opening characters <%@

and closing characters %>.

❏ Within these delimiters, directives consist of a name and attributes.

❏ Attributes consist of name=“value” (or name=‘value’) pairs, as in HTML or
XML.

❏ There are three sorts of directive: page, include, and taglib.

❏ The page directive has several possible attributes.

❏ There can be many page directives within a piece of JSP page source.

❏ Each page directive can have one or several attributes.

❏ The import attribute produces import statements in the generated servlet
code. Example: <%@ page import="java.util.*, java
.io.PrintWriter" %>.

420 Chapter 6: JavaServer Pages

❏ The session attribute can be used to make the session implicit object unavail-
able. Example: <%@ page session='false' %>.

❏ The contentType attribute specifi es the MIME type of the response.
Example: <%@ page contentType="image/gif" %>.

❏ The isELIgnored attribute determines if expression language should
be interpreted, or just treated as template text. Example: <%@ page
isELIgnored="true" %>.

❏ There are several other page attributes that aren’t on the exam objectives.

❏ The include directive is used to incorporate fi les into JSP page source at
translation time.

❏ Files included do not have to be JSP page source (with a .jsp extension)—
anything that will translate is permitted.

❏ A JSP page and its included fi les are referred to as a translation unit.

❏ The include directive has one mandatory attribute —fi le.

❏ The fi le attribute gives an absolute or relative path to the fi le to be included.
Example: <%@ include file="stubs/header.html" %>.

❏ The taglib directive makes custom actions from a tag library available in a
JSP page.

❏ The taglib directive has two mandatory attributes —prefi x and uri.

❏ The uri attribute indicates how the container should fi nd the tab library.

❏ The prefi x attribute is used to preface all tags from the tab library used within
the JSP page. Example:

<%@ taglib prefix="mytags" uri="http://www.osborne.com/taglibs/mytags" %>

JSP Implicit Objects
❏ There are nine implicit objects: request, response, application, session, confi g,

page, pageContext, out, and exception.

❏ Implicit objects are just local variables with standard names in the
_jspService() method.

❏ request and response are passed as parameters into _jspService().

❏ For HTTP containers, request must implement the HttpServletRequest
interface.

❏ Otherwise, request must implement ServletRequest.

Two-Minute Drill 421

❏ For HTTP containers, response must implement the HttpServletResponse
interface.

❏ Otherwise, request must implement ServletResponse.

❏ application is the web application’s context object (of ServletContext type).

❏ session is a web application session object (of HttpSession type).

❏ confi g is the ServletConfi g object associated with the generated servlet, so it
can be used to access initialization parameters for the servlet /JSP page.

❏ out is a JspWriter, used within JSP pages to write to the response instead of
the standard PrintWriter from the response.

❏ out is —by default —buffered.

❏ exception is available only in designated error pages, which have the directive
<%@ page isErrorPage="true" %>

❏ Error pages are not called directly. Another JSP with this kind of directive is
required:
 <%@ page errorPage="myErrorPage.jsp" %>

❏ if the page containing this directive throws an exception, the JSP container
forwards to the named error page.

❏ In the named error page, exception (a Throwable object) can be used to execute
methods (such as printStackTrace(), getMessage()) on the exception.

❏ page is synonymous with this: the generated servlet itself.

❏ pageContext provides “page scope” attributes for the JSP page.

❏ pageContext has methods that can set, get, and remove attributes in any of the
four scopes: page, request, session, or application.

❏ The set, get, and remove methods of pageContext are overloaded — some
signatures accept an int parameter to represent scope.

❏ Valid values for the scope parameter are defi ned as constants in the Page
Context class: PAGE_SCOPE, REQUEST_SCOPE, SESSION_SCOPE, and
APPLICATION_SCOPE.

SELF TEST
The following questions will help you measure your understanding of the material presented in this
chapter. Read all the choices carefully because there might be more than one correct answer. The
number of correct choices to make is stated in the question, as in the real SCWCD exam.

JSP Life Cycle

 1. What will be the most likely outcome of attempting to access the following JSP for the second
time? (Choose one.)

<%@ page language="java" %>
<%@ page import="java.util.*" %>
<html><head><title>Chapter 6 Question 1</title></head>
<body>
<h1>Chapter 6 Question 1</h1>
<%!
public void jspInit() {
 System.out.println("First half of jspInit()");
%>
<%> new Date() %>
<%!
 System.out.println("Second half of jspInit()");
}
%>
</body></html>

 A. Translation error (HTTP response code of 500)

 B. Page not found error (HTTP response code of 404)

 C. Web page returned showing a heading and the current date; two lines of output written to
the server log

 D. Web page returned showing “First half of jspInit(),” “Second half of jspInit(),” a heading,
and the current date

 E. Web page returned showing a heading and the current date

 2. What is output to the web page on the second access to the same instance of the following JSP?
(Choose one.)

<%@ page language="java" %>
<html>

422 Chapter 6: JavaServer Pages

Self Test 423

<head><title>Chapter 6 Question 2</title></head>
<body>
<h1>Chapter 6 Question 2</h1>
<%! int x = 0; %>
<%!
public void jspInit() {
 System.out.println(x++);
}
%>
<%= x++ %>
<% System.out.println(x); %>
<% jspInit(); %>
</body></html>

 A. 0

 B. 1

 C. 2

 D. 3

 E. 4

 F. Page does not translate.

 G. Page translates, but there is another runtime error.

 3. For what reason does the following JSP fail to translate and compile? (Choose one.)

<%@ page language="java" %>
<html>
<head><title>Chapter 6 Question 3</title></head>
<body>
<h1>Chapter 6 Question 3</h1>
<%! int x; %>
<%!
public void jspDestroy() {
 System.out.println("self-destructing");
} %>
<%!
public void jspInit() {
 System.out.println(<%= x %>);
}
%>
</body></html>

424 Chapter 6: JavaServer Pages

 A. Expression embedded in declaration.

 B. Data member x not initialized before use.

 C. Local variable x not initialized before use.

 D. Placement of jspDestroy() method before jspInit() method.

 E. The page actually compiles and translates without any problem.

 F. None of the above.

 4. Which of the following are true statements about the JavaServer Page life cycle?
(Choose two.)

 A. The _jspService() method is called from the generated servlet’s service()
method.

 B. jspInit() is only ever called on the fi rst request to a JSP instance.

 C. jspDestroy() is only ever called on the last request to a JSP instance.

 D. All servlet methods are accessible from the jspInit() method.

 E. You cannot override or provide a no-parameter init() method in a JSP page.

 5. What is the consequence of attempting to access the following JSP page?
(Choose two.)

<%@ page language="java" %>
<html>
<head><title>Chapter 6 Question 5</title></head>
<body>
<h1>Chapter 6 Question 5</h1>
<%!public void _jspService(HttpServletRequest request,
 HttpServletResponse response) {
 out.write("A");
} %>
<% out.write("B"); %>
</body>
</html>

 A. Cannot resolve symbol compilation error.

 B. “A” is output to the response.

 C. “B” is output to the response.

 D. “A” is output to the response before “B.”

Self Test 425

 E. Duplicate method compilation error.

 F. “B” is output to the response before “A.”

JSP Elements

 6. What is the result of attempting to access the following JSP page? (Choose one.)

<html>
<head><title>Chapter 6 Question 6</title></head>
<body>
<h1>Chapter 6 Question 6</h1>
<%! public String methodA() {
 return methodB();
 }
%>
<%! public String methodB() {
 return methodC();
 }
%>
<% public String methodC() {
 return "Question 6 Text";
 }
%>
<h2><%= methodA() %></h2>
</body>
</html>

 A. “Question 6 Text” is output to the resulting web page.

 B. A translation error occurs.

 C. A runtime error occurs.

 D. The text between the <h1></h1> HTML tags appears, followed by a Java stack
trace.

 E. The web page is blank.

 7. (drag-and-drop question) The following illustration shows a complete JSP page source. Match
the lettered values, which conceal parts of the source, with numbers from the list on the right,
which indicate possible completions for the source.

426 Chapter 6: JavaServer Pages

 8. What true statements can you make about the following JSP page source? The line
numbers are for reference only and should not be considered part of the source.
(Choose two.)

01 <%@ page import="java.io.*" %>
02 <html>
03 <head><title>Chapter 6 Question 8</title></head>
04 <body>
05 <%
06 PrintWriter out = response.getWriter();
07 out.write("P");
08 %>
09 <% out.write("Q"); %>
10 </body>
11 </html>

<html>
<head><title>Chapter 6 Question 7</title></head>
<body>
<h1>Chapter 6 Question 7</h1>
<form action="Question7.jsp">
Type distance abbreviation here:
<input type="text" name="abbrev" />
Request made at: <% Date d = new Date();
java.text.DateFormat fmt =
java.text.DateFormat.getDateInstance(DateFormat.S
HORT);
String s = fmt.format(d);%><%=s%>
<input type="submit" />
</form>
<%=
fullTextOfUnits(request.getParameter("abbrev"))
%>
<%@ page import="java.text.*,java.util.*" %>
<%! public String fullTextOfUnits(String key) {
 if ("km".toLowerCase().equals(key)) {
 return "kilometers";
 }
 if ("m".toLowerCase().equals(key)) {
 return "miles";
 }
 return "";
 }
%>
</body>
</html>

F
G

C

D E

B

A

14 ;%>

13 <%!

15 abbrev

12 %><%=

11 />

10 ‘ ‘ (a single blank space)

9 ;

8 #%>

7 --%>

6 <%--

5 <%#

4 <%@

3 %>

2 <%=

1 <%

Self Test 427

 A. In line 09, the scriptlet markers should not be on the same line as the Java source
statement.

 B. In JSP technology, it’s a bad idea to get hold of the PrintWriter directly from the
response.

 C. “P” will be written to the response, followed by “Q.”

 D. “Q” will be written to the response, followed by “P.”

 E. Only “Q” will be written to the response.

 F. The page has a compilation error because of a directive syntax error.

 G. The page has a compilation error because the import in the directive syntax is for
the wrong Java package.

 H. The page has a compilation error for other reasons.

 9. Which of the following are false statements to make about JSP scripting elements?
(Choose three.)

 A. It is legal to embed a <%-- style comment inside another comment.

 B. It is legal to embed an expression inside a scriptlet.

 C. It is legal to embed an expression inside a declaration.

 D. It is legal to embed an expression inside a directive.

 E. It is legal to include a declaration at any point in the JSP page source, provided that
it appears outside of other elements.

 F. It is legal to embed a scriptlet inside an expression inside a <%-- style comment.

 10. What is the result of attempting to access the following JSP page source? (Choose one.)

<% <%-- for (int i = 0; i < 10; i++) {
<%-- if(i==3) System.out.println("i is 3!");--%>
 System.out.println("i squared is " + i * i);
} %> --%>

 A. Doesn’t translate because the page source is incomplete.

 B. Doesn’t compile because nesting comments in this way is illegal.

 C. The JSP page would compile if the terminating curly brace were removed.

 D. The JSP page would compile if one of the percent (%) signs were removed.

 E. Runs as is and produces output (possibly not the output intended).

428 Chapter 6: JavaServer Pages

JSP Directives

 11. Which of the following constitute valid ways of importing Java classes into JSP page source?
(Choose two.)

 A.

<%! import java.util.*; %>

 B.

<%@ import java.util.* %>

 C.

<%@ page import="java.util.StringTokenizator" %>

 D.

<%@ page import=ʼjava.util.*, java.io.PrintStream'
import="java.text.*" %>

 E.

<%@page import = " java.util.* "%>

 12. What is the outcome of accessing the fi rst JSP page, includer12.jsp, shown below?
(Choose one.)

<%-- file includer12.jsp begins here --%>
<% for (int i = 0; i < 10; i ++) { %>
<%@ include file="included12.jsp" %>
<% } %>
<%-- End of file includer12.jsp --%>

<%-- Beginning of file included12.jsp --%>
<html>
<head><title>Chapter 6 Question 12</title></head>
<body>
<h1>Chapter 6 Question 12</h1>
For the <%=i%>th time

</body>
</html>
<%-- End of file included12.jsp --%>

 A. An ill-formed HTML page will be the output.

 B. The call will fail because variable i is not declared in included.jsp.

 C. Translation will fail because elements denoting the beginning and end of an HTML docu-
ment must be in the including JSP document, not the included.

Self Test 429

 D. “For the 10th time” appears in the output.

 E. Translation fails for other reasons.

 13. What statements are true about the following two JSP page sources, given the intention of
always requesting includer13.jsp? (Choose two.)

<%-- file includer13.jsp begins here --%>
<%@ page import="java.util.*" contentType="text/html" session="true"%>
<html>
<head><title>Chapter 6 Question 13</title></head>
<body>
<h1>Chapter 6 Question 13</h1>
<%ArrayList al = new ArrayList();
al.add("Jack Russell");
al.add("Labrador");
al.add("Great Dane");%>
<%@ include file="included13.jsp" %>
</body>
</html>
<%-- file includer13.jsp ends here --%>

<%-- file included13.jsp begins here --%>
<%@ page import="java.util.*" contentType="text/html" %>
<table>
 <%for (int i = 0; i < al.size(); i++) {%>
 <tr><td><%= al.get(i) %></td></tr>
 <%}%>
</table>
<%-- file included13.jsp ends here --%>

 A. Translation will fail because the import attribute of the page directive is repeated across
the page sources.

 B. Translation will fail because the contentType attribute of the page directive is repeated
across the page sources.

 C. Removing the Session attribute from includer13.jsp will make no difference to the
generated servlet code.

 D. The local variable al in included13.jsp will not be recognized.

 E. The import, contentType, and session attributes should appear in separate page
directives.

 F. The order of the import and contentType attributes in both JSP page sources is
immaterial.

430 Chapter 6: JavaServer Pages

 14. Which of the following are invalid directives? (Choose three.)

 A. <%@page isELignored = “false” %>

 B. <%@ page session=the“/’ is okay true’ %>

 C. <%@ page contentType=“image/music /text” %>

 D. <%@include uri=“header.jsp” %>

 E. <%@ taglib prefi x=“mytags” uri=“http://www.osborne.com/taglibs/mytags” %>

 15. Given the beginning of the JSP page source below, which set of lines should be used to
complete the JSP page source in order to print out all the song lyrics? (Choose one.)

<%! static String[] suedeShoes = new String[4];
static { suedeShoes[0] = "One for the Money,";
suedeShoes[1] = "Two for the Show,";
suedeShoes[2] = "Three to Get Ready,";
suedeShoes[3] = "And Go, Cat, Go!";} %>
<% pageContext.setAttribute("line1", suedeShoes[0]);
request.setAttribute("line2", suedeShoes[1]);
session.setAttribute("line3", suedeShoes[2]);
config.getServletContext().setAttribute("line4", suedeShoes[3]);
%>

 A.

<%@ page contentType="text/plain"
info="Blue Suede Shoes" session="false" %>
<%for (int i = 0; i < suedeShoes.length; i++) {
 String songLine =
 (String) pageContext.findAttribute("line" + (i + 1));%>
 <%= songLine %>
<%}%>

 B.

<%@ page contentType="text/plain"
info="Blue Suede Shoes" session="true" %>
<%for (int i = 0; i < suedeShoes.length; i++) {
 String songLine =
 (String) pageContext.findAttribute("line" + (i + 1));%>
 <%= songLine %>
<%}%>

 C.

<%@ page contentType="text/plain"
info="Blue Suede Shoes" session="true" %>

Self Test 431

<%for (int i = 1; i < suedeShoes.length; i++) {
 String songLine =
 (String) pageContext.findAttribute("line" + i);%>
 <%= songLine %>
<%}%>

 D.

<%@ page contentType="text/plain"
info="Blue Suede Shoes" session="true" %>
<%for (int i = 0; i < suedeShoes.length; i++) {
 String songLine =
 (String) pageContext.getAttribute("line" + (i + 1));%>
 <%= songLine %>
<%}%>

 E.

<%@ page contentType="text/plain"
info="Blue Suede Shoes" session="true" %>
<%for (int i = 0; i < suedeShoes.length; i++) {
 String songLine =
 (String) pageContext.getAttribute("line" + (i + 1));%>
 <%= songLine; %>
<%}%>

JSP Implicit Objects

 16. Which of the following techniques is likely to return an initialization parameter for a JSP page?
(Choose two.)

 A. <%= request.getParameter(“myParm”) %>

 B. <% String s = getInitParameter(“myParm”); %>

 C. <% = application.getInitParameter(“myParm”) %>

 D. <%= confi g.getInitParameter(“myParm”); %>

 E. <%= getParameter(“myParm”) %>

 F. <% Object o = confi g.getParameter(“myParm”); %>

 G. <% String s = confi g.getAttribute(“myParm”); %>

 H. <% String s = getAttribute(“myParm”); %>

432 Chapter 6: JavaServer Pages

 17. (drag-and-drop question) The following illustration shows a complete JSP page source. The
desired output on the web page is 0 0 1 2 3. Match the lettered values, which conceal parts of
the source, with numbers from the list on the right. The numbered fragments indicate possible
completions for the source that will achieve the desired output. The numbered fragments may
be used more than once, and not all of them are needed.

 18. What is the result of requesting errorProvoker.jsp for the fi rst time? Assume that neither of the
JSP pages below has yet been translated. (Choose one.)

<%--Beginning of errorProvoker.jsp page source --%>
<%@ page errorPage="/errorDisplayer.jsp" %>
<% request.setAttribute("divisor", new Integer(0)); %>
<html>
<head>
<% int i = ((Integer) request.getAttribute("divisor")).intValue(); %>
<title>Page Which Terminates In Error</title>

<%@ page session="true" %>
<%
pageContext.setAttribute("attr", new Integer(0));
request.setAttribute("attr", new Integer(1));
session.setAttribute("attr", new Integer(2));
application.setAttribute("attr", new Integer(3));
%>
<%= pageContext.findAttribute("attr") %>
<%= pageContext.getAttribute("attr",
 PageContext.PAGE_SCOPE) %>
<%= pageContext.getAttribute("attr",
PageContext.REQUEST_SCOPE) %>
<%= pageContext.getAttribute("attr",
PageContext.SESSION_SCOPE) %>
<%= pageContext.getAttribute("attr",
PageContext.APPLICATION_SCOPE) %>

D

E F

B

C

G

I

H

J

K

A

14 REQUEST_SCOPE

13 context

15 SESSION_SCOPE

16 APPLICATION_SCOPE

12 application

11 JSP_SCOPE

10 false

9 pageContext

8 CONTEXT_SCOPE

7 true

6 PAGE_SCOPE

5 Page

4 PageContext

3 page

2 no

1 yes

Self Test 433

</head><body>
<%= 1.0 / i %>
</body></html>
<%-- End of errorProvoker.jsp page source --%>
<%-- Beginning of errorDisplayer.jsp page source --%>
<%@ page isErrorPage="true" %>
<%@ page import="java.io.*" %>
<html><head><title>Divide by Zero Error</title></head>
<body><h1>Don't divide by zero!</h1>
<pre><% exception.printStackTrace(new PrintWriter(out)); %></pre>
</body></html>
<%-- End of errorDisplayer.jsp page source --%>

 A. errorProvoker.jsp will not translate and compile because of faults in the page source.

 B. errorDisplayer.jsp will not translate and compile because of faults in the page source.

 C. errorDisplayer.jsp will not be translated.

 D. A stack trace will be displayed in the requesting browser.

 E. The browser’s title bar will display “Divide by Zero Error.”

 F. errorProvoker.jsp displays output.

 19. Which of the following are false statements about implicit objects and scope? (Choose four.)

 A. out is of type java.io.PrintWriter.

 B. confi g can be used to return context initialization parameters.

 C. PageContext.findAttribute() can’t be used to return a session scope attribute if an
attribute of the same name exists in page scope.

 D. page is of type java.lang.Object.

 E. application can’t be used to access other web application resources.

 F. It is illegal to have attributes of the same name existing in more than one scope.

 20. What is the result of attempting to access attributeFinder.jsp below, typing text into the input
fi eld, and pressing the submit button? (Choose one.)

<%-- Beginning of attributeFinder.jsp page source --%>
<%@ include file="fieldSetter.jsp" %>
<html><head><title>Echo Input</title></head>
<body><h5>Type in the field below and press the button to echo
input...</h5>
<form>
<input type="text" name="<%= session.getAttribute("echoFieldName")%>" />
<input type="submit" />

434 Chapter 6: JavaServer Pages

</form>
<h3>Echoed Text: <%= request.getAttribute("echoInput") %></h3>
</body></html>
<%-- End of attributeFinder.jsp page source --%>
<%-- Beginning of fieldSetter.jsp page source --%>
<% session.setAttribute("echoFieldName", "echoInput"); %>
<%-- End of fieldSetter.jsp page source --%>

 A. Can’t be accessed: translation error in attributeFinder.jsp.

 B. Can’t be accessed: translation error in fi eldSetter.jsp.

 C. Can’t be accessed: translation errors in both attributeFinder.jsp and fi eldSetter.jsp.

 D. null is displayed for the echoed text.

 E. Echoed text is displayed as intended.

LAB QUESTION
This lab encourages you to use techniques from across this chapter, plus one or two from previous
chapters. You’re going to write a simple JSP version of the game tic-tac-toe (or as we know it in
England, noughts and crosses).

This can be accomplished in a single JSP fi le. For the playing “grid,” construct a table with three
rows, each with three cells. Place an input text fi eld in each of the nine cells, to receive input of “X”
or “O.” Include a button beneath the table that submits the enclosing form. The action associated
with the form should be the same JSP fi le again. However, because you have made a server request,
you will have to recall the state of play and reload the table cells with the appropriate value —“X,”
“O,” or nothing at all, if nothing has been marked in the cell.

There are plenty of refi nements you can make to the above specifi cations. The solution code
prevents a cell from being “input capable” once an “X” or “O” has been placed within it and the
confi rm button pressed. You might like to have a go at that and introduce bells and whistles absent
from the solution: validating that “X” and “O” are placed alternately, perhaps, or spotting a winning
line and presenting an appropriate message.

SELF TEST ANSWERS
JSP Life Cycle

 1. � E. A web page is returned showing a heading and the current date.
 � A is incorrect. It certainly looks strange splitting a declared method (jspInit()) in two

halves (it’s pretty pointless, and I don’t recommend it as good style!), but as declarations are
imported contiguously into the generated servlet, the page translates just fi ne. B is wrong —had
there been a translation error, a 500 error should result in any case, not a page not found 404
error. C could be right under unusual circumstances, but for the most part, if this is the second
access to this JSP, and so the same instance is used again, then jspInit() won’t be executed
(as for the same instance, it would have fi red on the fi rst access to the JSP, writing two lines to
the server log). D is defi nitely wrong: The suggestion here is that the System.out.println
output goes to the returned response, whereas it goes to the server log.

 2. � D. 3 is output to the web page. The sequence of events is this: On or before the fi rst
access to the JSP, the page is instantiated. The initialize event fi res, so the JSP container calls
jspInit(). The declared instance variable int x is incremented from 0 to 1 within the method.
Then the web page takes this current value of x for display through the expression <%= x++ %>;
only afterward is x incremented again from 1 to 2. jspInit() is called again in the last scriptlet
in the JSP. This causes x to be incremented from 2 to 3. On the second request to the web page,
the JSP container doesn’t call jspInit() again: It happens only once per life cycle. So the fi rst
thing that happens is that the expression <%= x++ %> is evaluated —for a current value of 3,
which is then displayed in the web page. Any subsequent increments to x don’t matter for the
purposes of the question.

 � A, B, C, and E are incorrect because of the reasoning in the correct answer. F and G are
incorrect because the page is correct syntactically, and translates and runs just fi ne. The manual
call to jspInit() may have given you pause for thought, but outside of the fact that this is a
method called automatically by the JSP container, it can be treated just as any other regular
method. It’s not usual, it’s not good style, and I hope you’ll encounter this kind of obscure
coding only in exam questions, but the important thing is to recognize it as legal!

 3. � A. An expression belongs in the middle of the _jspService() method of the JSP’s
generated servlet. So it makes no sense to locate an expression inside of another declared
method in the JSP, whether jspInit() or any other.

 � B and C are incorrect. You need to recognize for one thing that <%! int x; %> causes
the variable x to be declared as a data member, not a local variable. Because data members are
always initialized to a value (in this case 0 for the primitive type int), there is no initialization
problem. D is incorrect because the placement of the life cycle methods jspInit() and

Self Test Answers 435

436 Chapter 6: JavaServer Pages

jspDestroy() within the JSP doesn’t matter. You can put them in any order, and the result
will be the same. E is incorrect because there is a fault with the page, and F is ruled out because
there is a correct explanation for the fault.

 4. � A and D. A is true because _jspService() does originate from a servlet’s service()
method. D is also true: All servlet methods are accessible at this point. For a couple of them
(destroy(), service()), it would make no sense to use them at this point, but they are
accessible.

 � B is probably correct nearly all of the time but can’t be taken for granted: A JSP servlet
could be instantiated and the jspInit() method called before any request reaches the JSP
container. The specifi cation leaves room for the container vendor to do what seems best —as
long as the call to jspInit() has occurred before the fi rst request. C is incorrect: You can’t
determine (from within the server) when the last request to a JSP will occur. E is also incorrect,
because (surprisingly) you can override or supply an init() method. It’s likely that your JSP’s
implementing servlet will inherit an init() method with no parameters from GenericServlet.
However, this method is not defi ned in the Servlet interface — rather, there’s one that receives a
parameter: init(ServletConfig config). This one you can’t override in JSPs, and that’s true
for all the methods defi ned in the Servlet and ServletConfi g interfaces (indeed, most vendors
supply a parent JSP servlet —from which your generated servlets inherit —which has the
Servlet and ServletConfi g methods marked as fi nal).

 5. � A and E. Two compilation errors occur. Because the servlet generated from JSP source
already contains a _jspService() method, any attempt to include one (with the same
parameters) will fail with a duplicate method error (can’t have two methods with the same
names and same parameters in the same piece of Java source). Furthermore, the implicit variable
out (for the JspWriter) isn’t implicitly available within any method of your own that you defi ne
in a declaration —which gives rise to the “cannot resolve symbol” error.

 � B, C, D, and F are incorrect; because the JSP as it stands makes no sense and won’t compile,
you certainly won’t get any kind of output to the response.

JSP Elements

 6. � B is correct. There is a translation error because methodC() is inside a scriptlet element,
whereas it should be inside a declaration. Consequently, methodC()’s source is generated
directly into the middle of the jspService() method, so compilation (part of the translation
process) fails.

 � A is incorrect because there will be no output to the browser apart from an HTTP 500
error — this rules out E as well. C is incorrect because there is no compiled code to run. D is

incorrect because only the HTTP 500 error is visible in the browser. This may indeed include a
Java stack trace —but this is from the translation phase classes, not from the generated servlet,
which is the only code that could produce the HTML heading 1 output.

 7. � A maps to 1: It’s the beginning of a scriptlet. B maps to 12, for it denotes the end of the
scriptlet and the beginning of an expression. C maps to 11, for this denotes the end of tag for an
HTML element with no body. D maps to 15: abbrev is the name of the parameter passed on the
input text fi eld. E maps to 10 — only a single white space will do here! (It’s an expression —
this was an attempt to fool you into picking the semicolon. Expressions don’t terminate with
a semicolon.) F maps to 4, for it’s the beginning of a directive (admittedly placed in a stupid
position in the middle of the source, but it’s still legal and works). G maps to 13, for it marks the
beginning of a declaration for the fullTextOfUnits() method.

 � There are no other correct permutations, to the best of my knowledge.

 8. � B and H are the correct answers, for both are true statements about the Java page source.
B is correct because it is a bad idea to use the response’s PrintWriter directly. You should instead
use the JspWriter associated with the out implicit variable. The effects of buffering can jumble
the output if out and the response’s PrintWriter are mixed. H is correct: The page in fact fails to
compile because a duplicate local variable is defi ned. out is automatically provided in generated
JSP source —but this is also the name chosen in this case for the local variable associated with
the PrintWriter at source line 06.

 � A is incorrect, for scriptlet markers can share a line with Java source statements entirely as
needed. C, D, and E are incorrect because the page doesn’t compile, so there is no response. I
fi nd if I correct the compilation problem, I do get the output described in answer C (P followed
by Q—as you might expect. If you have time, though, correct the question source and try
swapping the two scriptlets around — observe what happens). F and G are incorrect answers
because the directive is the correct syntax and java.io is the correct package for the PrintWriter
class (which is the only unqualifi ed class name in the source).

 9. � A, C, and D are the correct answers, for they are all false statements. A is correct because
you can legally embed one <%-- comment inside another —it’s just not a sensible thing to do,
for the translator will think the outer comment has ended as soon as it encounters the inner
comment end marker. Doing this may lead to compilation errors, but is not in itself a cause for
a translation failure. C and D are correct because you can never embed an expression inside a
declaration or a directive (so C and D are false statements).

 � B is incorrect because it is a true statement: Expressions can’t be embedded inside scriptlets.
Although both scriptlets and expressions are generated to the _jspService() method, it
would almost never lead to legal Java to include one inside the other; hence, the translator
won’t allow it. E is incorrect because it’s also a true statement —you can include declarations

Self Test Answers 437

438 Chapter 6: JavaServer Pages

anywhere in the JSP page source (they don’t have to appear at the beginning or end). And F
is also true (and so an incorrect answer)—it’s legal to embed illegal syntax (a scriptlet inside
an expression) or anything else inside a <%-- style comment; the translator simply ignores
anything inside the comment.

 10. � D is the correct answer. If the percent sign associated with opening of the scriptlet were
removed, the JSP page would compile. The angle bracket would be treated as template text —
the opening of an HTML tag. The translator would ignore everything from the fi rst comment
sign to the fi rst comment end sign. The rest of the page (from “System.out.println” onward)
would be interpreted as template text. The browser rendering the dubious output (unbalanced
angle brackets in the HTML) might have problems, but the JSP page would compile.

 � A is incorrect: JSP page sources can have no characters in them at all and still be
“complete” as far as the translation process is concerned. This is part of their convenience.
So don’t feel that this fragment is an incomplete page. B is incorrect —as discussed in the
previous question, you can have nested comments as far as the compiler is concerned; it’s just
not a sensible thing to do. C is incorrect because even if you did remove the curly brace — thus
making the scriptlet almost legal Java —compilation would still fail because the declaration for
variable i is still commented out. And for all the reasons discussed so far, E must be incorrect:
The page won’t run and produce output if left unaltered.

JSP Directives

 11. � D and E are the correct answers. Although D looks strange, because it includes two import
attributes in the same directive and uses a different style of quote for each set of attribute values,
this translates, compiles, and works. Again, E looks strange because of the surfeit of white space
in places and absence in others —but again, it works fi ne.

 � A is incorrect: You might think it is reasonable to include an import statement in a
declaration element, but it simply fails to translate. B is incorrect: import is not a directive in
its own right (it’s an attribute of the page directive). Finally, C is incorrect because although
the JSP syntax is legal, the class java.util.StringTokenizator does not exist —consequently,
compilation will give rise to an unresolved import error (and yes, it is fair to test such
knowledge in a web application exam!).

 12. � A is the correct answer. An ill-formed HTML document will be the output —including ten
beginning of document <html> and end of document </html> tags. Everything else about the
inclusion process works. On most browsers (which aren’t too fussy about well-formed HTML),
the page will display.

 � B is incorrect — the include directive causes the source of included12.jsp to meld into
includer12.jsp. Together they form a single “translation unit”; it is as if there is only one JSP
to translate. So the declaration of variable i in includer12.jsp makes i available to the source of
included12.jsp. C is incorrect —however incorrect the template HTML, the translation process
won’t mind (you might design a JSP container to do additional checks, but the JSP spec doesn’t
mandate this, and the exam questions are according to the JSP spec). D is incorrect: The loop
is zero-based, so “For the 9th time” is the highest value in the output. And because translation
doesn’t fail, E must also be incorrect.

 13. � C and F are the correct answers. C is correct because the session attribute for the page
directive is set to “true”—which is the default — so removal would have no impact. F is correct
because it’s OK for more than one attribute to appear in the same page directive, and the order
of attributes won’t cause an error.

 � A is incorrect because it’s always fi ne to repeat the import attribute over the same page
directive or over several page directives. The translator will even forgive you importing the
same package or class twice. B is incorrect because while it isn’t wise to repeat the contentType
attribute more than once in the same translation unit, as long as the values are the same
wherever it appears, then no error will occur. D is incorrect: al would not be recognized if
included13.jsp was translated directly, but we’re told in the question that the intention is to call
(and translate) includer13.jsp, which declares the variable. E is incorrect because there is no
issue with having a page directive with several attributes. Stylistically, you may want to spread
different attributes over different directives —but the exam is a syntax test, not a style test!

 14. � A, B, and D are the correct answers, for all illustrate invalid directives. A is mistaken in
the case for an attribute name, which should be isELIgnored (the second “I” must be a capital
letter). B mixes double quotes and single quotes to hold an attribute value. Although different
attribute values —even in the same directive —can differ in quote style, a single value must
stick to the same style. D is wrong (and so a correct answer) because uri is an attribute of the
taglib directive, not the include directive (which has one mandatory attribute of fi le).

 � C is an incorrect answer because it is a valid directive. Even though the MIME-type
(“image/music /text”) is rubbish, this won’t throw any JSP translation or runtime error. The
receiving browser might have a hard time coping with the response, though! E is an incorrect
answer, for it perfectly expresses a tag library directive.

 15. � B is the correct answer. This sets up the session variable, fi nds the attributes for the song
lines in the right scope, and prints out all the lines.

 � A is incorrect because the session attribute for the page directive has a value of false, yet
the implicit variable session is accessed. The page will not compile in this state. C is incorrect

Self Test Answers 439

440 Chapter 6: JavaServer Pages

because the logic for fi nding the attributes is slightly fl awed. The loop has been adjusted so the
counter starts at 1 instead of 0 (making it simpler to compose the attribute names) but will now
only loop through the fi rst three lines. D is wrong because the getAttribute method for the
pageContext implicit variable will fi nd attributes only in page scope. So the logic will only fi nd
one of the lines. E is wrong for the same reason as D, and also because the expression to print out
the song line terminates incorrectly in a semicolon (so the page will not compile successfully).

JSP Implicit Objects

 16. � B and D are the correct answers. D is correct because the confi g implicit object (which must
be available in your JSP page) has a getInitParameter() method that accepts a String for the
parameter name and returns a String representing the parameter object. B is correct because you
are in the middle of servlet code, and the servlet you inherit from almost certainly implements
the ServletConfig.getInitParameter() method.

 � A is incorrect because the parameters you retrieve from requests are tied to the request,
usually from fi elds on an HTML form — so have nothing to do with servlet (JSP) initialization
parameters. C is incorrect because while application does have a getInitParameter() method,
the parameter values returned are for the ServletContext (i.e., the web application as a whole).
E is incorrect because there is no getParameter() method available in the generated servlet.
F is incorrect because confi g’s method for returning servlet parameters is getInitParameter(),
not getParameter. G and H are incorrect because there are no attribute methods associated
with ServletConfi g or servlets directly —and besides, attributes are not parameters.

 17. � A maps to 7 (because session scope is used, it must be “true” that the session implicit object
is available). B maps to 9 (the Integer 0 must be in page scope because the later expression
containing the method findAttribute() will then fi nd a value of 0 to print at the right time).
C maps to 12 (application matches APPLICATION_SCOPE in the last line of the page source,
for printing out the number 3). D maps to 9 again (only pageContext has a findAttribute()
method). E, G, I, and K all map to 4 (the class PageContext — required for the fi nal, static
constants used as the second parameter in each occurrence of the getAttribute() method).
F maps to 6 (must be PAGE_SCOPE — no other scope will do), H maps to 14 (must be
REQUEST_SCOPE), and J maps to 15 (must be SESSION_SCOPE).

 � No other combinations will work to produce the correct output.

 18. � C and F are the correct answers. C is correct because errorDisplayer.jsp will not be
translated, for no error occurs to transfer processing from errorProvoker.jsp. F is correct because
errorProvoker.jsp does display output: the word “Infi nity.” The key to answering the question is
the knowledge that division involving a double (and 1.0 is a double constant) does not result in
an ArithmeticException, as integer division does.

 � A is incorrect, for the page source for errorProvoker.jsp is absolutely fi ne, as is that for
errorDisplayer.jsp , so B is incorrect as well. You might have thought the scriptlet

<% exception.printStackTrace(new PrintWriter(out));>

 strange —but this use of the out implicit variable is perfectly acceptable (I’m indebted to Phil
Hanna’s book—JSP 2.0: The Complete Reference, McGraw-Hill /Osborne —for pointing out
this handy technique for printing a stack trace to the web page). D is incorrect, for no error
occurs — so no stack trace. E is incorrect — the title “Divide by Zero Error” would occur only if
processing was diverted to errorDisplayer.jsp.

 19. � A, B, E, and F are the correct answers, for all of these are false statements. A is false (and so
a correct answer) because out is a javax.servlet.jsp.JspWriter, not a java
.io.PrintWriter. B is false (so a correct answer) because config can be used to return
initialization parameters for an individual JSP, but not for the entire context (for which
you would use the application implicit object). E is false (so a correct answer) because
application is just a ServletContext object —and this provides the getContext() method
for accessing different contexts outside of the current web application. F is false (so a correct
answer) because it is absolutely possible to have attributes of the same name in different scopes
(as you would have understood from Question 17 if nowhere else!).

 � C and D are incorrect, for both are true statements. C is true (so an incorrect answer)
because findAttribute() will indeed look to the innermost scope (page) fi rst for attributes,
and will look no further once it has found an attribute for the sought name. D is true (so an
incorrect answer), for page is surprisingly defi ned as an Object reference — not a Servlet,
or GenericServlet or HttpJspPage. It is likely that you can cast the page reference to
something more useful, such as one of those listed, but you probably wouldn’t bother, for you
have this to use as a more useful alternative.

 20. � D is the correct answer. The constant null is invariably displayed as the echoed text.
Everything translates fi ne — there is nothing syntactically incorrect in the page sources.
However, in attributeFinder.jsp, the developer should have used request.getParameter
("echoInput") instead of request.getAttribute("echoInput"). Field values from
HTML forms are made available as parameters, not attributes.

 � A, B, and C are incorrect because no translation errors occur. You may have thought that
using an expression for an HTML form fi eld is illegal—but no, it’s fi ne, even with the peculiar
logic here, with the name set in an included JSP page source. E is incorrect because you have to
make the adjustment described in the correct answer to get the input echoing properly.

Self Test Answers 441

442 Chapter 6: JavaServer Pages

LAB ANSWER
Deploy the WAR fi le from the CD called lab06.war, in the /sourcecode/chapter06 directory.
This contains a sample solution. You can call the JSP using a URL such as

http://localhost:8080/lab06/tictactoe.jsp

This is a very basic version of the game —you may fi nd it hard to stop yourself from improving
the code!

