JSP Standard
Actions, XML,
and EL

CERTIFICATION OBJECTIVES

Standard Actions

Expression Language

Dispatching Mechanisms v/ Two-Minute Drill

JSPs in XML Q&A Self Test

444 Chapter7: |SP Standard Actions, XML, and EL

n the last chapter you covered the fundamentals of JavaServer Pages and did a lot of work

with the “traditional” scripting elements. In this chapter you start by learning about standard

actions. These are interesting in that they have been available for a long while and—like
“traditional” scripting—were common topics in the previous version of the exam. Yet they also
foreshadow the more recent innovations in JSP technology, which continues to push in an XML
direction.

You'll also explore in the first half of the chapter how standard actions play a
role in dispatching mechanisms: forwarding to and including other resources (you’ll
remember that you have come across one inclusion mechanism already — the
<%@ include %> directive—and this chapter rounds out that topic).

In the second half of the chapter, you are introduced to two topics that are recent
additions to JSP technology, and so also to the latest syllabus of the web component
developer exam:

B JSP documents, which are JSPs written entirely in well-formed XML

B Expression Language, the “modern” alternative to language-based scripting

You've seen Figure 7-1 before, which shows the makeup of a JSP page—it’s been
slightly modified to indicate the topics you covered previously and which JSP
elements are explained in this chapter.

CERTIFICATION OBJECTIVE

JSP Standard Actions (Exam Objective 8.1)

Given a design goal, create a code snippet using the following standard actions: jsp:useBean
(with attributes: “id,” “scope,” “type,” and “class”), jsp:getProperty, and jsp:setProperty
(with all attribute combinations).

Standard actions are used for the same purpose as Java language-based scripting:
Most if not all the goals that you can achieve with standard actions are achievable
with other scripting elements. But in contrast to the techniques we've used so far,
they are written using entirely conventional XML syntax.

FIGURE 7-1

Anatomy of a JSP
Page Revisited

JSP Standard Actions (Exam Objective 8.1) 448

JSP page source

Template text

Elements
Directives
Scripting
4 Language-based EL
/
7
Actions
Standard Custom
//
Expressions, Scriptlets, Declarations, Comments Chapter 6 topics Chapter 7 topics

So why use them? The answer is that they get the job done more elegantly.

They often provide an alternative to inserting screeds of Java logic into your neatly
designed presentation page. Standard actions are also—arguably — tools that

can be used by the nonprogrammer to introduce dynamic behavior that would
otherwise entail Java language knowledge. (Actually —given the range of standard
and custom actions available, combined with Expression Language and JSTL, which
we cover later—you probably need a programmer mentality to embrace even the
“non-Java-language” tools that are available in JSP page source these days.)

Seven standard actions are provided from JSP 1.2 onward: Three are considered
here; three are in the next section, on dispatching; and one is out of scope for the
exam (<jsp:plugin>). Although a few more have been added in JSP 2.0, they are
not directly on the exam syllabus.

The trio of standard actions in this section (<jsp:useBean>, <jsp:get
Property>, <jsp:setProperty>) work together to incorporate information from
existing Java objects into your JSP page. These existing Java objects must be written

446 Chapter7: |SP Standard Actions, XML, and EL

Beans

to rules within the JavaBean specification, so before we approach the standard
actions themselves, we’ll do some preliminary work exploring the least you need to
know about beans.

Why are they standard actions? The reason is that you can have custom actions as
well, which you build yourself using tag libraries, a subject that we fully explore in
Chapters 8 and 9. Both standard and custom actions are similar in appearance: XML
elements that encapsulate functionality on a JSP page. The difference is that you
can rely on any J2EE-compliant JSP container to provide support for all the standard
actions defined in the JSP spec. Not so custom actions, because they are —well —
customized for your web applications. Not that you can’t use custom actions across
several projects, just that the onus is on you to deliver all the apparatus to make
them work within the web application (you can'’t rely on the JSP container to have
the parts required).

The standard actions we explore first are designed to instantiate Java objects, then
write data to or read data from those objects. Java objects come in many shapes and
sizes, so it’s little wonder that standard actions can work only if those objects obey
at least some minimal conventions. Enter the JavaBeans Specification, which has
been around almost as long as Java itself. The idea of JavaBeans is that you can have
Java components (typically classes) that can be interrogated by interested software,
using the reflection techniques we have employed several times in the exercises up
to now. “Interested software” includes the web container code that implements the
standard actions we’re about to discuss. By interrogating the methods available on
a JavaBean, a standard action can obtain information about the properties that the
bean supports —in other words, the data that it stores.

This process works in a remarkably simple way. All your bean has to do is to
provide “getter” and “setter” methods. Here’s a short class that defines information
about a dog:

public class Dog {
private String name;
private float mass;
private boolean insured;
private char sex;
private String barkVolume;
public String getName() { return name; }
public void setName(String name) { this.name = name; }
public float getWeight() { return mass; }

JSP Standard Actions (Exam Objective 8.1) 447

public void setWeight(float weight) { mass = weight }

public boolean isInsured() { return insured; }

public void setInsured(boolean insured) {
this.insured = insured;

}
public char getSex() { return sex; }
public void setSex(char sex) { this.sex = sex; }
public String getBarkVolume() {
return barkVolume;

}
public void setBarkVolume(String barkVolume) {
this.barkvVolume = barkVolume;

}

You can see that the Dog class contains five pieces of information pertaining to the
dog. The first is the data member name. Because name is private, the class provides
a public setName () method to update the dog’s name within a dog instance and, of
course, a getName () method to read the data. Note how the method names use the
instance variable name but capitalize the initial letter: setName(). In this way, the
standard Java naming conventions for instance variables and method names remain
unbroken. This is such a standard convention in Java that you're probably wondering
why I've wasted a precious paragraph on the topic.

However, there are a couple of twists if you've never encountered beans before.
Tools that use beans (which include JSP standard actions) care only about the
methods on the bean. From setName () and getName (), a bean-literate tool
understands that there is a property on any dog “bean” called name (i.e., what you
would expect the instance variable to be called after allowing for the capitalization
difference). But let’s look at the next pair of methods—setWeight () and
getWeight (). From this, we infer there is a property called weight. And this is
correct—even though the instance variable connected to these methods is called
something quite different: mass, in this case. How we represent the data in the bean
(and we may not bother at all) doesn’t matter.

The only other convention to mention is that for primitive boolean properties,
such as insured in our dog bean, you have the option (as a bean developer) to supply
a method called isInsured() instead of (or as well as) getInsured() for reading
the property value.

Another thing about a bean is that you—as a developer—don’t normally have
control over creation of your beans. You don’t write code like this:

Dog d = new Dog();

448 Chapter7: JSP Standard Actions, XML, and EL

on the

Qob

Instead, you leave the instantiation to the bean tool you are using— in our case,
standard actions. Consequently, your bean must have a no-argument constructor—
either one you provide or the default one the compiler provides in the absence

of others. This is the only kind of constructor that your bean tool can assume as
universal across all the beans it has to deal with.

If you carry on down the J2EE road beyond the SCWCD, you’ll go on to learn
about Enterprise JavaBeans (EJBs). These do quite often have getter and
setter methods, but beyond that, the resemblance to the “normal” JavaBeans
we have just discussed comes to an end. E|Bs are a completely different ball
game—they require a specialized container, much as servlets and JSPs do.
So don’t try to connect your <jsp:useBean> standard action to an EJB,
because you are doomed to fail!

Standard Actions

After what may seem like a digression, we can return to the core syllabus matter of
standard actions. Let’s first look at the general syntax of actions, whether standard or
custom. As we've said, they adhere to strict XML syntax. Here’s a generalized picture:

<prefix:tagname firstAttribute="value" secondAttribute="value">
</prefix:tagname>

Each standard action element consists of a start tag, <prefix:tagname>, and an
end tag of the same name (with a forward slash inserted after the first angle bracket),
</prefix:tagname>. The start tag may contain named attributes, separated from
their corresponding value by equal signs. The value is typically surrounded by double
quotes or by single quotes (which is sometimes convenient). After so much exposure
to the deployment descriptor, web.xml, and HTML web pages, this syntax must feel
refreshingly familiar.

But just in case you didn’t know, the area between the start and end tag (represented
by the ellipsis [. . .] above) is termed the body of the element. A standard action may
have a body, but it often has no body at all. This can be represented in one of two ways:

I. By having start and end tag touching, thus: <prefix:tagname
attr="value"></prefix:tagname>

2. By omitting the end tag but using a special /> terminator for the start tag,
thus: <prefix:tagname attr="value" />

JSP Standard Actions (Exam Objective 8.1) 449

[t makes no difference which of the above forms you use; the JSP container will
interpret both identically. So with that in mind, let’s look at the three standard
actions for the exam objective:

B <jsp:useBean>
B <jsp:setProperty>

B <jsp:getProperty>

You can see three tag names here: useBean, setProperty, and getProperty.

You can also see a common prefix—3jsp—separated from the tag name by a colon.
Indeed, the prefix for all standard actions is jsp. When you come to write your own
custom actions later, you'll have to supply a prefix—it may come as no surprise to
learn that jsp is reserved, even if your page eschews all standard actions in favor of
your own custom ones.

<jsp:useBean>

The <jsp:useBean> standard action declares a JavaBean instance and associates
this with a variable name. The instance is then available for use elsewhere in

your JSP page: either in Expression Language (highest grades), other standard
actions (still good practice), or in Java language scripting (frowned upon —but still
legal! You'll see plenty of to-ing and fro-ing between standard actions and
scriptlets and expressions in this chapter—all in the name of education, of
course).

In general, you'll use <jsp:useBean> to set up your bean and two more standard
actions to write and read properties on your bean. These standard actions are called
<jsp:setProperty> and <jsp:getProperty>—which makes pretty good sense in
light of our bean discussion a little earlier.

So how exactly do you use <jsp:useBean> to do this? The answer is to get to
work with its attributes. The simplest approach is this:

<jsp:useBean id="theDog" class="animals.Dog" />
For this to work, several things have to be true:

B The class attribute must specify the fully qualified name of a class (the import
attribute of the page directive will be no help to you, unfortunately).

B animals.Dog must obey JavaBean conventions.

450 Chapter7: JSP Standard Actions, XML, and EL

B animals.Dog must be visible somewhere in the web application —mostly this
means it will exist as a class in WEB-INF/classes or within a JAR file in

WEB-INF/lib.

B An id with a value of theDog must not have been used in <jsp:useBean>
already; in other words, all ids for beans on a page must be unique.

Inserting this in your JSP page source will result in some quite complex code in
your generated servlet’s jspService() method. Ultimately, the code will create
an instance of the bean animals.Dog. How will the code reference the object? In
two ways:

I. Asa local variable in the method, whose name comes from value of the id
attribute (so theDog becomes a local variable).

2. Asan attribute in some scope or other— page, request, session, or
application. In this case, theDog is the name of the attribute.

On this second point: Because we didn’t specify the scope anywhere in our example,
where did theDog go! The answer is into page scope. The following cumbersome
combination of directive and scriptlet code —following on from the <jsp:use
Bean> standard action declaring theDog JavaBean above —will get hold of our bean
object into the local variable myDog:

<%@ page import="animals.Dog" %>
<% Dog myDog=(Dog)
pageContext.getAttribute("theDog"); %>

I'm not suggesting that you should ever do this— this code is only here to unravel
the mystery of bean location.

If we want our bean to be a little more permanent than page duration, we need to
use another attribute of <jsp:useBean>: namely, scope. To put theDog into session
scope, it really is this simple:

<jsp:useBean id="theDog" class="animals.Dog" scope="session" />

The valid values for scope are page, request, session, and application —exactly as
expected. So now we can access theDog across a series of requests from the same user.
What if the theDog already exists in session scope when the standard action above

is encountered? That's OK—<7jsp:useBean> recycles the existing bean; it doesn’t
create a new one.

on the

Qob

JSP Standard Actions (Exam Objective 8.1) 45 |

We haven't explored all the ramifications of <jsp:useBean> just yet, in particular a
fourth attribute named type. But before we do that, we should look at the two standard
actions inevitably used in conjunction with <jsp:useBean>, which are of course
<jsp:setProperty> and <jsp:getProperty>.

There is an attribute of <jsp:useBean> called beanName, off scope for the
exam. The main functionality this offers (over and above the class and type
attributes) is the possibility of using a serialized bean from your file system. To
learn more, take a careful look at section 5.1 of the JSP specification, and the
J2SDK API for the instantiate () method on the java.beans.Beans class.

<jsp:setProperty>
The purpose of <jsp:setProperty> is to set the values of one or more properties

on a bean previously declared with <jsp:useBean>. The most obvious way to use
it is as follows:

<jsp:setProperty name="theDog" property="weight" value="6.4" />

The first thing to watch is the attribute name. This is the name of the bean itself.
The value for this attribute has to be the same as a previous value for a <jsp:
useBean> id attribute. It’s a pity that the attributes don’t match —it’s another
thing you have to remember for the exam: id on <jsp:useBean> = name on <jsp:
setProperty> (and <jsp:getProperty> as well, when we get to it).

Jatch A . L
ctually, the truth is actions in the same JSP page. After all,

that you can use <jsp:setProperty> it won’t replace beans of the same name
and <jsp:getProperty> without a that you have set up by other means,
previous <jsp:useBean>. All <jsp:set and it will create beans of the right name
Property> and <jsp:getProperty> that don’t exist already. Furthermore, if
do is to use PageContext.find your <jsp:setProperty>and <jsp:
Attribute ()—so if an attribute of the getProperty> standard actions try to
right name exists—set up, perhaps, in a access an attribute that doesn’t exist, they
previous servlet—these standard actions are liable to die a horrible death with HTTP
will find it. However, it’s good practice to 500 errors returned to the requester.
include <jsp:useBean> before these

4572 Chapter7: JSP Standard Actions, XML, and EL

The property attribute specifies a property on the bean. Because the property here
is “weight,” then the underlying code will assume the existence of a getWeight ()
method on the theDog bean. The value attribute supplies the data for the property —
or in code terms, the parameter that is passed into the getter method. In our example,
getWeight () expects a float parameter, yet the value for the value attribute looks
very like a String constant: value="6.4." Yet we don’t have to worry —it’s the
responsibility of the JSP container to handle the type conversions involved.

The wvalue attribute has another feature not shared by any other attributes in
<jsp:useBean>, <jsp:setProperty>, or <jsp:getProperty>. Instead of
supplying a literal value, you can substitute an expression. Here are two examples:

<% float w = 6.4f; %>
<jsp:setProperty name="theDog" property="weight" value="<%=w%>" />

Another:

<% String dftWeight = config.getInitParameter("defaultDogWeight"); %>
<jsp:setProperty name="theDog" property="weight" value="<%= dftWeight %>" />

All these are viable ways to “soft-code” the value of value, so as to set a property in
your application. The first sets up a float variable called w in a scriptlet, and uses this
directly in an expression embedded into the following standard action. Note how
the double quotes are retained to demarcate the beginning and end of the value, and
the expression plugs between them: value="<%$=w%>." The second example uses a
scriptlet to obtain an initial parameter called defaultDogWeight associated with the
JSP, and plugs this into the value expression. Later, you'll see that you're not stuck
with Java language expressions to supply values. Expression Language also fits the bill,
and we'll revisit standard actions with Expression Language before the end of this
chapter.

You'll very often want to use request parameters (say from an HTML form) to set
properties. You could follow on from the examples above and write code like this:

<jsp:setProperty name="theDog" property="weight"
value="<%= request.getParameter("dogWeight") %>" />

The expression plugged into the value attribute this time uses the request implicit
object to retrieve the parameter “dogWeight.” In fact, this is such a common thing
to want to do that <jsp:setProperty> provides some convenient syntax to avoid
ungainly code like this. This is how it looks:

<jsp:setProperty name="theDog" property="weight" param="dogWeight" />

JSP Standard Actions (Exam Objective 8.1) 4.8 3

This is shorthand for saying take the request parameter called “dogWeight,” and use
the value for this to set the property called “weight” on the bean called “theDog.”
Very neat, and it can get neater still. It could well be that name of a request
parameter (from your HTML form) matches the corresponding property name. In
that case, you can omit the param attribute altogether:

<jsp:setProperty name="theDog" property="weight" />

This time, the underlying code will look for a parameter (from the ServletRequest
or HttpServletRequest) called “weight” and use this to set the property value for
“weight” on “theDog.” This shorthand goes further still. If you have a number of
request parameters that match the names of several properties on your target bean,
you can simply write

<jsp:setProperty name="theDog" property="*" />

Now any property whose name matches a request parameter name will have its value
preloaded from that request parameter.

Datch . . .

The param and value you take a more explicit approach with
attributes are mutually exclusive. After the value attribute. Note that you can also
all, it doesn’t make sense to have both on omit both the param and value attributes:
the same <jsp:setProperty>. Either This is equivalent to supplying param with
you use the convenience of param to set the same value as the property attribute.
a property from a request parameter or

<jsp:getProperty>

That leaves <jsp:getProperty>. This is the easiest of the three standard actions
we've used. You use it to output the value of a bean’s property to the response (for
display on a web page, inclusion in an XML document—whatever). There are two
attributes to supply: name (the name of the bean) and property (the name of the prop-
erty). They're both mandatory (as are the identical attributes on setProperty, by the
way). So to get hold of our dog’s weight property, you simply write the following:

<jsp:getProperty name="theDog" property="weight" />

Like <jsp:setProperty>, theDog bean has to be there — preferably declared with
<jsp:useBean> earlier in the page.

454 Chapter7:

JSP Standard Actions, XML, and EL

INSIDE THE EXAM

Before leaving these three standard actions,
let’s put them together in a bigger example.
This is here to reinforce some of the points
made earlier, but also to illustrate some of the
subtler aspects of <jsp:useBean> that you
need to know for the exam. We’ll be working
with the Dog JavaBean that started this
chapter, in a slightly modified form.

Let’s suppose that you're writing a system to

User selects dog as type
to input

(screen not shown)

register animals at your local veterinary clinic.
The clinic copes with all kinds of animals:
dogs, cats, parakeets, and rattlesnakes. But
whatever the animal, there are some details
that will be common. Others may be animal-
specific. We'll look at a portion of the system:
that deals both with some general animal
characteristics and also ones that are dog-
specific. Here’s an illustrative screen flow:

[|
: doglnputl jsp: : animallnput2.jsp: doglnput3.jsp: doglnput4.jsp:
I I = =
: bean set up i user inputs general | user inputs summary of
: (invisible to user) 1 animal details dog specifics all details
|

Name: 1 Bark Volume:———— 1 Name: Jem

Weight 1 Weight: 40

Sex. [Sex: Male

Insured: 1 Insured: Yes

Bark Volume: Very Loud

First of all, the vet’s receptionist selects the
type of animal to be registered—in our case,
dog. In the background, a Dog JavaBean is set
up with some defaults (this happens in
doglnputl.jsp). The receptionist is presented
with a screen to fill in some details about
the animal in general (animallnput2.jsp),
followed by a screen for specific dog details
(doglnput3.jsp). On pressing ENTER, the

receptionist finally sees a summary screen of
all the dog details that have been saved to

the database (doglnput4.jsp). (You'll have to
imagine the database in the example code that
follows— the intention here is just to show
the JSP aspects.) You can run this code (and
look at the full source) from the WAR file
Jsourcecode /chO7/examp0701.war. Start at the
following URL:

JSP Standard Actions (Exam Objective 8.1) 488§

http://localhost:8080/examp0701/dogInputl.jsp

The point about this design is that the with <jsp:useBean>. How can this be? We’ll
general animal details screen —animal solve this mystery in a page or two, as we step
Input2.jsp—will work regardless of animal carefully through the code. Let’s first take a

type, for there is nothing dog-specific within look at doglnputl.jsp:
it. Yet it makes use of a Dog JavaBean set up

<jsp:useBean id="currentAnimal"scope="session"
class="webcert.ch07.examp0701.Dog">
<jsp:setProperty name="currentAnimal" property="name" value="Fido" />
<jsp:setProperty name="currentAnimal" property="weight" value="6.5" />
<jsp:setProperty name="currentAnimal" property="sex" value="F" />
<jsp:setProperty name="currentAnimal" property="insured" value="false" />
<jsp:setProperty name="currentAnimal" property="barkvVolume" value="Loud" />
</jsp:useBean>
<%session.setAttribute("animalSort", "dog");
RequestDispatcher rd =
application.getRequestDispatcher
("/animalInput2.jsp");
rd.forward(request, response); %>

Recall at this point that the receptionist has in session scope. Nothing unusual there, but
made a choice of animal type. First of all, a notice that the <jsp:useBean> tag is not
Dog bean called “currentaAnimal” is set up “self-closing” as we’ve seen before —like this:

<jsp:useBean id="currentAnimal" scope="session"
class="webcert.ch07.examp0701.Dog" />

In this case, there is an end tag a few lines setProperty> tags will execute to set up
further on: </ jsp:useBean>. So this tag has a some default values.

body —in this case, filled with five <jsp:set
Property> standard actions. The presence of
a body signifies that some logic will execute:

B If the currentAnimal bean exists already,
it will be left alone, and the <jsp:
setProperty> tags will not execute, so

B If the currentAnimal bean doesn’t any property values already set will remain
exist, it will be created, and the <jsp: unchanged.

456 Chapter7:

JSP Standard Actions, XML, and EL

E THE EXAM (cont

Not that it does, but if our screen flow came
back through doglnputl.jsp, currentAnimal
would stay unaffected.

The scriptlet at the end of doglnputl.jsp
does two things: First, it sets up a session
attribute called animalsort with a value
of “dog,” to indicate to future screens that
it’s a dog we're dealing with (not a cat or a
hamster). Secondly, it uses standard Request

Dispatcher code to forward to the next screen
in sequence —animallnput2.jsp (you’ll see how
to replace this code with a standard action a
bit later in the chapter). So notice that all you
ever do in doglnputl.jsp is “pass through”—
the response isn’t returned to the user.

The code for animallnput2.jsp is shown
below. Notice that there isn’t anything dog-
specific anywhere in the source code:

<html><head><title>General Animal Information</title></head>

<body>

<h2>Fill in general animal information here, regardless of what sort of

animal...</h2>

<jsp:useBean id="currentAnimal" scope="session" type="webcert.ch07

.examp0701.Animal" />

<p>Overtype the defaults in the form below...</p>

<form action="<%= session.getAttribute("animalSort")%>Input3.jsp">

Name: <input type="text" name="name" value="<jsp:getProperty
name="currentAnimal" property="name" />" />

Weight: <input type="text" name="weight" value="<jsp:getProperty
name="currentAnimal" property="weight" />" />

Sex: <input type="text" name="Sex" value="<jsp:getProperty
name="currentAnimal" property="sex" />" />

Insured: <input type="text" name="insured" value="<jsp:getProperty

name="currentAnimal" property="insured"

/>" />

<input type="submit" value="Continue..." />

</form></body></html>

After the template text at the beginning,
inviting you to fill in general animal
information, you find the <jsp:useBean>
standard action, requesting the same bean
called currentAnimal in session scope. But
instead of the class attribute, we find another
attribute called type instead:

type="webcert.ch07.examp0701.Animal”

It’s the same bean that we get hold of, which
is a Dog object. However, if we look in the
generated servlet code, any reference to this
bean will be of Animal type. This can only
work under the following circumstances:

JSP Standard Actions (Exam Objective 8.1) 487

)E THE EXAM (conti

B Dog is a subclass of Animal. interface and that its class declaration now

looks like this:

B Or Dog implements an interface called

Animal.
public class Dog implements Animal

In other words, the type you choose must be
compatible with the actual class of the object. And the Animal interface declares all the
Let’s suppose that Dog implements an Animal methods about general animal characteristics:

public interface Animal {

public abstract String getName();

public abstract void setName(String name);

public abstract float getWeight();

public abstract void setWeight(float weight);
public abstract boolean isInsured();

public abstract void setInsured(boolean insured);
public abstract char getSex();

public abstract void setSex(char sex);

}

Dog implements all these methods as we’ve the bean has already been created. You can

already seen, plus a couple that are dog- simultaneously create a bean object and type

specific— to set and get the barkVolume it to something else for use in the current JSP

property. page by using both attributes at the same time,
Using type in <jsp:useBean> without like this:

the class attribute relies on the fact that

<jsp:useBean id="currentAnimal"
scope="session" class="Webcert.ch07.examp0701.Dog"

type=""webcert.ch07.examp0701.Animal" />
The form in animallnput2.jsp uses <jsp: bean, which can be overtyped in the form.
getProperty> standard actions to display Of course, barkVolume is missing from the list.

the default values already set up on the Dog The only other point to note is that— to keep

458 Chapter7: JSP Standard Actions, XML, and EL

animallnput2.jsp generic— the <form> action ~ will navigate to doglnput3.jsp, but you can see

attribute uses an expression to complete the that a different initial choice of animal might
name of the next JSP in sequence. The start have led to catlnput3.jsp or budgerigar3.jsp.

of the name comes from the session attribute In doglnput3.jsp, not a great deal happens
animalSort, which you’ll recall was set up as that we haven't seen already. Here’s the code:

“dog” way back at the beginning. So the user

<html><head><title>Specific Dog Information</title></head>
<body>

<h2>Fill in specific dog information here...</h2>
<jsp:useBean id="currentAnimal" scope="session" class="webcert.ch07
.examp0701.Dog" />

<jsp:setProperty name="currentAnimal" property="*" />
<p>Overtype the defaults in the form below...</p>

<form action="dogInput4.jsp">

Bark Volume:<input type="text" name="barkvolume"
value="<jsp:getProperty

name="currentAnimal" property="barkvolume" />" />

<input type="submit" value="Continue..." />
</form></body></html>

The receptionist uses this screen to type in the one, barkVolume. There’s a vital line here:
vital dog-specific properties—we have only

<jsp:setProperty name="currentAnimal" property="*" />

This line has nothing to do with the setup the original default values would stick and
of the current page, in fact. Its purpose is to the receptionist’s overtyping would be in
take the request parameters typed in to the vain. This time, clicking the submit button
previous animallnput2.jsp, and save these navigates to the last page in sequence,

to properties on the bean. Without this, doglnput4.jsp:

<html><head><title>Your Completed Dog</title></head>

<body>

<h2>The animal database has been updated with these DOG details:</h2>
<jsp:useBean id="currentAnimal"

scope="session"

type="webcert.ch07.examp0701.Dog" />

JSP Standard Actions (Exam Objective 8.1) 4859

<jsp:setProperty name="currentAnimal" property="*" />

Name: <jsp:getProperty name="currentAnimal" property="name" />

Weight: <jsp:getProperty name="currentAnimal" property=“weight” />

Sex: <jsp:getProperty name="currentAnimal” property="sex” />

Insured: <jsp:

getProperty name="currentAnimal” property="insured” />

Bark Volume: <Jjsp:

getProperty name="currentAnimal” property="barkVolume” />

</body></html>

All this page does is to display all the bean actually names the class Dog instead of the

properties, whether dog-specific or general. interface Animal: type="webcert.ch07

In a real system, the receptionist might scan .examp0701.Dog." Only a Dog will do if we
the details and confirm the database update. want to get hold of the barkVolume property,
Notice one thing here: The <jsp:useBean> not present on Animal. And indeed, the code
standard action uses the type attribute but could just as well have used the class attribute:

<jsp:useBean id="currentAnimal” scope="session”
class="webcert.ch07.examp0701.Dog” />

The point this makes is that the value for the there’s no compulsion to make it different
type attribute can be the same as the class— (although it normally makes sense to do so).

Al

ON THE CD

JSP Standard Actions

In this exercise you're going to put together two web application pages: an HTML
page with a form whose action takes you to a JSP page. The HTML page will invite
you to put in details about a music CD. On clicking a Continue button, you’re taken
to a summary form (the JSP) that confirms the details you entered.

Not the world’s most exciting application —but the first in this book in which the
JSP component is completely free of Java code! The only building blocks required are
HTML and the standard actions you have just learned. That’s not to say you won’t
write any Java, though —as you still need a JavaBean on which the standard actions
can operate.

460 Chapter7: JSP Standard Actions, XML, and EL

Create the usual web application directory structure under a directory called
ex0701, and proceed with the steps for the exercise. There’s a solution in the CD
in the file sourcecode /ch07/ex0701.war—check there if you get stuck.

Create the HTML Page

Create an empty file directly in your newly created context directory, ex0701.
Call it musicCDform.html.

Provide a form with four text fields for title, artist, year of release, and favorite
track. Give names to the input fields as follows: title, artist, year, and track.
Don't forget a submit button. Make the action of the form
“musicCDsummary.jsp.”

Create the MusicCD JavaBean

4.

7.

Create a package directory in ex0701/ WEB-INF/src, and within it create a
Java source file called MusicCD.java.

. Include four private instance variables as follows:

B sString title
B string artist
B int yearOfRelease

B string favoriteTrack

Provide a no-argument do-nothing constructor (you could leave this out and
let the compiler provide it) and getters and setters for the instance variables.
Make sure these are public and that they exactly follow the bean convention
(e.g., getTitle()).

Compile the source into ex0701/ WEB-INF/classes /<package directory>.

Create the JSP Page Source

8.
9.

10.

Create an empty file in ex0701, called musicCDsummary.jsp.

Use the <jsp:useBean> standard action to create a MusicCD bean in page
scope.

Set the properties of the bean from the request parameters passed in from
the HTML form. In two cases, the request parameter names match the bean
property names (for title and artist). So use <jsp:setProperty> with the

IE3H

setting for the property attribute to take advantage of this.

JSP Standard Actions (Exam Objective 8.1) 46 |

I'l. The other two request parameters have different names from their correspond-
ing bean properties: Request parameter “year” must map on to bean property
“yearOfRelease,” whereas “track” needs to map on to “favorite Track.” So use
two invocations of the <jsp:setProperty> standard action to achieve this
mapping (you’ll need to set the property and param attributes).

12. Finally, display the four properties on the page, using four separate
occurrences of <jsp:getProperty>.

Deploy and Run the Application

I3. Create a WAR file that contains the contents of ex0701, and deploy this
to your web server. Start the web server if it has not started already.

I4. Use your browser to request musicCDform.html, with a URL such as

http://localhost:8080/ex0701/musicCDform.html

I5. Enter some details (note that the year field must be numeric), click the
button to submit the form, and check that the output is correct on
musicCDsummary.jsp. The following illustration shows the screen flow
for the solution.

A Music £D - Microsoft Internet Explorer 2 Music CD - Microseft Internet Explarer
: Fle Edt View Favortes Took Help I Fle Edt Wew Favores Tools Help
Q- © HEAG Py Q- Q[@G Pswr Jorome @
- adress {6 epiocabost 0080 ex0701 rusccOform e s 6]t o shost 808070k sk CDsannary. i WemfretzsLogka
Music CD Details Music CD Summary

Type in the detads of a music CD below These are the detals you entered. ..

Title: |Pretzel Logic | Title: Pretzel Logic

.+ [SeelyDan | Amist Steely Dan

N R Year of Release: 1974

Vear of Release: [1974 ! Favorite Track: Monkey in your Soul

Favorite Track: Mornkey in your Soul

S

4672 Chapter7: JSP Standard Actions, XML, and EL

CERTIFICATION OBJECTIVE

Dispatching Mechanisms (Exam Objectives 6.7

and 8.2)

Including

Given a specific design goal for including a JSP segment in another page, write the JSP
code that uses the most appropriate inclusion mechanism (the include directive or the
jsp:include standard action).

Given a design goal, create a code snippet using the following standard actions:
jsp:include, jsp:forward, and jsp:param.

In this section of the chapter, we're going to explore three more standard actions.
These give you the equivalent of the forward and include RequestDispatcher
mechanisms, which we explored in Chapter 3 in servlet code. The two main
standard actions are called <jsp:include> and <jsp: forward>, which serve

to include content into a JSP or forward on to another resource altogether (JSP,
servlet, or any resource that can be described with a URL). We’ll see how these are
a bit easier to set up than the coding equivalent, and also how there are one or two
differences between the standard actions and a naked RequestDispatcher.

We'll also look at the <jsp:param> standard action and see how this can be
embedded into either of <jsp:include> and <jsp: forward>. It provides an easy
way to graft on additional parameters to the request.

You'll recall that we encountered the include directive (<@ include file=
"..." %>)in the last chapter. So we devote some time in this chapter to
understanding the differences between this directive and the <jsp:include>
standard action. That way we can tick off both the exam objectives above for the
price of one section in the book.

The standard action <jsp:include> can be used to include the response from
another file within your JSP page output. You specify the file whose response should
be included with the page attribute, like this:

<jsp:include page="pageToInclude.jsp" />

The file whose response should be included has to reside somewhere in your web
application but doesn’t have to be present until the page is actually requested.

on the

Qob

Dispatching Mechanisms (Exam Objectives 6.7 and 8.2) 463

You might use <jsp:include> to include files that don’t exist at the point
where you deploy your including pages. This could be for a number of
reasons: Perhaps the included files are produced as output from other
systems and are uploaded to your web application directory structure only at
scheduled intervals. This doesn’t stop you from precompiling your including
JSPs when you deploy them, however. There’s no check on the existence

of the page specified in <jsp: include> during the translation phase.
Obviously, you’ll get a run-time error if you let your users access JSPs that try
to include a page that doesn’t exist—it’s then up to you to introduce controls
that prevent access to the including JSP until the files needed for inclusion are
actually present in your web application directory structure.

The value for the page attribute is a URL pointing to a resource within the current
web application (you can’t go outside the web application with <jsp:include>).
The URL used follows rules similar to those we’ve seen many times elsewhere:

B If the page URL begins with a slash, this is interpreted as starting from the
context directory for the web application.

B If the page URL doesn’t begin with a forward slash, this is interpreted as relative
to the directory containing the including page.

Any kind of file can be the target of the page attribute. It’s typical to target other
JSP pages but by no means mandatory —you can include any file of any MIME type
(though bear in mind that if this isn’t compatible with the MIME type for the rest of
the response, you may well run into run-time issues).

A delightful feature of <jsp:include> is that it runs at request time. This may
not sound like much, but what it means is that the value for the page attribute can
be an expression embedded within the standard action. So code like this is perfectly
legitimate:

<jsp:include page='<%= request.getParameter("thePage") %>' />

You can see from this that I can nominate the page whose response should be
included from a parameter value passed in my request. This gives you a great deal of
flexibility.

The <jsp:include> standard action has a second (optional) attribute, flush.
This can have the values “true” or “false,” and if you leave off the attribute, the
default is “false.” To understand this, recall that JSP page output is buffered as a
rule —not immediately committed to the response. If you set the value to “true,”

464 Chapter7: |SP Standard Actions, XML, and EL

<jsp:include page="aPageToInclude.html" flush="true" />

this has the effect of flushing the buffer in the including page (i.e., committing the
response so far) before anything is done about including the target page.

Even if you set the flush attribute to “false,” and both the including and included
page have unfilled, unflushed buffers, there are still restrictions on included pages.
Included pages can’t do anything to the response header —in just the same way that
servlets can't if anything has been written to the response. The assumption is that
somewhere along the chain to the included page, some part of the response has been
written (and don’t forget that you may well have a long chain: through several filters
and servlets before you get to the including, and then the included, JSP pages).

So code like the following:

<% response.addCookie(myCookie); %>
Or:
<% response.setHeader("Date", utcFormatDate); %>

is simply ignored in the included JSP page. This is no different from the world
of servlet code: A servlet that has been included from another servlet by a
RequestDispatcher object is treated in the same way.

<jsp:include> vs.<%@ include %>

It’s very hard to talk about <jsp:include> without comparing it with the include
directive, so let’s not put that off anymore. After all, it’s an exam objective in its
own right!

When I introduced <jsp: include>, you may have noticed the pedantic phrase
“include the response from another file” several times. Why didn’t [just say “include
the file”? Because that’s not quite true—not in the sense we mean, for example,
when we talk about the include directive (<¢@ include file="..." %>).Let’s say
[have a JSP page a.jsp that includes b.jsp with the standard action. Neither has been
translated yet. Figure 7-2 shows what happens when I request a.jsp for the first time.

You can see from Figure 7-2 that the two JSPs a.jsp and b.jsp remain independent
and that b.jsp provides a service to a.jsp. a.jsp requests a response from b.jsp and
incorporates this in its own output. The situation is fundamentally different with the
include directive. Figure 7-3 shows what happens when a.jsp includes b.jsp with
the include directive.

FIGURE 7-2

a.jsp Using
<jsp:include>
to Include b.jsp

Dispatching Mechanisms (Exam Objectives 6.7 and 8.2) 46§

ajsp b.jsp

<jsp> <jsp>

Translation Translation

Request for ajsp a_servlet.class b_servlet.class
_________________)
<jsp:include> of bjsp
__________________ 1010
1011
1010
1011 Response from b_servlet
Back to a_servlet
Response
(_ ________________
FIGURE 7-3 ajsp
<jsp>
a.jsp Using
<%@ include %>
. Translation Phase |
to Include b.jsp
a.jsp incorporating
b.jsp source
b.jsp
<jsp> <jsp>
Translation Phase 2
A
Request for a.jsp a_servlet.class
____________________ >
1010
1011
Response
‘ _________ P_ __________

466 Chapter7: |SP Standard Actions, XML, and EL

Figure 7-3 shows how the lines of b.jsp are first incorporated into a.jsp. It’s as if
a.jsp is a composite of its own page source and b.jsp’s as well. Only after this has
happened does the translation to generated servlet occur. This has some interesting
consequences. Let’s look at an example —and please, please note that this is to
illustrate a point: Don’t write your JSPs this way! Suppose that you declare a local
variable in one JSP (we’ll call it declaration.jsp), then use that local variable in
another JSP (display.jsp) that includes declaration.jsp. Here’s the code for each:

<!-- declaration.jsp -->
<% int aNumber = (int) (Math.random() * 100); %>

So in declaration.jsp, we have a local variable called aNumber that is initialized to a
random value between 0 and 99. Here’s display.jsp, which uses an expression to show
the random number on the page output:

<!-- display.jsp -->
<%@ include file="declaration.jsp" %>
Think of a number: <%= aNumber %>

This works absolutely fine (despite coming with a massive design health warning!).
The include directive causes the amalgamation of the JSPs— the result is a
composite JSP looking like this:

<!-- display.jsp -->

<!-- declaration.jsp ->

<% int aNumber = (int) (Math.random() * 100); %>
Think of a number: <%= aNumber %>

This is the whole “translation unit.” If neither JSP page has been accessed, and our
container translates and compiles only when a JSP is requested, then a request to
display.jsp will result in only one generated servlet for your web application that
represents the composite page source. So what happens if we change display.jsp to
use a <jsp:include> standard action?

<!-- display.jsp -->
<jsp:include page="declaration.jsp" />
Think of a number: <%= aNumber %>

Result: misery. The functionality of <jsp:include> isn't invoked until post-
translation, and display.jsp won’t get past translation. If you try to request it,
you're likely to get an HTTP 500 error accompanied by a stack trace that informs
you that the local variable aNumber is used but not declared. So if you're using

TABLE 7-1

Dispatching Mechanisms (Exam Objectives 6.7 and 8.2) 467

<jsp:include> Standard Action <%@ include %> Directive
Comparing and Attributes: page (and flush) Attribute: file
Contrasting the - - -
. Page attribute accepts relative and abso- File attribute accepts relative and absolute
Two JSP Inclusion
) lute URLs. URLs.
Mechanisms
Response from target page included at Target file included during translation phase.
request time.
Target page to include can be soft-coded as ~ Target file must be a hard-coded literal value.
an expression.
Can execute conditionally in the middle of Will be processed unconditionally—can’t be
page logic. embedded in page logic.
Target page doesn’t have to exist until Target file must exist at translation time.
request time.
Always includes the latest version of the Does not necessarily include the latest version
target page. of the target file: depends on your container
(not mandated by the JSP specification).
<jsp:include>, each of your JSPs must be able to “stand alone”—at least in
translation terms.

With <jsp: include>, you are always guaranteed to get the latest versions of
responses from included files because the included files are still accessed at run time.
They have to be there to complete the picture. This isn’t necessarily the case for
files that are included through the include directive. After all, once a file has been
incorporated through the include directive, the resulting composite servlet is whole
and complete. This leads to an interesting question: If a file included by the include
directive is updated, will the JSP container spot the fact and re-do the file inclusion
when the JSP doing the including is next accessed? The answer is that the JSP

g g
specification recommends that this should happen, but doesn’t say that it has to be
this way.

In conclusion, take a look at Table 7-1, which summarizes the differences
between the two approaches. Do some experiments so you're comfortable with the
difference —it’s a favorite topic on the exam!

Forwarding

After <jsp:include>, <jsp:forward> is moderately straightforward. As the name
implies, the purpose of this standard action is to forward processing to another
resource within the web application. There is only one mandatory attribute, which

468 Chapter7: JSP Standard Actions, XML, and EL

(as with <jsp:include>) is page="URL." Consider the following example —a
complete page source called doThis.jsp:

<!- doThis.jsp -->

<p>You won't see this in the response</p>
<jsp:forward page="doThisInstead.jsp" />

<p>You won't see this either</p>

<% /* Will the following line of code be executed? */
session.setAttribute("doThis", "isDone"); %>

The effect of accessing doThis.jsp is to transfer responsibility for the output to
doThisInstead.jsp. The template text before the <jsp: forward> action is effectively
ignored, for anything that doThis.jsp writes to the output buffer is cleared. What
happens after the <jsp: forward>, though? Were this a hand-coded servlet, the
code following a RequestDispatcher. forward () method would still be executed
(if we wanted it to be). But this isn’t a hand-coded servlet: The corresponding servlet
code is generated by the JSP container, as we well know. And to respect the fact that
the JSP specification says that a “<jsp: forward> effectively terminates the current
page,” the reference implementation — Tomcat—returns from the _jspService()
method. Consequently, the last line of page source in doThis.jsp—which sets an
attribute in session scope —will not be executed, even though it has nothing to do
with writing output to the response.

There’s no flush attribute as there is for <jsp: include>—instead, certain things
have to be true about the state of the response for the <jsp: forward> to be
processed successfully. It all comes down to the thorny question of whether any
part of the response has already been committed —in other words, written back to
the client. Responses are considered uncommitted when anything written to them
already is still in the memory buffer and the buffer has never been flushed. So a
<jsp:forward> won't work if

B There is no buffer (in a JSP, this can be achieved with a page directive, setting
the buffer attribute to “none”), and even one character has been written to the
response.

B The buffer has been explicitly flushed (response.flushBuffer()).

B The buffer has been automatically flushed on filling up (in a JSP, this will
happen by default—see the page directive attribute autoFlush for more
information).

If you try to do any of the above, you'll get an IllegalStateException.

Dispatching Mechanisms (Exam Objectives 6.7 and 8.2) 469

Parameters

Whether you are including or forwarding, you can add in additional parameters to
the request. For this, you use the <jsp:param> standard action and include it in the
body of a <jsp:include> or <jsp: forward>. This is the only reason for including
a body in these two standard actions, which as you have probably noticed have been
expressed as self-closing tags without any body up until now.

There are three important things to take account of when you add parameters
into a request using the <jsp:param> standard action:

I. They only last for the duration of the include or forward. Once you’re back
in the including or forwarding JSP page, the parameters disappear.

2. They don’t replace existing parameters of the same name — they merely
augment the list of values. (Recall that parameters—unlike attributes—can
have multiple values for the same name.)

3. When they do augment the list of values, their values come at the front of
the list.

To illustrate these points, suppose that you make the following HT TP request to
forwarder.jsp:

http://localhost:8080/examp0702/forwarder. jsp?animaltypes=dog

forwarder.jsp does nothing other than forward the request with a supplementary
value for the animaltypes request parameter, so

<jsp:forward page="animalHouse.jsp">
<jsp:param name="animaltypes" value="cat" />
</jsp:forward>

Now, if the forwarded-to JSP page, animalHouse.jsp, has code like the following:

<% String[] a = request.getParameterValues("animalTypes");
for (int i = 0; i < a.length; i++) {
out.write(al[i] + ";");
}
>

then the output will be

cat;dog;

470 Chapter7: JSP Standard Actions, XML, and EL

ﬂ
Datch The value for <jsp:

param>’s value attribute can come from
a run-time expression—for example:
value="<%=calcValue%>." That’s not
the case for the name attribute, which
must be a literal in the page source.

EXERCISE 7-2

You can see from this that the original
parameter value (dog) is not lost but that the
value added with <jsp:param> (cat) has taken
precedence, and now comes first in the list.
Meanwhile, once you return to forwarder.jsp,
you will find the request parameter animal Types
has reverted to having only the one value, dog.
All the points described above hold just
as true for <jsp:param> standard actions
embedded in the body of a <jsp:include>
standard action.

AP

el

Dynamic Inclusion

ON THE CD

This exercise shows you how to include a JSP dynamically from a request parameter.
The idea is to have a small application that chooses and displays a poem at random.
Each poem is kept in a separate static HTML page of its own. There are two JSP
pages involved. One, “poemOfTheDay.jsp,” receives the name of one of these static
web pages as a request parameter and includes this into its body. The other JSP page,
“choosePoemOfTheDay.jsp,” chooses one of the available filenames at random and
forwards it to “poemOfTheDay.jsp,” setting up the chosen filename within the body
of the <jsp: forward> standard action.

Create the usual web application directory structure under a directory called
ex0702, and proceed with the steps for the exercise. There’s a solution in the CD
in the file sourcecode /ch07/ex0702.war—check there if you get stuck.

Write Poems

I. Create a number of HTML pages directly in ex0702 (three is a good number,
but make as many as you like). Call these poem1.html, poem2.html, and

SO Oon.

2. In each page, include the title (between <h1> tags) and the text of any

poem you like (between <pre> tags). You can write your own original poems
as a diversion from exam cramming, but I'd recommend doing what I did:

Dispatching Mechanisms (Exam Objectives 6.7 and 8.2) 47 |

copying and pasting a few of your favorites from the Web. Of course, if poems
don’t appeal, you can use any text you like —as long as you can tell your

HTML pages apart.

Create the Including JSP Page Source

3. Create a file called poemOfTheDay.jsp in ex0702.

4. Put in template text for a skeleton web page —<html>, <head>, <title>,
and <body> tags (and the corresponding end tags).

5. In the body, place a <jsp:include> standard action. Use an expression as
the value for the page, taken from a request parameter called poem.

Create the Forwarding JSP Page Source

6. Create a file called choosePoemOfTheDay.jsp in ex0702.

7. Have a scriptlet at the beginning of the file that sets up a String array, and
initialize this with the filenames of each of your poem HTML pages. (If
you want more of a challenge, use ServletContext.getRealPath() and
recover the names of any filenames beginning with the characters “poem” in
the context directory. From this, load a String array or collection class: harder
certainly!)

8. In the same scriptlet, set up a local variable to hold the name of one of the
files. Use Math.random() as the basis for picking a name randomly from the
String array (or collection class).

9. Set up a <jsp: forward> standard action following the scriptlet, to forward
to the poemOfTheDay.jsp page. Ensure that this standard action has a body
(and so has both a beginning and end tag; it should not be a self-closing tag).

10. In the body of the <jsp:forward> standard action, place a <jsp:param>
action. Name the parameter poem, and set the value of the parameter using
an expression — this should use the local variable set up in step 8.

Deploy and Run the Application

I'l. Create a WAR file that contains the contents of ex0702, and deploy this to
your web server. Start the web server if it has not started already.

472 Chapter7: JSP Standard Actions, XML, and EL

12. Use your browser to request musicCDform.html, with a URL such as

http://localhost:8080/ex0702/choosePoemOfTheDay. jsp

13. With luck, one of your poems will be displayed in the browser. Press the
refresh button a few times to check that other poems are selected randomly
(another extra challenge is to consider how you might prevent the same
poem from being selected twice in succession). Here’s some sample output
from the solution code.

A Poem of the Day - Microsoft Internet Explorer

File Edit ‘iew Faworites Tools Help

eBack - -J @ @ {’h pSaarch *Favorites .

: Address |@ http: iflocalhost: 80807 ex0702 fchoosePoemOf TheDay jsp

Sonnet - Thomas Wyatt

My galley chargéd with forgetfulness

Through sharp seas in winter nights doth pass
'"Tuene rock and rock; and eke mine enewy, alas,
That iz my lord, steereth with cruelness.

And every oar a thought in readiness

Lz though that death were light in such a case;
Ln endless wind doth tear the =sail apace

Of forcéd sighs and trusty fearfulness.

L rain of tears, a cloud of dark di=sdain

Hath done the wearied cords great hindrance,
Wreathéd with error and eke with ignorance.

The stars be hid that led mwe to this pain,
Drownéd is reason that should me comfort,

Ind I remain despairing of the port.

JSPs in XML (Exam Objective 6.3) 47 3

CERTIFICATION OBJECTIVE

JSPs in XML (Exam Objective 6.3)

Write a JSP Document (XML-based document) that uses the correct syntax.

This innocently short objective encompasses a large number of things you need to
know. What is a JSP document? Well, it’s JSP page source that’s written in XML. Quite
often (but not by any means always), you use a JSP document to produce XML as well.

XML is a big and scary topic in its own right. Fortunately, only a basic knowledge
is required for the SCWCD exam. So if you're relatively new to XML, don’t worry.
In any case, you've already handled plenty of XML in the course of this book. The
standard actions you covered in the previous section of this chapter are XML. And
whereas HTML isn’t necessarily XML, all the examples and exercises in this book
have been using an XML-compliant version called XHTML. So although there’s no
room to turn this part of the chapter into a full-blown XML tutorial, I'll be taking a
“least you need to know” approach. Fortunately, full-blown XML tutorials litter the
Web, as do excellent books on the topic.

JSP documents also have more facets than can be covered in just one section of
one chapter. You'll meet the basics in this section, and from this point in the book
onward, most of the JSP examples and exercises (and quite a few of the questions)
will use XML syntax.

XML for JSPs

Why are JSPs moving to XML-style page source at all? After all, they have a
perfectly viable syntax all their own. Likely reasons include (but are not limited
to) the following list:

B It makes a lot of sense if you are in the business of producing XML anyway. You’ve
already encountered the idea that template text in a JSP page isn’t limited to
HTML, and XML is the most usual alternative. If you have an XML file you want
to produce, it can immediately become the template text for a piece of JSP Page
Source —all that remains is to mark it up with some more XML for the dynamic
parts.

B You can check that your page source is valid in XML terms, using proper XML
validators (and that’s something your]JSP container does during the translation
phase for JSP documents).

474 Chapter7:

JSP Standard Actions, XML, and EL

B If you use XML-authoring tools (such as XML Spy), then those same tools can

handle the production and validation of your JSP page source as well as other
XML files you write.

Arguably, XML-style source is easier to write and read than a mishmash of
template text and Java language. So XML might mark a step along the way
toward production of]JSP page source by nonprogrammers.

You certainly get the impression from the JSP specification that Sun would like
page authors to move in an XML direction — that in itself might be a good
reason to make the switch. While support for the <¢ .. %> way of doing things
is bound to last for a long while, you might find yourself excluded from newer,
trendier tool developments if you stick doggedly to the old-style syntax.

Given that you're persuaded that XML-style JSPs are a good thing, let’s make a
few top-level statements about XML itself. I won’t assume any previous knowledge,
though the chances are you’ve heard this before.

B XML is a tag language. Its structure is often compared to HTML: Both contain

opening and closing tags. But while HTML is narrowly focused on marking up
text, XML is much more general purpose. XML can be used for marking up text
(as in XHTML), but it has a pretty much infinite set of other possible uses.

You can define your own tags in XML, calling them whatever you like. You just
have to make sure that for every opening tag of a particular name, you have a
balancing closing tag:

<painting>
<artist>Leonardo da Vinci</artist>
<title>Mona Lisa</title>
<location museum="Louvres"></location>
</painting>

There may be some data content between the opening and closing tags (“Mona
Lisa” for the <title> tag above), or simply other tags (<painting>), and
sometimes nothing at all (<location>). The area between the opening and
closing tags is referred to as the “body.”

Tag names can have a prefix, separated from the main name by a colon. We met
that in standard actions, such as <jsp:useBean>. The prefix ties the tag to a
“namespace,” which you can think of as a signpost with information about

the tag.

JSPs in XML (Exam Objective 6.3) 478

B Tags can have attributes. Again, we’ve seen this in standard actions. Attributes
are included in the opening tag, and they form name /value pairs, in the form
name="“value” (or with single quotes —name="value’). You'll recall <jsp:
getProperty>:

<jsp:getProperty name="beanName" property="beanProperty" />

B The <jsp:getProperty> example shows us another common XML feature.
Sometimes it doesn’t make a lot of sense to have a closing tag, because there’s no
appropriate data content to insert in the tag body. Under those circumstances,
an opening tag can be “self-closing” by including a slash before the final angle
bracket: />.

B Tags must be properly nested. Here is a rogue version of the painting example —
you can see that the closing tag </artist> comes within the body of the
<title> tag, which just won’t do:

<painting>
<artist>Leonardo da Vinci<title></artist>Mona Lisa</title>
<location museum="Louvres"></location>

</painting>

B There must be one root tag at the top of the document. For the deployment
descriptor, web.xml, the root tag (as we’ve seen throughout) is <web-app>.

Of course, there’s a lot more to XML than that, but these simple rules will get you
most of the way there. All we need to consider now is how XML exactly applies in
JSP documents.

XML-Friendly Syntax

When we talk about a JSP document, we mean a JSP page source that obeys all the
rules of XML. However, the pseudo-tag-like structure of some JSP syntax will wreak
havoc with any XML validator. Certain bits of syntax have to go—especially arbitrary
angle brackets. Any XML parsing code sees an angle bracket as the beginning or end
of a tag, so it won't know what to make of <%, <31, <3@, <8=, <3--, ——%>, and %>.

All of these have to be replaced. So the JSP specification provides an XML equivalent
for all of the above. In the main, these look like standard actions, behave like standard
actions, and are standard actions. They extend the set of those we have already looked
at, such as <jsp:include>. There are only one or two syntax differences implemented

476 Chapter7: |SP Standard Actions, XML, and EL

TABLE 7-2

XML Equivalents
for JSP Syntax

Scripting Elements Original JSP Syntax XML Syntax

Scriplets <% ... 3> <jsp:scriptlet>...
</jsp:scriptlet>

Expressions <%= ... %> <jsp:expression>...
</jsp:expression>
Declarations <%l ... %> <jsp:declaration>...

</jsp:declaration>

Directives

page <%@ page <jsp:directive.page
attr=“value” %> attr=“value” />
include <%@ include <jsp:directive.include

file=“abc.txt” %> file="abc.txt” />

taglib <%@ taglib prefix= =xmlns:abc="..."
“abc” uri="...” %>

Exclude from translation ~<%-- ... --%> <le— L. ==

(and output)

Include HTML comment <!-- ... -=> <!-- ... -->
in HTML output

without the use of standard actions, however. Table 7-2 lists the different kinds of JSP
syntax and shows the original syntax alongside its XML-friendly equivalent.

Scripting Elements

Note that this change to XML syntax doesn’t—in itself —mean abandoning Java
code in your JSP pages. All we’re doing at the moment is making the XML well-
formed, and for the most part, any old Java code can be dumped into the body of an
XML element. Let’s look at a few short examples.

Here’s a scriptlet in the old style of syntax:

<% String s;
s = request.getParameter("user"); %>

Here it is again as the body of a standard action:

<jsp:scriptlet>String s;
s = request.getParameter("user"); </jsp:scriptlet>

JSPs in XML (Exam Objective 6.3) 477

There’s nothing remotely difficult here —just a straight swap of opening markers
(<jsp:rscriptlet> for <%) and closing markers (</jsp:scriptlet> for %>).
The contents of the scriptlet remain as before: valid Java syntax (with a slight
modification we’ll soon see). You can’t embed any other sort of tag within the body
of the <jsp:scriptlet> tag.

Declarations are no different. Again, here’s a declaration before:

<%! public void jspInit() {
System.out.println("My JSP is initialized");
} v
And the same declaration after:
<jsp:declaration> public void jspInit() {
System.out.println("My JSP is initialized");

} </jsp:declaration>

Note that the inclusion of indentation and white space is entirely my own choice,
just as it is in normal Java source code. It will come as no surprise that a converted
expression follows a similar pattern. Here’s one before:

<%= session.getAttribute("user") %>
And one after XML-ification:
<jsp:expression>session.getAttribute("user")</jsp:expression>
Again, the choice of white space is mine. This is equally valid:
<jsp:expression> session.getAttribute("user") </jsp:expression>

As is this:

<jsp:expression>
session.getAttribute("user")
</jsp:expression>

However, there are some things within the Java language itself that are anathema
to XML validators. Take the following source code, showing the beginning of a for
loop in a scriptlet:

<jsp:scriptlet>for (int i = 0; i < 10; i++) { </Jjsp:scriptlet>

478 Chapter7: JSP Standard Actions, XML, and EL

The “less than” sign (<) looks like the beginning of an opening or closing tag, and
an XML validator will assuredly treat it as such. However, it’s difficult to write Java
code without using < anywhere!

You have two options to deal with this. The first is to escape the source code,
using what’s referred to in XML as an “entity”—beginning with an ampersand
(&) and ending in a semicolon (;). If you’ve written any amount of HTML, you’ll
recognize this device. The offensive < sign is replaced with the entity &1t;. It
doesn’t make your Java code very readable, but it'll get through the XML validation
process—and your JSP container will turn it back into valid code for your generated
servlet. Here’s how it looks in our example:

<jsp:scriptlet>for (int i = 0; i < 10; i++) { </jsp:scriptlet>

You should treat the > sign in the same way, replacing it with > when it comes up
in your code.

The second option is to mark up the offensive part as XML character data.
This is part of an XML file that the XML validator treats as off-limits—it lets the
characters stand just as they are. The syntax for this is more intrusive than entities,
even though our < sign stays intact. Here’s how this second solution might look:

<jsp:scriptlet>for (int i = 20; i <![CDATA[<]]> 30; i ++) {</jsp:scriptlet>

In this case, it’s pretty hard to find the < sign in the middle buried in the middle
of the syntax. A variation on this approach is to demarcate the whole body of the
scriptlet as character data:

<jsp:scriptlet><![CDATA[for (int i = 10; i < 20; i ++) {]1></Jjsp:scriptlet>

This at least keeps the Java code more integral, and an entire longer scriptlet or
declaration consisting of multiple statements can be “wrappered” in this way.

Directives
Directives are dealt with in much the same way as scripting elements, by substituting
standard actions.
There’s a JSP directive for page directives called <jsp:page.directive
/>, which is a substitute for <3@ page ... %>. The syntax represented by
the ellipsis (. . .) is identical in both cases. So

<%@ page import="java.util.*, a.b.MyClass" %>

JSPs in XML (Exam Objective 6.3) 479

becomes
<jsp:directive.page import="java.util.*, a.b.MyClass" />

Because the attributes (such as import) within the original directive follow XML
syntax, they can be transferred directly into the XML tag. Note that the XML tag
closes itself— there’s no requirement for a directive to have a body. Other than that,
the functionality is no different from the JSP syntax original.

The include directive follows exactly the same pattern, and it works identically
in its XML form. So

<%@ include file="myFile.html" %>
becomes
<jsp:directive.include file="myFile.html" />

The one directive that doesn’t follow this norm is the taglib directive for
referencing tag libraries. This uses a namespace instead of a standard action to define
a tag library in use in the JSP document. We’'ll soon learn more about namespaces,
and a lot more about tag libraries in Chapter 8, where we revisit the taglib
directive in both its guises:]SP and XML syntax.

Comments

Finally from Table 7-2, what happens about comments? You'll recall that JSP syntax
allows for two styles— one that removes source text from the translation phase
entirely (<¢-- not translated --%>) and the other that causes an HTML-style
comment to be buried in the output (<!-- The user won’t see this in a
normal browser, but will when viewing source. -->).

The first style of comment is XML-unfriendly, so it can’t be used in a JSP
document. The second (HTML-style) comment is, in fact, an XML-style comment.
So it’s fine to carry on using the second style, except that it acts slightly differently.
It’s like this:

<!-- In a JSP document, this style of comment will NOT be included
in the generated output; it's ignored by translation. -->

This begs the question: What if I am generating HTML-output from my JSP
document and want to include an HTML-style comment? Because these are

480 Chapter7: JSP Standard Actions, XML, and EL

hijacked by XML, they’ll never appear! Escape conventions come to our rescue.
If you hide the < and > signs with their entity equivalents, you’ll get your HTML

comment:
<!-- This comment will appear in the HTML output. -->
Datch . . c

There is a standard action that encloses everything. However, some
called <jsp:text> that exists solely to tags (normally including the root tag) don’t
dig you out of trouble when writing |[SPs in allow any content in their bodies—only
XML syntax. More or less all the content other tags. If you have some content that
you put into an XML document (aside needs to be placed in the “no-man’s land”
from white space) must exist in the body of a bodiless tag, then wrap it up with
of a tag. Of course, you’re always in the <jsp:text> ... </jsp:text>.

body of a tag in that there’s a root tag

Namespaces

The conversions to JSP document syntax that we've seen are easy enough, mostly
involving the substitution of XML standard actions for their traditional counterparts.
However, whereas standard JSP syntax takes for granted that standard actions are
simply available in your JSP page source, XML syntax demands more than that.
If your tags use a prefix—as all standard actions do— that prefix must be associated
with something that XML terms a “namespace.”

Any opening tag within XML can define a namespace. Here’s a very short JSP
document example that includes a directive to specify the MIME type of the
output:

<html>

<head><title>Namespaces</title></head>

<jsp:directive.page xmlns:jsp="http://java.sun.com/JSP/Page"
contentType="text/html" />

<body><hl>Namespace Demonstration</hl></body>

</html>

You can see that the <jsp:directive.page> element now contains an additional
attribute:

xmlns:jsp="http://java.sun.com/JSP/Page"

JSPs in XML (Exam Objective 6.3) 48 |

The xmlns stands for XML namespace (unsurprisingly) and — after the colon —uses
a name /value pair. The name (jsp) is the prefix you use for any elements belonging
to this namespace—such as <jsp:directive.page>. The value is—more often
than not—a URL, though it can be any text at all. Sometimes, the URLs actually
correspond to pages on the Internet. Mostly—and http://java.sun.com /JSP/Page
is a case in point— they don’t. There’s no technical need for the resource at the
end of the URL to exist; a URL is often used because it has a good chance of being
unique. So when you see the namespace http://java.sun.com/JSP/Page, you can
safely assume that this is uniquely associated with a set of elements that have to do
with JavaServer Page standard actions.

In our example above, the namespace is associated only with <jsp:directive
.page>. This is because namespaces apply only to the element in which they
are defined, plus any elements contained within that element. Because <jsp:
directive.page> can't contain other elements, the namespace applies only to
that element. So it’s much more usual to place your namespace declarations farther
up the XML document’s containment ladder —usually, in fact, right in the root
element. Here is the same example again with the namespace transferred to <htm1>,
the root element for XHTML documents:

<html xmlns:jsp="http://java.sun.com/JSP/Page" >
<head><title>Namespaces</title></head>
<jsp:directive.page contentType="text/html" />
<body><hl>Namespace Demonstration</hl></body>
</html>

Now any standard action can be used anywhere in the document without repeating
the namespace, for it’s available throughout— the prefix jsp: is sufficient.

XML and the JSP Container

What tells the JSP container that it’s dealing with a JSP document, as opposed to a
page in normal JSP syntax? You might think that a page written in bona fide XML

is a JSP document and will be treated as such, but actually, it isn’t. The page will
continue to work, but the JSP container is likely to treat it as a standard syntax page.
You can include as much or as little of the XML syntax in a normal JSP page as you
like — this is to encourage you to migrate your JSP pages to XML syntax at a pace to
suit. Take this example:

<% String s = "Mixed syntax"; %>
<jsp:expression>s</jsp:expression>

482 Chapter 7: JSP Standard Actions, XML, and EL

This is perfectly viable JSP page syntax, though it has the makings of a maintenance
nightmare —why use two syntaxes when you can stick to one?
There are three approaches that identify a page as a JSP document:

I. Ensure that your web application deployment descriptor web.xml is at version
level 2.4 and that the file with your JSP page source has the extension . jspx.

2. Ensure that your web application deployment descriptor web.xml is at version
level 2.4, and include some appropriate settings in deployment descriptor’s
<jsp-config> element (we’ll see what these are in a moment).

3. Enclose your page source with the root element <jsp:root>. This element
is backward-compatible with previous versions of the JSP container, so it
doesn’t rely on a particular version level for web.xml.

Method 1 is certainly the most straightforward. Assuming that your deployment
descriptor is at version level 2.4 (and why wouldn't it be?), you should suffix your
JSP documents with .jspx instead of .jsp. Method 2 is still straightforward. You just
need to know how to configure the relevant element in web.xml. Here’s an example
configuration:

<jsp-config>
<jsp-property-group>
<url-pattern>/jspx/*</url-pattern>
<is-xml>true</is-xml>
</jsp-property-group>
</jsp-config>

This says that any for any file accessed with a URL ending in /jspx /anythingatall.any
within the web application, treat this as a JSP document. The <is-xm1> element
takes two valid values: true (treat these as JSP documents with XML syntax) or false
(treat these documents as JSP pages with standard syntax). The <url-pattern>
element works in just the same way we saw within the <servlet-mapping> element
way back in Chapter 2.

$atch

Notice that the element which do the work (such as <url-
<jsp-property-group> nests inside pattern> and <is-xml>) nest inside
<jsp-config> and that the elements <jsp-property-group>.

JSPs in XML (Exam Objective 6.3) 483

This leaves method 3, which is to make <jsp:root> your document’s root
element, not forgetting to include the namespace in the opening tag:

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page">

This approach can have advantages if you need to remain compatible with older
containers, or older applications in newer containers— this is how JSP documents
were identified in the past, at JSP specification level 1.2. An older-style web.xml
won’t matter. Even if your application and container are bang up-to-date, <jsp:
root> can be handy if your source files can’t have the . jspx extension for some
reason, and if their URL patterns are too diverse to warrant defining inside the
<jsp-config> element.

on the We know now that a JSP document is written in XML. What dictates what
Qob it outputs? Well, by default, a JSP document wants to produce XML. This is
regardless of the MIME type that you set with <jsp:directive.page
contentType="..." /> If you do nothing, an XML header statement
appears at the very beginning of the page output, looking like this: <? xm1l
version="1.0" encoding="UTF-8"?>. If what you’re producing is not
XML, you really ought to suppress this. There are a couple of approaches:

B Use <jsp:root> as your root element. This suppresses the XML header
statement by default (if you’re using <jsp:root> for some other reason,
there are ways to retain the XML header statement if you actually need it).

B Include a <jsp:output> element as follows: <jsp:output omit-xml-
declaration="true" />.

There is quite a bit more to <jsp:output> than this one attribute—to
find out more, take a look at JSP Specification section 5-16.

.

ON THE CD

JSP Syntax to XML Syntax

This exercise differs a little from most of its predecessors, for you deliberately
start with the solution code. Your mission is to take a moderately complex JSP
page, written in JSP syntax, and convert this to XML syntax. The page works in

484 Chapter 7: JSP Standard Actions, XML, and EL

combination with a servlet and a JavaBean. The servlet receives the name of a
comma-separated values file and parses the contents of this, placing the results in
the JavaBean. The JSP page uses the JavaBean to display the results in an HTML
table.

Any comma-separated values (.csv) file will do. There is one provided called
Timesheet.csv, but you can supply one of your own. The expectation is that the first
row of the file contains header information —here’s the first row of Timesheet.csv:

Date,Start Time,End Time,Duration,Description,Code

And each subsequent row contains data corresponding to the heading fields. Here’s
an example data row from Timesheet.csv:

Mon-30-Jun,09:00,11:00,2:00,Certification article,ARTICLE4

Having checked you can run the application, you'll take the regular JSP version of
the file and duplicate that in situ to a new file that will be a JSP document. You'll work
through this document, making alterations to remove source that works only in JSP
syntax terms. On the way, you'll try accessing the document, and observe the syntax
errors you get. The result will be a genuine JSP document that works as the solution
code does.

So this time, start by finding the solution file from the CD (which is sourcecode
/ch07/ex0703.war), and then follow the instructions below.

Deploy and Test the Application

I. Deploy ex0703.war on your server—start the server if it’s not started already.

2. Use your browser to run the application, using a URL such as
http://localhost:8080/ex0703/CSVReader/Timesheet.csv

CSVReader is the mapping for a servlet in the ex0703 context. The servlet
uses the path information that appears after the servlet mapping in the

URL —in this case, Timesheet.csv. The servlet looks for the named file in
the context directory. So if you are using your own CSV file, place this in the
context directory (e.g. ex0703) on your server, and change the name in the
URL from “Timesheet.csv” to the name of your file. Make sure to respect
upper and lower case.

3. Make sure that you get output like that shown in the following illustration.

JSPs in XML (Exam Objective 6.3) 485

CSYV VFile Presented As HT'ML Table

JSP Syntax Version

There are 25 rows of data, and 6 columns.

Date Start Time [End Time Duration Description Code
Eow 1 Mlon-20-Jun 09:00 1100 2:00 Certification article ARTICLE4
Eow 2 MWlon-30-Tun |12:00 15:00 300 Cluestion Software QUEST
Eow 3 [Tue-01-Tul [10:50 11:20 0:30 Cuestion Software QUEST
Row4 [Tue-01-Jul [11:20 11:20 0:10 Tinesheet AT
Eeow 5 [Tue-01-Tul |11:50 1345 155 Cluestion Software QUEST
Fow & [Tue-01-Tul [13:55 14:00 0:05 Showing F my timeshest ATMATET
Eow 7 (Tue-01-Tul [14:00 14:07 0:07 Ihputting questions WEEZITE
Eow & [Tue-01-Tul |14.07 14:10 (.03 Helping F with timesheet FANEI
Fow @ [Tue-01-Tul |14:10 14:28 0:18 Inpﬁtt:ing ruestions WEEBSTTE
Eow 10 [Tue-01-Jul |14:28 14:20 0:02 Helping F with timesheet ATNIN
Eow 11 [Tue-01-Tul |15:45 16:00 0:15 Inputting questions WEEBSITE

4. Now use a text editor to change the deployment descriptor web.xml directly
in the server directory—which for me is

<Tomcat installation directory>/webapps/ex0703/WEB-INF/web.xml

5. You'll see that the servlet CSVReader has an initialization parameter, which
is the name of the JSP page to forward to. Change the extension on the

name of the file to .jspx, which points to the JSP Document solution file.
The whole line looks like this:

<param-value>/csvRenderer. jspx</param-value>

6. Save and close web.xml. Restart your server. Use your browser to access
the servlet, using exactly the same URL as in step 2. The output should
look identical, as shown in the following illustration —just the heading has
changed to indicate that the output came from a JSP document.

486 Chapter7: JSP Standard Actions, XML, and EL

CSYV File Presented As HI'ML Table
JSP Document (XIML) Version

There are 25 rows of data, and 6 columns.

I | Date iStart Time IEnd Time Duration | Description | Code
Row 1 Mon-30-Tun [09:00 11:00 200 |Certification article ARTICLEA

Create Your Own JSP Document

7. Now find the original JSP syntax file in the context directory, the one called
csvRenderer.jsp (i.e., not the version with the .jspx extension). Copy this into
the same directory, and call it csvRenderer2.jspx (with a .jspx extension—
very important!). This is going to be the file you'll work on—you’ll change
all the JSP syntax within it to JSP document XML syntax, stage by stage.

8. Edit web.xml again as you did in step 5—change the name of the parameter
value to that of your copied file, csvRenderer2.jspx:

<param-value>/csvRenderer2. jspx</param-value>

9. Stop and start your web server again. Again, invoke the application with the
same URL as in step 2. This time, the application should fail — the target JSP,
csvRenderer2.jspx, won't translate until its syntax is corrected. You may well get
an error in your browser like the one shown in the following illustration, which
complains that “The prefix ‘jsp’ for element ‘jsp:useBean’ is not bound.” Don’t
worry if you see something different; the point is that we need to fix the errors.

HTTP Status 500 -

[T Exception report
The server encountered an internal errar () that prevented it from fulfiling this request,
org.apache. jasper..JasperException: /cosvRendereri.jspx(2,76) The prefix "Jsp™ for element "jsp:useBean” is not bound.

org.apache. jasper.compiler.DefanltErrorHandler.jspError (DefaultErrorHandler. java:39)
org.apache. jasper.compiler .Errorlispatcher . dispatch (ErrorDispatcher. java: 407)

JSPs in XML (Exam Objective 6.3) 487

. Now open csvRenderer2.jspx with a text editor. Change the <h2> heading

on line 5 to read

<h2>My JSP Document Version</h2>

. The JSP page source uses standard actions. When these appear in JSP

documents, a namespace must be supplied to say where the XML elements
for the standard actions are defined. You can supply this by altering the
<html> tag exactly as shown below:

<html xmlns:jsp="http://java.sun.com/JSP/Page" >

Save the file, but leave your text editor open ready to make more changes.

. Refresh your browser for the same URL. The application should still fail, but

this time the error should be deferred to later in the page source. The next
error | get is located at the second character on the third line of page source:
“The content of elements must consist of well-formed data or markup”

(the location is given in the stack trace).

. The issue is the page directive doing the import, with its <% syntax. Change

this to use XML page directive syntax:

<jsp:directive.page import="java.util.*" />

. Save the file, and again refresh your browser—note the next error. For me,

this is on line 14, and it says that “the entity ‘nbsp’ was referenced, but

not declared.” This is a pure XML problem. In HTML, snbsp; denotes a
nonbreaking space. This style of denoting a special character (beginning
with an ampersand and ending in a semicolon) is fine for XML; a character
denoted this way is called an entity. However, it needs to be defined to the
XML file in order to be respected. We're not going to do this, but instead
cheat. There’s a “get out of jail free” card to counter any dodgy text in an
XML file, which is to describe the text as “character data.” This uses some
involved syntax. Replace with exactly what is written below:

<! [CDATA[]1>

. Save the file, and refresh the browser. My latest error is now on line

15—again complaining about the lack of well-formed character data or
markup. As you've probably guessed, it’s the scriptlet syntax. Go through the

488 Chapter 7: JSP Standard Actions, XML, and EL

code, replacing every occurrence of <% with <jsp:scriptlet>, and every
corresponding %> with </jsp:scriptlet>.

6. Save and refresh. [get the same error, now transferred to line 16. This time,
it’s an expression causing the grief. Replace every occurrence of <¢= with
<jsp:expression>, and every corresponding $> with </jsp:expression>.

I7. Save and refresh. There’s still a problem! Look at the for loop in the first
scriptlet— the condition test contains the “<” sign. This is— of course — good
Java but lousy XML. To the XML parser, it looks like the beginning of a tag

“_»

that never ends. Change the “<” sign to escape characters &1t ;. Repeat the
exercise for the later for loop (around line 24), which also contains a “<” sign.
18. With luck, when you now save and refresh, the page will work correctly.
19. In a future exercise, we’ll take the XML JSP document source from this

exercise and improve on it so that most of the language scripting is removed.

CERTIFICATION OBJECTIVE

Expression Language (Exam Objectives 7.1, 7.2,
and 7.3)

Given a scenario, write EL code that accesses the following implicit variables including
pageScope, requestScope, sessionScope, and applicationScope, param and paramValues,
header and headerValues, cookie, initParam and pageContext.

Given a scenario, write EL code that uses the following operators: property access
(the . operator), collection access (the [] operator).

Given a scenario, write EL code that uses the following operators: arithmetic operators,
relational operators, and logical operators.

Expression Language (EL) is all about the EL-imination of Java syntax from your
pages. Here’s how the JSP specification eloquently states the goal of EL: “The EL can
be used to easily access data from the JSP pages. The EL simplifies writing script-less
JSP pages that do not use Java scriptlets or Java expressions and thus have a more
controlled interaction with the rest of the Web Application” (JavaServer Pages 2.0
Specification, page xix).

Datch

Expression Languauge (Exam Objectives 7.1,7.2,and 7.3) 489

As the name implies, Expression Language provides an alternative to the
expression aspect of Java language scripting—<jsp:expression>...</jsp:
expression> or <%...%> . EL by itself is not a replacement for scriptlets. For that,
you'll need to wait for the JSP Standard Tag Language (JSTL) in Chapter 8.

The goal of EL is simplicity. Although EL sacrifices some of the sophistication
possible in a Java language expression, it is easier to use: The syntax is succinct and
robust. Apart (obviously) from the syntax, EL is different from Java in other ways.
Some rules are the same, and some are different. Because EL is a new and popular
addition to JSP technology, you can be sure that many questions in the exam will
test you on these rules.

The exam creators have a the real exam) to take a purist approach!

nasty habit of mixing up EL and scriptlet After all, they reflect real life—and you
syntax within the same question. This book may well have to deal with scriptlets and
organizes its content by exam objective, EL in the space of a few consecutive lines
but don’t expect the questions (here or in of JSP source.

Expression Language Overview

Expression Language began life as part of the JSP Standard Tag Library (JSTL),
which we meet in Chapter 8. EL is now incorporated as part of the JSP 2.0
specification and is entirely independent of JSTL. However, it’s only with JSTL that
it fully comes into its own. EL can supply only the equivalent of the “right-hand
side of the equal sign” in a typical computing statement. For example, EL lacks any
looping constructs. And although there are conditional operators in EL, you can’t
take any action on them: There’s not even an “if . . . then . . .” mechanism. JSTL
supplies the missing pieces, so you will still find EL used most often in conjunction
with JSTL.

That’s not to say that you can’t use EL independently. And especially when
your goal is the SCWCD, there’s plenty to learn about it. So in this section we’ll
concentrate exactly on that—EL capabilities. Some of the time we’ll use EL in
conjunction with Java language scripting elements, such as scriptlets. There’s
nothing technically wrong with that, but it’s not considered best practice — after all,
EL is meant to encourage Java-free JavaServer Pages! However, until we do learn
about JSTL, scriptlets remain the easiest way to create expressions with data to
display.

490 Chapter7: JSP Standard Actions, XML, and EL

on the

0ob

Expression Language can be enabled or disabled in three different ways. We
encountered one of these ways in Chapter 6, when we looked at the page
directive settings. The page directive attribute isELEnabled can turn on EL
for a single page—or not.

There are a couple of alternative ways of controlling EL enablement
that aren’t explicit exam objectives. One is with the <jsp-property-
group> element, which has a subelement <el-enabled>. We met <jsp-
property-group> in the context of identifying JSP documents (subelement
of <jsp-config>).

Finally, EL is enabled at an application level by having a deployment
descriptor at servlet level 2.4. A previous deployment descriptor level indicates
that EL should be switched off.

Expression Language Basics

As we saw briefly in Chapter 6, an expression begins with ${ and ends with }. The part
between the curly braces must be a valid EL expression. The string in the JavaServer
Page source code is subject to translation, like anything else in the page. Translation
checks syntax validity but won't (for reasons that we’ll come to) check that the
variables you use actually exist (remember that translation incorporates compilation).
At run time, the string representing the expression is sent to a method called
resolveVariable(), in an object supplied by your JSP container provider of type
VariableResolver. This returns an object, which is sent to the JSP output stream —
typically via an out.print () statement in your generated servlet source. Mostly, the
expression will resolve one way or another. Even if your variables don't exist, sensible
defaults are provided, which mostly prevent the expression ending in a run-time error.

EL is equally valid in standard JSP syntax or JSP document (XML) syntax. So the
following are equivalent. First a JSP in normal syntax:

<html>

<head><title>As a normal JSP</title></head>

<body>

<% request.setAttribute("whichever", "EL in either syntax"); %>
<p>${whichever}</p>

</body></html>

And now the same as a JSP document:

<html xmlns:jsp="http://java.sun.com/JSP/Page">
<head><title>As a JSP document</title></head>
<jsp:output omit-xml-declaration="true" />

Expression Languauge (Exam Objectives 7.1,7.2,and 7.3) 49 |

Typel Esamplc T

The Five Kinds Boolean ${true} Valid values are true and false —just like
of EL Literal Java Boolean literals.
Integer ${18782} Underpinned by a java.lang.Long value.

Don’t append “1” or “L” to the literal value
as would happen for a Java long literal.

floating point ~ ${1.618034} or Underpinned by a java.lang.Double value.
${2.998e+9}

Strings ${“Galleon”} or Characters surrounded by double or single
${’'Coracle’} quotes.

Null ${null} Equivalent to the Java null literal. Doesn’t

output anything.

<jsp:directive.page contentType="text/html" />
<body>
<jsp:scriptlet>
request.setAttribute("whichever", "EL in either syntax");
</jsp:scriptlet>
<p>${whichever}</p>
</body></html>

In both cases, the EL syntax $ {whichever} picks up and displays the value of the
whichever attribute set up in the scriplet: “EL in either syntax.”

However, you do have to keep Java code (such as scriptlets) free of EL (after all,
EL is not valid Java syntax). So the following will not work:

<% request.setAttribute("anAttribute", ${avValueFromEL});

EL Literals

EL has a smaller range of literals than Java. The ones it does use are similar. Table 7-3
shows the different values. Because you don’t declare variables or assign to variables
in EL, there are no explicit keywords for types; nonetheless, there are five that are

defined.

EL Operators

Operators in EL come in four categories:

B arithmetic

B relational

492 Chapter 7: JSP Standard Actions, XML, and EL

B logical
B empty

EL operators (like EL literals) offer a subset of what'’s available in the Java language,
and again you have to beware of some differences in behavior between EL and Java.

Arithmetic Operators

There are five arithmetic operators—for addition (+), subtraction (—),
multiplication (*), division (/), and modulo (%). As you can see, the operator
symbols are identical to Java. However, there are alternative forms for the division
and modulo operators—div and mod, respectively. Let’s consider each of the
operators in turn.

Addition Addition is expressed like this: ${a + b}. Addition works much as you
would expect. If a represents an Integer object of value 2, and b an Integer object of value
3, then the result is 5. The inputs don’t have to be numeric objects —string values for a
and b of “2” and “3” would work as well. If either of attributes a and b doesn’t exist, and is
null, that’s not a problem — they are treated as zero values. A zero-length string—*"—
likewise treated as zero. As in much of EL, there’s quite a bit of work behind the scenes
to ensure that a result is obtained somehow, as long as the inputs to the calculation are
remotely sensible. However, the following calculation won’t work: ${"Not a Number"
+ 3.0}. You will get a javax.servlet.jsp.el. ELException, complaining that “Not a
Number” cannot be converted to a java.lang.Double value. This example also goes to
show that the addition operator in EL—unlike Java—is not overloaded to handle string
concatenation. There’s no operator overloading or string concatenation in EL.

is

Subtraction Subtraction is expressed as you would expect: ${a — b}. The same
comments made about the addition operator apply to subtraction as well.

Multiplication Multiplication is expressed ${a * b}. No surprises there.

Division Division is expressed ${a / b} or ${a div b}. Even if the inputs are
both integers, double division is performed — not whole-number division ignoring
the remainder. There is no direct EL equivalent for Java’s integer division behavior.
Being as EL division is always double division, it behaves like Java floating decimal
division, so divide by zero is not an error but results in an answer of “Infinity.” EL
also shares an irritating feature of double division on binary-oriented computers, and
the result may be imprecise. This isn’t unique to EL; it’s equally true of floating-point

Expression Languauge (Exam Objectives 7.1,7.2,and 7.3) 493

division in regular Java syntax, and indeed of many other programming languages on
most computing platforms. For example, it might surprise you to learn that ${9.21

/ 3} doesn't give the neat result of 3.07, but rather 3.0700000000000003.

Modulo Modulo is expressed ${a % b} or ${a mod b}. This time, integers
are respected as integers, but a double for either input causes the calculation to be
worked as a double. Again, the caveat about imprecise double arithmetic applies
(try, for example, ${9.1 mod 3}).

Jatch . .
W Just as Java arithmetic

has “promotion” rules for the inputs to a
calculation, so does EL. In Java language,
for example, in the calculation 9.0 + 3,
“3”—an integer literal—is promoted to a
double before the calculation takes place,
and the result is a double. This is because
the other operand (9.0) is a double literal.
This is the ceiling for Java arithmetic—
dfter all, there’s nowhere to go beyond

a double in Java primitive terms. In EL,

promotion applies on a grander scale—
there isn’t a double (or java.lang.Double)
ceiling. In some cases, the operands
might be of type java.math.Biginteger

or java.math.BigDecimal. There’s only
an outside chance you will have to face
questions involving the promotional rules
with Biginteger and BigDecimal, but you
might want to check out the arithmetic
promotion (or “coercion”) rules laid out in
the JSP 2.0 Specification, section 2.3.5.

Relational Operators

EL has a full complement of relational operators, which have conventional and
alternate forms, as shown in Table 7-4. Alternative forms exist to make writing JSP
documents that much easier. You'll remember from earlier in the chapter that the

TABLE 7-4

Greater than > gt
EL Relational Less than < It
Operators Equals __ eq
Greater than or equals >= ge
Less than or equals <= le
Not equals = ne

494 Chapter 7: JSP Standard Actions, XML, and EL

< and > signs are bad news for well-formed XML, except when used to mark the
beginning and end of tags. To avoid having to use escape sequences such as > ;=
every time you want to express “greater than or equals” in an expression, use ge
instead. It’s a good habit to get into, for the alternative form works just as well in
conventional syntax and is much more readable in JSP document syntax.

The result of a relational operation is boolean true or false. So the following
not very useful expression will cause “true” to be written to output: ${9 ge 3}.
You are not restricted to numeric inputs. Most usefully, you can do lexical string
comparison, so ${"zebra" eq "antelope"} will return “false.” Under the covers,
the String equals () method is invoked rather than a straight comparison of
objects. In general, EL relational evaluation will invoke useful comparison methods
on objects (such as equals () and compareTo()) when they are appropriate and
available.

Logical Operators

EL has a more limited set of logical operators than the Java language. As for
relational operators, there is a symbolic and alternative form. These are both shown
in Table 7-5. These operators allow you to join conditional tests together to return
a composite boolean result. For example, ${9 > 3 && "z" gt "a"} would return
true. Like Java, EL will evaluate only the left-hand side of an expression involving

&s& and | |, if that is sufficient to intuit the overall result:

B If the left-hand side of an expression involving && is false, the whole expression
must be false.

B If the left-hand side of an expression involving | | is true, the whole expression
must be true.

In either case, the right-hand side remains unevaluated. For all the examples we've
seen, this doesn’t matter. However, it might matter more to you after you see EL
functions in Chapter 8.

Symbolic Alternative

EL Logical Logical “and” && and
Operators

Logical “or” [or

Logical “not” ! not

Expression Languauge (Exam Objectives 7.1,7.2,and 7.3) 498

The empty Operator

EL’s empty operator can be invoked like this: ${empty obj}. This expression
will evaluate to true if obj represents something null—as would happen if the
obj attribute didn’t exist. However, the empty operator generalizes the concept
of emptiness beyond a crude null test. There are other circumstances where
${empty obj} results in true, which is any of the following:

B obj is an empty string (*”).
B obj is an empty array.
B obj is an empty Map or an empty Collection (which covers every collection

class in the java.util package —all of them inherit Map or Collection somewhere
along the line).

Under any other circumstance, ${empty ob3j} will return false.

Datch .
For all the operators— exam. Expressed crudely, the order is as
arithmetic, relational, logical—the follows:
precedence rules work in the same not, empty;
way as for the equivalent operators multiplication, division, modulo;
in the Java language. Parentheses addition, subtraction;
can (and should) be used to clarify relational;
potential misinterpretations of code. and, or.
However, you should have some For more precision, refer to the JSP
awareness of precedence for the Specification, section 2.3.10.

EL Property Access

Having dealt with the basics of EL— syntax, literals, operators—we can move on to
some of its more exciting aspects. As you would have suspected from the preceding
discussion, EL can access objects. Mostly, EL is used to access attributes that have
been set up in some scope: page, request, session, or application. In this respect, EL
is like the standard action <jsp:getProperty>, although its syntax works rather
differently—and that’s what we need to explore next.

496 Chapter7: JSP Standard Actions, XML, and EL

The . and [] Operators

Any attribute in any scope can be displayed with EL. The scope doesn’t even need to
be specified. Suppose that there is an attribute called “title,” holding a String object
with some text; then ${title} is all that is required to display that text. What
happens, though, if the attribute isn’t as simple as a String? What if you are holding
a complex object as an attribute? For such an object to be useful to EL, it has to be
a JavaBean —at least in the sense of having “getter” methods. Let’s suppose that the
object in question is the Dog JavaBean we met at the beginning of the chapter. This
had five methods: getName () (returning a String), getWeight () (returning a float),
isInsured() (boolean), getSex() (Char), and getBarkVolume (another String).
According to bean law, this exposes five properties derived from the “getter” method
names: name, weight, insured, sex, and barkVolume. The properties share the type of
their corresponding “getter” method.

Now let’s suppose that a Dog object exists as a session attribute, with a name of
“currentDog.” To display a property of the dog, you use the attribute name and the
property name. The simplest approach is to separate the two with a dot. So

${currentDog.name}
would display the name of the dog, and
${currentDog.insured}

would display “true” or “false” according to whether the dog was insured or not. Type
conversion from boolean to String is managed somewhere before the result reaches
page output, as is true for all other primitive types or objects returned by an expression.

This is the best way to use EL for property access. However, there is an alternative
syntax, although it’s really better kept for a different purpose we’ll come to in a
moment. These variants will also display the dog’s name:

B S${currentDog["name"]}

B ${currentDog['name']}

You're not limited to one level, either. Let’s suppose our Dog class had an additional
method, getFather (), which returned another Dog object— representing the father
of the current dog. This would expose another property on the current dog, called
“father.” The father dog—being a Dog object—has all the same properties as the
current dog. So if you now wanted to display the name of the current dog’s father, you
could do so this way:

Expression Languauge (Exam Objectives 7.1,7.2,and 7.3) 497

${currentDog.father.name}

The alternative syntax would look like this:

B S${currentDog["father"]["name"]}

B S${currentDog['father']['name']}

You can even mix and match double quotes and single quotes, as long as you are
consistent within any particular pair of square brackets, so although it’s inconsistent,
${currentDog['father']["name"]} would also work. In essence, anything that
EL can interpret as a String can go between the square brackets.

Arrays, Lists, and Maps

EL capabilities go further. Suppose that I have an array defined as a page attribute
through the following scriptlet:

<% String[] dayArray = {"Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"};
pageContext.setAttribute("days", dayArray); %>

An expression later in the JSP page source can access the days of the week using
syntax that is practically identical to array syntax. For example, ${days[0]}

will send “Mon” to page output, while ${days[6]} will send “Sun.” Within the
expression’s curly braces is the name of the attribute (days) followed by square
brackets. Within the square brackets you can place any integer—either a literal or
some attribute that can be sensibly converted to an integer. So if you wrote this code
farther down the page, it would output “Wed Thu”:

<% pageContext.setAttribute("two", new Integer(2));
pageContext.setAttribute("three", "3"); %>
${days[two]}

${days[three]}

The first page attribute, called “two,” is set to an Integer with a value of 2. So
${days[two]} gets the third value in the array—“Wed.” You can see, though, from
the second attribute, that you don’t have to stick with explicit numeric types as with
java.lang.Integer. The second page attribute, called “three,” still works when loaded
with a String. Provided that a method like Integer.parseInt() can extract an int
value from the String, everything will work.

498 Chapter 7: JSP Standard Actions, XML, and EL

Tatch . . .

If you write an expression you just get blank output. However, let’s
such as ${days[7]}, you might expect consider what happens if the attribute
an ArraylndexOutOfBoundsException supplied is a valid attribute but can’t be
or an ELException arising from this as converted to an integer value. Given this
an underlying cause. Not so. EL silently page attribute, <% pageContext
suppresses this problem—you just get .setAttribute(“four”, “the
blank output. Even if you use an attribute = _Word_Four”); %> the expression
name that doesn’t exist—S$ {days[notAn ${days[four]} would end in a run-time
AttributeName] }—nothing goes wrong; error (ELException).

Having worked through Arrays, you’ll be delighted to know that Lists work in the
same way. Any collection class that implements java.util.List can have its members
accessed with identical syntax. Under the covers, the List.get (int index)
method is executed.

Finally, there is the case of classes that implement java.util. Map. You'll recall from
the SCJP (if nowhere else) that Maps hold a collection of key-value pairs. Each key
must be unique, and is normally a String value (but can be any Object). Let’s consider
a variation on the days of the week example, which uses a Map:

<jsp:directive.page import="java.util.*" />
<% Map longDays = new HashMap();
longDays.put("MON", "Monday");
longDays.put("TUE", "Tuesday");
longDays.put("WED", "Wednesday");
longDays.put("THU", "Thursday");
longDays.put("FRI", "Friday");
longDays.put("SAT", "Saturday");
longDays.put("SUN", "Sunday");
pageContext.setAttribute("longDays", longDays);
pageContext.setAttribute("wed", "WED");

>

 ${longDays[wed]}

 ${longDays["THU"]}

 ${longDays.FRI}

The output from this code is

Wednesday
Thursday
Friday

Expression Languauge (Exam Objectives 7.1,7.2,and 7.3) 499

What happens is this: The code loads a HashMap object with the full names of the
seven days of the week, keyed by abbreviated capital codes (“MON,” “TUE,” etc.).
The HashMap is loaded into a page attribute called longDays. Another page attribute
is set up, called “wed” and with a value of “WED”—which matches one of the keys in
the HashMap. In general terms, expressions accessing a Map work on this principle:
${nameOfMap[keyValue]}. From the two expressions in the code, you can see that it
doesn’t matter if the key value is a literal (“THU”) or derived from an attribute (wed).
What about the third expression, though: $ {longDays.FRI}! That appears
to use the JavaBean syntax we used earlier—even though there is obviously no
“getFRI()” method to fall back on within the Map. Yet it still works. If you use
a Map’s key value as if it were a property name on a bean, you will still find the
corresponding value.

EL Implicit Objects

To add to EL’s versatility still further, it has its own set of implicit objects. It’s similar
to the idea of implicit objects that you can use in general JSP page source, but it’s
important —especially for the exam!— that you learn the distinctions between the
two sets. The full list is shown in Table 7-6. Note that all the EL implicit objects,
with the exception of pageContext, are of type java.util. Map, so they obey the Map
rules we just explored.

Let’s briefly explore these implicit objects in turn.

pageScope, requestScope, sessionScope, and applicationScope These
implicit objects are used to access attributes in a given scope. Of course, you can
just name an attribute in expression language without any qualification, like this:
${myAttribute}. Under the covers, PageContext.find("myAttribute") is used
to search all scopes through page, request, session, and application, stopping when
it finds an attribute of the right name. But if you want to target only a session

scope attribute, then ${sessionScope.myAttribute} will do the trick. All the
alternative Map syntaxes will work as well—$ {applicationScope

["myAttribute"]} to find the attribute in application scope, for example.

param, paramValues These are used to recover parameter values—singly or
in bulk. Let’s suppose that your HT TP header request contains the following query
string: ?myParm=firstValuesmyParm=secondValue. Let’s also suppose this is a
GET request, so there are no additional parameter values for myParm hidden in a
POSTed request body. The result of $ {param.myParm} is “firstValue.” The result of
${paramvValues.myParm[1]} is “secondValue.” To put it another way, the implicit

BOO Chapter7: |SP Standard Actions, XML, and EL

EL Implicit Objects

Closest JSP Scripting

Variable Name Description “Equivalent”
pageContext Represents the JSP PageContext Accessing properties of the
object pageContext implicit object
pageScope A Map of page scope attributes pageContext.getAttribute()
requestScope A Map of request scope attributes request.getAttribute()
sessionScope A Map of session scope attributes session.getAttribute()
applicationScope A Map of application scope attributes application.getAttribute()
param A Map of ServletRequest parameter ~ request.getParameter()
names and first values
paramValues A Map of ServletRequest parameter ~ request.getParameterValues()
names and all values
header A Map of HttpServletRequest header request.getHeader ()
names and first values
headerValues A Map of HttpServletRequest header request.getHeaders()
names and all values
cookie A map of HttpServletRequest cookie request.getCookies () and
names and cookie objects iterating through the returned Cookie
array for a cookie of a given name
initParam A Map of ServletContext parameter ~ config.getServletContext ()
names and values .getInitParameter ()

object param can be used solely to access the first value of a parameter (so in this
example, it is impossible to use param to retrieve “secondValue”). However, using
array syntax as shown, you can use the implicit object paramValues to access any of
the available values for a given parameter.

header, headerValues These are used in a very similar way to param and
paramValues, but they are targeted to recover request headers. The request header
“Accept” is a good one to experiment with. This specifies the MIME types that a
client is willing to receive back in the response, and it often consists of multiple
values. The syntax is identical as for param and paramValues, so ${header.accept}
returns the first value of the accept header, and $ {headervalues.accept[2]}
returns the third value. (“Accept” is one of the headers set up by the browser you
met in Chapter 1, Exercise 1. Try pointing this browser to your own JSP, which
contains the EL header and headerValues syntax described here.)

on the

Qob

Match

Expression Languauge (Exam Objectives 7.1,7.2,and 7.3) £0 |

initParam This is used to access ServletContext initialization parameters, whose
values are available across the entire web application. Don’t be fooled into thinking
that Servlet initialization parameters are returned! The syntax is exactly as for
param, so ${initParam.myParm} is used to return the value of an initialization
parameter named “myParm.”

cookie This is used to access a named Cookie in the HttpRequestHeader. A good
example is the session cookie. Here are some variant approaches, all of which will
display the value of the cookie:

${cookie.JSESSIONID.value}
${cookie["JSESSIONID"].value}
${cookie["JSESSIONID"]["value"]}

The implicit objects cookie, header, and headerValues are available only in
JSP containers supporting the HTTP protocol, which, of course, most will do.
These implicit objects relate to HT TP-only concepts.

pageContext This can be used to
access properties of the PageContext object
associated with the JSP page. Properties,

An implicit object name as always, mean anything available from a

always takes precedence. Suppose that |
set up a page attribute called “header”’;
then $ {header} would still refer to

the implicit object header, not my page
attribute (or attribute in any other scope,
come to that).

“get” method that has no parameters. So
request, session, and servletContext (not
application!) are all available as properties

by virtue of getRequest (), getSession(),
and getServletContext () methods. If these
objects have properties of their own, they can
be used in expressions. So ${pageContext

.request.method}, for example, will display the HT TP method (GET, POST,

etc.) associated with the request.

EXERCISE 7-4

AL

An EL Calculator

ON THE CD

In this exercise, you'll write a single JSP document that acts as a simple calculator.
You'll be able to type in two figures, select an operation (add, subtract, multiply,
divide, modulo), and display the result. You’ll use EL both to perform the
calculations and to display the result.

B02 Chapter7: |SP Standard Actions, XML, and EL

There’s a double purpose to this exercise. Writing the calculator will help your
fluency with EL. Using the calculator will help you see how EL handles calculations.
Try all kinds of inputs, with and without decimal points—some of the results may
surprise you! You'll be much better prepared for anything the exam can throw at you
in terms of EL arithmetic.

Create the usual web application directory structure under a directory called
ex0704, and proceed with the steps for the exercise. There’s a solution in the CD
in the file sourcecode /ch07/ex0704.war—check there if you get stuck.

Create the JSP Document

.
2.

Create a file called calculator.jspx directly in context directory ex0704.
Include a <jsp:output> element to omit the XML declaration that
otherwise gets inserted into page output for JSP documents.

Include a <jsp:directive.page> element to set the content type to
“text/html.”

Write HTML elements to make a valid HTML document —<html>, <head>,
<body>, etc. Make sure <html> is the root element in your document.
Include a namespace reference in the opening <html> tag to qualify the jsp:
elements (xmlns:jsp="http://java.sun.com/JSP/Page").

. Place an HTML form in the document. This should have an input text field

named argl, a select field named operation, an input field named arg2,
and a submit button. Give the select field five options to match the five
arithmetic operations: add, subtract, multiply, divide, and modulo.

Beneath the form, place some template text saying “Did you miss out one of
the numbers?” Next to this, write an EL expression that will output “true” if
either of the input parameters argl or arg2 is empty.

Beneath this text, you’re going to place a mixture of template text, scriptlets,
and expressions that restate the calculation and show the result. For example,
“Result: 1 plus 2 = 3.” This is easier said than done; some hints follow.
“Result:” is just template text, and the value of the first input to the
calculation (arg1) can be derived in EL using the param implicit object.

. To display the operation (add, subtract, multiply, etc.), you could again use

the param implicit object with the operation parameter. Alternatively, use a
<jsp:scriptlet> to obtain the request parameter value for operation, and
condition your text accordingly. (This is what the solution code does— the

12.

Expression Languauge (Exam Objectives 7.1,7.2,and 7.3) 5§03

option values are abbreviations such as “Add,” “Sub,” and “MIt.” There is
logic to test the value and display a suitable word or phrase instead, such as

M«

“plus,” “minus,” and “multiplied by.”)

The value of the second input to the calculation (arg2) can be derived in EL
by using the param implicit object again. The equal sign (=) is template text.
For the calculation itself, you'll need to write five EL expressions involving
the arg1 and arg2 parameters. You'll need a scriptlet (or rather, a series of
scriptlets using if... and else if {...) to test the operation parameter

such that only one of the EL expressions is executed).

Deploy and Run the Application

13.

14.

Create a WAR file that contains the contents of ex0704, and deploy this to
your web server. Start the web server if it has not started already.

Use your browser to request calculator.jspx, with a URL such as

http://localhost:8080/ex0704/calculator. jspx

. Test it out with all five arithmetic operations, using a mixture of integers and

doubles (i.e., anything with a decimal point) as inputs.

. The following illustration shows the solution page in action.

2 EL Calculator - Microsoft Internet Explorer

File Edit Wiew Favorites Tools Help

: Address |@ http:/flocalhost ;8080 ex0704 calculatar . jspx

EL Calculator

| |Ad.;| vl |[calculate

Did wou miss out one of the mumbers? false

Result: 9.21 divided by 3.0 = 3.0700000000000003

B04 Chapter7: |SP Standard Actions, XML, and EL

CERTIFICATION SUMMARY |

In this chapter you began by learning about standard actions. You saw that these
observe strict XML element syntax, comprising opening tags, closing tags, and
attributes. The first three standard actions you encountered were <jsp:useBean>,

<jsp:setProperty>, and <jsp:getProperty>. You found that <jsp:useBean>
can be used to make an object available in a page, either by obtaining an object from
an existing attribute or by creating a new object and attaching it to an attribute.
You also saw that the object targeted by <jsp:useBean> must adhere to JavaBean
standards—at least in having a no-argument constructor, and (for it to be at all
useful) having “get” and “set” methods. You found that <jsp:useBean> has an

id attribute, whose value is shared with the name for the page, request, session,

or application scope attribute it is bound to. You learned that the class attribute
specifies the actual class of the object created, but that a type attribute can be used
to specify a different type of reference variable (implemented interface or superclass)
for the bean object. You saw that a scope attribute can be used to associate the object
with any one of the four different scopes (scope="page | request|session|
application").

You then learned that <jsp:setProperty> can be used to set the value for
one of the properties on the bean object declared with <jsp:useBean>. You saw
that a property is named after a “get” and “set” method on the bean, such that
getLoan ()exposes a property called “loan” and that setBankBalance() exposes
“bankBalance.” You saw that you use the property attribute to name one of the
properties and use the name attribute to tie in to an existing bean (as named in
the id attribute of <jsp:useBean>). You learned that the value can be set using
the value attribute (where the value of the value attribute can be a literal or a
run-time expression), or by using the param attribute (associating the value with
a request parameter). You then saw that <jsp:getProperty> can be used —like
an expression— to send the value of a property to page output. You saw that this
also has attributes of name (the name of the bean: matching the id value on <jsp:
useBean>) and property (the name of the property whose value to display).

In the next section of the chapter, you met three more standard actions—<7jsp:
forward>, <jsp:include>, and <jsp:param>. You learned that <jsp:forward>
and <jsp:include> do much the same job as the forward() and include()
methods on a RequestDispatcher object. You saw that <jsp: forward> and <jsp:
include> each have a page attribute, and this is used to specify a page within the
web application using an absolute or relative URL (beginning with a slash or not).

Expression Languauge (Exam Objectives 7.1,7.2,and 7.3) 508

You learned that <jsp: include> also has a flush attribute to control whether or not
existing response output should be sent to a client before including a file, but that
<jsp: forward> doesn't—because if output has been written to the client already, it’s
illegal to forward to another resource. You learned the differences between the <jsp:
include> standard action and the <3@ include file="..."> page directive.
You saw that the include standard action doesn’t include a target file until request
time; hence, the value for the file can be a run-time expression. You learned that, by
contrast, the include directive incorporates the contents of a file at translation time.

You moved on to <jsp:param>, and saw how this can be used to graft on
parameters available to the forwarded-to or included resource. You also learned that
these parameters are no longer available on return to the forwarding or including
resource.

The next main topic covered was that of JSP documents. You learned that JSP
documents are JSP page source written in well-formed XML and by default are used
to produce XML as output. You learned the basics of well-formed XML documents:
how each one must have a root element, how opening tags must match to closing
tags, and how every element must nest inside another without overlapping
(aside from the root element). You saw that JSP traditional scripting element syntax
has to be replaced with equivalent XML elements—so <jsp:scriptlet>...
</jsp:scriptlet> for <%...%>, <jsp:expression>...</jsp:expression> for
<%=...%> and <jsp:declaration>...</jsp:declaration> for <%!...%>. You
found that the Java language contents of scriptlets, expressions, and declarations can
remain unaltered —except that some symbols (in particular < and >) need character
sequences called entities to keep the XML syntax well-formed (so &1t; for < and
sgt; for >).

You also saw that directive syntax changes as well, so <jsp:directive
.page .../>for<%@ page ...%>and <jsp:directive.include .../>for

<%@ include ...3%>. However, you found that the attributes for page and include
directives remain unaltered between the two styles. You learned that comment
syntax changes subtly, so <t-- ... -->becomes the equivalent of <¢-- ... --%>

for commenting out lines in page source.

You learned that there are three different ways for the JSP container to recognize
JSP documents. Two of the methods rely on a web.xml file at servlet specification
level 2.4: (1) having a .jspx extension on the file, and (2) setting the <is-xm1>
element to “true” in the deployment descriptor for a given <url-pattern>— this
within <jsp-property-group> in element <jsp-config>. The third method,
you saw, works whatever level of deployment descriptor you have, and that is to use
<jsp:root> as the root element in your document.

B0OG6G Chapter7: |SP Standard Actions, XML, and EL

In the final section of the chapter, you learned about Expression Language,
abbreviated EL. You saw how EL is a Java-language free equivalent for expressions.
You saw that EL has access to any attribute in any scope and that the simplest way
to display an attribute value in your page output is like this: $ {attributeName} .
You learned that if that attribute is a bean, you can access properties on the bean
using dot syntax (${attributeName.propertyName}) or square bracket syntax
(${attributeName["propertyName"]}). You saw how the square bracket syntax
is useful for accessing Array or List elements, by providing an integer in the square
brackets. You also learned that an attribute that is a java.util. Map can have its key
values treated like bean properties, using the dot or square bracket syntax.

You saw that you have a range of five literals available to you in EL—integers,
floating point numbers, booleans (true or false, like Java), strings (enclosed
with single or double quotes), and a null literal. You were introduced to the five
arithmetic operators in EL: +, —, *, / or div, and % or mod, and a range of relational
and logical operators. You saw that there are character equivalents for relational
operators so that you can more easily write XML-friendly syntax. You also met EL’s
empty operator and found that this qualifies empty strings and empty arrays and
collections as returning true for an empty test as well as, of course, a null value.

Finally, you met the range of EL’s implicit objects. You found that you can
access attributes in a particular scope using pageScope, requestScope, sessionScope, or
applicationScope. You saw that you can use param or paramValues to access request
parameters, and header or headerValues to access request headers. You learned that
mitParam is used to access ServletContext parameters and that cookie is used to access a
named cookie on a request.

Two-Minute Drill §0Q7

TWO-MINUTE DRILL

JSP Standard Actions

a
a

Standard actions follow XML syntax, with opening and closing tags.

The opening tag of a standard action almost always has attributes, which are
name="“value” pairs.

The <jsp:useBean> standard action makes an attribute available in a
JSP page.

This example creates an attribute in page scope: <jsp:useBean
id="bankAccount" class="a.b.BankAccountBean" />.

The id attribute identifies the name of the attribute.

The class attribute identifies the fully qualified name of the object attached to
the attribute.

The class used in this standard action should obey JavaBean rules—so it
should have a no-argument constructor, and getter and setter methods.

If such a class has methods called getLoan () and setLoan(), it is deemed to
have a property called loan, which can be read or updated.

Properties can be updated using the <jsp:setProperty> standard action.

Properties can be read (sent to page output) using the <jsp:getProperty>
standard action, which is like an expression.

One possible syntax for <jsp:setProperty> is <jsp:setProperty
name="bankAccount" property="loan" value="5000" />. This
effectively calls setLoan () on the object attaching to the bankAccount page
scope attribute, passing in a parameter of 5000.

One possible syntax for <jsp:getProperty> is <jsp:getProperty
name="bankAccount" property="loan" />. This effectively calls
getLoan () on the object attaching to the bankAccount page scope
attribute, and sends the result to page output.

Both <jsp:setProperty> and <jsp:getProperty> have mandatory name
and property attributes.

The name attribute in both cases must (or should) tie back to the id attribute
in a <jsp:useBean> standard action in the same page.

The value attribute on <jsp:setProperty> can be set with literals, or with
a run-time expression (EL or Java language syntax).

B08 Chapter 7: SP Standard Actions, XML, and EL

Another possible syntax for <jsp:setProperty> is <jsp:setProperty
name="bankAccount" property="loan" param="loanField" />.This
effectively calls setLoan () on the object attaching to the bankAccount page
scope attribute, passing in the value for the request parameter loanField as a
parameter.

<jsp:setProperty name="bankAccount" property="*" /> has the
effect of calling set methods on all the properties of the bankAccount bean
whose names match the names of request parameters.

<jsp:useBean> has an optional attribute called scope, with valid values of

M« » o«

“page”, “request”, “session”, or “application”. The bean is created or retrieved

from the given scope (the default—if scope is absent—is “page”).
<jsp:useBean> has another optional attribute called type. This must be a
superclass of, or interface implemented by, the class attribute value.

The type attribute enables the use of a different type of reference variable
from the underlying class of the object that holds the attribute value.

Dispatching Mechanisms

a

a

The <jsp:include> standard action acts very much like the
RequestDispatcher.include () method.

The <jsp: forward> standard action is likewise like the
RequestDispatcher.forward() method.

Both <jsp: forward> and <jsp: include> have one mandatory attribute:
page.

Example forward:<jsp:forward page="/anotherPage.jsp" />.

The page attribute references the file to include or forward to.

The value for the page attribute can begin with a forward slash. The JSP
container then treats the web application context directory as the root.

No forward slash for the page attribute denotes a relative URL. The JSP
container looks for the forwarded-to or included file relative to the location
of the forwarding or including page.

A <jsp: forward> is illegal (IllegalStateException) if any of the response has
already been sent to the client.

<jsp:include> also has an optional attribute, flush. This determines
whether any existing page output should be sent to the client before
including the file.

Two-Minute Drill 509

<jsp:param> can be included in the body of <jsp: forward> or <jsp:
include>.

<jsp:param> has name and value attributes: <jsp:param name="parmName"
value="parmvalue" />.

<jsp:param> adds in request parameters that are available to the forwarded-
to or included resource but disappear on return to the forwarding or including
pages.

In the case of more than one value being present for a given parameter name,
<jsp:param> request parameter values are loaded at the front.

JSPs in XML

a
a
a

I N Wy (W]

U O

JSP documents are JSP source files written entirely in XML syntax.
JSP documents typically have a .jspx extension.

JSP documents can also be identified by setting <is-xml>true</is-xml> in
the deployment descriptor for a given <url-pattern>. Both these elements
are subelements of <jsp-property-group>, which is a subelement of
<jsp-config>.

Otherwise, a JSP document must use <jsp:root> as its root element.

XML syntax demands a single root element in a file (as <web-app> is for the
deployment descriptor).

XML syntax demands that each element is properly nested. It is illegal for the
closing tag from one element to come between the opening and closing tag of
another element.

SP document syntax I'OVidQS re lacements for all the <%-type scriptin,
Y p p yp pting
element syntax.

<jsp:scriptlet>...</jsp:scriptlet> replaces <%...%>.
<jsp:expression>...</jsp:expression> replaces <%=...%>.
<jsp:declaration>...</jsp:declaration> replaces <%l...%>.
Otherwise, Java language syntax remains unchanged, but XML-unfriendly
characters (such as < and >) need to be replaced with entities (such as s1t;
and >).

<jsp:directive.page .../> replaces <%@ page ...%>.
<jsp:directive.include .../> replaces <@ include ...%>.

<!-- ... pp>replaces <%—- ... --%>.

B 10 Chapter7: |SP Standard Actions, XML, and EL

Expression Language

;|

[I T N N

L O

Expression Language (EL) replaces Java-language syntax expressions.

The base syntax is $ {expression}.

The result from an EL expression is sent to page output.

Any attribute in any scope can be accessed in an expression.

An EL expression cannot access local variables in _jspService() directly.

There are five literal types in EL: boolean, integer, floating decimal, string,
and null.

An EL boolean has values of true and false, like Java.

An EL integer is any number without a decimal point, while floating decimals
have a decimal point.

An EL string is denoted by double or single quotes around the literal
(“myString” or ‘myString’).

There are five arithmetic operators in EL: +, —, *, / (or div), and % (or mod).
There are six relational operators in EL: < (or It), > (or gt), <= (or le), >=
(or ge), != (or ne), and == (eq).

There are three logical operators in EL: && (or and), | | (or or), and !

(or not).

There is also an empty operator in EL, which returns true for null, empty
strings, empty arrays, and empty collections.

EL can access properties on beans with the dot operator.
${bankAccount.balance} returns a property called balance for an attribute
bean in some scope called bankAccount.

EL can access items in arrays or java.util.List objects with square bracket
syntax.

${daysOfWeek[6]} accesses the seventh element in an array or java.util.List
object associated with an attribute called daysOfWeek.

Dot or square bracket syntax can be used to return keyed items in a java.util
.Map object.

Assuming that “capital” is the name of an attribute holding a java.util.Map,
${capital.Poland} or ${capital["Poland"]} would return the value
associated with the key “Poland.”

EL has 11 implicit objects: pageContext, pageScope, requestScope, sessionScope,
applicationScope, initParam, param, paramValues, header, headerValues, and cookie.

Two-Minute Drill 5] 1

pageContext can be used to access properties associated with the page’s
PageContext object.

For example, ${pageContext.request.header} returns the HT TP method
associated with the request.

pageScope, requestScope, sessionScope, and applicationScope can be used to
access an attribute in a specific scope.

So whereas $ {myAttr} will search through page, request, session, and
application scopes for an attribute called myAttr, ${sessionScope.myAttr}
confines the search to session scope.

nitParam returns ServletContext parameter values.

param returns the first value associated with a named ServletRequest
parameter; paramValues returns all values.

header returns the first value associated with a named HttpServletRequest
header; headerValues returns all values.

cookie returns a named cookie associated with HttpServletRequest.

B 12 Chapter I: Chapter Title

SELF TEST

The following questions will help you measure your understanding of the material presented in this
chapter. Read all the choices carefully because there might be more than one correct answer. Choose
all the correct answers for each question.

JSP Standard Actions

I. (drag-and-drop question) The following illustration shows a complete JSP page source. Match
the lettered values, which conceal parts of the source, with numbers from the list on the right,
which indicate possible completions for the source.

<%@ page
[A]="webcert.ch07.examp0701.MultiPurposeBean" %>
<[B] id="infoBeanl"

class="webcert.ch07.examp0701.MultiPurposeBean" />

1 |jsp:setattribute

|jsp:setAttribute

<[C [D J="infoBeanl" |

sp:useBean
[E l="booleanAttr" value="false" /> Jsp
< F [6 J="infoBeanl"

|jsp:usebean

[H®]="stringAttr" value="David" /> | |
<html><head><title>Question 1l</title></head><body> | |
<p>infoBeanl.booleanAttr has value
<[I [3 J="infoBeanl" | |
[K l="booleanAttr" /></p>
<p>infoBeanl.stringAttr has value | |
<%= ((MultiPurposeBean)
pageContext .getAttribute ("infoBeanl")) . | | |

|jsp:getAttribute

|jsp:getProperty

| name

getStringAttr () %$></p>
</body></html>

|jSp getproperty

10 |1mport

11 |jsp setProperty

12 |jsp setproperty

13 |property

14 |attr1bute

15 |value

2. Which of the following are potentially legal lines of JSP source? (Choose two.)
A

<jsp:useBean id="beanNamel" class="a.b.MyBean" type="a.b.MyInterface" />

Self Test B 13

B.

<% String className = "a.b.MyBean"; %>

<jsp:useBean id="beanName2" class="<%=className%>" />
C.

<% String beanName = "beanName3"; %>

<jsp:useBean id="<%=beanName3%>" class="a.b.MyBean" />
D.

<% String myValue = "myValue"; %>

<jsp:setProperty name="beanNamel" property="soleProp" value="<%=myValue%>" />

E.

<% String propName = "soleProp"; %>
<jsp:getProperty name="beanNamel" property="<%=propName%>" />

3. Which of the following are false statements about <jsp:useBean> standard action attributes?
(Choose three.)
A. If present, the class attribute must match the object type of your bean.
B. If the type attribute is used, the class attribute must be present.
C

The reference variable used for a bean doesn’t always have the same type as the bean object
it refers to.

D. If both are used, class and type attributes must have different values.
E. If both are used, class and type attributes must have the same value.

F. If both are used, class and type attributes can have the same value.

4. Given a NameBean with a “name” property and an AddressBean with an “address” property,
what happens when the following JSP is requested with the following URL? (Choose one.)

Calling URL:

http://localhost:8080/examp0701/Questiond.jsp?name=David%20Bridgewater&address=
Leeds%20UK

JSP page source:

<jsp:useBean id="name" class="webcert.ch07.examp0701.NameBean" />
<jsp:useBean id="address" class="webcert.ch07.examp0701.AddressBean" />
<jsp:setProperty name="name" property="name" />

<jsp:setProperty name="address" param="*" />

<jsp:getProperty name="name" property="name" />

<jsp:getProperty name="address" property="address" />

B 14 Chapter7: |SP Standard Actions, XML, and EL

A translation time error occurs.

A request time error occurs.

“David Bridgewater null” is displayed.
“null Leeds UK” is displayed.

A

B

C. “null null” is displayed.

D

E.

F. “David Bridgewater Leeds UK” is displayed.

5. Which of the following techniques would correctly put a bean into application scope? (You can
assume that any necessary page directives are present and correct elsewhere in the JSP page.)

(Choose four.)
A.

<jsp:useBean id="appl" class="webcert.ch07.examp0701.AddressBean"
scope="application" />

B.
<% AddressBean ab2 = new AddressBean();
application.setAttribute("app2", ab2); %>

C.
<% AddressBean ab3 = new AddressBean();
pageContext.setAttribute("app3", ab3, PageContext.APPLICATION SCOPE); %>

D.
<% AddressBean ab4 = new AddressBean();
ServletContext context = getServletContext();
context.setAttribute("app4", abd); %>

E.
<% AddressBean ab5 = new AddressBean();
pageContext.setAttribute("app5", ab5); %>

F.

<jsp:useBean name="app6" class="webcert.ch07.examp0701.AddressBean"
scope="application" />

Dispatching Mechanisms

6. Consider the source for the following two JSP pages, a.jsp and b.jsp. What is the outcome of
requesting each in turn? You can assume that “c.jsp” is available in the same web application
directory as a.jsp and b.jsp. (Choose two.)

Self Test § 1§

Source for a.jsp:

<%@page buffer="none" autoFlush="true"$%>
<jsp:forward page="c.jsp"/>

Source for b.jsp:

IomMmmon® >

<%@page buffer="none" autoFlush="true"%><jsp:forward page="c.jsp"/>

Neither JSP page translates.

a.jsp translates; b.jsp does not.

b.jsp translates; a.jsp does not.

Both JSP pages translate.

Neither JSP page runs successfully.
a.jsp runs successfully; b.jsp does not.
b.jsp runs successfully, a.jsp does not.

Both a.jsp and b.jsp run successfully.

What is the outcome of making the HT TP GET request shown to params.jsp (source follows)?
(Choose one.)

The HTTP request is in this form:

http://localhost:8080/examp0702/params. jsp?X=1&Y=2&Z=3

Source of params.jsp:

<jsp:include page="included.jsp">
<jsp:param name="X" value="4" />
<jsp:param name="X" value="5" />
<jsp:param name="Y" value="6" />

</jsp:include>

${param.X}

<%$=request.getParameter("Y")%>

Source of included.jsp:

${param.X}

${param.Y}

<% String[] x = request.getParameterValues("X");

for (int i = 0; i < x.length; i++) {
out.write(x[1]);

}

3>

B 16 Chapter7: |SP Standard Actions, XML, and EL

124546
1214546
4645146
1214512
4645112
4645112

None of the above

OmMmMoON® >

8. Which of the following are helpful statements about the include standard action and the
include directive? (Choose three.)

A. The include directive is useful for the inclusion of pages that change frequently.
B. The include standard action is useful when soft-coding the page to include.

C. Given the same page to include, the include directive may be more efficient than the
include standard action at request time.

The body of the include standard action can influence existing request parameters.

E. Given the same page to include, the include directive may be more efficient than the
include standard action at translation time.

F. An include directive can be processed or not according to JSTL, EL, or scriptlet page
logic.

9. What will be the result of requesting the JSP page represented by the following source? Assume
that “forwardedTo.jsp” is an empty file. (Choose one.)

<%Q@ page import="java.util.*,java.text.*" %>
<%! private String returnTimeStamp(PageContext pageContext) {
DateFormat df = DateFormat.getDateTimeInstance();
String s = df.format(new Date());
pageContext.setAttribute("timestamp", s);
return s;
} %>
<jsp:forward page="forwardedTo.jsp" />
<%=returnTimeStamp(pageContext) %>
<%System.out.println(pageContext.getAttribute("timestamp")) ;%>

Translation error.
Run-time error.

A formatted date appears in the page output.

oon®>

A formatted date appears in the server console.

Self Test § 17

E. A formatted date appears both in the page output and in the server console.

F. None of the above.

10. What is the outcome of making the HTTP GET request shown to params.jsp (source follows)?

(Choose one.)

The HTTP request is in this form:

http://localhost:8080/examp0702/params. jsp?X=1&Y=2&Z%=3

Source of params.jsp:

<jsp:forward page="included.]jsp">

<jsp:param name="X" value="4" />
<jsp:param name="X" value="5" />
<jsp:param name="Y" value="6" />

<jsp:forward/>
${param.X}
<%=request.getParameter("Y")%>

Source of included.jsp:

${param.X}

${param.Y}

<% String[] x = request.getParameterValues("X");

for (int i = 0; i < x.length; i++) {
out.write(x[1i]);

}

&>

12145
46451
1214512
4645112
4645146

None of the above

mmoONw>»

JSPs in XML

1. What is the outcome of accessing the following page, defined as a JSP document in a web
application? The line numbers are for reference only and should not be considered part of the
JSP page source. (Choose one.)

B 18 Chapter7: JSP Standard Actions, XML, and EL

01 <html xmlns:Jjsp="http://java.sun.com/JSP/Page">
02 <jsp:directive.page contentType="text/html" />

03 <jsp:declaration>

04 public int squared(int value) {

05 return value * value;

06 }

07 </jsp:declaration>

08 <jsp:scriptlet>

09 int value = Integer.parselnt

10 (request.getParameter ("number"));

11 int squared = squared(value);

12 out.write(value + " squared is
13 if (squared < 100) {

14 out.write("; try a bigger number.");
15}

16 </jsp:scriptlet>

17 </html>

+ squared);

Translation error at line 1
Translation error at line 2
Translation error at line 4
Translation error at line 12
Translation error at line 13

Run-time error

OmMmMoON®»

No errors, with page displaying successfully

12. Which of the following JSP documents will produce output? You can assume that
a.b.StringBean exists and has a valid property called “string.” (Choose two.)

A.
<jsp:useBean id="string" class="a.b.StringBean">
<jsp:setProperty name="string" property="string" value="Questionl2" />
<jsp:getProperty name="string" property="string" />
</jsp:useBean>
B.

<jsp:useBean xmlns:jsp="http://java.sun.com/JSP/Page"

id="string" class="a.b.StringBean">
<jsp:setProperty name="string" property="string" value="Questionl2" />
<jsp:getProperty name="string" property="string" />

</jsp:useBean>

Self Test B 19

C.
<jsp:useBean xmlns:jsp="http://java.sun.com/JSP/Page"
id="string" class="a.b.StringBean">
<jsp:setProperty name="string" property="string" value="Questionl2" />
<data><jsp:getProperty name="string" property="string" /></data>
</Jjsp:useBean>
D.
<jsp:useBean xmlns:jsp="http://java.sun.com/JSP/Page"
id="string" class="a.b.StringBean">
<jsp:setProperty name="string" property="string" value="Questionl2" />
</jsp:useBean>
<data><jsp:getProperty name="string" property="string" /></data>
E.

<jsp:root xmlns:Jjsp="http://java.sun.com/JSP/Page" version="2.0">
<jsp:useBean id="string" class="a.b.StringBean">

<jsp:setProperty name="string" property="string" value="Questionl2" />
</jsp:useBean>
<data><jsp:getProperty name="string" property="string" /></data>
</jsp:root>

3. Which of the following techniques will cause JSP page source to be treated as a JSP document
by the JSP container? (Choose two.)

Setting the <is-xml> subelement of <jsp-config> to a value of true

Using a .jspx extension with a version 2.4 deployment descriptor

Using a .xml extension with a version 2.4 deployment descriptor

Using <jsp:root> as the root element of your source

Using a deployment descriptor at level 2.4

mmoNw®>

Writing your page source in XML syntax

4. Of the five JSP page source extracts below, there are two pairs. Each member of the pair gives
rise to identical output. Which is the odd one out? (Choose one.)

A

<% int i, Jj, k;
i=1; J=2; k=3; %
<=1+ 3/ k %>

B20 Chapter7: JSP Standard Actions, XML, and EL

B.
<jsp:scriptlet>int i, j, k;
i=1; j =2; k = 3;</jsp:scriptlet>
<jsp:expression>(i + j) / k</jsp:expression>
C.
<% int i, j, k;
i=1; j=2; k=3; %
<%= (1 + 3J) / k+ ".0" %>
D.
<% pageContext.setAttribute("i", new Integer(l));
pageContext.setAttribute("j", new Integer(2));
pageContext.setAttribute("k", new Integer(3));
$>${pageScope.i + pageScope.]j / pageScope.k}
E.

<% pageContext.setAttribute("i", new Integer(l));
pageContext.setAttribute("j", new Integer(2));
pageContext.setAttribute("k", new Integer(3));
$>${ (pageScope.i + pageScope.j) / pageScope.k}

I5. Which of the following tags will successfully complete the following JSP page extract, at the
points marked <jsp:22?> and </jsp:222> ! (Choose one.)

<html xmlns:jsp="http://java.sun.com/JSP/Page" >
<jsp:directive.page contentType="text/html" />
<head><title>Question 15</title></head>

<jsp:??2?><![CDATA[</jsp:??2?>
<jsp:expression>session.getAttribute("theImage")</jsp:expression>
<jsp:???><![CDATA[" />]1></Jjsp:??22>

</html>

<jsp:param> and </jsp:param>
<jsp:element> and </jsp:element>
<jsp:img>and </jsp:img>

<jsp:output> and </jsp:output>

monNw>»

<jsp:text>and </jsp:text>

Self Test 521

Expression Language

6. What is the consequence of accessing the following JSP page with the URL shown?
(Choose one.)

URL for accessing Question16.jsp:

http://localhost:8080/examp0704/Questionl6.jsp?A=1&A=2

JSP page source:

<!-- Source for Questionl6.jsp -->

<p>Parameter A has values

<% for (int j = 0; j < request.getParameterValues("A").length; j++) { %>
${paramvalues.A[]]1},

<% } %> </p>

Translation error
Run-time error
Output of: “Parameter A has values 1,2,”

Output of: “Parameter A has values 1, ,”

Output of: “Parameter A has values 0,0,”

mmoONw>»

Output of: “Parameter A has values , ,”

7. Which of the following are implicit variables in EL? (Choose two.)

session
param
paramValues
initParams
request
page

contextScope

OomMmoNw® >

8. Which of the following EL expressions will return a <servlet-name> associated with the JSP
executing the expression? (Choose one.)

A

${pageContext.config.getServletName}

B272 Chapter 7: JSP Standard Actions, XML, and EL

B.
${pageContext.config.servletName}
C.
${pageContext.servletConfig.servletName}
D.
${pageContext.servletConfig.getServletName}
E.

${pageContext.getServletConfig().getServletName()}

19. What expression is required at the point marked ??? in the following JSP page to output the
number 467 (Choose two.)

<html xmlns:jsp="http://java.sun.com/JSP/Page" >
<head><title>Question 19</title></head>
<jsp:output omit-xml-declaration="true" />
<jsp:directive.page contentType="text/html" />
<body>
<jsp:scriptlet>
request.setAttribute("a", new Integer(2));
session.setAttribute("b", new Integer(3));
application.setAttribute("c", new Integer(4));
request.setAttribute("d", new Integer(5));
</jsp:scriptlet>

?2??
</body></html>
A.
${pageContext.c * pageContext.d * pageContext.a
+ pageContext.a * pageContext.b}
B.
${applicationScope.c * requestScope.d * requestScope.a
+ requestScope.a * sessionScope.b}
C.
${(applicationScope.c * requestScope.d * requestScope.a)
+ (requestScope.a * sessionScope.b)}
D.

${(pageContext.c * pageContext.d * pageContext.a)
+ (pageContext.a * pageContext.b)}

Self Test §23

${(application.c * request.d * request.a)
+ (request.a * session.b)}

${application.c * request.d * request.a
+ request.a * session.b}

20. (drag-and-drop question) The following illustration shows a complete JSP page source. Match
the lettered values, which conceal parts of the source, with numbers from the list on the right,
which indicate possible completions for the source.

<html [A J="http://java.sun.com/JSP/Page" >

- - 1 declaration
<head><title>Question 20: Drag and
D¥op</t1tle></?ead> . 2 Declaration
<jsp:output omit-xml-declaration="true" />
<jsp:[____B] contentType="text/htnl" /> 3 | soriptict
<body>
<]SP3> 4 cookies
private Integer generateLuckyNumber () {

Double d.= new Double (Math:random() * 100) ; 5 page.directive

Integer i = new Integer (d.intValue());

} return 1; 6 directive.page
</.jSP:II|> . 7 Scriptlet
<jsp:[__E __ |>pageContext.setAttribute ("luckyNo",
gegerateLuckyNumber()); 8 Cookie
</jsp:_F 1>
<p>Your session cookie has the name 9 xmlns:jsp

|

|

|

|

|

|

|

|
${(C_G_].JSESSIONID.name} (which should come as no |
surprise)
 |
|

|

|

|

|

|

|

|

and the value ${[__H_].JSESSIONID.value} (which is
harder to predict).</p>

10 | xlmns; jsp |

 11 cookie

;?rYou; luiﬁr nuﬁberlf?f/gze day is 12 luckyNo

</body></html> 13 “luckyNo”
14 expression
15 Expression
16 pageContext
17 pageScope
18 page

B24 Chapter 7: JSP Standard Actions, XML, and EL

LAB QUESTION

For this question, you’re going to take the solution code from a previous exercise and apply many of the
techniques you learned in this chapter. The previous exercise to use is Exercise 6-3 (from Chapter 6),
packaged on the CD in /sourcecode /chapter06/ex0603.war. Establish a new context directory called
lab07, and unpackage the WAR file into this.

The solution code from Exercise 6-3 displays a short list of countries and capitals. There are four JSPs
involved in the solution: master.jsp, which includes header.jsp, setup.jsp, and footer.jsp. Your mission is
to turn master.jsp and setup.jsp into JSP documents (i.e., in XML syntax), so rename these to master
.jspx and setup.jspx. When including files into master.jspx,

B Include header.jsp and footer.jsp via an include directive.

B Include setup.jspx via an include standard action.

Other than this, use expression language and standard actions wherever possible. You'll need to
revisit header.jsp and setup.jsp so that when these are incorporated into master.jspx, they don’t
damage the XML syntax. You'll quickly discover any problems as you deploy the JSPs and attempt to
access master.jspx.

Self Test Answers §2 5§

SELF TEST ANSWERS
JSP Standard Actions

M A matches with 10 (must be an import attribute for the page directive); B matches with
3 (only a <jsp:useBean> has id and class attributes); C and F match with 11 (has to be <jsp:
setProperty> because of the value attribute); D, G, and] match with 7 (must be the name
attribute in all cases); E, H, and K match with 13 (must be the property attribute in all cases);
I matches with 6 (must be <jsp:getProperty> to display the property, which is the clear
intention of the code here).

& No other combinations will work.

M A and D. A is correct; it’s normal <jsp:useBean> syntax. Of course, a.b.MyBean must
implement a.b.Mylnterface for the action to translate. D is also correct. It’s a valid <jsp:
setProperty> element. There’s one slightly unusual aspect: The value attribute’s value setting
comes from a run-time expression. But this is one of the few cases when it’s legal to embed a
run-time expression inside an action attribute.

& B and C are incorrect because you can’t use a run-time expression for either the class
attribute or id attribute values of <jsp:useBean>. Both must be known at translation time
(these values are, effectively, hard-coded in the generated servlet). Because there is compile-
time checking done on class existence and validity, the class attribute could never be soft-coded.
E is incorrect for similar reasons: The property name of a <jsp:getProperty> element must be
known when the servlet is translated, for the generated servlet must select the right method to
turn the property into a String for display.

M B, D, and E are correct answers, for all are false statements. B is a false statement (so a
correct answer) because type can be used without class—in which case, your bean must exist
already, or you will get a run-time error. D and E are false statements (and so correct answers)
because it’s neither true that class and type must be different nor that they must be the same.
A is a true statement (so an incorrect answer), for the class attribute does indeed define
the object type of the bean. C is a true statement (so an incorrect answer) as the type of the
reference variable used for the bean can be different from the object type of the bean itself (if
class and type are set differently). F is a true statement (so an incorrect answer)—it’s pretty
pointless setting the class and type attributes to the same value, but it’s still legal. You might as
well omit the type attribute under these circumstances, though.

M A is the correct answer: A translation-time error occurs. The second <jsp:setProperty>
element should have the attribute setting of property="“*" for the page to translate and compile;
param="“*"is incorrect syntax.

B26 Chapter 7: JSP Standard Actions, XML, and EL

® B is incorrect because the incorrect syntax of the standard action prevents translation.
C, D, E, and F are incorrect because there is no output (F would be the correct answer if the
syntax error were corrected).

5. M A,B,C,and D are correct. A is the <jsp:useBean> standard action used exactly as it
should be to create a bean in application scope. B sets up a bean in a scriptlet and uses the
application implicit object to set the bean up as an attribute. C also uses a scriptlet but uses the
three-parameter version of pageContext.setAttribute to provide the name, the bean, and
the scope of the attribute. D again uses a scriptlet— there’s more manual work this time, getting
hold of the servlet context with the getServletContext () method instead of using the
application implicit object—Dbut the net result is still as intended.
® E is incorrect because using the two-parameter version of PageContext.setAttribute ()
results in a bean being placed in page scope, not application scope. F is incorrect because name
is used instead of id (name is a valid attribute of <jsp:getProperty> and <jsp:setProperty>
but not of <jsp:useBean>).

Dispatching Mechanisms

6. M D and G. Both pages translate successfully (so answer D is correct). However, b.jsp runs
successfully (forwarding to c.jsp, whose output is displayed), whereas a.jsp terminates with an
[llegalStateException when run (hence answer G is also correct). Why should this be? The
only material difference between the sources for a.jsp and b.jsp is the carriage return separating
the page directive from the <jsp: forward> standard action. This is present in a.jsp, but
not in b.jsp. To understand why this should make a difference, you need to note that the
page directive effectively does away with the normal output buffer (by setting buffer="“none”
and autoFlush="“true”). This means that any output at all — even an innocent carriage return
in the template text — is instantly committed to the response output. Once anything has been
committed to the response output, a forward call is illegal.

& A, B, C, E, F, and H are incorrect, according to the reasoning in the correct answer.

7. M Eis correct. Consider first of all that parameter Z is not displayed in either JSP, so it is a
red herring. On arrival at params.jsp, the request has parameter X with a value of 1, and Y with
a value of 2. Now X is supplemented with two additional values. These are placed in order of
their appearance in <jsp:param> standard actions, but at the “front” of the parameter’s value
list. So X’s values are 4, 5, and 1—in that order. Y is supplemented with one additional value,
making its values 6 and 2—again, in that order. Because the first instruction is to include
the page included.jsp, we must go there first. The param EL implicit object is used to display

Self Test Answers §27

the value of X. param retrieves the first available value, so we have our first output, 4. This
technique is repeated for Y, so the next output is 6. Now a scriptlet is used to iterate through all
of the values of parameter X. The method request.getParametervalues () will respect the
correct order, so the next output is 451 (the three values of X in succession). Now we return
back to params.jsp. Any parameter values added within the body of the <jsp:include> action
are lost. So X has only a single value of 1, and Y a single value of 2. These are displayed —first

1 (from X with the same EL technique we saw before), then 2 (from Y, retrieved with a Java
language expression using the ServlietRequest.getParameter () method).

& A,B,C,D,F, and G are incorrect, according to the reasoning in the correct answer.

M B, C, and D are the correct answers. B is correct: You can supply an expression for the value
of the page attribute of the include standard action, and thereby soft-code your choice of page.
C is correct, though it’s not absolutely clear-cut (hence “may be more efficient”). The include
directive probably involves harder work at translation time. But unlike the standard action,
everything that’s needed is then there in the same servlet. The <jsp:include> standard action
will involve a request-time trip to the included file, translating this if not translated already,

and returning the response for inclusion in the including servlet. D is correct: By including a
<jsp:param> standard action in the body of a <jsp:include>, you can augment the values of
existing request parameters.

& A is incorrect—it’s the <jsp:include> standard action that is best for including pages
that change frequently, not the include directive. You're guaranteed with the <jsp:include>
standard action that the latest version of the included page will be processed; the include
directive doesn’t have the same guarantee in the JSP spec. Even if your JSP container provides
that guarantee, there will be more to translate (both including and included pages have to be
amalgamated and translated with the include directive; whereas only the included page has to
be revamped when using the <jsp:include> standard action). E is incorrect. It’s not obvious
whether the include directive or the <jsp:include> standard action will win out at translation
time. Let’s say page P includes page Q. With the include directive, Q must be merged into P,
and then there is one big servlet to translate and compile. With the <jsp: include> standard
action, P and QQ stay separate and are translated and compiled into two separate servlets. Who
can say which will be processed more quickly? So I deem this to be an unhelpful statement. F is
out and out incorrect—an include directive can't be influenced by page logic (unlike a <jsp:
include> standard action). It will be processed at translation time come what may (unless it’s
commented out!).

M F is the correct answer. A blank page is output, and nothing is output to the server console.
The crucial thing to recognize is that a <jsp: forward> standard action effectively causes the
rest of the page logic to be bypassed (do not pass go; do not collect $200/£200 . . .).

B28 Chapter 7: JSP Standard Actions, XML, and EL

& A is incorrect— there’s nothing to cause a page error (including forwarding to a .jsp file
containing nothing at all— that’s still legal). B is incorrect— there’s nothing to cause a
run-time error either. C is incorrect and shows a misunderstanding of forwarding: The use of
forward negates any page output from the forwarding JSP. D is incorrect, though you could be
forgiven for thinking otherwise, for a regular servlet behaves differently. The system
.out.println() statement is an innocent bystander that has nothing to do with JSP page
output, after all. However, it is bypassed as explained in the correct answer. E is incorrect for a
combination of the reasons given for C and D.

M F is the correct answer. In fact, this page will not translate because of the malformed end
tag for the forward standard action: It should be </jsp: forward>. This question uses a number
of evil psychological techniques that are not unknown on the real exam. First, it looks almost
identical to a previous question (question 7), so you tend to assume the same kind of approach
will pay off —and waste time trying to work out what the code is actually doing. Secondly, there
is a decoy red herring. Because the forwarded-to page is called included.jsp, a casual glance
makes you think this is a question about including. Then you spot this obvious mistake and
think “Aha! This is really a question about forwarding!”—when really it’s a syntax question

all along. If there’s a moral (and I'm not sure there is), then I suppose it’s to be on the alert for
syntax errors first and foremost. You have to become the translation phase!

® A, B, C, D, and E are all incorrect because the syntax error mentioned prevents translation,
so there’s no output at all. For what it’s worth, if the syntax error were corrected, B would be the
correct answer.

JSPs in XML

M E is the correct answer. There will be a translation error at line 13. The “<” sign is illegal
XML syntax within the <jsp:scriptlet> tag (or indeed, in any tag), for to the parser it looks
like another tag beginning before the present one has ended. You have to “escape” the sign in
some way —for example, by writing &1t ;.

&l A is incorrect because the <html> tag is correctly formed, including the XML namespace
component (remember— this can appear in any tag you want). B is incorrect because the page
directive is correctly formed, with a legal MIME value. C is incorrect because a Java method
signature within a <jsp:declaration> is normal practice. D is incorrect because access to
implicit variables like out is still perfectly OK, and there’s nothing wrong with the Java syntax
(and nothing to offend XML syntax). F and G are incorrect —since there is a translation error,
the page won't produce a run-time error, let alone display successfully.

M C and E are the correct answers. Both produce output: C produces valid XML output with
an XML declaration, and E produces valid non-XML output without an XML declaration.

Self Test Answers £29

& A is incorrect because when using XML syntax, you have to supply a namespace for any
tags that you use (unlike JSP Syntax, where standard actions are found even without a taglib
directive). B is incorrect because although output is produced, it’s identified as XML output (has
an XML declaration)—but doesn’t constitute valid XML (because the output, “Question12,”
isn’t surrounded by any tags. That’s solved by the inclusion of the <data> tag in correct answer
C. D doesn’t work because it’s invalid JSP source in XML terms: There are two top-level tags.
You can have only one top-level tag in an XML document, including JSP page source —so the
page doesn’t translate (that’s a problem solved by the <jsp:root> element in correct answer E).

M B and D. B is correct— provided that web.xml is at version 2.4, a file with a .jspx extension
will be recognized as a JSP document. D is also correct—<3jsp:root> at the root element of
your source constitutes a JSP document, even at prior levels of web.xml.

& A is incorrect, though very nearly correct: <is-xml> is a correct element, but it’s a
subelement of <jsp-property-group>, which is in turn a subelement of <jsp-config>.

C is incorrect—although you can use XML files directly as JSP page source, an .xml suffix is
insufficient to identify them as XML JSP page source to the container. E is incorrect —just using
a level 2.4 deployment descriptor won't do anything by itself toward interpretation of your JSP
page sources as JSP documents. And finally, F is incorrect—you can write a syntactically correct
JSP page in XML syntax and still have it treated as JSP syntax (rather than as a JSP document).
The mere presence of XML in the source is not enough.

M D is the correct answer. This is not an easy question! The output is 1.6666666666666665
from this piece of code, and none of the other JSP fragments give that result. Owing to
precedence rules, the division in the expression (2/3) is done first. EL division is double-based
(not integer-based), hence the imprecise double answer. This is added to 1, to give the answer
shown.

& A, B, C, and E are incorrect answers, for all pair up: A and B produce identical output,
and so do C and E. A and B both output 1, for different reasons. In A, precedence dictates that
the division is done first. This is Java language division, so the result of 2/3 is 0. Adding this to
1 therefore gives 1. The parentheses force a different calculation in B: (1 + 2)/3. The result of
this is also 1. C and E both output 1.0. C does the same calculation—(1 + 2)/3. This is then
concatenated with “.0” to give an end result of 1.0. In E the EL expression performs effectively
the same calculation, derived from the Integer page attributes: (1 + 2)/3. However, for division,
EL arithmetic coerces the operands to Doubles. The result is a Double literal (in Java terms),
expressed with a .0 on the end even though this isn’t required.

M E is the correct answer. The HTML element is broken up to accommodate the
expression that soft-codes the images to display. The broken pieces are incorrect XML,
so they have to be treated as character data and accordingly have to be wrapped up in XML’s

B30 Chapter7: JSP Standard Actions, XML, and EL

intimidating CDATA syntax. However, that leaves the two pieces of character data unenclosed
by tags, making the JSP page source illegal XML. Under these circumstances, you use the
<jsp:text> element, which satisfies this requirement and does nothing else. A bland but
useful tag.

X A is incorrect—<7jsp:param> is a standard action for enclosing in <jsp: forward> and
<jsp:include>. B is incorrect — there is a tag called <jsp:element>, but it’s for soft-coding
XML elements to include in the output, and won’t do here. C is incorrect, for <jsp: img> is made
up. Finally, D is incorrect —<jsp:output> is a tag that exists, but for adjusting the output type
of the document produced by the JSP, so it has no role to play in solving the problem posed here.

Expression Language

16. ™ Fisthe correct answer. The local counter variable, j, is not visible inside the code that

evaluates the expression. The expression evaluation code will try to find an attribute called “j”
using PageContext.findAttribute("j"). Because j won't be there, the expression returns
nothing at all, so only the template text appears.

X A, B, C, D, and E are incorrect according to the reasoning for the correct answer.

17. @ B and C are the correct answers—param is used to get hold of the first value for a named
request parameter, and paramValues to get hold of all the values for a named request parameter.
A, E, and F are incorrect—although page, request, and session are implicit variables in Java
language scriptlets and expressions, they don’t work directly inside expressions. Instead, use
pageContext.page, pageContext.request, and pageContext.session. Dis incorrect,

) to get hold of a named context initialization parameter.

«.
S

but not by much: use initParam (no
And G is incorrect— there’s an applicationScope implicit variable, but not a contextScope.

18. M Cis the correct answer. The implicit variable pageContext represents a PageContext object.
This has a getServletConfig() method to return the ServletConfig object associated with
the PageContext. ServletConfig, in turn, has a getServletName () method to return the
servlet name. To turn this into EL syntax, you take each method name and strip off the “get”
and the terminating parentheses. What you’re left with is a bean property name —as long as you
turn the first capital letter now into lowercase. Put the dot operators between each, and you get
${pageContext.servletconfig.servletName}, which works.

A is incorrect— there is no config property for PageContext (it's servlietConfig),

and a method name (getServletName) even without the parentheses won’t work. B is
incorrect, though closer: config just has to change to servietConfig. D has one of the
faults of A, whereas E is wrong altogether because it uses Java language syntax. By using
correct method names, though, E does furnish a clue toward the correct property names when
using EL syntax.

Lab Answer §3 |

9. M B and C are the correct answers. The implicit variables ending in “scope” are the ones to go
for when trying to retrieve attributes. In this example, it doesn’t matter if the parentheses are used
to group the arguments in the expression (as in C)— precedence takes care of the result (as in B).
A, D, E, and F are incorrect. A and D are incorrect because although pageContext is an EL
implicit variable, you can’t use it like this to access attributes in any scope. E and F are incorrect
because they use implicit variable names that are legal in Java language scripting, but not in EL.

20. M A matches with 9 (the xmlns:jsp announces a namespace declaration); B matches with
6 (the correct answer is directive.page—not page.directive!); C and D match with 1
(must be the beginning and end of a <jsp:declaration>, for the content is an entire Java
method); E and F match with 3 (beginning and end of a <jsp:scriptlet>; G and H match
with 11 (cookie is the implicit variable name; there are some misleading alternatives); I
matches with 17 (pagescope is clearly where the “luckyNo” attribute is stored); and] matches
with 13 (“luckyNo”—needs to be a String to return the named attribute value with square
bracket syntax—dot syntax would probably be better here, as in ${pageScope.luckyNo}).

& No other combinations will work.

LAB ANSWER

Deploy the WAR file from the CD called lab07.war, in the /sourcecode /chapter07 directory. This
contains a sample solution. Once the WAR file is deployed, you can call the top-level JSP document,
master.jspx, using a URL such as

http://localhost:8080/1ab07/master. jspx

The resulting solution should look as it did in Exercise 6-3, and is shown in the following illustration.

A Exercise Lab 7 on Mon Jan 31 19:34:13 GMT 2005

File Edit ‘Wiew Favorites Tools Help

i Address |a http:fflocalhost:5080)lab07 fmaster . jspx

| Country | Capital
\bzerbaifan [Baku
Bangladesh | Dhaka
|Mauﬂtius |Porl: Louis
United Kingdom [London
Copyright Davrid Bridgewater Productions Ltd.

