
CERTIFICATION OBJECTIVES

7
JSP Standard 
Actions, XML,
and EL

 • Standard Actions

 • Dispatching Mechanisms

 • JSPs in XML

 • Expression Language

 ✓ Two-Minute Drill

 Q&A Self Test



444 Chapter 7: JSP Standard Actions, XML, and EL

In the last chapter you covered the fundamentals of JavaServer Pages and did a lot of work 
with the “traditional” scripting elements. In this chapter you start by learning about standard 
actions. These are interesting in that they have been available for a long while and—like 

“traditional” scripting—were common topics in the previous version of the exam. Yet they also 
foreshadow the more recent innovations in JSP technology, which continues to push in an XML 
direction.

You’ll also explore in the fi rst half of the chapter how standard actions play a 
role in dispatching mechanisms: forwarding to and including other resources (you’ll 
remember that you have come across one inclusion mechanism already — the
<%@ include %> directive —and this chapter rounds out that topic).

In the second half of the chapter, you are introduced to two topics that are recent 
additions to JSP technology, and so also to the latest syllabus of the web component 
developer exam:

■ JSP documents, which are JSPs written entirely in well-formed XML

■ Expression Language, the “modern” alternative to language-based scripting

You’ve seen Figure 7-1 before, which shows the makeup of a JSP page —it’s been 
slightly modifi ed to indicate the topics you covered previously and which JSP 
elements are explained in this chapter.

CERTIFICATION OBJECTIVE

JSP Standard Actions (Exam Objective 8.1)
Given a design goal, create a code snippet using the following standard actions: jsp:useBean 
(with attributes: “id,” “scope,” “type,” and “class”), jsp:getProperty, and jsp:setProperty 
(with all attribute combinations).

Standard actions are used for the same purpose as Java language-based scripting: 
Most if not all the goals that you can achieve with standard actions are achievable 
with other scripting elements. But in contrast to the techniques we’ve used so far, 
they are written using entirely conventional XML syntax.



So why use them? The answer is that they get the job done more elegantly. 
They often provide an alternative to inserting screeds of Java logic into your neatly 
designed presentation page. Standard actions are also —arguably — tools that 
can be used by the nonprogrammer to introduce dynamic behavior that would 
otherwise entail Java language knowledge. (Actually —given the range of standard 
and custom actions available, combined with Expression Language and JSTL, which 
we cover later —you probably need a programmer mentality to embrace even the 
“non-Java-language” tools that are available in JSP page source these days.)

Seven standard actions are provided from JSP 1.2 onward: Three are considered 
here; three are in the next section, on dispatching; and one is out of scope for the 
exam (<jsp:plugin>). Although a few more have been added in JSP 2.0, they are 
not directly on the exam syllabus.

The trio of standard actions in this section (<jsp:useBean>, <jsp:get
Property>, <jsp:setProperty>) work together to incorporate information from 
existing Java objects into your JSP page. These existing Java objects must be written 

JSP Standard Actions (Exam Objective 8.1) 445

JSP page source

Template text

Elements
Directives

Scripting

Actions

Expressions, Scriptlets, Declarations, Comments Chapter 6 topics Chapter 7 topics

Language-based

Standard

EL

Custom

FIGURE 7-1

Anatomy of a JSP 
Page Revisited



446 Chapter 7: JSP Standard Actions, XML, and EL

to rules within the JavaBean specifi cation, so before we approach the standard 
actions themselves, we’ll do some preliminary work exploring the least you need to 
know about beans.

Why are they standard actions? The reason is that you can have custom actions as 
well, which you build yourself using tag libraries, a subject that we fully explore in 
Chapters 8 and 9. Both standard and custom actions are similar in appearance: XML 
elements that encapsulate functionality on a JSP page. The difference is that you 
can rely on any J2EE-compliant JSP container to provide support for all the standard 
actions defi ned in the JSP spec. Not so custom actions, because they are —well—
customized for your web applications. Not that you can’t use custom actions across 
several projects, just that the onus is on you to deliver all the apparatus to make 
them work within the web application (you can’t rely on the JSP container to have 
the parts required).

Beans
The standard actions we explore fi rst are designed to instantiate Java objects, then 
write data to or read data from those objects. Java objects come in many shapes and 
sizes, so it’s little wonder that standard actions can work only if those objects obey 
at least some minimal conventions. Enter the JavaBeans Specifi cation, which has 
been around almost as long as Java itself. The idea of JavaBeans is that you can have 
Java components (typically classes) that can be interrogated by interested software, 
using the refl ection techniques we have employed several times in the exercises up 
to now. “Interested software” includes the web container code that implements the 
standard actions we’re about to discuss. By interrogating the methods available on 
a JavaBean, a standard action can obtain information about the properties that the 
bean supports —in other words, the data that it stores.

This process works in a remarkably simple way. All your bean has to do is to 
provide “getter” and “setter” methods. Here’s a short class that defi nes information 
about a dog:

public class Dog {
  private String name;
  private float mass;
  private boolean insured;
  private char sex;
  private String barkVolume;
  public String getName() { return name; }
  public void setName(String name) { this.name = name; }
  public float getWeight() { return mass; }



  public void setWeight(float weight) { mass = weight }
  public boolean isInsured() { return insured; }
  public void setInsured(boolean insured) {
      this.insured = insured;
  }
  public char getSex() { return sex; }
  public void setSex(char sex) { this.sex = sex; }
  public String getBarkVolume() {
      return barkVolume;
  }
  public void setBarkVolume(String barkVolume) {
      this.barkVolume = barkVolume;
  }
}

You can see that the Dog class contains fi ve pieces of information pertaining to the 
dog. The fi rst is the data member name. Because name is private, the class provides 
a public setName() method to update the dog’s name within a dog instance and, of 
course, a getName() method to read the data. Note how the method names use the 
instance variable name but capitalize the initial letter: setName(). In this way, the 
standard Java naming conventions for instance variables and method names remain 
unbroken. This is such a standard convention in Java that you’re probably wondering 
why I’ve wasted a precious paragraph on the topic.

However, there are a couple of twists if you’ve never encountered beans before. 
Tools that use beans (which include JSP standard actions) care only about the 
methods on the bean. From setName() and getName(), a bean-literate tool 
understands that there is a property on any dog “bean” called name (i.e., what you 
would expect the instance variable to be called after allowing for the capitalization 
difference). But let’s look at the next pair of methods —setWeight() and 
getWeight(). From this, we infer there is a property called weight. And this is 
correct —even though the instance variable connected to these methods is called 
something quite different: mass, in this case. How we represent the data in the bean 
(and we may not bother at all) doesn’t matter.

The only other convention to mention is that for primitive boolean properties, 
such as insured in our dog bean, you have the option (as a bean developer) to supply 
a method called isInsured() instead of (or as well as) getInsured() for reading 
the property value.

Another thing about a bean is that you —as a developer —don’t normally have 
control over creation of your beans. You don’t write code like this:

Dog d = new Dog();

JSP Standard Actions (Exam Objective 8.1) 447



448 Chapter 7: JSP Standard Actions, XML, and EL

Instead, you leave the instantiation to the bean tool you are using — in our case, 
standard actions. Consequently, your bean must have a no-argument constructor —
either one you provide or the default one the compiler provides in the absence 
of others. This is the only kind of constructor that your bean tool can assume as 
universal across all the beans it has to deal with.

If you carry on down the J2EE road beyond the SCWCD, you’ll go on to learn 
about Enterprise JavaBeans (EJBs). These do quite often have getter and 
setter methods, but beyond that, the resemblance to the “normal” JavaBeans 
we have just discussed comes to an end. EJBs are a completely different ball 
game—they require a specialized container, much as servlets and JSPs do. 
So don’t try to connect your <jsp:useBean> standard action to an EJB, 
because you are doomed to fail!

Standard Actions
After what may seem like a digression, we can return to the core syllabus matter of 
standard actions. Let’s fi rst look at the general syntax of actions, whether standard or 
custom. As we’ve said, they adhere to strict XML syntax. Here’s a generalized picture:

<prefix:tagname firstAttribute="value" secondAttribute="value"> ... 
</prefix:tagname>

Each standard action element consists of a start tag, <prefix:tagname>, and an 
end tag of the same name (with a forward slash inserted after the fi rst angle bracket), 
</prefix:tagname>. The start tag may contain named attributes, separated from 
their corresponding value by equal signs. The value is typically surrounded by double 
quotes or by single quotes (which is sometimes convenient). After so much exposure 
to the deployment descriptor, web.xml, and HTML web pages, this syntax must feel 
refreshingly familiar.

But just in case you didn’t know, the area between the start and end tag (represented 
by the ellipsis [. . .] above) is termed the body of the element. A standard action may 
have a body, but it often has no body at all. This can be represented in one of two ways:

 1. By having start and end tag touching, thus: <prefix:tagname 
attr="value"></prefix:tagname>

 2. By omitting the end tag but using a special /> terminator for the start tag, 
thus: <prefix:tagname attr="value" />



It makes no difference which of the above forms you use; the JSP container will 
interpret both identically. So with that in mind, let’s look at the three standard 
actions for the exam objective:

■ <jsp:useBean>

■ <jsp:setProperty>

■ <jsp:getProperty>

You can see three tag names here: useBean, setProperty, and getProperty. 
You can also see a common prefi x—jsp— separated from the tag name by a colon. 
Indeed, the prefi x for all standard actions is jsp. When you come to write your own 
custom actions later, you’ll have to supply a prefi x—it may come as no surprise to 
learn that jsp is reserved, even if your page eschews all standard actions in favor of 
your own custom ones.

<jsp:useBean>
The <jsp:useBean> standard action declares a JavaBean instance and associates 
this with a variable name. The instance is then available for use elsewhere in
your JSP page: either in Expression Language (highest grades), other standard 
actions (still good practice), or in Java language scripting (frowned upon —but still 
legal! You’ll see plenty of to-ing and fro-ing between standard actions and 
scriptlets and expressions in this chapter —all in the name of education, of 
course).

In general, you’ll use <jsp:useBean> to set up your bean and two more standard 
actions to write and read properties on your bean. These standard actions are called 
<jsp:setProperty> and <jsp:getProperty>—which makes pretty good sense in 
light of our bean discussion a little earlier.

So how exactly do you use <jsp:useBean> to do this? The answer is to get to 
work with its attributes. The simplest approach is this:

<jsp:useBean id="theDog" class="animals.Dog" />

For this to work, several things have to be true:

■ The class attribute must specify the fully qualifi ed name of a class (the import 
attribute of the page directive will be no help to you, unfortunately).

■ animals.Dog must obey JavaBean conventions.

JSP Standard Actions (Exam Objective 8.1) 449



450 Chapter 7: JSP Standard Actions, XML, and EL

■ animals.Dog must be visible somewhere in the web application —mostly this 
means it will exist as a class in WEB-INF/classes or within a JAR fi le in 
WEB-INF/ lib.

■ An id with a value of theDog must not have been used in <jsp:useBean> 
already; in other words, all ids for beans on a page must be unique.

Inserting this in your JSP page source will result in some quite complex code in 
your generated servlet’s _jspService() method. Ultimately, the code will create 
an instance of the bean animals.Dog. How will the code reference the object? In 
two ways:

 1. As a local variable in the method, whose name comes from value of the id 
attribute (so theDog becomes a local variable).

 2. As an attribute in some scope or other — page, request, session, or 
application. In this case, theDog is the name of the attribute.

On this second point: Because we didn’t specify the scope anywhere in our example, 
where did theDog go? The answer is into page scope. The following cumbersome 
combination of directive and scriptlet code —following on from the <jsp:use
Bean> standard action declaring theDog JavaBean above —will get hold of our bean 
object into the local variable myDog:

<%@ page import="animals.Dog" %>
<% Dog myDog=(Dog)
pageContext.getAttribute("theDog"); %>

I’m not suggesting that you should ever do this — this code is only here to unravel 
the mystery of bean location.

If we want our bean to be a little more permanent than page duration, we need to 
use another attribute of <jsp:useBean>: namely, scope. To put theDog into session 
scope, it really is this simple:

<jsp:useBean id="theDog" class="animals.Dog" scope="session" />

The valid values for scope are page, request, session, and application —exactly as 
expected. So now we can access theDog across a series of requests from the same user. 
What if the theDog already exists in session scope when the standard action above 
is encountered? That’s OK—<jsp:useBean> recycles the existing bean; it doesn’t 
create a new one.



We haven’t explored all the ramifi cations of <jsp:useBean> just yet, in particular a 
fourth attribute named type. But before we do that, we should look at the two standard 
actions inevitably used in conjunction with <jsp:useBean>, which are of course 
<jsp:setProperty> and <jsp:getProperty>.

There is an attribute of <jsp:useBean> called beanName, off scope for the 
exam. The main functionality this offers (over and above the class and type 
attributes) is the possibility of using a serialized bean from your fi le system. To 
learn more, take a careful look at section 5.1 of the JSP specifi cation, and the 
J2SDK API for the instantiate() method on the java.beans.Beans class.

<jsp:setProperty>
The purpose of <jsp:setProperty> is to set the values of one or more properties 
on a bean previously declared with <jsp:useBean>. The most obvious way to use 
it is as follows:

<jsp:setProperty name="theDog" property="weight" value="6.4" />

The fi rst thing to watch is the attribute name. This is the name of the bean itself. 
The value for this attribute has to be the same as a previous value for a <jsp:
useBean> id attribute. It’s a pity that the attributes don’t match —it’s another 
thing you have to remember for the exam: id on <jsp:useBean> = name on <jsp:
setProperty> (and <jsp:getProperty> as well, when we get to it).

Actually, the truth is 
that you can use <jsp:setProperty> 
and <jsp:getProperty> without a 
previous <jsp:useBean>. All <jsp:set
Property> and <jsp:getProperty> 
do is to use PageContext.find
Attribute()—so if an attribute of the 
right name exists—set up, perhaps, in a 
previous servlet—these standard actions 
will fi nd it. However, it’s good practice to 
include <jsp:useBean> before these 

actions in the same JSP page. After all, 
it won’t replace beans of the same name 
that you have set up by other means, 
and it will create beans of the right name 
that don’t exist already. Furthermore, if 
your <jsp:setProperty> and <jsp:
getProperty> standard actions try to 
access an attribute that doesn’t exist, they 
are liable to die a horrible death with HTTP 
500 errors returned to the requester.

JSP Standard Actions (Exam Objective 8.1) 451



452 Chapter 7: JSP Standard Actions, XML, and EL

The property attribute specifi es a property on the bean. Because the property here 
is “weight,” then the underlying code will assume the existence of a getWeight() 
method on the theDog bean. The value attribute supplies the data for the property —
or in code terms, the parameter that is passed into the getter method. In our example, 
getWeight() expects a fl oat parameter, yet the value for the value attribute looks 
very like a String constant: value="6.4." Yet we don’t have to worry —it’s the 
responsibility of the JSP container to handle the type conversions involved.

The value attribute has another feature not shared by any other attributes in 
<jsp:useBean>, <jsp:setProperty>, or <jsp:getProperty>. Instead of 
supplying a literal value, you can substitute an expression. Here are two examples:

<% float w = 6.4f; %>
<jsp:setProperty name="theDog" property="weight" value="<%=w%>" />

Another:

<% String dftWeight = config.getInitParameter("defaultDogWeight"); %>
<jsp:setProperty name="theDog" property="weight" value="<%= dftWeight %>" />

All these are viable ways to “soft-code” the value of value, so as to set a property in 
your application. The fi rst sets up a fl oat variable called w in a scriptlet, and uses this 
directly in an expression embedded into the following standard action. Note how 
the double quotes are retained to demarcate the beginning and end of the value, and 
the expression plugs between them: value="<%=w%>." The second example uses a 
scriptlet to obtain an initial parameter called defaultDogWeight associated with the 
JSP, and plugs this into the value expression. Later, you’ll see that you’re not stuck 
with Java language expressions to supply values. Expression Language also fi ts the bill, 
and we’ll revisit standard actions with Expression Language before the end of this 
chapter.

You’ll very often want to use request parameters (say from an HTML form) to set 
properties. You could follow on from the examples above and write code like this:

<jsp:setProperty name="theDog" property="weight"
value="<%= request.getParameter("dogWeight") %>" />

The expression plugged into the value attribute this time uses the request implicit 
object to retrieve the parameter “dogWeight.” In fact, this is such a common thing 
to want to do that <jsp:setProperty> provides some convenient syntax to avoid 
ungainly code like this. This is how it looks:

<jsp:setProperty name="theDog" property="weight" param="dogWeight" />



This is shorthand for saying take the request parameter called “dogWeight,” and use 
the value for this to set the property called “weight” on the bean called “theDog.” 
Very neat, and it can get neater still. It could well be that name of a request 
parameter (from your HTML form) matches the corresponding property name. In 
that case, you can omit the param attribute altogether:

<jsp:setProperty name="theDog" property="weight" />

This time, the underlying code will look for a parameter (from the ServletRequest 
or HttpServletRequest) called “weight” and use this to set the property value for 
“weight” on “theDog.” This shorthand goes further still. If you have a number of 
request parameters that match the names of several properties on your target bean, 
you can simply write

<jsp:setProperty name="theDog" property="*" />

Now any property whose name matches a request parameter name will have its value 
preloaded from that request parameter.

The param and value 
attributes are mutually exclusive. After 
all, it doesn’t make sense to have both on 
the same <jsp:setProperty>. Either 
you use the convenience of param to set 
a property from a request parameter or 

you take a more explicit approach with 
the value attribute. Note that you can also 
omit both the param and value attributes: 
This is equivalent to supplying param with 
the same value as the property attribute.

<jsp:getProperty>
That leaves <jsp:getProperty>. This is the easiest of the three standard actions 
we’ve used. You use it to output the value of a bean’s property to the response (for 
display on a web page, inclusion in an XML document—whatever). There are two 
attributes to supply: name (the name of the bean) and property (the name of the prop-
erty). They’re both mandatory (as are the identical attributes on setProperty, by the 
way). So to get hold of our dog’s weight property, you simply write the following:

<jsp:getProperty name="theDog" property="weight" />

Like <jsp:setProperty>, theDog bean has to be there — preferably declared with 
<jsp:useBean> earlier in the page. 

JSP Standard Actions (Exam Objective 8.1) 453



454 Chapter 7: JSP Standard Actions, XML, and EL

Before leaving these three standard actions, 
let’s put them together in a bigger example. 
This is here to reinforce some of the points 
made earlier, but also to illustrate some of the 
subtler aspects of <jsp:useBean> that you 
need to know for the exam. We’ll be working 
with the Dog JavaBean that started this 
chapter, in a slightly modifi ed form.

Let’s suppose that you’re writing a system to 

register animals at your local veterinary clinic. 
The clinic copes with all kinds of animals: 
dogs, cats, parakeets, and rattlesnakes. But 
whatever the animal, there are some details 
that will be common. Others may be animal-
specifi c. We’ll look at a portion of the system: 
that deals both with some general animal 
characteristics and also ones that are dog-
specifi c. Here’s an illustrative screen fl ow:

INSIDE THE EXAM

User selects dog as type
to input

(screen not shown)

dogInput1.jsp:

bean set up 
(invisible to user)

animalInput2.jsp:

user inputs general 
animal details

dogInput3.jsp:

user inputs 
dog specifics

dogInput4.jsp:

summary of 
all details

Name:
Weight:
Sex:
Insured:

Name: Jem
Weight: 40
Sex: Male
Insured: Yes
Bark Volume: Very Loud

Bark Volume:

First of all, the vet’s receptionist selects the 
type of animal to be registered —in our case, 
dog. In the background, a Dog JavaBean is set 
up with some defaults (this happens in 
dogInput1.jsp). The receptionist is presented 
with a screen to fi ll in some details about 
the animal in general (animalInput2.jsp), 
followed by a screen for specifi c dog details 
(dogInput3.jsp). On pressing enter, the 

receptionist fi nally sees a summary screen of 
all the dog details that have been saved to 
the database (dogInput4.jsp). (You’ll have to 
imagine the database in the example code that 
follows — the intention here is just to show 
the JSP aspects.) You can run this code (and 
look at the full source) from the WAR fi le 
/sourcecode/ch07/examp0701.war. Start at the 
following URL:



INSIDE THE EXAM (continued)

http://localhost:8080/examp0701/dogInput1.jsp

The point about this design is that the 
general animal details screen —animal
Input2.jsp —will work regardless of animal 
type, for there is nothing dog-specifi c within 
it. Yet it makes use of a Dog JavaBean set up 

with <jsp:useBean>. How can this be? We’ll 
solve this mystery in a page or two, as we step 
carefully through the code. Let’s fi rst take a 
look at dogInput1.jsp:

<jsp:useBean id="currentAnimal"scope="session"
class="webcert.ch07.examp0701.Dog">
 <jsp:setProperty name="currentAnimal" property="name" value="Fido" />
 <jsp:setProperty name="currentAnimal" property="weight" value="6.5" />
 <jsp:setProperty name="currentAnimal" property="sex" value="F" />
 <jsp:setProperty name="currentAnimal" property="insured" value="false" />
 <jsp:setProperty name="currentAnimal" property="barkVolume" value="Loud" />
</jsp:useBean>
<%session.setAttribute("animalSort", "dog");
  RequestDispatcher rd =
  application.getRequestDispatcher
  ("/animalInput2.jsp");
  rd.forward(request, response); %>

Recall at this point that the receptionist has 
made a choice of animal type. First of all, a 
Dog bean called “currentAnimal” is set up 

in session scope. Nothing unusual there, but 
notice that the <jsp:useBean> tag is not 
“self-closing” as we’ve seen before —like this:

<jsp:useBean id="currentAnimal" scope="session" 
class="webcert.ch07.examp0701.Dog" />

In this case, there is an end tag a few lines 
further on: </jsp:useBean>. So this tag has a 
body —in this case, fi lled with fi ve <jsp:set
Property> standard actions. The presence of 
a body signifi es that some logic will execute:

■ If the currentAnimal bean doesn’t 
exist, it will be created, and the <jsp:

setProperty> tags will execute to set up 
some default values.

■ If the currentAnimal bean exists already, 
it will be left alone, and the <jsp:
setProperty> tags will not execute, so 
any property values already set will remain 
unchanged.

JSP Standard Actions (Exam Objective 8.1) 455



456 Chapter 7: JSP Standard Actions, XML, and EL

INSIDE THE EXAM (continued)

Not that it does, but if our screen fl ow came 
back through dogInput1.jsp, currentAnimal 
would stay unaffected.

The scriptlet at the end of dogInput1.jsp 
does two things: First, it sets up a session 
attribute called animalSort with a value 
of “dog,” to indicate to future screens that 
it’s a dog we’re dealing with (not a cat or a 
hamster). Secondly, it uses standard Request

Dispatcher code to forward to the next screen 
in sequence —animalInput2.jsp (you’ll see how 
to replace this code with a standard action a 
bit later in the chapter). So notice that all you 
ever do in dogInput1.jsp is “pass through”—
the response isn’t returned to the user.

The code for animalInput2.jsp is shown 
below. Notice that there isn’t anything dog-
specifi c anywhere in the source code:

<html><head><title>General Animal Information</title></head>
<body>
<h2>Fill in general animal information here, regardless of what sort of 
animal...</h2>
<jsp:useBean id="currentAnimal" scope="session" type="webcert.ch07
.examp0701.Animal" />
<p>Overtype the defaults in the form below...</p>
<form action="<%= session.getAttribute("animalSort")%>Input3.jsp">
<br />Name: <input type="text" name="name" value="<jsp:getProperty 
name="currentAnimal" property="name" />" />
<br />Weight: <input type="text" name="weight" value="<jsp:getProperty 
name="currentAnimal" property="weight" />" />
<br />Sex: <input type="text" name="Sex" value="<jsp:getProperty 
name="currentAnimal" property="sex" />" />
<br />Insured: <input type="text" name="insured" value="<jsp:getProperty 
name="currentAnimal" property="insured" />" />
<br /><input type="submit" value="Continue..." />
</form></body></html>

After the template text at the beginning, 
inviting you to fi ll in general animal 
information, you fi nd the <jsp:useBean> 
standard action, requesting the same bean 
called currentAnimal in session scope. But 
instead of the class attribute, we fi nd another 
attribute called type instead:

type="webcert.ch07.examp0701.Animal”

It’s the same bean that we get hold of, which 
is a Dog object. However, if we look in the 
generated servlet code, any reference to this 
bean will be of Animal type. This can only 
work under the following circumstances:



INSIDE THE EXAM (continued)

■ Dog is a subclass of Animal.

■ Or Dog implements an interface called 
Animal.

In other words, the type you choose must be 
compatible with the actual class of the object. 
Let’s suppose that Dog implements an Animal 

interface and that its class declaration now 
looks like this:

public class Dog implements Animal

And the Animal interface declares all the 
methods about general animal characteristics:

    public interface Animal {
    public abstract String getName();
    public abstract void setName(String name);
    public abstract float getWeight();
    public abstract void setWeight(float weight);
    public abstract boolean isInsured();
    public abstract void setInsured(boolean insured);
    public abstract char getSex();
    public abstract void setSex(char sex);
}

Dog implements all these methods as we’ve 
already seen, plus a couple that are dog-
specifi c — to set and get the barkVolume 
property.

Using type in <jsp:useBean> without 
the class attribute relies on the fact that 

the bean has already been created. You can 
simultaneously create a bean object and type 
it to something else for use in the current JSP 
page by using both attributes at the same time, 
like this:

<jsp:useBean id="currentAnimal"
scope="session" class="Webcert.ch07.examp0701.Dog"
type=""webcert.ch07.examp0701.Animal" />

The form in animalInput2.jsp uses <jsp:
getProperty> standard actions to display 
the default values already set up on the Dog 

bean, which can be overtyped in the form. 
Of course, barkVolume is missing from the list. 
The only other point to note is that — to keep 

JSP Standard Actions (Exam Objective 8.1) 457



458 Chapter 7: JSP Standard Actions, XML, and EL

INSIDE THE EXAM (continued)

animalInput2.jsp generic — the <form> action 
attribute uses an expression to complete the 
name of the next JSP in sequence. The start 
of the name comes from the session attribute 
animalSort, which you’ll recall was set up as 
“dog” way back at the beginning. So the user 

will navigate to dogInput3.jsp, but you can see 
that a different initial choice of animal might 
have led to catInput3.jsp or budgerigar3.jsp.

In dogInput3.jsp, not a great deal happens 
that we haven’t seen already. Here’s the code:

<html><head><title>Specific Dog Information</title></head>
<body>
<h2>Fill in specific dog information here...</h2>
<jsp:useBean id="currentAnimal" scope="session" class="webcert.ch07
.examp0701.Dog" />
<jsp:setProperty name="currentAnimal" property="*" />
<p>Overtype the defaults in the form below...</p>
<form action="dogInput4.jsp">
<br />Bark Volume:<input type="text" name="barkvolume"
value="<jsp:getProperty 
name="currentAnimal" property="barkVolume" />" />
<br /><input type="submit" value="Continue..." />
</form></body></html>

The receptionist uses this screen to type in 
vital dog-specifi c properties —we have only 

the one, barkVolume. There’s a vital line here:

<jsp:setProperty name="currentAnimal" property="*" />

This line has nothing to do with the setup 
of the current page, in fact. Its purpose is to 
take the request parameters typed in to the 
previous animalInput2.jsp, and save these 
to properties on the bean. Without this, 

the original default values would stick and 
the receptionist’s overtyping would be in 
vain. This time, clicking the submit button 
navigates to the last page in sequence, 
dogInput4.jsp:

<html><head><title>Your Completed Dog</title></head>
<body>
<h2>The animal database has been updated with these DOG details:</h2>
<jsp:useBean id="currentAnimal"
scope="session"
type="webcert.ch07.examp0701.Dog" />



ON THE CD

EXERCISE 7-1

JSP Standard Actions
In this exercise you’re going to put together two web application pages: an HTML 
page with a form whose action takes you to a JSP page. The HTML page will invite 
you to put in details about a music CD. On clicking a Continue button, you’re taken 
to a summary form (the JSP) that confi rms the details you entered.

Not the world’s most exciting application —but the fi rst in this book in which the 
JSP component is completely free of Java code! The only building blocks required are 
HTML and the standard actions you have just learned. That’s not to say you won’t 
write any Java, though —as you still need a JavaBean on which the standard actions 
can operate.

INSIDE THE EXAM (continued)

<jsp:setProperty name="currentAnimal" property="*" />
<br />Name: <jsp:getProperty name="currentAnimal" property="name" />
<br />Weight: <jsp:getProperty name="currentAnimal" property=“weight” />
<br />Sex: <jsp:getProperty name="currentAnimal” property="sex” />
<br />Insured: <jsp:
getProperty name="currentAnimal” property="insured” />
<br />Bark Volume: <jsp:
getProperty name="currentAnimal” property="barkVolume” />
</body></html>

All this page does is to display all the bean 
properties, whether dog-specifi c or general. 
In a real system, the receptionist might scan 
the details and confi rm the database update. 
Notice one thing here: The <jsp:useBean> 
standard action uses the type attribute but 

actually names the class Dog instead of the 
interface Animal: type="webcert.ch07
.examp0701.Dog." Only a Dog will do if we 
want to get hold of the barkVolume property, 
not present on Animal. And indeed, the code 
could just as well have used the class attribute:

<jsp:useBean id="currentAnimal” scope="session” 
class="webcert.ch07.examp0701.Dog” />

The point this makes is that the value for the 
type attribute can be the same as the class—

there’s no compulsion to make it different 
(although it normally makes sense to do so).

JSP Standard Actions (Exam Objective 8.1) 459



460 Chapter 7: JSP Standard Actions, XML, and EL

Create the usual web application directory structure under a directory called 
ex0701, and proceed with the steps for the exercise. There’s a solution in the CD 
in the fi le sourcecode/ch07/ex0701.war —check there if you get stuck.

Create the HTML Page

 1. Create an empty fi le directly in your newly created context directory, ex0701. 
Call it musicCDform.html.

 2. Provide a form with four text fi elds for title, artist, year of release, and favorite 
track. Give names to the input fi elds as follows: title, artist, year, and track.

 3. Don’t forget a submit button. Make the action of the form 
“musicCDsummary.jsp.”

Create the MusicCD JavaBean

 4. Create a package directory in ex0701/ WEB-INF/src, and within it create a 
Java source fi le called MusicCD.java.

 5. Include four private instance variables as follows:

■ String title

■ String artist

■ int yearOfRelease

■ String favoriteTrack

 6. Provide a no-argument do-nothing constructor (you could leave this out and 
let the compiler provide it) and getters and setters for the instance variables. 
Make sure these are public and that they exactly follow the bean convention 
(e.g., getTitle() ).

 7. Compile the source into ex0701/ WEB-INF/classes/<package directory>.

Create the JSP Page Source

 8. Create an empty fi le in ex0701, called musicCDsummary.jsp.

 9. Use the <jsp:useBean> standard action to create a MusicCD bean in page 
scope.

 10. Set the properties of the bean from the request parameters passed in from 
the HTML form. In two cases, the request parameter names match the bean 
property names (for title and artist). So use <jsp:setProperty> with the 
“*” setting for the property attribute to take advantage of this.



 11. The other two request parameters have different names from their correspond-
ing bean properties: Request parameter “year” must map on to bean property 
“yearOfRelease,” whereas “track” needs to map on to “favoriteTrack.” So use 
two invocations of the <jsp:setProperty> standard action to achieve this 
mapping (you’ll need to set the property and param attributes).

 12. Finally, display the four properties on the page, using four separate 
occurrences of <jsp:getProperty>.

Deploy and Run the Application

 13. Create a WAR fi le that contains the contents of ex0701, and deploy this
to your web server. Start the web server if it has not started already.

 14. Use your browser to request musicCDform.html, with a URL such as

  http://localhost:8080/ex0701/musicCDform.html

 15. Enter some details (note that the year fi eld must be numeric), click the 
button to submit the form, and check that the output is correct on 
musicCDsummary.jsp. The following illustration shows the screen fl ow 
for the solution.

JSP Standard Actions (Exam Objective 8.1) 461



462 Chapter 7: JSP Standard Actions, XML, and EL

CERTIFICATION OBJECTIVE

Dispatching Mechanisms (Exam Objectives 6.7 
and 8.2)

Given a specifi c design goal for including a JSP segment in another page, write the JSP 
code that uses the most appropriate inclusion mechanism (the include directive or the 
jsp:include standard action).

Given a design goal, create a code snippet using the following standard actions: 
jsp:include, jsp:forward, and jsp:param.

In this section of the chapter, we’re going to explore three more standard actions. 
These give you the equivalent of the forward and include RequestDispatcher 
mechanisms, which we explored in Chapter 3 in servlet code. The two main 
standard actions are called <jsp:include> and <jsp:forward>, which serve 
to include content into a JSP or forward on to another resource altogether ( JSP, 
servlet, or any resource that can be described with a URL). We’ll see how these are 
a bit easier to set up than the coding equivalent, and also how there are one or two 
differences between the standard actions and a naked RequestDispatcher.

We’ll also look at the <jsp:param> standard action and see how this can be 
embedded into either of <jsp:include> and <jsp:forward>. It provides an easy 
way to graft on additional parameters to the request.

You’ll recall that we encountered the include directive (<%@ include file=
"..." %>) in the last chapter. So we devote some time in this chapter to 
understanding the differences between this directive and the <jsp:include> 
standard action. That way we can tick off both the exam objectives above for the 
price of one section in the book.

Including
The standard action <jsp:include> can be used to include the response from 
another fi le within your JSP page output. You specify the fi le whose response should 
be included with the page attribute, like this:

<jsp:include page="pageToInclude.jsp" />

The fi le whose response should be included has to reside somewhere in your web 
application but doesn’t have to be present until the page is actually requested.



You might use <jsp:include> to include fi les that don’t exist at the point 
where you deploy your including pages. This could be for a number of 
reasons: Perhaps the included fi les are produced as output from other 
systems and are uploaded to your web application directory structure only at 
scheduled intervals. This doesn’t stop you from precompiling your including 
JSPs when you deploy them, however. There’s no check on the existence 
of the page specifi ed in <jsp:include> during the translation phase. 
Obviously, you’ll get a run-time error if you let your users access JSPs that try 
to include a page that doesn’t exist—it’s then up to you to introduce controls 
that prevent access to the including JSP until the fi les needed for inclusion are 
actually present in your web application directory structure.

The value for the page attribute is a URL pointing to a resource within the current 
web application (you can’t go outside the web application with <jsp:include>). 
The URL used follows rules similar to those we’ve seen many times elsewhere:

■ If the page URL begins with a slash, this is interpreted as starting from the 
context directory for the web application.

■ If the page URL doesn’t begin with a forward slash, this is interpreted as relative 
to the directory containing the including page.

Any kind of fi le can be the target of the page attribute. It’s typical to target other 
JSP pages but by no means mandatory —you can include any fi le of any MIME type 
(though bear in mind that if this isn’t compatible with the MIME type for the rest of 
the response, you may well run into run-time issues).

A delightful feature of <jsp:include> is that it runs at request time. This may 
not sound like much, but what it means is that the value for the page attribute can 
be an expression embedded within the standard action. So code like this is perfectly 
legitimate:

<jsp:include page='<%= request.getParameter("thePage") %>' />

You can see from this that I can nominate the page whose response should be 
included from a parameter value passed in my request. This gives you a great deal of 
fl exibility.

The <jsp:include> standard action has a second (optional) attribute, fl ush. 
This can have the values “true” or “false,” and if you leave off the attribute, the 
default is “false.” To understand this, recall that JSP page output is buffered as a 
rule — not immediately committed to the response. If you set the value to “true,”

Dispatching Mechanisms (Exam Objectives 6.7 and 8.2) 463



464 Chapter 7: JSP Standard Actions, XML, and EL

<jsp:include page="aPageToInclude.html" flush="true" />

this has the effect of fl ushing the buffer in the including page (i.e., committing the 
response so far) before anything is done about including the target page.

Even if you set the fl ush attribute to “false,” and both the including and included 
page have unfi lled, unfl ushed buffers, there are still restrictions on included pages. 
Included pages can’t do anything to the response header —in just the same way that 
servlets can’t if anything has been written to the response. The assumption is that 
somewhere along the chain to the included page, some part of the response has been 
written (and don’t forget that you may well have a long chain: through several fi lters 
and servlets before you get to the including, and then the included, JSP pages).
So code like the following:

<% response.addCookie(myCookie); %>

Or:

<% response.setHeader("Date", utcFormatDate); %>

is simply ignored in the included JSP page. This is no different from the world 
of servlet code: A servlet that has been included from another servlet by a 
RequestDispatcher object is treated in the same way.

<jsp:include> vs. <%@ include %>
It’s very hard to talk about <jsp:include> without comparing it with the include 
directive, so let’s not put that off anymore. After all, it’s an exam objective in its 
own right!

When I introduced <jsp:include>, you may have noticed the pedantic phrase 
“include the response from another fi le” several times. Why didn’t I just say “include 
the fi le”? Because that’s not quite true — not in the sense we mean, for example, 
when we talk about the include directive (<%@ include file="..." %>). Let’s say 
I have a JSP page a.jsp that includes b.jsp with the standard action. Neither has been 
translated yet. Figure 7-2 shows what happens when I request a.jsp for the fi rst time.

You can see from Figure 7-2 that the two JSPs a.jsp and b.jsp remain independent 
and that b.jsp provides a service to a.jsp. a.jsp requests a response from b.jsp and 
incorporates this in its own output. The situation is fundamentally different with the 
include directive. Figure 7-3 shows what happens when a.jsp includes b.jsp with 
the include directive.



<jsp> <jsp>

a.jsp b.jsp

Translation

Request for a.jsp

Response

Translation

1010
1011

b_servlet.classa_servlet.class

<jsp:include> of b.jsp

Response from b_servlet

Back to a_servlet

1010
1011

FIGURE 7-2

a.jsp Using 
<jsp:include> 
to Include b.jsp

FIGURE 7-3

a.jsp Using 
<%@ include %> 
to Include b.jsp

<jsp>

<jsp><jsp>

a.jsp

b.jsp

Translation Phase 2

Request for a.jsp

Response

Translation Phase 1

a.jsp incorporating 
b.jsp source

a_servlet.class

1010
1011

Dispatching Mechanisms (Exam Objectives 6.7 and 8.2) 465



466 Chapter 7: JSP Standard Actions, XML, and EL

Figure 7-3 shows how the lines of b.jsp are fi rst incorporated into a.jsp. It’s as if 
a.jsp is a composite of its own page source and b.jsp’s as well. Only after this has 
happened does the translation to generated servlet occur. This has some interesting 
consequences. Let’s look at an example —and please, please note that this is to 
illustrate a point: Don’t write your JSPs this way! Suppose that you declare a local 
variable in one JSP (we’ll call it declaration.jsp), then use that local variable in 
another JSP (display.jsp) that includes declaration.jsp. Here’s the code for each:

<!-- declaration.jsp -->
<% int aNumber = (int) (Math.random() * 100); %>

So in declaration.jsp, we have a local variable called aNumber that is initialized to a 
random value between 0 and 99. Here’s display.jsp, which uses an expression to show 
the random number on the page output:

<!-- display.jsp -->
<%@ include file="declaration.jsp" %>
Think of a number: <%= aNumber %>

This works absolutely fi ne (despite coming with a massive design health warning!). 
The include directive causes the amalgamation of the JSPs — the result is a 
composite JSP looking like this:

<!-- display.jsp -->
<!-- declaration.jsp ->
<% int aNumber = (int) (Math.random() * 100); %>
Think of a number: <%= aNumber %>

This is the whole “translation unit.” If neither JSP page has been accessed, and our 
container translates and compiles only when a JSP is requested, then a request to 
display.jsp will result in only one generated servlet for your web application that 
represents the composite page source. So what happens if we change display.jsp to 
use a <jsp:include> standard action?

<!-- display.jsp -->
<jsp:include page="declaration.jsp" />
Think of a number: <%= aNumber %>

Result: misery. The functionality of <jsp:include> isn’t invoked until post-
translation, and display.jsp won’t get past translation. If you try to request it, 
you’re likely to get an HTTP 500 error accompanied by a stack trace that informs 
you that the local variable aNumber is used but not declared. So if you’re using 



<jsp:include>, each of your JSPs must be able to “stand alone”—at least in 
translation terms.

With <jsp:include>, you are always guaranteed to get the latest versions of 
responses from included fi les because the included fi les are still accessed at run time. 
They have to be there to complete the picture. This isn’t necessarily the case for 
fi les that are included through the include directive. After all, once a fi le has been 
incorporated through the include directive, the resulting composite servlet is whole 
and complete. This leads to an interesting question: If a fi le included by the include 
directive is updated, will the JSP container spot the fact and re-do the fi le inclusion 
when the JSP doing the including is next accessed? The answer is that the JSP 
specifi cation recommends that this should happen, but doesn’t say that it has to be 
this way.

In conclusion, take a look at Table 7-1, which summarizes the differences 
between the two approaches. Do some experiments so you’re comfortable with the 
difference —it’s a favorite topic on the exam!

Forwarding
After <jsp:include>, <jsp:forward> is moderately straightforward. As the name 
implies, the purpose of this standard action is to forward processing to another 
resource within the web application. There is only one mandatory attribute, which 

<jsp:include> Standard Action <%@ include %> Directive

Attributes: page (and fl ush) Attribute: fi le

Page attribute accepts relative and abso-
lute URLs.

File attribute accepts relative and absolute 
URLs.

Response from target page included at 
request time.

Target fi le included during translation phase.

Target page to include can be soft-coded as 
an expression.

Target fi le must be a hard-coded literal value.

Can execute conditionally in the middle of 
page logic.

Will be processed unconditionally—can’t be 
embedded in page logic.

Target page doesn’t have to exist until 
request time.

Target fi le must exist at translation time.

Always includes the latest version of the 
target page.

Does not necessarily include the latest version 
of the target fi le: depends on your container 
(not mandated by the JSP specifi cation).

TABLE 7-1

Comparing and 
Contrasting the 
Two JSP Inclusion 
Mechanisms

Dispatching Mechanisms (Exam Objectives 6.7 and 8.2) 467



468 Chapter 7: JSP Standard Actions, XML, and EL

(as with <jsp:include>) is page="URL." Consider the following example —a 
complete page source called doThis.jsp:

<!- doThis.jsp -->
<p>You won't see this in the response</p>
<jsp:forward page="doThisInstead.jsp" />
<p>You won't see this either</p>
<% /* Will the following line of code be executed? */
session.setAttribute("doThis", "isDone"); %>

The effect of accessing doThis.jsp is to transfer responsibility for the output to 
doThisInstead.jsp. The template text before the <jsp:forward> action is effectively 
ignored, for anything that doThis.jsp writes to the output buffer is cleared. What 
happens after the <jsp:forward>, though? Were this a hand-coded servlet, the 
code following a RequestDispatcher.forward() method would still be executed 
(if we wanted it to be). But this isn’t a hand-coded servlet: The corresponding servlet 
code is generated by the JSP container, as we well know. And to respect the fact that 
the JSP specifi cation says that a “<jsp:forward> effectively terminates the current 
page,” the reference implementation —Tomcat — returns from the _jspService() 
method. Consequently, the last line of page source in doThis.jsp —which sets an 
attribute in session scope —will not be executed, even though it has nothing to do 
with writing output to the response.

There’s no fl ush attribute as there is for <jsp:include>—instead, certain things 
have to be true about the state of the response for the <jsp:forward> to be 
processed successfully. It all comes down to the thorny question of whether any 
part of the response has already been committed —in other words, written back to 
the client. Responses are considered uncommitted when anything written to them 
already is still in the memory buffer and the buffer has never been fl ushed. So a 
<jsp:forward> won’t work if

■ There is no buffer (in a JSP, this can be achieved with a page directive, setting 
the buffer attribute to “none”), and even one character has been written to the 
response.

■ The buffer has been explicitly fl ushed (response.flushBuffer()).

■ The buffer has been automatically fl ushed on fi lling up (in a JSP, this will 
happen by default — see the page directive attribute autoFlush for more 
information).

If you try to do any of the above, you’ll get an IllegalStateException.



Parameters
Whether you are including or forwarding, you can add in additional parameters to 
the request. For this, you use the <jsp:param> standard action and include it in the 
body of a <jsp:include> or <jsp:forward>. This is the only reason for including 
a body in these two standard actions, which as you have probably noticed have been 
expressed as self-closing tags without any body up until now.

There are three important things to take account of when you add parameters 
into a request using the <jsp:param> standard action:

 1. They only last for the duration of the include or forward. Once you’re back 
in the including or forwarding JSP page, the parameters disappear.

 2. They don’t replace existing parameters of the same name — they merely 
augment the list of values. (Recall that parameters —unlike attributes —can 
have multiple values for the same name.)

 3. When they do augment the list of values, their values come at the front of 
the list.

To illustrate these points, suppose that you make the following HTTP request to 
forwarder.jsp:

http://localhost:8080/examp0702/forwarder.jsp?animaltypes=dog

forwarder.jsp does nothing other than forward the request with a supplementary 
value for the animaltypes request parameter, so

<jsp:forward page="animalHouse.jsp">
  <jsp:param name="animaltypes" value="cat" />
</jsp:forward>

Now, if the forwarded-to JSP page, animalHouse.jsp, has code like the following:

<% String[] a = request.getParameterValues("animalTypes");
for (int i = 0; i < a.length; i++) {
    out.write(a[i] + ";");
}
%>

then the output will be

cat;dog;

Dispatching Mechanisms (Exam Objectives 6.7 and 8.2) 469



470 Chapter 7: JSP Standard Actions, XML, and EL

ON THE CD

You can see from this that the original 
parameter value (dog) is not lost but that the 
value added with <jsp:param> (cat) has taken 
precedence, and now comes fi rst in the list.

Meanwhile, once you return to forwarder.jsp, 
you will fi nd the request parameter animalTypes 
has reverted to having only the one value, dog.

All the points described above hold just 
as true for <jsp:param> standard actions 
embedded in the body of a <jsp:include> 
standard action.

EXERCISE 7-2

Dynamic Inclusion
This exercise shows you how to include a JSP dynamically from a request parameter. 
The idea is to have a small application that chooses and displays a poem at random. 
Each poem is kept in a separate static HTML page of its own. There are two JSP 
pages involved. One, “poemOfTheDay.jsp,” receives the name of one of these static 
web pages as a request parameter and includes this into its body. The other JSP page, 
“choosePoemOfTheDay.jsp,” chooses one of the available fi lenames at random and 
forwards it to “poemOfTheDay.jsp,” setting up the chosen fi lename within the body 
of the <jsp:forward> standard action.

Create the usual web application directory structure under a directory called 
ex0702, and proceed with the steps for the exercise. There’s a solution in the CD 
in the fi le sourcecode/ch07/ex0702.war —check there if you get stuck.

Write Poems

 1. Create a number of HTML pages directly in ex0702 (three is a good number, 
but make as many as you like). Call these poem1.html, poem2.html, and 
so on.

 2. In each page, include the title (between <h1> tags) and the text of any 
poem you like (between <pre> tags). You can write your own original poems 
as a diversion from exam cramming, but I’d recommend doing what I did: 

The value for <jsp:
param>’s value attribute can come from 
a run-time expression—for example: 
value="<%=calcValue%>." That’s not 
the case for the name attribute, which 
must be a literal in the page source.



copying and pasting a few of your favorites from the Web. Of course, if poems 
don’t appeal, you can use any text you like —as long as you can tell your 
HTML pages apart.

Create the Including JSP Page Source

 3. Create a fi le called poemOfTheDay.jsp in ex0702.

 4. Put in template text for a skeleton web page —<html>, <head>, <title>, 
and <body> tags (and the corresponding end tags).

 5. In the body, place a <jsp:include> standard action. Use an expression as 
the value for the page, taken from a request parameter called poem.

Create the Forwarding JSP Page Source

 6. Create a fi le called choosePoemOfTheDay.jsp in ex0702.

 7. Have a scriptlet at the beginning of the fi le that sets up a String array, and 
initialize this with the fi lenames of each of your poem HTML pages. (If 
you want more of a challenge, use ServletContext.getRealPath() and 
recover the names of any fi lenames beginning with the characters “poem” in 
the context directory. From this, load a String array or collection class: harder 
certainly!)

 8. In the same scriptlet, set up a local variable to hold the name of one of the 
fi les. Use Math.random() as the basis for picking a name randomly from the 
String array (or collection class).

 9. Set up a <jsp:forward> standard action following the scriptlet, to forward 
to the poemOfTheDay.jsp page. Ensure that this standard action has a body 
(and so has both a beginning and end tag; it should not be a self-closing tag).

 10. In the body of the <jsp:forward> standard action, place a <jsp:param> 
action. Name the parameter poem, and set the value of the parameter using 
an expression — this should use the local variable set up in step 8.

Deploy and Run the Application

 11. Create a WAR fi le that contains the contents of ex0702, and deploy this to 
your web server. Start the web server if it has not started already.

Dispatching Mechanisms (Exam Objectives 6.7 and 8.2) 471



472 Chapter 7: JSP Standard Actions, XML, and EL

 12. Use your browser to request musicCDform.html, with a URL such as

  http://localhost:8080/ex0702/choosePoemOfTheDay.jsp

 13. With luck, one of your poems will be displayed in the browser. Press the 
refresh button a few times to check that other poems are selected randomly 
(another extra challenge is to consider how you might prevent the same 
poem from being selected twice in succession). Here’s some sample output 
from the solution code.



CERTIFICATION OBJECTIVE

JSPs in XML (Exam Objective 6.3)
Write a JSP Document (XML-based document) that uses the correct syntax.

This innocently short objective encompasses a large number of things you need to 
know. What is a JSP document? Well, it’s JSP page source that’s written in XML. Quite 
often (but not by any means always), you use a JSP document to produce XML as well.

XML is a big and scary topic in its own right. Fortunately, only a basic knowledge 
is required for the SCWCD exam. So if you’re relatively new to XML, don’t worry. 
In any case, you’ve already handled plenty of XML in the course of this book. The 
standard actions you covered in the previous section of this chapter are XML. And 
whereas HTML isn’t necessarily XML, all the examples and exercises in this book 
have been using an XML-compliant version called XHTML. So although there’s no 
room to turn this part of the chapter into a full-blown XML tutorial, I’ll be taking a 
“least you need to know” approach. Fortunately, full-blown XML tutorials litter the 
Web, as do excellent books on the topic.

JSP documents also have more facets than can be covered in just one section of 
one chapter. You’ll meet the basics in this section, and from this point in the book 
onward, most of the JSP examples and exercises (and quite a few of the questions) 
will use XML syntax.

XML for JSPs
Why are JSPs moving to XML-style page source at all? After all, they have a 
perfectly viable syntax all their own. Likely reasons include (but are not limited 
to) the following list:

■ It makes a lot of sense if you are in the business of producing XML anyway. You’ve 
already encountered the idea that template text in a JSP page isn’t limited to 
HTML, and XML is the most usual alternative. If you have an XML fi le you want 
to produce, it can immediately become the template text for a piece of JSP Page 
Source —all that remains is to mark it up with some more XML for the dynamic 
parts.

■ You can check that your page source is valid in XML terms, using proper XML 
validators (and that’s something your JSP container does during the translation 
phase for JSP documents).

JSPs in XML (Exam Objective 6.3) 473



474 Chapter 7: JSP Standard Actions, XML, and EL

■ If you use XML-authoring tools (such as XML Spy), then those same tools can 
handle the production and validation of your JSP page source as well as other 
XML fi les you write.

■ Arguably, XML-style source is easier to write and read than a mishmash of 
template text and Java language. So XML might mark a step along the way 
toward production of JSP page source by nonprogrammers.

■ You certainly get the impression from the JSP specifi cation that Sun would like 
page authors to move in an XML direction — that in itself might be a good 
reason to make the switch. While support for the <% .. %> way of doing things 
is bound to last for a long while, you might fi nd yourself excluded from newer, 
trendier tool developments if you stick doggedly to the old-style syntax.

Given that you’re persuaded that XML-style JSPs are a good thing, let’s make a 
few top-level statements about XML itself. I won’t assume any previous knowledge, 
though the chances are you’ve heard this before.

■ XML is a tag language. Its structure is often compared to HTML: Both contain 
opening and closing tags. But while HTML is narrowly focused on marking up 
text, XML is much more general purpose. XML can be used for marking up text 
(as in XHTML), but it has a pretty much infi nite set of other possible uses.

■ You can defi ne your own tags in XML, calling them whatever you like. You just 
have to make sure that for every opening tag of a particular name, you have a 
balancing closing tag:

<painting>
  <artist>Leonardo da Vinci</artist>
  <title>Mona Lisa</title>
  <location museum="Louvres"></location>
</painting>

■ There may be some data content between the opening and closing tags (“Mona 
Lisa” for the <title> tag above), or simply other tags (<painting>), and 
sometimes nothing at all (<location>). The area between the opening and 
closing tags is referred to as the “body.”

■ Tag names can have a prefi x, separated from the main name by a colon. We met 
that in standard actions, such as <jsp:useBean>. The prefi x ties the tag to a 
“namespace,” which you can think of as a signpost with information about 
the tag.



■ Tags can have attributes. Again, we’ve seen this in standard actions. Attributes 
are included in the opening tag, and they form name/value pairs, in the form 
name=“value” (or with single quotes —name=’value’). You’ll recall <jsp:
getProperty>:

<jsp:getProperty name="beanName" property="beanProperty" />

■ The <jsp:getProperty> example shows us another common XML feature. 
Sometimes it doesn’t make a lot of sense to have a closing tag, because there’s no 
appropriate data content to insert in the tag body. Under those circumstances, 
an opening tag can be “self-closing” by including a slash before the fi nal angle 
bracket: />.

■ Tags must be properly nested. Here is a rogue version of the painting example —
you can see that the closing tag </artist> comes within the body of the 
<title> tag, which just won’t do:

<painting>
  <artist>Leonardo da Vinci<title></artist>Mona Lisa</title>
  <location museum="Louvres"></location>
</painting>

■ There must be one root tag at the top of the document. For the deployment 
descriptor, web.xml, the root tag (as we’ve seen throughout) is <web-app>.

Of course, there’s a lot more to XML than that, but these simple rules will get you 
most of the way there. All we need to consider now is how XML exactly applies in 
JSP documents.

XML-Friendly Syntax
When we talk about a JSP document, we mean a JSP page source that obeys all the 
rules of XML. However, the pseudo-tag-like structure of some JSP syntax will wreak 
havoc with any XML validator. Certain bits of syntax have to go—especially arbitrary 
angle brackets. Any XML parsing code sees an angle bracket as the beginning or end 
of a tag, so it won’t know what to make of <%, <%!, <%@, <%=, <%--, --%>, and %>. 
All of these have to be replaced. So the JSP specifi cation provides an XML equivalent 
for all of the above. In the main, these look like standard actions, behave like standard 
actions, and are standard actions. They extend the set of those we have already looked 
at, such as <jsp:include>. There are only one or two syntax differences implemented 

JSPs in XML (Exam Objective 6.3) 475



476 Chapter 7: JSP Standard Actions, XML, and EL

without the use of standard actions, however. Table 7-2 lists the different kinds of JSP 
syntax and shows the original syntax alongside its XML-friendly equivalent.

Scripting Elements
Note that this change to XML syntax doesn’t —in itself —mean abandoning Java 
code in your JSP pages. All we’re doing at the moment is making the XML well-
formed, and for the most part, any old Java code can be dumped into the body of an 
XML element. Let’s look at a few short examples.

Here’s a scriptlet in the old style of syntax:

<% String s;
  s = request.getParameter("user"); %>

Here it is again as the body of a standard action:

<jsp:scriptlet>String s;
         s = request.getParameter("user"); </jsp:scriptlet>

Scripting Elements Original JSP Syntax XML Syntax

Scriplets <% ... %> <jsp:scriptlet>...
</jsp:scriptlet>

Expressions <%= ... %> <jsp:expression>...
</jsp:expression>

Declarations <%! ... %> <jsp:declaration>...
</jsp:declaration>

Directives

page <%@ page 
attr=“value” %>

<jsp:directive.page 
attr=“value” />

include <%@ include 
file=“abc.txt” %>

<jsp:directive.include 
file=“abc.txt” />

taglib <%@ taglib prefix=
“abc” uri="...” %> 

xmlns:abc="...” 

Comments

Exclude from translation 
(and output)

<%-- ... --%> <!-- ... -->

Include HTML comment 
in HTML output

<!-- ... --> &lt;!-- ... --&gt;

TABLE 7-2

XML Equivalents
for JSP Syntax



There’s nothing remotely diffi cult here —just a straight swap of opening markers 
(<jsp:scriptlet> for <%) and closing markers (</jsp:scriptlet> for %>). 
The contents of the scriptlet remain as before: valid Java syntax (with a slight 
modifi cation we’ll soon see). You can’t embed any other sort of tag within the body 
of the <jsp:scriptlet> tag.

Declarations are no different. Again, here’s a declaration before:

<%! public void jspInit() {
      System.out.println("My JSP is initialized");
    } %>

And the same declaration after:

<jsp:declaration> public void jspInit() {
              System.out.println("My JSP is initialized");
            } </jsp:declaration>

Note that the inclusion of indentation and white space is entirely my own choice, 
just as it is in normal Java source code. It will come as no surprise that a converted 
expression follows a similar pattern. Here’s one before:

<%= session.getAttribute("user") %>

And one after XML-ifi cation:

<jsp:expression>session.getAttribute("user")</jsp:expression>

Again, the choice of white space is mine. This is equally valid:

<jsp:expression> session.getAttribute("user") </jsp:expression>

As is this:

<jsp:expression>
  session.getAttribute("user")
</jsp:expression>

However, there are some things within the Java language itself that are anathema 
to XML validators. Take the following source code, showing the beginning of a for 
loop in a scriptlet:

<jsp:scriptlet>for (int i = 0; i < 10; i++) { </jsp:scriptlet>

JSPs in XML (Exam Objective 6.3) 477



478 Chapter 7: JSP Standard Actions, XML, and EL

The “less than” sign (<) looks like the beginning of an opening or closing tag, and 
an XML validator will assuredly treat it as such. However, it’s diffi cult to write Java 
code without using < anywhere!

You have two options to deal with this. The fi rst is to escape the source code, 
using what’s referred to in XML as an “entity”—beginning with an ampersand 
(&) and ending in a semicolon (;). If you’ve written any amount of HTML, you’ll 
recognize this device. The offensive < sign is replaced with the entity &lt;. It 
doesn’t make your Java code very readable, but it’ll get through the XML validation 
process —and your JSP container will turn it back into valid code for your generated 
servlet. Here’s how it looks in our example:

<jsp:scriptlet>for (int i = 0; i &lt; 10; i++) { </jsp:scriptlet>

You should treat the > sign in the same way, replacing it with &gt; when it comes up 
in your code.

The second option is to mark up the offensive part as XML character data.
This is part of an XML fi le that the XML validator treats as off-limits —it lets the 
characters stand just as they are. The syntax for this is more intrusive than entities, 
even though our < sign stays intact. Here’s how this second solution might look:

<jsp:scriptlet>for (int i = 20; i <![CDATA[<]]> 30; i ++) {</jsp:scriptlet>

In this case, it’s pretty hard to fi nd the < sign in the middle buried in the middle 
of the syntax. A variation on this approach is to demarcate the whole body of the 
scriptlet as character data:

<jsp:scriptlet><![CDATA[for (int i = 10; i < 20; i ++) { ]]></jsp:scriptlet>

This at least keeps the Java code more integral, and an entire longer scriptlet or 
declaration consisting of multiple statements can be “wrappered” in this way.

Directives
Directives are dealt with in much the same way as scripting elements, by substituting 
standard actions.

There’s a JSP directive for page directives called <jsp:page.directive 
... />, which is a substitute for <%@ page ... %>. The syntax represented by 
the ellipsis (. . .) is identical in both cases. So

<%@ page import="java.util.*, a.b.MyClass" %>



becomes

<jsp:directive.page import="java.util.*, a.b.MyClass" />

Because the attributes (such as import) within the original directive follow XML 
syntax, they can be transferred directly into the XML tag. Note that the XML tag 
closes itself — there’s no requirement for a directive to have a body. Other than that, 
the functionality is no different from the JSP syntax original.

The include directive follows exactly the same pattern, and it works identically 
in its XML form. So

<%@ include file="myFile.html" %>

becomes

<jsp:directive.include file="myFile.html" />

The one directive that doesn’t follow this norm is the taglib directive for 
referencing tag libraries. This uses a namespace instead of a standard action to defi ne 
a tag library in use in the JSP document. We’ll soon learn more about namespaces, 
and a lot more about tag libraries in Chapter 8, where we revisit the taglib 
directive in both its guises: JSP and XML syntax.

Comments
Finally from Table 7-2, what happens about comments? You’ll recall that JSP syntax 
allows for two styles — one that removes source text from the translation phase 
entirely (<%-- not translated --%>) and the other that causes an HTML-style 
comment to be buried in the output (<!-- The user wonʼt see this in a 
normal browser, but will when viewing source. -->).

The fi rst style of comment is XML-unfriendly, so it can’t be used in a JSP 
document. The second (HTML-style) comment is, in fact, an XML-style comment. 
So it’s fi ne to carry on using the second style, except that it acts slightly differently. 
It’s like this:

<!-- In a JSP document, this style of comment will NOT be included
in the generated output; it's ignored by translation. -->

This begs the question: What if I am generating HTML-output from my JSP 
document and want to include an HTML-style comment? Because these are 

JSPs in XML (Exam Objective 6.3) 479



480 Chapter 7: JSP Standard Actions, XML, and EL

hijacked by XML, they’ll never appear! Escape conventions come to our rescue. 
If you hide the < and > signs with their entity equivalents, you’ll get your HTML 
comment:

&lt;!-- This comment will appear in the HTML output. --&gt;

There is a standard action 
called <jsp:text> that exists solely to 
dig you out of trouble when writing JSPs in 
XML syntax. More or less all the content 
you put into an XML document (aside 
from white space) must exist in the body 
of a tag. Of course, you’re always in the 
body of a tag in that there’s a root tag 

that encloses everything. However, some 
tags (normally including the root tag) don’t 
allow any content in their bodies—only 
other tags. If you have some content that 
needs to be placed in the “no-man’s land” 
of a bodiless tag, then wrap it up with 
<jsp:text> ... </jsp:text>.

Namespaces
The conversions to JSP document syntax that we’ve seen are easy enough, mostly 
involving the substitution of XML standard actions for their traditional counterparts. 
However, whereas standard JSP syntax takes for granted that standard actions are 
simply available in your JSP page source, XML syntax demands more than that.
If your tags use a prefi x—as all standard actions do — that prefi x must be associated 
with something that XML terms a “namespace.”

Any opening tag within XML can defi ne a namespace. Here’s a very short JSP 
document example that includes a directive to specify the MIME type of the 
output:

<html>
<head><title>Namespaces</title></head>
<jsp:directive.page xmlns:jsp="http://java.sun.com/JSP/Page" 
contentType="text/html" />
<body><h1>Namespace Demonstration</h1></body>
</html>

You can see that the <jsp:directive.page> element now contains an additional 
attribute:

xmlns:jsp="http://java.sun.com/JSP/Page"



The xmlns stands for XML namespace (unsurprisingly) and —after the colon —uses 
a name/value pair. The name (jsp) is the prefi x you use for any elements belonging 
to this namespace — such as <jsp:directive.page>. The value is —more often 
than not —a URL, though it can be any text at all. Sometimes, the URLs actually 
correspond to pages on the Internet. Mostly —and http://java.sun.com/JSP/Page 
is a case in point — they don’t. There’s no technical need for the resource at the 
end of the URL to exist; a URL is often used because it has a good chance of being 
unique. So when you see the namespace http://java.sun.com/JSP/Page, you can 
safely assume that this is uniquely associated with a set of elements that have to do 
with JavaServer Page standard actions.

In our example above, the namespace is associated only with <jsp:directive
.page>. This is because namespaces apply only to the element in which they 
are defi ned, plus any elements contained within that element. Because <jsp:
directive.page> can’t contain other elements, the namespace applies only to 
that element. So it’s much more usual to place your namespace declarations farther 
up the XML document’s containment ladder —usually, in fact, right in the root 
element. Here is the same example again with the namespace transferred to <html>, 
the root element for XHTML documents:

<html xmlns:jsp="http://java.sun.com/JSP/Page" >
<head><title>Namespaces</title></head>
<jsp:directive.page contentType="text/html" />
<body><h1>Namespace Demonstration</h1></body>
</html>

Now any standard action can be used anywhere in the document without repeating 
the namespace, for it’s available throughout — the prefi x jsp: is suffi cient.

XML and the JSP Container
What tells the JSP container that it’s dealing with a JSP document, as opposed to a 
page in normal JSP syntax? You might think that a page written in bona fi de XML 
is a JSP document and will be treated as such, but actually, it isn’t. The page will 
continue to work, but the JSP container is likely to treat it as a standard syntax page. 
You can include as much or as little of the XML syntax in a normal JSP page as you 
like — this is to encourage you to migrate your JSP pages to XML syntax at a pace to 
suit. Take this example:

<% String s = "Mixed syntax"; %>
<jsp:expression>s</jsp:expression>

JSPs in XML (Exam Objective 6.3) 481



482 Chapter 7: JSP Standard Actions, XML, and EL

This is perfectly viable JSP page syntax, though it has the makings of a maintenance 
nightmare —why use two syntaxes when you can stick to one?

There are three approaches that identify a page as a JSP document:

 1. Ensure that your web application deployment descriptor web.xml is at version 
level 2.4 and that the fi le with your JSP page source has the extension .jspx.

 2. Ensure that your web application deployment descriptor web.xml is at version 
level 2.4, and include some appropriate settings in deployment descriptor’s 
<jsp-config> element (we’ll see what these are in a moment).

 3. Enclose your page source with the root element <jsp:root>. This element 
is backward-compatible with previous versions of the JSP container, so it 
doesn’t rely on a particular version level for web.xml.

Method 1 is certainly the most straightforward. Assuming that your deployment 
descriptor is at version level 2.4 (and why wouldn’t it be?), you should suffi x your 
JSP documents with .jspx instead of .jsp. Method 2 is still straightforward. You just 
need to know how to confi gure the relevant element in web.xml. Here’s an example 
confi guration:

<jsp-config>
  <jsp-property-group>
  <url-pattern>/jspx/*</url-pattern>
  <is-xml>true</is-xml>
  </jsp-property-group>
</jsp-config>

This says that any for any fi le accessed with a URL ending in /jspx /anythingatall.any 
within the web application, treat this as a JSP document. The <is-xml> element 
takes two valid values: true (treat these as JSP documents with XML syntax) or false 
(treat these documents as JSP pages with standard syntax). The <url-pattern> 
element works in just the same way we saw within the <servlet-mapping> element 
way back in Chapter 2.

Notice that the element 
<jsp-property-group> nests inside 
<jsp-config> and that the elements 

which do the work (such as <url-
pattern> and <is-xml>) nest inside 
<jsp-property-group>.



ON THE CD

This leaves method 3, which is to make <jsp:root> your document’s root 
element, not forgetting to include the namespace in the opening tag:

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page">

This approach can have advantages if you need to remain compatible with older 
containers, or older applications in newer containers — this is how JSP documents 
were identifi ed in the past, at JSP specifi cation level 1.2. An older-style web.xml 
won’t matter. Even if your application and container are bang up-to-date, <jsp:
root> can be handy if your source fi les can’t have the .jspx extension for some 
reason, and if their URL patterns are too diverse to warrant defi ning inside the 
<jsp-config> element.

We know now that a JSP document is written in XML. What dictates what 
it outputs? Well, by default, a JSP document wants to produce XML. This is 
regardless of the MIME type that you set with <jsp:directive.page 
contentType="..." />. If you do nothing, an XML header statement 
appears at the very beginning of the page output, looking like this: <?xml 
version="1.0" encoding="UTF-8"?>. If what you’re producing is not 
XML, you really ought to suppress this. There are a couple of approaches:

■ Use <jsp:root> as your root element. This suppresses the XML header 
statement by default (if you’re using <jsp:root> for some other reason, 
there are ways to retain the XML header statement if you actually need it).

■ Include a <jsp:output> element as follows: <jsp:output omit-xml-
declaration="true" />.

There is quite a bit more to <jsp:output> than this one attribute—to 
fi nd out more, take a look at JSP Specifi cation section 5-16.

EXERCISE 7-3

JSP Syntax to XML Syntax
This exercise differs a little from most of its predecessors, for you deliberately 
start with the solution code. Your mission is to take a moderately complex JSP 
page, written in JSP syntax, and convert this to XML syntax. The page works in 

JSPs in XML (Exam Objective 6.3) 483



484 Chapter 7: JSP Standard Actions, XML, and EL

combination with a servlet and a JavaBean. The servlet receives the name of a 
comma-separated values fi le and parses the contents of this, placing the results in 
the JavaBean. The JSP page uses the JavaBean to display the results in an HTML 
table.

Any comma-separated values (.csv) fi le will do. There is one provided called 
Timesheet.csv, but you can supply one of your own. The expectation is that the fi rst 
row of the fi le contains header information —here’s the fi rst row of Timesheet.csv:

Date,Start Time,End Time,Duration,Description,Code

And each subsequent row contains data corresponding to the heading fi elds. Here’s 
an example data row from Timesheet.csv:

Mon-30-Jun,09:00,11:00,2:00,Certification article,ARTICLE4

Having checked you can run the application, you’ll take the regular JSP version of 
the fi le and duplicate that in situ to a new fi le that will be a JSP document. You’ll work 
through this document, making alterations to remove source that works only in JSP 
syntax terms. On the way, you’ll try accessing the document, and observe the syntax 
errors you get. The result will be a genuine JSP document that works as the solution 
code does.

So this time, start by fi nding the solution fi le from the CD (which is sourcecode
/ch07/ex0703.war), and then follow the instructions below.

Deploy and Test the Application

 1. Deploy ex0703.war on your server — start the server if it’s not started already.

 2. Use your browser to run the application, using a URL such as

http://localhost:8080/ex0703/CSVReader/Timesheet.csv

  CSVReader is the mapping for a servlet in the ex0703 context. The servlet 
uses the path information that appears after the servlet mapping in the 
URL —in this case, Timesheet.csv. The servlet looks for the named fi le in 
the context directory. So if you are using your own CSV fi le, place this in the 
context directory (e.g. ex0703) on your server, and change the name in the 
URL from “Timesheet.csv” to the name of your fi le. Make sure to respect 
upper and lower case.

 3. Make sure that you get output like that shown in the following illustration.



 4. Now use a text editor to change the deployment descriptor web.xml directly 
in the server directory —which for me is

<Tomcat installation directory>/webapps/ex0703/WEB-INF/web.xml

 5. You’ll see that the servlet CSVReader has an initialization parameter, which 
is the name of the JSP page to forward to. Change the extension on the 
name of the fi le to .jspx, which points to the JSP Document solution fi le. 
The whole line looks like this:

<param-value>/csvRenderer.jspx</param-value>

 6. Save and close web.xml. Restart your server. Use your browser to access 
the servlet, using exactly the same URL as in step 2. The output should 
look identical, as shown in the following illustration —just the heading has 
changed to indicate that the output came from a JSP document.

JSPs in XML (Exam Objective 6.3) 485



486 Chapter 7: JSP Standard Actions, XML, and EL

Create Your Own JSP Document

 7. Now fi nd the original JSP syntax fi le in the context directory, the one called 
csvRenderer.jsp (i.e., not the version with the .jspx extension). Copy this into 
the same directory, and call it csvRenderer2.jspx (with a .jspx extension —
very important!). This is going to be the fi le you’ll work on —you’ll change 
all the JSP syntax within it to JSP document XML syntax, stage by stage.

 8. Edit web.xml again as you did in step 5—change the name of the parameter 
value to that of your copied fi le, csvRenderer2.jspx:

<param-value>/csvRenderer2.jspx</param-value>

 9. Stop and start your web server again. Again, invoke the application with the 
same URL as in step 2. This time, the application should fail—the target JSP, 
csvRenderer2.jspx, won’t translate until its syntax is corrected. You may well get 
an error in your browser like the one shown in the following illustration, which 
complains that “The prefi x ‘jsp’ for element ‘jsp:useBean’ is not bound.” Don’t 
worry if you see something different; the point is that we need to fi x the errors.



 10. Now open csvRenderer2.jspx with a text editor. Change the <h2> heading 
on line 5 to read

<h2><b>My</b> JSP Document Version</h2>

 11. The JSP page source uses standard actions. When these appear in JSP 
documents, a namespace must be supplied to say where the XML elements 
for the standard actions are defi ned. You can supply this by altering the 
<html> tag exactly as shown below:

<html xmlns:jsp="http://java.sun.com/JSP/Page" >

  Save the fi le, but leave your text editor open ready to make more changes.

 12. Refresh your browser for the same URL. The application should still fail, but 
this time the error should be deferred to later in the page source. The next 
error I get is located at the second character on the third line of page source: 
“The content of elements must consist of well-formed data or markup” 
(the location is given in the stack trace).

 13. The issue is the page directive doing the import, with its <% syntax. Change 
this to use XML page directive syntax:

<jsp:directive.page import="java.util.*" />

 14. Save the fi le, and again refresh your browser — note the next error. For me, 
this is on line 14, and it says that “the entity ‘nbsp’ was referenced, but 
not declared.” This is a pure XML problem. In HTML, &nbsp; denotes a 
nonbreaking space. This style of denoting a special character (beginning 
with an ampersand and ending in a semicolon) is fi ne for XML; a character 
denoted this way is called an entity. However, it needs to be defi ned to the 
XML fi le in order to be respected. We’re not going to do this, but instead 
cheat. There’s a “get out of jail free” card to counter any dodgy text in an 
XML fi le, which is to describe the text as “character data.” This uses some 
involved syntax. Replace &nbsp; with exactly what is written below:

<![CDATA[&nbsp;]]>

 15. Save the fi le, and refresh the browser. My latest error is now on line 
15—again complaining about the lack of well-formed character data or 
markup. As you’ve probably guessed, it’s the scriptlet syntax. Go through the 

JSPs in XML (Exam Objective 6.3) 487



488 Chapter 7: JSP Standard Actions, XML, and EL

code, replacing every occurrence of <% with <jsp:scriptlet>, and every 
corresponding %> with </jsp:scriptlet>.

 16. Save and refresh. I get the same error, now transferred to line 16. This time, 
it’s an expression causing the grief. Replace every occurrence of <%= with 
<jsp:expression>, and every corresponding %> with </jsp:expression>.

 17. Save and refresh. There’s still a problem! Look at the for loop in the fi rst 
scriptlet — the condition test contains the “<” sign. This is — of course —good 
Java but lousy XML. To the XML parser, it looks like the beginning of a tag 
that never ends. Change the “<” sign to escape characters &lt;. Repeat the 
exercise for the later for loop (around line 24), which also contains a “<” sign.

 18. With luck, when you now save and refresh, the page will work correctly.

 19. In a future exercise, we’ll take the XML JSP document source from this 
exercise and improve on it so that most of the language scripting is removed.

CERTIFICATION OBJECTIVE

Expression Language (Exam Objectives 7.1, 7.2, 
and 7.3)

Given a scenario, write EL code that accesses the following implicit variables including 
pageScope, requestScope, sessionScope, and applicationScope, param and paramValues, 
header and headerValues, cookie, initParam and pageContext.

Given a scenario, write EL code that uses the following operators: property access 
(the . operator), collection access (the [] operator).

Given a scenario, write EL code that uses the following operators: arithmetic operators, 
relational operators, and logical operators.

Expression Language (EL) is all about the EL-imination of Java syntax from your 
pages. Here’s how the JSP specifi cation eloquently states the goal of EL: “The EL can 
be used to easily access data from the JSP pages. The EL simplifi es writing script-less 
JSP pages that do not use Java scriptlets or Java expressions and thus have a more 
controlled interaction with the rest of the Web Application” ( JavaServer Pages 2.0 
Specifi cation, page xix).



Expression Languauge (Exam Objectives 7.1, 7.2, and 7.3) 489

As the name implies, Expression Language provides an alternative to the 
expression aspect of Java language scripting —<jsp:expression>...</jsp:

expression> or <%...%> . EL by itself is not a replacement for scriptlets. For that, 
you’ll need to wait for the JSP Standard Tag Language ( JSTL) in Chapter 8.

The goal of EL is simplicity. Although EL sacrifi ces some of the sophistication 
possible in a Java language expression, it is easier to use: The syntax is succinct and 
robust. Apart (obviously) from the syntax, EL is different from Java in other ways. 
Some rules are the same, and some are different. Because EL is a new and popular 
addition to JSP technology, you can be sure that many questions in the exam will 
test you on these rules.

The exam creators have a 
nasty habit of mixing up EL and scriptlet 
syntax within the same question. This book 
organizes its content by exam objective, 
but don’t expect the questions (here or in 

the real exam) to take a purist approach! 
After all, they refl ect real life—and you 
may well have to deal with scriptlets and 
EL in the space of a few consecutive lines 
of JSP source.

Expression Language Overview
Expression Language began life as part of the JSP Standard Tag Library ( JSTL), 
which we meet in Chapter 8. EL is now incorporated as part of the JSP 2.0 
specifi cation and is entirely independent of JSTL. However, it’s only with JSTL that 
it fully comes into its own. EL can supply only the equivalent of the “right-hand 
side of the equal sign” in a typical computing statement. For example, EL lacks any 
looping constructs. And although there are conditional operators in EL, you can’t 
take any action on them: There’s not even an “if . . . then . . .” mechanism. JSTL 
supplies the missing pieces, so you will still fi nd EL used most often in conjunction 
with JSTL.

That’s not to say that you can’t use EL independently. And especially when 
your goal is the SCWCD, there’s plenty to learn about it. So in this section we’ll 
concentrate exactly on that —EL capabilities. Some of the time we’ll use EL in 
conjunction with Java language scripting elements, such as scriptlets. There’s 
nothing technically wrong with that, but it’s not considered best practice —after all, 
EL is meant to encourage Java-free JavaServer Pages! However, until we do learn 
about JSTL, scriptlets remain the easiest way to create expressions with data to 
display.



490 Chapter 7: JSP Standard Actions, XML, and EL

Expression Language can be enabled or disabled in three different ways. We 
encountered one of these ways in Chapter 6, when we looked at the page 
directive settings. The page directive attribute isELEnabled can turn on EL 
for a single page—or not.

There are a couple of alternative ways of controlling EL enablement 
that aren’t explicit exam objectives. One is with the <jsp-property-
group> element, which has a subelement <el-enabled>. We met <jsp-
property-group> in the context of identifying JSP documents (subelement 
of <jsp-config>).

Finally, EL is enabled at an application level by having a deployment 
descriptor at servlet level 2.4. A previous deployment descriptor level indicates 
that EL should be switched off.

Expression Language Basics
As we saw briefl y in Chapter 6, an expression begins with ${ and ends with }. The part 
between the curly braces must be a valid EL expression. The string in the JavaServer 
Page source code is subject to translation, like anything else in the page. Translation 
checks syntax validity but won’t (for reasons that we’ll come to) check that the 
variables you use actually exist (remember that translation incorporates compilation). 
At run time, the string representing the expression is sent to a method called 
resolveVariable(), in an object supplied by your JSP container provider of type 
VariableResolver. This returns an object, which is sent to the JSP output stream—
typically via an out.print() statement in your generated servlet source. Mostly, the 
expression will resolve one way or another. Even if your variables don’t exist, sensible 
defaults are provided, which mostly prevent the expression ending in a run-time error.

EL is equally valid in standard JSP syntax or JSP document (XML) syntax. So the 
following are equivalent. First a JSP in normal syntax:

<html>
<head><title>As a normal JSP</title></head>
<body>
<% request.setAttribute("whichever", "EL in either syntax"); %>
<p>${whichever}</p>
</body></html>

And now the same as a JSP document:

<html xmlns:jsp="http://java.sun.com/JSP/Page">
<head><title>As a JSP document</title></head>
<jsp:output omit-xml-declaration="true" />



<jsp:directive.page contentType="text/html" />
<body>
<jsp:scriptlet>
  request.setAttribute("whichever", "EL in either syntax");
</jsp:scriptlet>
<p>${whichever}</p>
</body></html>

In both cases, the EL syntax ${whichever} picks up and displays the value of the 
whichever attribute set up in the scriplet: “EL in either syntax.”

However, you do have to keep Java code (such as scriptlets) free of EL (after all, 
EL is not valid Java syntax). So the following will not work:

<% request.setAttribute( "anAttribute", ${aValueFromEL} );

EL Literals
EL has a smaller range of literals than Java. The ones it does use are similar. Table 7-3 
shows the different values. Because you don’t declare variables or assign to variables 
in EL, there are no explicit keywords for types; nonetheless, there are fi ve that are 
defi ned.

EL Operators
Operators in EL come in four categories:

■ arithmetic

■ relational

Type Example Comments

Boolean ${true} Valid values are true and false —just like 
Java Boolean literals.

Integer ${18782} Underpinned by a java.lang.Long value.
Don’t append “l” or “L” to the literal value 
as would happen for a Java long literal.

fl oating point ${1.618034} or 
${2.998e+9}

Underpinned by a java.lang.Double value.

Strings ${“Galleon”} or 
${ʼCoracleʼ}

Characters surrounded by double or single 
quotes.

Null ${null} Equivalent to the Java null literal. Doesn’t 
output anything.

TABLE 7-3

The Five Kinds 
of EL Literal

Expression Languauge (Exam Objectives 7.1, 7.2, and 7.3) 491



492 Chapter 7: JSP Standard Actions, XML, and EL

■ logical

■ empty

EL operators (like EL literals) offer a subset of what’s available in the Java language, 
and again you have to beware of some differences in behavior between EL and Java.

Arithmetic Operators
There are fi ve arithmetic operators —for addition (+), subtraction (�), 
multiplication (*), division (/), and modulo (%). As you can see, the operator 
symbols are identical to Java. However, there are alternative forms for the division 
and modulo operators —div and mod, respectively. Let’s consider each of the 
operators in turn.

Addition Addition is expressed like this: ${a + b}. Addition works much as you 
would expect. If a represents an Integer object of value 2, and b an Integer object of value 
3, then the result is 5. The inputs don’t have to be numeric objects—string values for a 
and b of “2” and “3” would work as well. If either of attributes a and b doesn’t exist, and is 
null, that’s not a problem—they are treated as zero values. A zero-length string—“”—is 
likewise treated as zero. As in much of EL, there’s quite a bit of work behind the scenes 
to ensure that a result is obtained somehow, as long as the inputs to the calculation are 
remotely sensible. However, the following calculation won’t work: ${"Not a Number" 
+ 3.0}. You will get a javax.servlet.jsp.el.ELException, complaining that “Not a 
Number” cannot be converted to a java.lang.Double value. This example also goes to 
show that the addition operator in EL—unlike Java—is not overloaded to handle string 
concatenation. There’s no operator overloading or string concatenation in EL.

Subtraction Subtraction is expressed as you would expect: ${a — b}. The same 
comments made about the addition operator apply to subtraction as well.

Multiplication Multiplication is expressed ${a * b}. No surprises there.

Division Division is expressed ${a / b} or ${a div b}. Even if the inputs are 
both integers, double division is performed — not whole-number division ignoring 
the remainder. There is no direct EL equivalent for Java’s integer division behavior. 
Being as EL division is always double division, it behaves like Java fl oating decimal 
division, so divide by zero is not an error but results in an answer of “Infi nity.” EL 
also shares an irritating feature of double division on binary-oriented computers, and 
the result may be imprecise. This isn’t unique to EL; it’s equally true of fl oating-point 



division in regular Java syntax, and indeed of many other programming languages on 
most computing platforms. For example, it might surprise you to learn that ${9.21 
/ 3} doesn’t give the neat result of 3.07, but rather 3.0700000000000003.

Modulo Modulo is expressed ${a % b} or ${a mod b}. This time, integers 
are respected as integers, but a double for either input causes the calculation to be 
worked as a double. Again, the caveat about imprecise double arithmetic applies 
(try, for example, ${9.1 mod 3}).

Just as Java arithmetic 
has “promotion” rules for the inputs to a 
calculation, so does EL. In Java language, 
for example, in the calculation 9.0 + 3, 
“3”—an integer literal—is promoted to a 
double before the calculation takes place, 
and the result is a double. This is because 
the other operand (9.0) is a double literal. 
This is the ceiling for Java arithmetic—
after all, there’s nowhere to go beyond 
a double in Java primitive terms. In EL, 

promotion applies on a grander scale—
there isn’t a double (or java.lang.Double) 
ceiling. In some cases, the operands 
might be of type java.math.BigInteger 
or java.math.BigDecimal. There’s only 
an outside chance you will have to face 
questions involving the promotional rules 
with BigInteger and BigDecimal, but you 
might want to check out the arithmetic 
promotion (or “coercion”) rules laid out in 
the JSP 2.0 Specifi cation, section 2.3.5.

Greater than > gt

Less than < lt

Equals == eq

Greater than or equals >= ge

Less than or equals <= le

Not equals != ne

TABLE 7-4

EL Relational 
Operators

Relational Operators
EL has a full complement of relational operators, which have conventional and 
alternate forms, as shown in Table 7-4. Alternative forms exist to make writing JSP 
documents that much easier. You’ll remember from earlier in the chapter that the 

Expression Languauge (Exam Objectives 7.1, 7.2, and 7.3) 493



494 Chapter 7: JSP Standard Actions, XML, and EL

< and > signs are bad news for well-formed XML, except when used to mark the 
beginning and end of tags. To avoid having to use escape sequences such as &gt;= 
every time you want to express “greater than or equals” in an expression, use ge 
instead. It’s a good habit to get into, for the alternative form works just as well in 
conventional syntax and is much more readable in JSP document syntax.

The result of a relational operation is boolean true or false. So the following 
not very useful expression will cause “true” to be written to output: ${9 ge 3}. 
You are not restricted to numeric inputs. Most usefully, you can do lexical string 
comparison, so ${"zebra" eq "antelope"} will return “false.” Under the covers, 
the String equals() method is invoked rather than a straight comparison of 
objects. In general, EL relational evaluation will invoke useful comparison methods 
on objects (such as equals() and compareTo()) when they are appropriate and 
available.

Logical Operators
EL has a more limited set of logical operators than the Java language. As for 
relational operators, there is a symbolic and alternative form. These are both shown 
in Table 7-5. These operators allow you to join conditional tests together to return 
a composite boolean result. For example, ${9 > 3 && "z" gt "a"} would return 
true. Like Java, EL will evaluate only the left-hand side of an expression involving 
&& and ||, if that is suffi cient to intuit the overall result:

■ If the left-hand side of an expression involving && is false, the whole expression 
must be false.

■ If the left-hand side of an expression involving || is true, the whole expression 
must be true.

In either case, the right-hand side remains unevaluated. For all the examples we’ve 
seen, this doesn’t matter. However, it might matter more to you after you see EL 
functions in Chapter 8.

Symbolic Alternative

Logical “and” && and

Logical “or” || or

Logical “not” ! not

TABLE 7-5

EL Logical 
Operators



The empty Operator
EL’s empty operator can be invoked like this: ${empty obj}. This expression 
will evaluate to true if obj represents something null—as would happen if the 
obj attribute didn’t exist. However, the empty operator generalizes the concept 
of emptiness beyond a crude null test. There are other circumstances where 
${empty obj} results in true, which is any of the following:

■ obj is an empty string (“”).

■ obj is an empty array.

■ obj is an empty Map or an empty Collection (which covers every collection 
class in the java.util package —all of them inherit Map or Collection somewhere 
along the line).

Under any other circumstance, ${empty obj} will return false.

For all the operators—
arithmetic, relational, logical—the 
precedence rules work in the same 
way as for the equivalent operators 
in the Java language. Parentheses 
can (and should) be used to clarify 
potential misinterpretations of code. 
However, you should have some 
awareness of precedence for the 

exam. Expressed crudely, the order is as 
follows:

not, empty;
multiplication, division, modulo;
addition, subtraction;
relational;
and, or.
For more precision, refer to the JSP 

Specifi cation, section 2.3.10.

EL Property Access
Having dealt with the basics of EL — syntax, literals, operators —we can move on to 
some of its more exciting aspects. As you would have suspected from the preceding 
discussion, EL can access objects. Mostly, EL is used to access attributes that have 
been set up in some scope: page, request, session, or application. In this respect, EL 
is like the standard action <jsp:getProperty>, although its syntax works rather 
differently —and that’s what we need to explore next.

Expression Languauge (Exam Objectives 7.1, 7.2, and 7.3) 495



496 Chapter 7: JSP Standard Actions, XML, and EL

The . and [ ] Operators
Any attribute in any scope can be displayed with EL. The scope doesn’t even need to 
be specifi ed. Suppose that there is an attribute called “title,” holding a String object 
with some text; then ${title} is all that is required to display that text. What 
happens, though, if the attribute isn’t as simple as a String? What if you are holding 
a complex object as an attribute? For such an object to be useful to EL, it has to be 
a JavaBean —at least in the sense of having “getter” methods. Let’s suppose that the 
object in question is the Dog JavaBean we met at the beginning of the chapter. This 
had fi ve methods: getName() (returning a String), getWeight() (returning a fl oat), 
isInsured() (boolean), getSex() (char), and getBarkVolume (another String). 
According to bean law, this exposes fi ve properties derived from the “getter” method 
names: name, weight, insured, sex, and barkVolume. The properties share the type of 
their corresponding “getter” method.

Now let’s suppose that a Dog object exists as a session attribute, with a name of 
“currentDog.” To display a property of the dog, you use the attribute name and the 
property name. The simplest approach is to separate the two with a dot. So

${currentDog.name}

would display the name of the dog, and

${currentDog.insured}

would display “true” or “false” according to whether the dog was insured or not. Type 
conversion from boolean to String is managed somewhere before the result reaches 
page output, as is true for all other primitive types or objects returned by an expression.

This is the best way to use EL for property access. However, there is an alternative 
syntax, although it’s really better kept for a different purpose we’ll come to in a 
moment. These variants will also display the dog’s name:

■ ${currentDog["name"]}

■ ${currentDog['name']}

You’re not limited to one level, either. Let’s suppose our Dog class had an additional 
method, getFather(), which returned another Dog object — representing the father 
of the current dog. This would expose another property on the current dog, called 
“father.” The father dog —being a Dog object —has all the same properties as the 
current dog. So if you now wanted to display the name of the current dog’s father, you 
could do so this way:



${currentDog.father.name}

The alternative syntax would look like this:

■ ${currentDog["father"]["name"]}

■ ${currentDog['father']['name']}

You can even mix and match double quotes and single quotes, as long as you are 
consistent within any particular pair of square brackets, so although it’s inconsistent, 
${currentDog['father']["name"]} would also work. In essence, anything that 
EL can interpret as a String can go between the square brackets.

Arrays, Lists, and Maps
EL capabilities go further. Suppose that I have an array defi ned as a page attribute 
through the following scriptlet:

<% String[] dayArray = {"Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"};
pageContext.setAttribute("days", dayArray); %>

An expression later in the JSP page source can access the days of the week using 
syntax that is practically identical to array syntax. For example, ${days[0]} 
will send “Mon” to page output, while ${days[6]} will send “Sun.” Within the 
expression’s curly braces is the name of the attribute (days) followed by square 
brackets. Within the square brackets you can place any integer —either a literal or 
some attribute that can be sensibly converted to an integer. So if you wrote this code 
farther down the page, it would output “Wed Thu”:

<% pageContext.setAttribute("two", new Integer(2));
pageContext.setAttribute("three", "3"); %>
${days[two]}
${days[three]}

The fi rst page attribute, called “two,” is set to an Integer with a value of 2. So 
${days[two]} gets the third value in the array —“Wed.” You can see, though, from 
the second attribute, that you don’t have to stick with explicit numeric types as with 
java.lang.Integer. The second page attribute, called “three,” still works when loaded 
with a String. Provided that a method like Integer.parseInt() can extract an int 
value from the String, everything will work.

Expression Languauge (Exam Objectives 7.1, 7.2, and 7.3) 497



498 Chapter 7: JSP Standard Actions, XML, and EL

Having worked through Arrays, you’ll be delighted to know that Lists work in the 
same way. Any collection class that implements java.util.List can have its members 
accessed with identical syntax. Under the covers, the List.get(int index) 
method is executed.

Finally, there is the case of classes that implement java.util.Map. You’ll recall from 
the SCJP (if nowhere else) that Maps hold a collection of key-value pairs. Each key 
must be unique, and is normally a String value (but can be any Object). Let’s consider 
a variation on the days of the week example, which uses a Map:

<jsp:directive.page import="java.util.*" />
<% Map longDays = new HashMap();
longDays.put("MON", "Monday");
longDays.put("TUE", "Tuesday");
longDays.put("WED", "Wednesday");
longDays.put("THU", "Thursday");
longDays.put("FRI", "Friday");
longDays.put("SAT", "Saturday");
longDays.put("SUN", "Sunday");
pageContext.setAttribute("longDays", longDays);
pageContext.setAttribute("wed", "WED");
%>
<br /> ${longDays[wed]}
<br /> ${longDays["THU"]}
<br /> ${longDays.FRI}

The output from this code is

Wednesday
Thursday
Friday

If you write an expression 
such as ${days[7]}, you might expect 
an ArrayIndexOutOfBoundsException 
or an ELException arising from this as 
an underlying cause. Not so. EL silently 
suppresses this problem—you just get 
blank output. Even if you use an attribute 
name that doesn’t exist—${days[notAn
AttributeName]}—nothing goes wrong; 

you just get blank output. However, let’s 
consider what happens if the attribute 
supplied is a valid attribute but can’t be 
converted to an integer value. Given this 
page attribute, <% pageContext
.setAttribute(“four”, “the
_Word_Four”); %> the expression 
${days[four]} would end in a run-time 
error (ELException).



What happens is this: The code loads a HashMap object with the full names of the 
seven days of the week, keyed by abbreviated capital codes (“MON,” “TUE,” etc.). 
The HashMap is loaded into a page attribute called longDays. Another page attribute 
is set up, called “wed” and with a value of “WED”—which matches one of the keys in 
the HashMap. In general terms, expressions accessing a Map work on this principle: 
${nameOfMap[keyValue]}. From the two expressions in the code, you can see that it 
doesn’t matter if the key value is a literal (“THU”) or derived from an attribute (wed).

What about the third expression, though: ${longDays.FRI}? That appears 
to use the JavaBean syntax we used earlier —even though there is obviously no 
“getFRI()” method to fall back on within the Map. Yet it still works. If you use 
a Map’s key value as if it were a property name on a bean, you will still fi nd the 
corresponding value.

EL Implicit Objects
To add to EL’s versatility still further, it has its own set of implicit objects. It’s similar 
to the idea of implicit objects that you can use in general JSP page source, but it’s 
important —especially for the exam!— that you learn the distinctions between the 
two sets. The full list is shown in Table 7-6. Note that all the EL implicit objects, 
with the exception of pageContext, are of type java.util.Map, so they obey the Map 
rules we just explored.

Let’s briefl y explore these implicit objects in turn.

pageScope, requestScope, sessionScope, and applicationScope These 
implicit objects are used to access attributes in a given scope. Of course, you can 
just name an attribute in expression language without any qualifi cation, like this: 
${myAttribute}. Under the covers, PageContext.find("myAttribute") is used 
to search all scopes through page, request, session, and application, stopping when 
it fi nds an attribute of the right name. But if you want to target only a session 
scope attribute, then ${sessionScope.myAttribute} will do the trick. All the 
alternative Map syntaxes will work as well—${applicationScope

["myAttribute"]} to fi nd the attribute in application scope, for example.

param, paramValues These are used to recover parameter values — singly or 
in bulk. Let’s suppose that your HTTP header request contains the following query 
string: ?myParm=firstValue&myParm=secondValue. Let’s also suppose this is a 
GET request, so there are no additional parameter values for myParm hidden in a 
POSTed request body. The result of ${param.myParm} is “fi rstValue.” The result of 
${paramValues.myParm[1]} is “secondValue.” To put it another way, the implicit 

Expression Languauge (Exam Objectives 7.1, 7.2, and 7.3) 499



500 Chapter 7: JSP Standard Actions, XML, and EL

object param can be used solely to access the fi rst value of a parameter (so in this 
example, it is impossible to use param to retrieve “secondValue”). However, using 
array syntax as shown, you can use the implicit object paramValues to access any of 
the available values for a given parameter.

header, headerValues These are used in a very similar way to param and 
paramValues, but they are targeted to recover request headers. The request header 
“Accept” is a good one to experiment with. This specifi es the MIME types that a 
client is willing to receive back in the response, and it often consists of multiple 
values. The syntax is identical as for param and paramValues, so ${header.accept} 
returns the fi rst value of the accept header, and ${headerValues.accept[2]} 
returns the third value. (“Accept” is one of the headers set up by the browser you 
met in Chapter 1, Exercise 1. Try pointing this browser to your own JSP, which 
contains the EL header and headerValues syntax described here.)

Variable Name Description
Closest JSP Scripting 
“Equivalent”

pageContext Represents the JSP PageContext 
object

Accessing properties of the 
pageContext implicit object

pageScope A Map of page scope attributes pageContext.getAttribute()

requestScope A Map of request scope attributes request.getAttribute()

sessionScope A Map of session scope attributes session.getAttribute()

applicationScope A Map of application scope attributes application.getAttribute()

param A Map of ServletRequest parameter 
names and fi rst values

request.getParameter()

paramValues A Map of ServletRequest parameter 
names and all values

request.getParameterValues()

header A Map of HttpServletRequest header 
names and fi rst values

request.getHeader()

headerValues A Map of HttpServletRequest header 
names and all values

request.getHeaders()

cookie A map of HttpServletRequest cookie 
names and cookie objects

request.getCookies() and
iterating through the returned Cookie 
array for a cookie of a given name

initParam A Map of ServletContext parameter 
names and values

confi g.getServletContext()
.getInitParameter()

TABLE 7-6 EL Implicit Objects



ON THE CD

initParam This is used to access ServletContext initialization parameters, whose 
values are available across the entire web application. Don’t be fooled into thinking 
that Servlet initialization parameters are returned! The syntax is exactly as for 
param, so ${initParam.myParm} is used to return the value of an initialization 
parameter named “myParm.”

cookie This is used to access a named Cookie in the HttpRequestHeader. A good 
example is the session cookie. Here are some variant approaches, all of which will 
display the value of the cookie:

${cookie.JSESSIONID.value}
${cookie["JSESSIONID"].value}
${cookie["JSESSIONID"]["value"]}

The implicit objects cookie, header, and headerValues are available only in 
JSP containers supporting the HTTP protocol, which, of course, most will do. 
These implicit objects relate to HTTP-only concepts.

pageContext This can be used to 
access properties of the PageContext object 
associated with the JSP page. Properties, 
as always, mean anything available from a 
“get” method that has no parameters. So 
request, session, and servletContext (not 
application!) are all available as properties 
by virtue of getRequest(), getSession(), 
and getServletContext() methods. If these 
objects have properties of their own, they can 
be used in expressions. So ${pageContext

.request.method}, for example, will display the HTTP method (GET, POST, 
etc.) associated with the request.

EXERCISE 7-4

An EL Calculator
In this exercise, you’ll write a single JSP document that acts as a simple calculator. 
You’ll be able to type in two fi gures, select an operation (add, subtract, multiply, 
divide, modulo), and display the result. You’ll use EL both to perform the 
calculations and to display the result.

An implicit object name 
always takes precedence. Suppose that I 
set up a page attribute called “header”; 
then ${header} would still refer to 
the implicit object header, not my page 
attribute (or attribute in any other scope, 
come to that).

Expression Languauge (Exam Objectives 7.1, 7.2, and 7.3) 501



502 Chapter 7: JSP Standard Actions, XML, and EL

There’s a double purpose to this exercise. Writing the calculator will help your 
fl uency with EL. Using the calculator will help you see how EL handles calculations. 
Try all kinds of inputs, with and without decimal points — some of the results may 
surprise you! You’ll be much better prepared for anything the exam can throw at you 
in terms of EL arithmetic.

Create the usual web application directory structure under a directory called 
ex0704, and proceed with the steps for the exercise. There’s a solution in the CD 
in the fi le sourcecode/ch07/ex0704.war —check there if you get stuck.

Create the JSP Document

 1. Create a fi le called calculator.jspx directly in context directory ex0704.

 2. Include a <jsp:output> element to omit the XML declaration that 
otherwise gets inserted into page output for JSP documents.

 3. Include a <jsp:directive.page> element to set the content type to 
“text /html.”

 4. Write HTML elements to make a valid HTML document —<html>, <head>, 
<body>, etc. Make sure <html> is the root element in your document.

 5. Include a namespace reference in the opening <html> tag to qualify the jsp: 
elements (xmlns:jsp="http://java.sun.com/JSP/Page").

 6. Place an HTML form in the document. This should have an input text fi eld 
named arg1, a select fi eld named operation, an input fi eld named arg2, 
and a submit button. Give the select fi eld fi ve options to match the fi ve 
arithmetic operations: add, subtract, multiply, divide, and modulo.

 7. Beneath the form, place some template text saying “Did you miss out one of 
the numbers?” Next to this, write an EL expression that will output “true” if 
either of the input parameters arg1 or arg2 is empty.

 8. Beneath this text, you’re going to place a mixture of template text, scriptlets, 
and expressions that restate the calculation and show the result. For example, 
“Result: 1 plus 2 = 3.” This is easier said than done; some hints follow.

 9. “Result:” is just template text, and the value of the fi rst input to the 
calculation (arg1) can be derived in EL using the param implicit object.

 10. To display the operation (add, subtract, multiply, etc.), you could again use 
the param implicit object with the operation parameter. Alternatively, use a 
<jsp:scriptlet> to obtain the request parameter value for operation, and 
condition your text accordingly. (This is what the solution code does — the 



option values are abbreviations such as “Add,” “Sub,” and “Mlt.” There is 
logic to test the value and display a suitable word or phrase instead, such as 
“plus,” “minus,” and “multiplied by.”)

 11. The value of the second input to the calculation (arg2) can be derived in EL 
by using the param implicit object again. The equal sign (=) is template text.

 12. For the calculation itself, you’ll need to write fi ve EL expressions involving 
the arg1 and arg2 parameters. You’ll need a scriptlet (or rather, a series of 
scriptlets using if... and else if {...) to test the operation parameter 
such that only one of the EL expressions is executed).

Deploy and Run the Application

 13. Create a WAR fi le that contains the contents of ex0704, and deploy this to 
your web server. Start the web server if it has not started already.

 14. Use your browser to request calculator.jspx, with a URL such as

http://localhost:8080/ex0704/calculator.jspx

 15. Test it out with all fi ve arithmetic operations, using a mixture of integers and 
doubles (i.e., anything with a decimal point) as inputs.

 16. The following illustration shows the solution page in action.

Expression Languauge (Exam Objectives 7.1, 7.2, and 7.3) 503



504 Chapter 7: JSP Standard Actions, XML, and EL

CERTIFICATION SUMMARY
In this chapter you began by learning about standard actions. You saw that these 
observe strict XML element syntax, comprising opening tags, closing tags, and 
attributes. The fi rst three standard actions you encountered were <jsp:useBean>, 
<jsp:setProperty>, and <jsp:getProperty>. You found that <jsp:useBean> 
can be used to make an object available in a page, either by obtaining an object from 
an existing attribute or by creating a new object and attaching it to an attribute. 
You also saw that the object targeted by <jsp:useBean> must adhere to JavaBean 
standards —at least in having a no-argument constructor, and (for it to be at all 
useful) having “get” and “set” methods. You found that <jsp:useBean> has an 
id attribute, whose value is shared with the name for the page, request, session, 
or application scope attribute it is bound to. You learned that the class attribute 
specifi es the actual class of the object created, but that a type attribute can be used 
to specify a different type of reference variable (implemented interface or superclass) 
for the bean object. You saw that a scope attribute can be used to associate the object 
with any one of the four different scopes (scope="page|request|session|
application").

You then learned that <jsp:setProperty> can be used to set the value for 
one of the properties on the bean object declared with <jsp:useBean>. You saw 
that a property is named after a “get” and “set” method on the bean, such that 
getLoan()exposes a property called “loan” and that setBankBalance() exposes 
“bankBalance.” You saw that you use the property attribute to name one of the 
properties and use the name attribute to tie in to an existing bean (as named in 
the id attribute of <jsp:useBean>). You learned that the value can be set using 
the value attribute (where the value of the value attribute can be a literal or a 
run-time expression), or by using the param attribute (associating the value with 
a request parameter). You then saw that <jsp:getProperty> can be used —like 
an expression — to send the value of a property to page output. You saw that this 
also has attributes of name (the name of the bean: matching the id value on <jsp:
useBean>) and property (the name of the property whose value to display).

In the next section of the chapter, you met three more standard actions —<jsp:

forward>, <jsp:include>, and <jsp:param>. You learned that <jsp:forward> 
and <jsp:include> do much the same job as the forward() and include() 
methods on a RequestDispatcher object. You saw that <jsp:forward> and <jsp:
include> each have a page attribute, and this is used to specify a page within the 
web application using an absolute or relative URL (beginning with a slash or not). 



You learned that <jsp:include> also has a fl ush attribute to control whether or not 
existing response output should be sent to a client before including a fi le, but that 
<jsp:forward> doesn’t —because if output has been written to the client already, it’s 
illegal to forward to another resource. You learned the differences between the <jsp:
include> standard action and the <%@ include file="..."> page directive. 
You saw that the include standard action doesn’t include a target fi le until request 
time; hence, the value for the fi le can be a run-time expression. You learned that, by 
contrast, the include directive incorporates the contents of a fi le at translation time.

You moved on to <jsp:param>, and saw how this can be used to graft on 
parameters available to the forwarded-to or included resource. You also learned that 
these parameters are no longer available on return to the forwarding or including 
resource.

The next main topic covered was that of JSP documents. You learned that JSP 
documents are JSP page source written in well-formed XML and by default are used 
to produce XML as output. You learned the basics of well-formed XML documents: 
how each one must have a root element, how opening tags must match to closing 
tags, and how every element must nest inside another without overlapping
(aside from the root element). You saw that JSP traditional scripting element syntax 
has to be replaced with equivalent XML elements — so <jsp:scriptlet>... 
</jsp:scriptlet> for <%...%>, <jsp:expression>...</jsp:expression> for 
<%=...%>, and <jsp:declaration>...</jsp:declaration> for <%!...%>. You 
found that the Java language contents of scriptlets, expressions, and declarations can 
remain unaltered —except that some symbols (in particular < and >) need character 
sequences called entities to keep the XML syntax well-formed (so &lt; for < and 
&gt; for >).

You also saw that directive syntax changes as well, so <jsp:directive
.page .../> for <%@ page ...%> and <jsp:directive.include .../> for 
<%@ include ...%>. However, you found that the attributes for page and include 
directives remain unaltered between the two styles. You learned that comment 
syntax changes subtly, so <!-- ... --> becomes the equivalent of <%-- ... --%> 
for commenting out lines in page source.

You learned that there are three different ways for the JSP container to recognize 
JSP documents. Two of the methods rely on a web.xml fi le at servlet specifi cation 
level 2.4: (1) having a .jspx extension on the fi le, and (2) setting the <is-xml> 
element to “true” in the deployment descriptor for a given <url-pattern>— this 
within <jsp-property-group> in element <jsp-config>. The third method, 
you saw, works whatever level of deployment descriptor you have, and that is to use 
<jsp:root> as the root element in your document.

Expression Languauge (Exam Objectives 7.1, 7.2, and 7.3) 505



506 Chapter 7: JSP Standard Actions, XML, and EL

In the fi nal section of the chapter, you learned about Expression Language,
abbreviated EL. You saw how EL is a Java-language free equivalent for expressions. 
You saw that EL has access to any attribute in any scope and that the simplest way
to display an attribute value in your page output is like this: ${attributeName} . 
You learned that if that attribute is a bean, you can access properties on the bean 
using dot syntax (${attributeName.propertyName}) or square bracket syntax 
(${attributeName["propertyName"]}). You saw how the square bracket syntax 
is useful for accessing Array or List elements, by providing an integer in the square 
brackets. You also learned that an attribute that is a java.util.Map can have its key 
values treated like bean properties, using the dot or square bracket syntax.

You saw that you have a range of fi ve literals available to you in EL —integers, 
fl oating point numbers, booleans (true or false, like Java), strings (enclosed 
with single or double quotes), and a null literal. You were introduced to the fi ve 
arithmetic operators in EL: +, �, *, / or div, and % or mod, and a range of relational 
and logical operators. You saw that there are character equivalents for relational 
operators so that you can more easily write XML-friendly syntax. You also met EL’s 
empty operator and found that this qualifi es empty strings and empty arrays and 
collections as returning true for an empty test as well as, of course, a null value.

Finally, you met the range of EL’s implicit objects. You found that you can 
access attributes in a particular scope using pageScope, requestScope, sessionScope, or 
applicationScope. You saw that you can use param or paramValues to access request 
parameters, and header or headerValues to access request headers. You learned that 
initParam is used to access ServletContext parameters and that cookie is used to access a 
named cookie on a request.



✓TWO-MINUTE DRILL

JSP Standard Actions
❏ Standard actions follow XML syntax, with opening and closing tags.

❏ The opening tag of a standard action almost always has attributes, which are 
name=“value” pairs.

❏ The <jsp:useBean> standard action makes an attribute available in a 
JSP page.

❏ This example creates an attribute in page scope: <jsp:useBean 
id="bankAccount" class="a.b.BankAccountBean" />.

❏ The id attribute identifi es the name of the attribute.

❏ The class attribute identifi es the fully qualifi ed name of the object attached to 
the attribute.

❏ The class used in this standard action should obey JavaBean rules — so it 
should have a no-argument constructor, and getter and setter methods.

❏ If such a class has methods called getLoan() and setLoan(), it is deemed to 
have a property called loan, which can be read or updated.

❏ Properties can be updated using the <jsp:setProperty> standard action.

❏ Properties can be read (sent to page output) using the <jsp:getProperty> 
standard action, which is like an expression.

❏ One possible syntax for <jsp:setProperty> is <jsp:setProperty 
name="bankAccount" property="loan" value="5000" />. This 
effectively calls setLoan() on the object attaching to the bankAccount page 
scope attribute, passing in a parameter of 5000.

❏ One possible syntax for <jsp:getProperty> is <jsp:getProperty 
name="bankAccount" property="loan" />. This effectively calls 
getLoan() on the object attaching to the bankAccount page scope 
attribute, and sends the result to page output.

❏ Both <jsp:setProperty> and <jsp:getProperty> have mandatory name 
and property attributes.

❏ The name attribute in both cases must (or should) tie back to the id attribute 
in a <jsp:useBean> standard action in the same page.

❏ The value attribute on <jsp:setProperty> can be set with literals, or with 
a run-time expression (EL or Java language syntax).

Two-Minute Drill 507



508 Chapter 7: JSP Standard Actions, XML, and EL

❏ Another possible syntax for <jsp:setProperty> is <jsp:setProperty 
name="bankAccount" property="loan" param="loanField" />. This 
effectively calls setLoan() on the object attaching to the bankAccount page 
scope attribute, passing in the value for the request parameter loanField as a 
parameter.

❏ <jsp:setProperty name="bankAccount" property="*" /> has the 
effect of calling set methods on all the properties of the bankAccount bean 
whose names match the names of request parameters.

❏ <jsp:useBean> has an optional attribute called scope, with valid values of 
“page”, “request”, “session”, or “application”. The bean is created or retrieved 
from the given scope (the default —if scope is absent —is “page”).

❏ <jsp:useBean> has another optional attribute called type. This must be a 
superclass of, or interface implemented by, the class attribute value.

❏ The type attribute enables the use of a different type of reference variable 
from the underlying class of the object that holds the attribute value.

Dispatching Mechanisms
❏ The <jsp:include> standard action acts very much like the 

RequestDispatcher.include() method.

❏ The <jsp:forward> standard action is likewise like the 
RequestDispatcher.forward() method.

❏ Both <jsp:forward> and <jsp:include> have one mandatory attribute: 
page.

❏ Example forward:<jsp:forward page="/anotherPage.jsp" />.

❏ The page attribute references the fi le to include or forward to.

❏ The value for the page attribute can begin with a forward slash. The JSP 
container then treats the web application context directory as the root.

❏ No forward slash for the page attribute denotes a relative URL. The JSP 
container looks for the forwarded-to or included fi le relative to the location 
of the forwarding or including page.

❏ A <jsp:forward> is illegal (IllegalStateException) if any of the response has 
already been sent to the client.

❏ <jsp:include> also has an optional attribute, fl ush. This determines 
whether any existing page output should be sent to the client before 
including the fi le.



Two-Minute Drill 509

❏ <jsp:param> can be included in the body of <jsp:forward> or <jsp:
include>.

❏ <jsp:param> has name and value attributes: <jsp:param name="parmName" 
value="parmValue" />.

❏ <jsp:param> adds in request parameters that are available to the forwarded-
to or included resource but disappear on return to the forwarding or including 
pages.

❏ In the case of more than one value being present for a given parameter name, 
<jsp:param> request parameter values are loaded at the front.

JSPs in XML
❏ JSP documents are JSP source fi les written entirely in XML syntax.

❏ JSP documents typically have a .jspx extension.

❏ JSP documents can also be identifi ed by setting <is-xml>true</is-xml> in 
the deployment descriptor for a given <url-pattern>. Both these elements 
are subelements of <jsp-property-group>, which is a subelement of 
<jsp-config>.

❏ Otherwise, a JSP document must use <jsp:root> as its root element.

❏ XML syntax demands a single root element in a fi le (as <web-app> is for the 
deployment descriptor).

❏ XML syntax demands that each element is properly nested. It is illegal for the 
closing tag from one element to come between the opening and closing tag of 
another element.

❏ JSP document syntax provides replacements for all the <%-type scripting 
element syntax.

❏ <jsp:scriptlet>...</jsp:scriptlet> replaces <%...%>.

❏ <jsp:expression>...</jsp:expression> replaces <%=...%>.

❏ <jsp:declaration>...</jsp:declaration> replaces <%!...%>.

❏ Otherwise, Java language syntax remains unchanged, but XML-unfriendly 
characters (such as < and >) need to be replaced with entities (such as &lt; 
and &gt;).

❏ <jsp:directive.page .../> replaces <%@ page ...%>.

❏ <jsp:directive.include .../> replaces <%@ include ...%>.

❏ <!-- ... pp> replaces <%-- ... --%>.



510 Chapter 7: JSP Standard Actions, XML, and EL

Expression Language
❏ Expression Language (EL) replaces Java-language syntax expressions.

❏ The base syntax is ${expression}.

❏ The result from an EL expression is sent to page output.

❏ Any attribute in any scope can be accessed in an expression.

❏ An EL expression cannot access local variables in _jspService() directly.

❏ There are fi ve literal types in EL: boolean, integer, fl oating decimal, string, 
and null.

❏ An EL boolean has values of true and false, like Java.

❏ An EL integer is any number without a decimal point, while fl oating decimals 
have a decimal point.

❏ An EL string is denoted by double or single quotes around the literal 
(“myString” or ‘myString’).

❏ There are fi ve arithmetic operators in EL: +, �, *, / (or div), and % (or mod).

❏ There are six relational operators in EL: < (or lt), > (or gt), <= (or le), >= 
(or ge), != (or ne), and == (eq).

❏ There are three logical operators in EL: && (or and), || (or or), and ! 
(or not).

❏ There is also an empty operator in EL, which returns true for null, empty 
strings, empty arrays, and empty collections.

❏ EL can access properties on beans with the dot operator.

❏ ${bankAccount.balance} returns a property called balance for an attribute 
bean in some scope called bankAccount.

❏ EL can access items in arrays or java.util.List objects with square bracket 
syntax.

❏ ${daysOfWeek[6]} accesses the seventh element in an array or java.util.List 
object associated with an attribute called daysOfWeek.

❏ Dot or square bracket syntax can be used to return keyed items in a java.util
.Map object.

❏ Assuming that “capital” is the name of an attribute holding a java.util.Map, 
${capital.Poland} or ${capital["Poland"]} would return the value 
associated with the key “Poland.”

❏ EL has 11 implicit objects: pageContext, pageScope, requestScope, sessionScope, 
applicationScope, initParam, param, paramValues, header, headerValues, and cookie.



Two-Minute Drill 511

❏ pageContext can be used to access properties associated with the page’s 
PageContext object.

❏ For example, ${pageContext.request.header} returns the HTTP method 
associated with the request.

❏ pageScope, requestScope, sessionScope, and applicationScope can be used to 
access an attribute in a specifi c scope.

❏ So whereas ${myAttr} will search through page, request, session, and 
application scopes for an attribute called myAttr, ${sessionScope.myAttr} 
confi nes the search to session scope.

❏ initParam returns ServletContext parameter values.

❏ param returns the fi rst value associated with a named ServletRequest 
parameter; paramValues returns all values.

❏ header returns the fi rst value associated with a named HttpServletRequest 
header; headerValues returns all values.

❏ cookie returns a named cookie associated with HttpServletRequest.



512 Chapter 1: Chapter Title

SELF TEST
The following questions will help you measure your understanding of the material presented in this 
chapter. Read all the choices carefully because there might be more than one correct answer. Choose 
all the correct answers for each question.

JSP Standard Actions

 1. (drag-and-drop question) The following illustration shows a complete JSP page source. Match 
the lettered values, which conceal parts of the source, with numbers from the list on the right, 
which indicate possible completions for the source.

<%@ page 
import="webcert.ch07.examp0701.MultiPurposeBean" %>
<jsp:useBean id="infoBean1" 
class="webcert.ch07.examp0701.MultiPurposeBean" />
<jsp:setProperty name="infoBean1" 
property="booleanAttr" value="false" />
<jsp:setProperty name="infoBean1" 
property="stringAttr" value="David" />
<html><head><title>Question 1</title></head><body>
<p>infoBean1.booleanAttr has value 
   <jsp:getProperty name="infoBean1" 
property="booleanAttr" /></p>
<p>infoBean1.stringAttr has value 
   <%= ((MultiPurposeBean) 
pageContext.getAttribute("infoBean1")).
       getStringAttr() %></p>
</body></html>

D
E

H

K

B

C

GF

JI

A

14 attribute

13 property

15 value

12 jsp:setproperty

11 jsp:setProperty

10 import

9 jsp:getproperty

8 id

7 name

6 jsp:getProperty

5 jsp:getAttribute

4 jsp:usebean

3 jsp:useBean

2 jsp:setAttribute

1 jsp:setattribute

 2. Which of the following are potentially legal lines of JSP source? (Choose two.)

 A.

<jsp:useBean id="beanName1" class="a.b.MyBean" type="a.b.MyInterface" />



Self Test 513

 B.

<% String className = "a.b.MyBean"; %>
<jsp:useBean id="beanName2" class="<%=className%>" />

 C.

<% String beanName = "beanName3"; %>
<jsp:useBean id="<%=beanName3%>" class="a.b.MyBean" />

 D.

<% String myValue = "myValue"; %>
<jsp:setProperty name="beanName1" property="soleProp" value="<%=myValue%>" />

 E.

<% String propName = "soleProp"; %>
<jsp:getProperty name="beanName1" property="<%=propName%>" />

 3. Which of the following are false statements about <jsp:useBean> standard action attributes? 
(Choose three.)

 A. If present, the class attribute must match the object type of your bean.

 B. If the type attribute is used, the class attribute must be present.

 C. The reference variable used for a bean doesn’t always have the same type as the bean object 
it refers to.

 D. If both are used, class and type attributes must have different values.

 E. If both are used, class and type attributes must have the same value.

 F. If both are used, class and type attributes can have the same value.

 4. Given a NameBean with a “name” property and an AddressBean with an “address” property, 
what happens when the following JSP is requested with the following URL? (Choose one.)

  Calling URL:

http://localhost:8080/examp0701/Question4.jsp?name=David%20Bridgewater&address=
Leeds%20UK

  JSP page source:

<jsp:useBean id="name" class="webcert.ch07.examp0701.NameBean" />
<jsp:useBean id="address" class="webcert.ch07.examp0701.AddressBean" />
<jsp:setProperty name="name" property="name" />
<jsp:setProperty name="address" param="*" />
<jsp:getProperty name="name" property="name" />
<jsp:getProperty name="address" property="address" />



514 Chapter 7: JSP Standard Actions, XML, and EL

 A. A translation time error occurs.

 B. A request time error occurs.

 C. “null null” is displayed.

 D. “David Bridgewater null” is displayed.

 E. “null Leeds UK” is displayed.

 F. “David Bridgewater Leeds UK” is displayed.

 5. Which of the following techniques would correctly put a bean into application scope? (You can 
assume that any necessary page directives are present and correct elsewhere in the JSP page.) 
(Choose four.)

 A.
<jsp:useBean id="app1" class="webcert.ch07.examp0701.AddressBean"
scope="application" />

 B.
<% AddressBean ab2 = new AddressBean();
application.setAttribute("app2", ab2); %>

 C.
<% AddressBean ab3 = new AddressBean();
pageContext.setAttribute("app3", ab3, PageContext.APPLICATION_SCOPE); %>

 D.
<% AddressBean ab4 = new AddressBean();
ServletContext context = getServletContext();
context.setAttribute("app4", ab4); %>

 E.
<% AddressBean ab5 = new AddressBean();
pageContext.setAttribute("app5", ab5); %>

 F.
<jsp:useBean name="app6" class="webcert.ch07.examp0701.AddressBean"
scope="application" />

Dispatching Mechanisms

 6. Consider the source for the following two JSP pages, a.jsp and b.jsp. What is the outcome of 
requesting each in turn? You can assume that “c.jsp” is available in the same web application 
directory as a.jsp and b.jsp. (Choose two.)



Self Test 515

  Source for a.jsp:

<%@page buffer="none" autoFlush="true"%>
<jsp:forward page="c.jsp"/>

  Source for b.jsp:

<%@page buffer="none" autoFlush="true"%><jsp:forward page="c.jsp"/>

 A. Neither JSP page translates.

 B. a.jsp translates; b.jsp does not.

 C. b.jsp translates; a.jsp does not.

 D. Both JSP pages translate.

 E. Neither JSP page runs successfully.

 F. a.jsp runs successfully; b.jsp does not.

 G. b.jsp runs successfully, a.jsp does not.

 H. Both a.jsp and b.jsp run successfully.

 7. What is the outcome of making the HTTP GET request shown to params.jsp (source follows)? 
(Choose one.)

  The HTTP request is in this form:

http://localhost:8080/examp0702/params.jsp?X=1&Y=2&Z=3

  Source of params.jsp:

<jsp:include page="included.jsp">
  <jsp:param name="X" value="4" />
  <jsp:param name="X" value="5" />
  <jsp:param name="Y" value="6" />
</jsp:include>
${param.X}
<%=request.getParameter("Y")%>

  Source of included.jsp:

${param.X}
${param.Y}
<% String[] x = request.getParameterValues("X");
for (int i = 0; i < x.length; i++) {
  out.write(x[i]);
}
%>



516 Chapter 7: JSP Standard Actions, XML, and EL

 A. 1 2 45 4 6

 B. 1 2 145 4 6

 C. 4 6 451 4 6

 D. 1 2 145 1 2

 E. 4 6 451 1 2

 F. 4 6 45 1 2

 G. None of the above

 8. Which of the following are helpful statements about the include standard action and the 
include directive? (Choose three.)

 A. The include directive is useful for the inclusion of pages that change frequently.

 B. The include standard action is useful when soft-coding the page to include.

 C. Given the same page to include, the include directive may be more effi cient than the 
include standard action at request time.

 D. The body of the include standard action can infl uence existing request parameters.

 E. Given the same page to include, the include directive may be more effi cient than the 
include standard action at translation time.

 F. An include directive can be processed or not according to JSTL, EL, or scriptlet page 
logic.

 9. What will be the result of requesting the JSP page represented by the following source? Assume 
that “forwardedTo.jsp” is an empty fi le. (Choose one.)

<%@ page import="java.util.*,java.text.*" %>
<%! private String returnTimeStamp(PageContext pageContext) {
  DateFormat df = DateFormat.getDateTimeInstance();
  String s = df.format(new Date());
  pageContext.setAttribute("timestamp", s);
  return s;
} %>
<jsp:forward page="forwardedTo.jsp" />
<%=returnTimeStamp(pageContext)%>
<%System.out.println(pageContext.getAttribute("timestamp"));%>

 A. Translation error.

 B. Run-time error.

 C. A formatted date appears in the page output.

 D. A formatted date appears in the server console.



Self Test 517

 E. A formatted date appears both in the page output and in the server console.

 F. None of the above.

 10. What is the outcome of making the HTTP GET request shown to params.jsp (source follows)? 
(Choose one.)

  The HTTP request is in this form:

http://localhost:8080/examp0702/params.jsp?X=1&Y=2&Z=3

  Source of params.jsp:

<jsp:forward page="included.jsp">
  <jsp:param name="X" value="4" />
  <jsp:param name="X" value="5" />
  <jsp:param name="Y" value="6" />
<jsp:forward/>
${param.X}
<%=request.getParameter("Y")%>

  Source of included.jsp:

${param.X}
${param.Y}
<% String[] x = request.getParameterValues("X");
for (int i = 0; i < x.length; i++) {
   out.write(x[i]);
}
%>

 A. 1 2 145

 B. 4 6 451

 C. 1 2 145 1 2

 D. 4 6 451 1 2

 E. 4 6 451 4 6

 F. None of the above

JSPs in XML

 11. What is the outcome of accessing the following page, defi ned as a JSP document in a web 
application? The line numbers are for reference only and should not be considered part of the 
JSP page source. (Choose one.)



518 Chapter 7: JSP Standard Actions, XML, and EL

01 <html xmlns:jsp="http://java.sun.com/JSP/Page">
02 <jsp:directive.page contentType="text/html" />
03 <jsp:declaration>
04   public int squared(int value) {
05     return value * value;
06   }
07 </jsp:declaration>
08 <jsp:scriptlet>
09   int value = Integer.parseInt
10   (request.getParameter("number"));
11   int squared = squared(value);
12   out.write(value + " squared is " + squared);
13   if (squared < 100) {
14     out.write("; try a bigger number.");
15   }
16 </jsp:scriptlet>
17 </html>

 A. Translation error at line 1

 B. Translation error at line 2

 C. Translation error at line 4

 D. Translation error at line 12

 E. Translation error at line 13

 F. Run-time error

 G. No errors, with page displaying successfully

 12. Which of the following JSP documents will produce output? You can assume that 
a.b.StringBean exists and has a valid property called “string.” (Choose two.)

 A. 

<jsp:useBean id="string" class="a.b.StringBean">
<jsp:setProperty name="string" property="string" value="Question12" />
  <jsp:getProperty name="string" property="string" />
</jsp:useBean>

 B.

<jsp:useBean xmlns:jsp="http://java.sun.com/JSP/Page"
id="string" class="a.b.StringBean">
  <jsp:setProperty name="string" property="string" value="Question12" />
  <jsp:getProperty name="string" property="string" />
</jsp:useBean>



Self Test 519

 C.

<jsp:useBean xmlns:jsp="http://java.sun.com/JSP/Page"
id="string" class="a.b.StringBean">
  <jsp:setProperty name="string" property="string" value="Question12" />
  <data><jsp:getProperty name="string" property="string" /></data>
</jsp:useBean>

 D.

<jsp:useBean xmlns:jsp="http://java.sun.com/JSP/Page"
id="string" class="a.b.StringBean">
  <jsp:setProperty name="string" property="string" value="Question12" />
</jsp:useBean>
<data><jsp:getProperty name="string" property="string" /></data>

 E.

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0">
<jsp:useBean id="string" class="a.b.StringBean">
  <jsp:setProperty name="string" property="string" value="Question12" />
</jsp:useBean>
<data><jsp:getProperty name="string" property="string" /></data>
</jsp:root>

 13. Which of the following techniques will cause JSP page source to be treated as a JSP document 
by the JSP container? (Choose two.)

 A. Setting the <is-xml> subelement of <jsp-config> to a value of true

 B. Using a .jspx extension with a version 2.4 deployment descriptor

 C. Using a .xml extension with a version 2.4 deployment descriptor

 D. Using <jsp:root> as the root element of your source

 E. Using a deployment descriptor at level 2.4

 F. Writing your page source in XML syntax

 14. Of the fi ve JSP page source extracts below, there are two pairs. Each member of the pair gives 
rise to identical output. Which is the odd one out? (Choose one.)

 A.

<% int i, j, k;
  i = 1; j = 2; k = 3; %>
<%= i + j / k %>



520 Chapter 7: JSP Standard Actions, XML, and EL

 B.

<jsp:scriptlet>int i, j, k;
  i = 1; j = 2; k = 3;</jsp:scriptlet>
<jsp:expression>(i + j) / k</jsp:expression>

 C.

<% int i, j, k;
  i = 1; j = 2; k = 3; %>
<%= (i + j) / k + ".0" %>

 D.

<% pageContext.setAttribute("i", new Integer(1));
pageContext.setAttribute("j", new Integer(2));
pageContext.setAttribute("k", new Integer(3));
%>${pageScope.i + pageScope.j / pageScope.k}

 E.

<% pageContext.setAttribute("i", new Integer(1));
pageContext.setAttribute("j", new Integer(2));
pageContext.setAttribute("k", new Integer(3));
%>${(pageScope.i + pageScope.j) / pageScope.k}

 15. Which of the following tags will successfully complete the following JSP page extract, at the 
points marked <jsp:???> and </jsp:???> ? (Choose one.)

<html xmlns:jsp="http://java.sun.com/JSP/Page" >
<jsp:directive.page contentType="text/html" />
<head><title>Question 15</title></head>
<jsp:???><![CDATA[<img src="]]></jsp:???>
<jsp:expression>session.getAttribute("theImage")</jsp:expression>
<jsp:???><![CDATA[" />]]></jsp:???>
</html>

 A. <jsp:param> and </jsp:param>

 B. <jsp:element> and </jsp:element>

 C. <jsp:img> and </jsp:img>

 D. <jsp:output> and </jsp:output>

 E. <jsp:text> and </jsp:text>



Self Test 521

Expression Language

 16. What is the consequence of accessing the following JSP page with the URL shown? 
(Choose one.)

  URL for accessing Question16.jsp:

http://localhost:8080/examp0704/Question16.jsp?A=1&A=2

  JSP page source:

<!-- Source for Question16.jsp -->
<p>Parameter A has values
<% for (int j = 0; j < request.getParameterValues("A").length; j++) { %>
${paramValues.A[j]},
<% } %> </p>

 A. Translation error

 B. Run-time error

 C. Output of: “Parameter A has values 1,2,”

 D. Output of: “Parameter A has values 1, ,”

 E. Output of: “Parameter A has values 0,0,”

 F. Output of: “Parameter A has values , ,”

 17. Which of the following are implicit variables in EL? (Choose two.)

 A. session

 B. param

 C. paramValues

 D. initParams

 E. request

 F. page

 G. contextScope

 18. Which of the following EL expressions will return a <servlet-name> associated with the JSP 
executing the expression? (Choose one.)

 A.

${pageContext.config.getServletName}



522 Chapter 7: JSP Standard Actions, XML, and EL

 B.

${pageContext.config.servletName}

 C.

${pageContext.servletConfig.servletName}

 D.

${pageContext.servletConfig.getServletName}

 E.

${pageContext.getServletConfig().getServletName()}

 19. What expression is required at the point marked ??? in the following JSP page to output the 
number 46? (Choose two.)

<html xmlns:jsp="http://java.sun.com/JSP/Page" >
<head><title>Question 19</title></head>
<jsp:output omit-xml-declaration="true" />
<jsp:directive.page contentType="text/html" />
<body>
<jsp:scriptlet>
  request.setAttribute("a", new Integer(2));
  session.setAttribute("b", new Integer(3));
  application.setAttribute("c", new Integer(4));
  request.setAttribute("d", new Integer(5));
</jsp:scriptlet>
???
</body></html>

 A.

${pageContext.c * pageContext.d * pageContext.a
+ pageContext.a * pageContext.b}

 B.

${applicationScope.c * requestScope.d * requestScope.a
+ requestScope.a * sessionScope.b}

 C.

${(applicationScope.c * requestScope.d * requestScope.a)
+ (requestScope.a * sessionScope.b)}

 D.

${(pageContext.c * pageContext.d * pageContext.a)
+ (pageContext.a * pageContext.b)}



Self Test 523

 E.

${(application.c * request.d * request.a)
+ (request.a * session.b)}

 F.

${application.c * request.d * request.a
+ request.a * session.b}

 20. (drag-and-drop question) The following illustration shows a complete JSP page source. Match 
the lettered values, which conceal parts of the source, with numbers from the list on the right, 
which indicate possible completions for the source.

<html xmlns:jsp="http://java.sun.com/JSP/Page" >
<head><title>Question 20: Drag and 
Drop</title></head>
<jsp:output omit-xml-declaration="true" />
<jsp:directive.page contentType="text/html" />
<body>
<jsp:declaration>
 private Integer generateLuckyNumber() {
   Double d = new Double (Math.random() * 100);
   Integer i = new Integer (d.intValue());
   return i;
 }

</jsp:declaration>
<jsp:scriptlet>pageContext.setAttribute("luckyNo", 
generateLuckyNumber());
</jsp:scriptlet>
<p>Your session cookie has the name
${cookie.JSESSIONID.name} (which should come as no 
surprise)<br />
and the value ${cookie.JSESSIONID.value} (which is 
harder to predict).</p>
<br /> 
<p>Your lucky number for the day is 
${pageScope["luckyNo"]}</p>
</body></html>

D
E

B

C

G

H

F

JI

A

14 expression

13 “luckyNo”

15 Expression

12 luckyNo

17 pageScope

16 pageContext

18 page

11 cookie

10 xlmns;jsp

9 xmlns:jsp

8 Cookie

7 Scriptlet

6 directive.page

5 page.directive

4 cookies

3 scriptlet

2 Declaration

1 declaration



524 Chapter 7: JSP Standard Actions, XML, and EL

LAB QUESTION
For this question, you’re going to take the solution code from a previous exercise and apply many of the 
techniques you learned in this chapter. The previous exercise to use is Exercise 6-3 (from Chapter 6), 
packaged on the CD in /sourcecode/chapter06/ex0603.war. Establish a new context directory called 
lab07, and unpackage the WAR fi le into this.

The solution code from Exercise 6-3 displays a short list of countries and capitals. There are four JSPs 
involved in the solution: master.jsp, which includes header.jsp, setup.jsp, and footer.jsp. Your mission is 
to turn master.jsp and setup.jsp into JSP documents (i.e., in XML syntax), so rename these to master
.jspx and setup.jspx. When including fi les into master.jspx,

■ Include header.jsp and footer.jsp via an include directive.

■ Include setup.jspx via an include standard action.

Other than this, use expression language and standard actions wherever possible. You’ll need to 
revisit header.jsp and setup.jsp so that when these are incorporated into master.jspx, they don’t 
damage the XML syntax. You’ll quickly discover any problems as you deploy the JSPs and attempt to 
access master.jspx.



SELF TEST ANSWERS
JSP Standard Actions

 1. � A matches with 10 (must be an import attribute for the page directive); B matches with 
3 (only a <jsp:useBean> has id and class attributes); C and F match with 11 (has to be <jsp:
setProperty> because of the value attribute); D, G, and J match with 7 (must be the name 
attribute in all cases); E, H, and K match with 13 (must be the property attribute in all cases);
I matches with 6 (must be <jsp:getProperty> to display the property, which is the clear 
intention of the code here).

 �  No other combinations will work.

 2. � A and D. A is correct; it’s normal <jsp:useBean> syntax. Of course, a.b.MyBean must 
implement a.b.MyInterface for the action to translate. D is also correct. It’s a valid <jsp:
setProperty> element. There’s one slightly unusual aspect: The value attribute’s value setting 
comes from a run-time expression. But this is one of the few cases when it’s legal to embed a 
run-time expression inside an action attribute.

 � B and C are incorrect because you can’t use a run-time expression for either the class 
attribute or id attribute values of <jsp:useBean>. Both must be known at translation time 
(these values are, effectively, hard-coded in the generated servlet). Because there is compile-
time checking done on class existence and validity, the class attribute could never be soft-coded. 
E is incorrect for similar reasons: The property name of a <jsp:getProperty> element must be 
known when the servlet is translated, for the generated servlet must select the right method to 
turn the property into a String for display.

 3. � B, D, and E are correct answers, for all are false statements. B is a false statement (so a 
correct answer) because type can be used without class—in which case, your bean must exist 
already, or you will get a run-time error. D and E are false statements (and so correct answers) 
because it’s neither true that class and type must be different nor that they must be the same.

 � A is a true statement (so an incorrect answer), for the class attribute does indeed defi ne 
the object type of the bean. C is a true statement (so an incorrect answer) as the type of the 
reference variable used for the bean can be different from the object type of the bean itself (if 
class and type are set differently). F is a true statement (so an incorrect answer)—it’s pretty 
pointless setting the class and type attributes to the same value, but it’s still legal. You might as 
well omit the type attribute under these circumstances, though.

 4. � A is the correct answer: A translation-time error occurs. The second <jsp:setProperty> 
element should have the attribute setting of property=“*” for the page to translate and compile; 
param=“*” is incorrect syntax.

Self Test Answers 525



526 Chapter 7: JSP Standard Actions, XML, and EL

 � B is incorrect because the incorrect syntax of the standard action prevents translation. 
C, D, E, and F are incorrect because there is no output (F would be the correct answer if the 
syntax error were corrected).

 5. � A, B, C, and D are correct. A is the <jsp:useBean> standard action used exactly as it 
should be to create a bean in application scope. B sets up a bean in a scriptlet and uses the 
application implicit object to set the bean up as an attribute. C also uses a scriptlet but uses the 
three-parameter version of pageContext.setAttribute to provide the name, the bean, and 
the scope of the attribute. D again uses a scriptlet — there’s more manual work this time, getting 
hold of the servlet context with the getServletContext() method instead of using the 
application implicit object —but the net result is still as intended.

 � E is incorrect because using the two-parameter version of PageContext.setAttribute() 
results in a bean being placed in page scope, not application scope. F is incorrect because name 
is used instead of id (name is a valid attribute of <jsp:getProperty> and <jsp:setProperty> 
but not of <jsp:useBean>).

Dispatching Mechanisms

 6. � D and G. Both pages translate successfully (so answer D is correct). However, b.jsp runs 
successfully (forwarding to c.jsp, whose output is displayed), whereas a.jsp terminates with an 
IllegalStateException when run (hence answer G is also correct). Why should this be? The 
only material difference between the sources for a.jsp and b.jsp is the carriage return separating 
the page directive from the <jsp:forward> standard action. This is present in a.jsp, but 
not in b.jsp. To understand why this should make a difference, you need to note that the 
page directive effectively does away with the normal output buffer (by setting buffer=“none” 
and autoFlush=“true”). This means that any output at all – even an innocent carriage return 
in the template text – is instantly committed to the response output. Once anything has been 
committed to the response output, a forward call is illegal.

 � A, B, C, E, F, and H are incorrect, according to the reasoning in the correct answer.

 7. � E is correct. Consider fi rst of all that parameter Z is not displayed in either JSP, so it is a 
red herring. On arrival at params.jsp, the request has parameter X with a value of 1, and Y with 
a value of 2. Now X is supplemented with two additional values. These are placed in order of 
their appearance in <jsp:param> standard actions, but at the “front” of the parameter’s value 
list. So X’s values are 4, 5, and 1—in that order. Y is supplemented with one additional value, 
making its values 6 and 2—again, in that order. Because the fi rst instruction is to include 
the page included.jsp, we must go there fi rst. The param EL implicit object is used to display 



the value of X. param retrieves the fi rst available value, so we have our fi rst output, 4. This 
technique is repeated for Y, so the next output is 6. Now a scriptlet is used to iterate through all 
of the values of parameter X. The method request.getParameterValues() will respect the 
correct order, so the next output is 451 (the three values of X in succession). Now we return 
back to params.jsp. Any parameter values added within the body of the <jsp:include> action 
are lost. So X has only a single value of 1, and Y a single value of 2. These are displayed —fi rst 
1 (from X with the same EL technique we saw before), then 2 (from Y, retrieved with a Java 
language expression using the ServletRequest.getParameter() method).

 � A, B, C, D, F, and G are incorrect, according to the reasoning in the correct answer.

 8. � B, C, and D are the correct answers. B is correct: You can supply an expression for the value 
of the page attribute of the include standard action, and thereby soft-code your choice of page. 
C is correct, though it’s not absolutely clear-cut (hence “may be more effi cient”). The include 
directive probably involves harder work at translation time. But unlike the standard action, 
everything that’s needed is then there in the same servlet. The <jsp:include> standard action 
will involve a request-time trip to the included fi le, translating this if not translated already, 
and returning the response for inclusion in the including servlet. D is correct: By including a 
<jsp:param> standard action in the body of a <jsp:include>, you can augment the values of 
existing request parameters.

 � A is incorrect —it’s the <jsp:include> standard action that is best for including pages 
that change frequently, not the include directive. You’re guaranteed with the <jsp:include> 
standard action that the latest version of the included page will be processed; the include 
directive doesn’t have the same guarantee in the JSP spec. Even if your JSP container provides 
that guarantee, there will be more to translate (both including and included pages have to be 
amalgamated and translated with the include directive; whereas only the included page has to 
be revamped when using the <jsp:include> standard action). E is incorrect. It’s not obvious 
whether the include directive or the <jsp:include> standard action will win out at translation 
time. Let’s say page P includes page Q. With the include directive, Q must be merged into P, 
and then there is one big servlet to translate and compile. With the <jsp:include> standard 
action, P and Q stay separate and are translated and compiled into two separate servlets. Who 
can say which will be processed more quickly? So I deem this to be an unhelpful statement. F is 
out and out incorrect —an include directive can’t be infl uenced by page logic (unlike a <jsp:
include> standard action). It will be processed at translation time come what may (unless it’s 
commented out!).

 9. � F is the correct answer. A blank page is output, and nothing is output to the server console. 
The crucial thing to recognize is that a <jsp:forward> standard action effectively causes the 
rest of the page logic to be bypassed (do not pass go; do not collect $200/£200 . . .).

Self Test Answers 527



528 Chapter 7: JSP Standard Actions, XML, and EL

 � A is incorrect — there’s nothing to cause a page error (including forwarding to a .jsp fi le 
containing nothing at all— that’s still legal). B is incorrect — there’s nothing to cause a 
run-time error either. C is incorrect and shows a misunderstanding of forwarding: The use of 
forward negates any page output from the forwarding JSP. D is incorrect, though you could be 
forgiven for thinking otherwise, for a regular servlet behaves differently. The System
.out.println() statement is an innocent bystander that has nothing to do with JSP page 
output, after all. However, it is bypassed as explained in the correct answer. E is incorrect for a 
combination of the reasons given for C and D.

 10. � F is the correct answer. In fact, this page will not translate because of the malformed end 
tag for the forward standard action: It should be </jsp:forward>. This question uses a number 
of evil psychological techniques that are not unknown on the real exam. First, it looks almost 
identical to a previous question (question 7), so you tend to assume the same kind of approach 
will pay off —and waste time trying to work out what the code is actually doing. Secondly, there 
is a decoy red herring. Because the forwarded-to page is called included.jsp, a casual glance 
makes you think this is a question about including. Then you spot this obvious mistake and 
think “Aha! This is really a question about forwarding!”—when really it’s a syntax question 
all along. If there’s a moral (and I’m not sure there is), then I suppose it’s to be on the alert for 
syntax errors fi rst and foremost. You have to become the translation phase!

 � A, B, C, D, and E are all incorrect because the syntax error mentioned prevents translation, 
so there’s no output at all. For what it’s worth, if the syntax error were corrected, B would be the 
correct answer.

JSPs in XML

 11. � E is the correct answer. There will be a translation error at line 13. The “<” sign is illegal 
XML syntax within the <jsp:scriptlet> tag (or indeed, in any tag), for to the parser it looks 
like another tag beginning before the present one has ended. You have to “escape” the sign in 
some way —for example, by writing &lt;.

  � A is incorrect because the <html> tag is correctly formed, including the XML namespace 
component (remember — this can appear in any tag you want). B is incorrect because the page 
directive is correctly formed, with a legal MIME value. C is incorrect because a Java method 
signature within a <jsp:declaration> is normal practice. D is incorrect because access to 
implicit variables like out is still perfectly OK, and there’s nothing wrong with the Java syntax 
(and nothing to offend XML syntax). F and G are incorrect — since there is a translation error, 
the page won’t produce a run-time error, let alone display successfully.

 12. � C and E are the correct answers. Both produce output: C produces valid XML output with 
an XML declaration, and E produces valid non-XML output without an XML declaration.



 � A is incorrect because when using XML syntax, you have to supply a namespace for any 
tags that you use (unlike JSP Syntax, where standard actions are found even without a taglib 
directive). B is incorrect because although output is produced, it’s identifi ed as XML output (has 
an XML declaration)—but doesn’t constitute valid XML (because the output, “Question12,” 
isn’t surrounded by any tags. That’s solved by the inclusion of the <data> tag in correct answer 
C. D doesn’t work because it’s invalid JSP source in XML terms: There are two top-level tags. 
You can have only one top-level tag in an XML document, including JSP page source — so the 
page doesn’t translate (that’s a problem solved by the <jsp:root> element in correct answer E).

 13. � B and D. B is correct — provided that web.xml is at version 2.4, a fi le with a .jspx extension 
will be recognized as a JSP document. D is also correct —<jsp:root> at the root element of 
your source constitutes a JSP document, even at prior levels of web.xml.

 � A is incorrect, though very nearly correct: <is-xml> is a correct element, but it’s a 
subelement of <jsp-property-group>, which is in turn a subelement of <jsp-config>. 
C is incorrect —although you can use XML fi les directly as JSP page source, an .xml suffi x is 
insuffi cient to identify them as XML JSP page source to the container. E is incorrect —just using 
a level 2.4 deployment descriptor won’t do anything by itself toward interpretation of your JSP 
page sources as JSP documents. And fi nally, F is incorrect —you can write a syntactically correct 
JSP page in XML syntax and still have it treated as JSP syntax (rather than as a JSP document). 
The mere presence of XML in the source is not enough.

 14. � D is the correct answer. This is not an easy question! The output is 1.6666666666666665 
from this piece of code, and none of the other JSP fragments give that result. Owing to 
precedence rules, the division in the expression (2/3) is done fi rst. EL division is double-based 
(not integer-based), hence the imprecise double answer. This is added to 1, to give the answer 
shown.

 � A, B, C, and E are incorrect answers, for all pair up: A and B produce identical output, 
and so do C and E. A and B both output 1, for different reasons. In A, precedence dictates that 
the division is done fi rst. This is Java language division, so the result of 2/3 is 0. Adding this to 
1 therefore gives 1. The parentheses force a different calculation in B: (1 + 2)/3. The result of 
this is also 1. C and E both output 1.0. C does the same calculation —(1 + 2)/3. This is then 
concatenated with “.0” to give an end result of 1.0. In E the EL expression performs effectively 
the same calculation, derived from the Integer page attributes: (1 + 2)/3. However, for division, 
EL arithmetic coerces the operands to Doubles. The result is a Double literal (in Java terms), 
expressed with a .0 on the end even though this isn’t required.

 15. � E is the correct answer. The HTML <img> element is broken up to accommodate the 
expression that soft-codes the images to display. The broken pieces are incorrect XML, 
so they have to be treated as character data and accordingly have to be wrapped up in XML’s 

Self Test Answers 529



530 Chapter 7: JSP Standard Actions, XML, and EL

intimidating CDATA syntax. However, that leaves the two pieces of character data unenclosed 
by tags, making the JSP page source illegal XML. Under these circumstances, you use the 
<jsp:text> element, which satisfi es this requirement and does nothing else. A bland but 
useful tag.

 � A is incorrect —<jsp:param> is a standard action for enclosing in <jsp:forward> and 
<jsp:include>. B is incorrect — there is a tag called <jsp:element>, but it’s for soft-coding 
XML elements to include in the output, and won’t do here. C is incorrect, for <jsp:img> is made 
up. Finally, D is incorrect —<jsp:output> is a tag that exists, but for adjusting the output type 
of the document produced by the JSP, so it has no role to play in solving the problem posed here.

Expression Language

 16. � F is the correct answer. The local counter variable, j, is not visible inside the code that 
evaluates the expression. The expression evaluation code will try to fi nd an attribute called “j” 
using PageContext.findAttribute("j"). Because j won’t be there, the expression returns 
nothing at all, so only the template text appears.

 � A, B, C, D, and E are incorrect according to the reasoning for the correct answer.

 17. � B and C are the correct answers —param is used to get hold of the fi rst value for a named 
request parameter, and paramValues to get hold of all the values for a named request parameter.

 � A, E, and F are incorrect —although page, request, and session are implicit variables in Java 
language scriptlets and expressions, they don’t work directly inside expressions. Instead, use 
pageContext.page, pageContext.request, and pageContext.session. D is incorrect, 
but not by much: use initParam (no “s”) to get hold of a named context initialization parameter. 
And G is incorrect — there’s an applicationScope implicit variable, but not a contextScope.

 18. � C is the correct answer. The implicit variable pageContext represents a PageContext object. 
This has a getServletConfig() method to return the ServletConfi g object associated with 
the PageContext. ServletConfi g, in turn, has a getServletName() method to return the 
servlet name. To turn this into EL syntax, you take each method name and strip off the “get” 
and the terminating parentheses. What you’re left with is a bean property name —as long as you 
turn the fi rst capital letter now into lowercase. Put the dot operators between each, and you get 
${pageContext.servletconfig.servletName}, which works.

 � A is incorrect — there is no confi g property for PageContext (it’s servletConfig), 
and a method name (getServletName) even without the parentheses won’t work. B is 
incorrect, though closer: config just has to change to servletConfig. D has one of the 
faults of A, whereas E is wrong altogether because it uses Java language syntax. By using 
correct method names, though, E does furnish a clue toward the correct property names when 
using EL syntax.



 19. � B and C are the correct answers. The implicit variables ending in “scope” are the ones to go 
for when trying to retrieve attributes. In this example, it doesn’t matter if the parentheses are used 
to group the arguments in the expression (as in C)—precedence takes care of the result (as in B).

 � A, D, E, and F are incorrect. A and D are incorrect because although pageContext is an EL 
implicit variable, you can’t use it like this to access attributes in any scope. E and F are incorrect 
because they use implicit variable names that are legal in Java language scripting, but not in EL.

 20. � A matches with 9 (the xmlns:jsp announces a namespace declaration); B matches with 
6 (the correct answer is directive.page— not page.directive!); C and D match with 1 
(must be the beginning and end of a <jsp:declaration>, for the content is an entire Java 
method); E and F match with 3 (beginning and end of a <jsp:scriptlet>; G and H match 
with 11 (cookie is the implicit variable name; there are some misleading alternatives); I 
matches with 17 (pageScope is clearly where the “luckyNo” attribute is stored); and J matches 
with 13 (“luckyNo”— needs to be a String to return the named attribute value with square 
bracket syntax—dot syntax would probably be better here, as in ${pageScope.luckyNo}).

 � No other combinations will work.

LAB ANSWER
Deploy the WAR fi le from the CD called lab07.war, in the /sourcecode/chapter07 directory. This 
contains a sample solution. Once the WAR fi le is deployed, you can call the top-level JSP document, 
master.jspx, using a URL such as

http://localhost:8080/lab07/master.jspx

The resulting solution should look as it did in Exercise 6-3, and is shown in the following illustration.

Lab Answer 531




