
CERTIFICATION OBJECTIVES

8
JSP Tag Libraries

 • Tag Libraries

 • JSTL

 • EL Functions

 • The “Classic” Custom Tag Event Model

 ✓ Two-Minute Drill

 Q&A Self Test

534 Chapter 8: JSP Tag Libraries

In the previous two JSP chapters, you got to use the low-level facilities in the technology.
In this and the next chapter, you’ll meet some higher-level tools and techniques, and fi nally
get to reduce Java language syntax in your JSP page source to little or none.

First, we’ll look at how to use tag libraries. You’ll learn how to use tags that are
not delivered with the JSP container but that you either create yourself or obtain
from elsewhere. You’ll revisit the deployment descriptor to see the role it plays in
supporting your own and third-party tag libraries.

In this chapter you’ll also learn all about a “custom” tag library now provided as
“standard”—if that’s not too much of a contradiction: This is the Java Standard Tag
Language core library. This supplies the missing logic elements you need in order to
use EL without Java language syntax.

After that, we move back to Expression Language. You’ll see how EL itself is
underpinned by tag technology, and you’ll learn how to write your own functions
that can be accessed with EL syntax on a JSP page. You’ll also see how these EL
functions use defi nitions in tag libraries.

Finally in the chapter, you’ll get to write your own custom tags —a step beyond
making use of an existing tag library. This is one of the most challenging of the exam
objectives but also one of the most rewarding: You’ll see how to harness the full
power of Java while keeping your JSP pages syntactically simple and elegant.

CERTIFICATION OBJECTIVE

Tag Libraries (Exam Objectives 9.1, 9.2, and 6.6)
For a custom tag library or a library of Tag Files, create the “taglib” directive for a JSP page.

Given a design goal, create the custom tag structure in a JSP page to support that goal.
Confi gure the deployment descriptor to declare one or more tag libraries, deactivate the

evaluation language, and deactivate the scripting language.

The three exam objectives here take us some little way into the world of custom
tags. In this section of the chapter, you’ll get to use some existing custom tags within
JSP page source. Later exam objectives and sections address how to write a custom
tag from scratch.

You’ll also begin to appreciate the benefi ts of tags. The JSP pages we look at here
are scriptless and so are much more maintainable. Java code maintenance is pushed
back to where it belongs —into standard Java classes.

The Custom Tag Development Process
There are four essential steps to writing a custom tag for use in your JavaServer
Pages:

 1. Writing a Java class called a tag handler

 2. Defi ning the tag within a tag library defi nition (TLD) fi le

 3. Providing details of where to fi nd the TLD fi le in the deployment
descriptor, web.xml

 4. Referencing the TLD fi le in your JSP page source and using the tags
from it

You can see from this process that there are four “artifacts” involved with a custom
tag: a Java class fi le, a TLD fi le, web.xml, and the JSP page itself. The relationship
among these four is shown in Figure 8-1.

We’re actually going to concentrate on steps 2, 3, and 4 in this section of the
chapter — not the writing of a custom tag, but merely using one. Writing the tag
handler code (step 1) comes in the last part of this chapter. As an example, we’ll
take a simple tag that solves (or at least masks) one of the annoyances of Expression
Language arithmetic with double values.

Hunting the Tag
To illustrate the process of how the JSP container fi nds the tag, we’ll use a custom
tag for rounding a fi gure to an arbitrary number of decimal places. The process is
shown in overview in Figure 8-1.

You’ll recall from Chapter 7 that double arithmetic on most computers, contrary
to most people’s expectations, is not an exact science. Small errors creep in because
of the nature of binary storage of double primitives. So the expression ${9.21 / 3}
displays 3.0700000000000003 instead of the exact result you might expect —3.07.
The solution —at least for display purposes —is to round the resulting fi gure to a
convenient number of decimal places. However, EL doesn’t have any kind of
syntax to handle formatting. Instead, we’ll pass the responsibility for this on to a
custom tag.

Tag Libraries (Exam Objectives 9.1, 9.2, and 6.6) 535

536 Chapter 8: JSP Tag Libraries

Here’s a complete JSP page in traditional syntax that uses a rounding tag:

01 <html>
02 <%@ taglib prefix="mytags" uri="http://www.osborne.com/taglibs/mytags" %>
03 <head><title>Rounding Example: JSP syntax</title></head><body>
04 <h1>Round EL Calculation To 2 Decimal Places</h1>
05 <p>EL calculation without rounding:${9.21 / 3}</p>
06 <p>EL calculation with rounding:
07 <mytags:round decimalPlaces="2">${9.21 / 3}</mytags:round></p>
08 </body></html>

You can see the tag on line 7. It looks just like a JSP standard action. The element is
called mytags:round, and it consists of an opening and closing tag, with a body.

taglib uri
declaration in
JSP page maps to
<taglib-uri>
in deployment
descriptor.

/myroundingpage.jsp

JSP Document
<%@ taglib prefix="mytags"
uri="http://www.osborne.com
/taglibs/mytags" %>
...
<mytags:round>${9.21/3}</my
tags:round>

/WEB-INF/tags/mytags.tld

Tag Library Descriptor
...
<tag>
 <name>round</name>
 <tag-class>
 webcert.ch08.RoundingTag
 </tag-class>
 ...
</tag>
...

/WEB-INF/web.xml

Web Deployment Descriptor
<taglib-uri>
http://www.osborne.com/taglibs/mytags
</taglib-uri>
<taglib-location>
/WEB-INF/tags/mytags.tld
</taglib-location>

/WEB-INF/classes/webcert /ch08/RoundingTag.class

Tag Handler Class
1000001000000010101010
0000101010100000010010
1000011111111000000000
1000001000000010101010
0000101010100000010010
1000011111111000000000

Finally:
 <tag-class>
in the TLD maps
to a tag handler
class.

<taglib-location> in
deployment descriptor maps to
the real tag library descriptor file.

START HERE: tag used in JSP page.
mytags: maps to taglib prefix “mytags.”

FIGURE 8-1 TTag Building Blocks

The body contains the EL expression we’ve just been discussing —${9.21 / 3}.The
opening tag contains an attribute named decimalPlaces, set to a value of 2. The
functionality is what you might expect — the result of the expression is rounded to
two decimal places. This is displayed on the page instead of the “raw” result of the EL
calculation.

What are the actual steps involved at run time to produce this result? Behind
the scenes, the JSP container interacts with the real Java class associated with the
tag, which happens to be called RoundingTag. Here’s a high-level sequence of
events:

 1. The JSP container calculates the EL expression.

 2. The JSP container locates an instance of RoundingTag.

 3. The JSP container passes information to Rounding Tag — the value of the
attribute (2 for decimalPlaces) and the result of the EL calculation.

 4. RoundingTag does the necessary math to convert the result to two decimal
places.

 5. RoundingTag clears out the original EL calculation result from the JSP’s
output buffer and substitutes the rounded result instead.

 6. The JSP container carries on outputting the rest of the page.

At this stage, we’re only interested in how the JSP container locates
RoundingTag. The process is reasonably straightforward. First of all, as used on the
page, the tag has a name and a prefi x:

 07 <mytags:round ...

The prefi x (mytags) must match the value of a
prefi x attribute in a taglib directive in the JSP
page source, which it does:

 02 <%@ taglib prefix="mytags"
...

The taglib directive has another attribute,
uri:

02 <%@ taglib prefix="mytags"
uri="http://www.osborne.com/taglibs/mytags" %>

You have complete freedom
of choice as to what prefi x to use, within
legal XML naming conventions. However,
all the prefi xes used in all the taglib
directives on a given JSP page (and any
of its statically included fi les) must be
unique.

Tag Libraries (Exam Objectives 9.1, 9.2, and 6.6) 537

538 Chapter 8: JSP Tag Libraries

The URI doesn’t point anywhere! Well, it might —but that’s purely incidental to
the tag library resolution going on here. The URI should match an entry in the
deployment descriptor web.xml, which looks like this:

<web-app>
 <jsp-config>
 <taglib>
 <taglib-uri>http://www.osborne.com/taglibs/mytags</taglib-uri>
 <taglib-location>/WEB-INF/tags/mytags.tld</taglib-location>
 </taglib>
 </jsp-config>
</web-app>

You’ve met <jsp-config> already —as you can see, it sits under the root element
<web-app>. One of its subelements is <taglib>. <taglib> has two subelements of
its own. The fi rst —<taglib-uri>—has a body value that exactly matches the uri
quoted in the taglib directive. The second subelement, <taglib-location>, gives
the actual location in the web application where the taglib library descriptor (TLD
fi le) is located. The usual rules apply on the path cited in <taglib-location>:

■ If the path begins with a slash, it’s an path beginning at the context root.

■ If the path doesn’t begin with a slash, it’s a relative path — relative to this fi le,
web.xml— so in other words, always relative to where web.xml is located, which
is in the / WEB-INF directory.

INSIDE THE EXAM

One thing that has changed quite a bit
since the Servlets 2.3/JSPs 1.2 (and so the
last version of the exam) is the section of the
deployment descriptor devoted to controlling
matters that are tag-library related. It used to
be very simple: There was an element under
<web-app> called <taglib>, which had
<taglib-uri> and <taglib-location>
subelements. All these elements are retained

at level 2.4 of the servlet specifi cation, but
they are now housed in a new element called
<jsp-config>, which comes under the root
element <web-app>. <jsp-config> isn’t
just about tag libraries, though —it controls
many aspects of JSP behavior, some of which
we have seen already. The following diagram
shows the complete layout of the <jsp-
config> element.

INSIDE THE EXAM (continued)

There are several elements whose meaning
you don’t have to know for the exam — these
are grayed out in the illustration. Of the
remainder,

■ <taglib> and its subelements
are described elsewhere in this
chapter.

■ <is-xml> is described in the JSP
document section of Chapter 7.

These leaves two elements (<el-ignored>
and <scripting-invalid>) that control
expression language and Java as a scripting
language. Here’s an example <jsp-config>
setting that does both:

<jsp-config>
 0 or 1 Always 1

Always 1

<taglib> 0 or many

<jsp-property-group>

 0 or many

<taglib-uri>

<taglib-location>

<small-icon> 0 or 1

<large-icon> 0 or 1

<description> 0 or many

<param-name> 0 or many

<icon>

0 or many

<url-pattern> 1 or many

<el-ignored> 0 or 1

<page-encoding> 0 or 1

<scripting-invalid> 0 or 1

<is-xml> 0 or 1

<include-prelude> 0 or many

<include-coda> 0 or many

Even though the
schema says 0 or
many, there must be
a container-enforced
maximum of 1
<jsp-config>
under <web-app>.

<jsp-config>
 <jsp-property-group>
 <url-pattern>/*</url-pattern>
 <el-ignored>true</el-ignored>
 <scripting-invalid>true</scripting-invalid>
 </jsp-property-group>
</jsp-config>

The <url-pattern> element works
exactly as the same-named element for
servlet declarations. So /* here indicates

that all resources in the web application
are affected by the settings shown. For other
possible URL patterns, see Chapter 2, in

Tag Libraries (Exam Objectives 9.1, 9.2, and 6.6) 539

540 Chapter 8: JSP Tag Libraries

The only piece of the puzzle left is the TLD fi le itself, which looks like this:

<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee/web-
jsptaglibrary_2_0.xsd"
 version="2.0">
 <tlib-version>1.0</tlib-version>
 <short-name>My Tag Library</short-name>
 <tag>
 <name>round</name>
 <tag-class>webcert.ch08.examp0801.RoundingTag</tag-class>
 <body-content>scriptless</body-content>
 <attribute>
 <name>decimalPlaces</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>
</taglib>

A few things to point out about this TLD fi le:

■ The root element is <taglib>.

■ The fi rst mandatory element under the root is <tlib-version>. This denotes
the tag library version number. That’s a version number you impose for your own
versions of the tag library (it doesn’t represent —for example — the JSP version

INSIDE THE EXAM (continued)

the “Deployment Descriptor Elements”
section.

■ <el-ignored> when set to true
causes expression language to be
unevaluated — so treated as template
text. The default (if this element is

omitted from <jsp-property-group>)
is false.

■ <scripting-invalid> when set to
true causes a translation time error if JSP
scriptlets, expressions, or declarations
are used. The default (if this element is
omitted) is false.

you are using). So you’re not tied to 1.0 —when you revise the tag defi nitions,
you might reset this to 1.1, or whatever.

■ The next mandatory element is <short-name>—every tag library must have one.

■ Anything else is optional— though you would expect something to be defi ned in
the fi le! In this case, there is a single tag defi ned, which has its own <tag>
element containing various subelements:

■ <name>— this is the name for the tag as used on the JSP page (on line
07—<mytags:round decimalPlaces="2">).

■ <tag-class>— the fully qualifi ed name of the class implementing the
tag functionality —in this case, webcert.ch08.exam0801.RoundingTag.
For the tag to run, the class fi le must be available in one of the usual
locations —directly in its package directory under WEB-INF/classes or
inside a .jar fi le in WEB-INF/ lib.

■ <body-content> dictates what can go in the body of the tag. There are
four valid values:

■ empty— the body of the tag must be empty (so <pfx:mytag /> or
<pfx:mytag></pfx:mytag>).

■ tagdependent— the body of the tag contains something that isn’t
regular JSP source. The tag handler code works out what to do with it.
A typical use is to put an SQL statement in the body so that the tag
handler takes the statement, runs it, and (perhaps) returns the result-
ing data to the body of the tag in place of the original SQL statement.

■ scriptless— the body of the tag does contain regular JSP source,
but nothing involving scripting language. So Java language syntax is
forbidden —whether in scriptlets or expressions. EL, though, is abso-
lutely fi ne in a body specifi ed as scriptless —and will be evaluated.

■ JSP— the body of the tag contains any kind of regular JSP source.
This is the most permissive value (and, as we’ll learn later, not al-
lowed for some kinds of tag handlers, the so-called “simple” kind).
Java language syntax is just fi ne.

■ A tag may have any number of attributes, from zero to many. These are
represented by <attribute> elements nested within the <tag> element.
There’s one attribute in our example, to represent the number of decimal
places. The <attribute> element has a number of subelements:

Tag Libraries (Exam Objectives 9.1, 9.2, and 6.6) 541

542 Chapter 8: JSP Tag Libraries

■ <name>—for the name of the attribute (decimalPlaces in the
example).

■ <required>— true if the attribute is mandatory, false otherwise.

■ <rtexprvalue> (short for “run-time expression value”)— true if you
can use EL or an expression (<%= ... %> or <jsp:expression>) to
provide the attribute’s value at run time, false if the attribute’s value
must be a literal.

So fi nally, within the <tag-class> element of the <tag> element in the
<taglib> root element of the tag library descriptor fi le, we fi nd the actual Java that
does the work—RoundingTag.class. We’ll explore what goes on in that class in the
last section of this chapter, and meanwhile just be grateful to have followed the trail
from a tag reference in the JSP page to a real piece of code. Look back to Figure 8-1
for a “route map” that summarizes the entire trail.

Whatever happened to the <jsp-version> element, a mandatory element
in JSP version 1.2 TLD fi les, and used to specify JSP version 1.2? The answer is
that it has been replaced within the root element, taglib, which must now
always contain the attribute/value pair version="2.0" to reference JSP
specifi cation level 2.0.

Other Ways to the TLD
The best way to set up mappings from your JSP pages to the TLDs lodged in your
web application is through the web.xml entries we have described. This makes the
tag library mapping explicit and obvious to anyone reading the deployment
descriptor. However, there are alternatives where nothing is needed in the
deployment descriptor — so-called “implicit” mapping entries for tag libraries.

First, you can place fi les with a .tld extension directly in the / WEB-INF directory
or one of its subdirectories. Alternatively, you can package .tld fi les in a JAR fi le that
is placed in / WEB-INF/ lib. The .tld fi les within the JAR fi le must have a path that
begins /META-INF (such that if you were to unpack the JAR fi le, the .tld would be
located directly in the /META-INF directory or one of its subdirectories).

Apart from this restriction on location, the .tld fi les must contain the optional
<uri> element, which must match the uri of the taglib directive or (if using
JSP documents) the namespace value. Figure 8-1 showed the (superior) explicit
technique. Figure 8-2 summarizes both the implicit mapping techniques for fi nding
tag library descriptors.

Tag Library Descriptors in JSP Documents
You might recall, though, that the tag directive doesn’t have a direct equivalent in
JSP document syntax—you have to use namespaces instead. Here’s the same JSP
page source for the rounding example converted to XML syntax in a JSP document:

01 <html xmlns:mytags="http://www.osborne.com/taglibs/mytags"
02 xmlns:jsp="http://java.sun.com/JSP/Page">
03 <jsp:output omit-xml-declaration="true" />
04 <jsp:directive.page contentType="text/html" />
05 <head><title>Rounding Example</title></head>
06 <body>
07 <h1>Round EL Calculation To 2 Decimal Places</h1>

JSP container searches subdirectories
of /WEB-INF and JARs in /WEB-INF/
lib for a TLD file with a matching URI./myroundingpage.jsp

JSP document
<%@ taglib prefix="mytags"
uri="http://www.osborne.com
/taglibs/mytags" %>
...
<mytags:round>${9.21/3}</my
tags:round>

 /WEB-INF/tags/mytags.tld

Tag library descriptor
<taglib>
 ...
 <uri>http://www.osborne.com/taglibs/mytags</uri>
 <tag>
 <name>round</name>
 <tag-class>
 webcert.ch08.RoundingTag
 </tag-class>
 ...
 </tag>
</taglib>

 /WEB-INF/classes/webcert /ch08/RoundingTag.class

Tag handler class
1000001000000010101010
0000101010100000010010
1000011111111000000000
1000001000000010101010
0000101010100000010010
1000011111111000000000

As before: <tag-class> in the
TLD maps to a tag handler class.

START HERE: tag used
in JSP page. mytags:
maps to taglib prefix
“mytags.”

FIGURE 8-2 Routes to Tag Library Descriptors

Tag Libraries (Exam Objectives 9.1, 9.2, and 6.6) 543

544 Chapter 8: JSP Tag Libraries

08 <p>EL calculation without rounding:${9.21 / 3}</p>
09 <p>EL calculation with rounding:
10 <mytags:round decimalPlaces="2">${9.21 / 3}</mytags:round></p>
11 </body>
12 </html>

The essential part is on line 01: Instead of the tag library directive, you fi nd a
namespace (xmlns). The prefi x mytags comes after xmlns:, and the URI http://
www.osborne.com/taglibs/mytags is the value for the namespace. This approach
is, in fact, exactly the same one taken for declaring a namespace for JSP custom
actions on line 02. The actual way you use the custom tag — shown on line 10 —
hasn’t changed at all from the regular JSP (nondocument) source that began this
chapter.

There are certain “reserved
prefi xes” that you can’t use for your own
custom tag library declarations, whether
as directives or namespaces: jsp, jspx,
java, javax, servlet, sun, and sunw. They

are case sensitive, so watch out for ques-
tions that feature prefi xes that are not all
lowercase, such as Sun or JAVA: These are
in fact legal!

The tags you make look
identical to JSP standard actions. This is no
accident, for JSP standard actions derive
from tag libraries. Given that, why do you
not have to place a taglib directive when
you use standard actions in a page? Well,
it’s a bit like the situation with writing
standard Java source. When you use a class
from java.lang, you don’t have to include
an import statement in your source; you
get that for free. Such is the case with
standard actions; the tag library is just
understood to be there and available, with

a jsp: prefi x. Therefore, you can’t use
the jsp: prefi x yourself for your taglib
directives, even if you are not using any
standard actions in your page. However,
don’t forget that when you use JSP
document syntax, taglib directives
disappear in favor of XML namespace
defi nitions, as you’ve seen. In that case,
even standard actions must be explicitly
referenced with a namespace—in exactly
the same way as your own custom tag
libraries.

ON THE CD

EXERCISE 8-1

Tag Libraries
In this exercise you will fi nish off an incomplete JSP document and deployment
descriptor by providing the details required to fi nd and use a tag in an existing tag
library —as per the main exam objective for this section. First, you’ll install the
solution code and make sure that the existing solution runs successfully. The theme
is taxation —you enter a gross income fi gure and some other details required by
the taxation offi ce, and get back (through the custom tag) a net income fi gure. For
those of you who hate fi ling tax returns (I guess I’m speaking to most readers here),
grit your teeth and focus on the exam objective!

Install and Run the Solution Code

 1. The solution fi le is in the CD as sourcecode/ch08/ex0801.war. Install
this WAR fi le into Tomcat (or your web application server) in the
normal way.

 2. Run the code using a URL such as

http://localhost:8080/ex0801/income.html

 3. You should see a page like the one illustrated here:

Tag Libraries (Exam Objectives 9.1, 9.2, and 6.6) 545

546 Chapter 8: JSP Tag Libraries

 4. Enter a gross income fi gure (e.g., 10000), a tax allowance (the amount of the
gross income that remains untaxed, e.g., 4500), and a percentage tax rate
(e.g., 40). Then press the “Calculate Net Income” button.

 5. You should see a page (produced by a JSP document) like the one shown here:

 6. This page uses a custom tag to calculate the net income according to the
formula: net income = tax allowance + ((gross income – tax allowance) *
(100 – tax rate) / 100). If the fi gures supplied in the HTML form don’t make
sense or are missing, you should see a message on the page saying “Bad Input
Figures.” The logic is performed in a Java class called the tag handler —we
explain tag handlers later in the chapter, but feel free to look at the source
now in / WEB-INF/src /webcert /ch08/ex0801/ TaxationTag.java.

 7. Check the HTML code for the fi le /income.html. You’re not going to change
this in any way —just look to see how this sets up three parameters in a form
and submits the result to the JSP document called /taxation.jspx.

 8. Open the tag library descriptor fi le, / WEB-INF/tags/mytags.tld. You can see
here that four attributes are defi ned for the tag.

Prepare Files for Your Own Solution

 9. Once you’re satisfi ed that the solution works, stop your server. You’re going to
edit some fi les in place where they are deployed on your server.

 10. There are “unfi nished” versions of the deployment descriptor and the JSP
document. Perform the following renames so that the unfi nished versions end
up having the “real” names:

■ Rename / WEB-INF/web.xml to / WEB-INF/webSolution.xml.
■ Rename /taxation.jspx to /taxationSolution.jspx.

■ Rename / WEB-INF/webUnfi nished.xml to / WEB-INF/web.xml.

■ Rename /taxationUnfi nished.jspx to /taxation.jspx.

Complete the Deployment Descriptor

 11. Open up web.xml, the deployment descriptor. Edit this to provide a reference
to a tag library (if you need to, refer to earlier in the chapter to remind yourself
how the XML elements are nested). The tag library location (as you saw in step
8) is /WEB-INF/tags/mytags.tld. Save and close the deployment descriptor.

Complete the JSP Document

 12. Open up taxation.jspx. You’ll see two clearly marked places where you need
to intervene. Put in the namespace details for the tag library, together with
an appropriate prefi x. Then put in the call to the netincome tag. Three of the
attributes —grossIncome, allowance, and taxRate — should be set with EL
values from run-time parameters. Remember that the HTML form passes in
these parameters, whose names are gross, allowance, and rate respectively. Hard-
code the value for the fourth —currency —attribute. Any three-character ISO
code for currency will be recognized (e.g., GBP, USD, EUR) provided that the
relevant locale is recognized by your system. Save and close the JSP document.

Run and Test Your Solution

 13. Restart your server, and access income.html as before (step 2). Of course,
because of the renaming, when you click the submit button now, your
solution page will be invoked.

 14. If you don’t get the desired result, compare your solution with the original solution
(now held in fi les /WEB-INF/webSolution.xml and /taxation Solution.jspx).

CERTIFICATION OBJECTIVE

JSTL (Exam Objective 9.3)
Given a design goal, use an appropriate JSP Standard Tag Library (JSTL v1.1) tag from
the “core” tag library.

JSTL (Exam Objective 9.3) 547

548 Chapter 8: JSP Tag Libraries

We are fi nally ready to meet the JSP Standard Tag Library. This adds a host of
facilities that are otherwise only available through Java language scripting. These
facilities are entirely available through JSP tag technology — the same technology
we have been exploring in this chapter. So what makes the JSTL special?

It’s more the underlying philosophy. When custom tags became available,
everybody started building tag libraries. Frameworks of tag libraries became
available to simplify the application construction —mostly open source and free.
You could guarantee that each of these frameworks would have some custom tag or
other devoted to common tasks. Take the example of iterating through each item in
a loop. One framework might have a tag called “iterate,” while another might have
one called “loop.”

One such framework came out of the Jakarta Apache taglib project, which
attempted to defi ne a common standard and implementation for a universally useful
set of tag libraries. These contain functionality that is common to practically every
JSP development: from basic control fl ow (iteration, conditions) to XML parsing to
database access. Such was the popularity of these libraries that their tag defi nitions
have been offi cially adopted as part of the JavaServer Page specifi cation by Sun as
the JavaServer Page Standard Tag Library — or JSTL.

You’ll need an implementation. JSP containers (such as Tomcat) don’t necessarily
come with one already supplied. Fortunately, it’s easy and free to acquire an
implementation, which is also easy to install into most containers.

JSTL
The JSTL comprises fi ve tag libraries:

■ core: custom actions that do the programming “grunt work”— such as conditions
and loops —and also fundamental JSP tasks such as setting attributes, writing
output, and redirecting to other pages and resources

■ xml: custom actions that alleviate much of the work in reading and writing
XML fi les

■ sql: custom actions dedicated to database manipulation

■ fmt: custom actions for formatting dates and numbers, and for international-
ization of text

■ function: a set of standardized EL functions.

For the exam, you are required to know only about the core library. This is fortunate,
for there are sixteen or so custom actions in the core library alone, and these form a

mini tag language in their own right. Of course, you’re likely to want to explore the
other three libraries because they are liable to prove useful on your projects —but
that’s the last on them from this chapter. (Phil Hanna surveys all four libraries in his
book JSP 2.0 [McGraw-Hill Osborne].)

You can download the specifi cation for JSTL from the Sun web site —a very
useful resource that goes beyond its brief as a specifi cation, and is almost a developer
manual. What you don’t get from Sun is an implementation of the tags themselves,
and this is essential for the rest of the work in this book! Do take the following steps —
either right now or just before you undertake the next exercise:

 1. To get hold of the standard reference implementation, visit:

http://jakarta.apache.org/taglibs/binarydist.html.

 2. Ensure that you download JSTL 1.1, which goes with JSP version 2.0 — this
is the appropriate level for the exam.

 3. Extract the downloaded JSTL zip or tar fi le anywhere you like.

 4. Make the crucial fi les from the extracted distribution available to your server
installation. For Tomcat, I take the following step: Copy standard.jar and jstl.
jar to <TOMCAT INSTALLATION>/common/lib.

 5. After a server restart, the JSTL features should be available to you.

There is a previous and still supported standard for JSTL, which is 1.0. This
goes with JSP level 1.2. Quite a few of the details—including, for example,
the URIs to access the standard tag libraries—are different in the earlier
implementation. Note that this book talks only about the 1.1 version of JSTL,
which goes with JSP level 2.0. The exam doesn’t cover the earlier version at all.

To make use of the core tag library in your own JSP pages, you must include a
taglib directive (or namespace reference) containing the right URI:

http://java.sun.com/jsp/jstl/core

You can choose whichever prefi x you like to use with these tags, although popular
convention suggests the use of “c.” So a complete taglib directive to include the
core JSTL library might look like this:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

JSTL (Exam Objective 9.3) 549

550 Chapter 8: JSP Tag Libraries

Groupings of Actions
In all, there are fourteen actions contained in the JSTL core library. The JSTL
specifi cation splits these up into four groups: General Purpose actions, Conditional
actions, Iterator actions, and URL-Related actions. I keep these same headings in
the explanations that follow. This table briefl y summarizes the actions in each group.

General Purpose Actions
There are four “general purpose” actions in the core library. These are for setting
(and removing) attribute values in any scope, writing output, and catching
exceptions.

<c:out> This action is used for writing expressions and template text to page
output. You may well ask why you might need such a tag —after all, can’t you include
expressions and template text directly in your JSP page source? The answer is that
you can, and for most purposes this tag is “surplus.” However, <c:out> has a couple
of neat, specialized features.

t

Group Actions Purpose

General Purpose <c:out>

<c:set>

<c:remove>

<c:catch>

Manipulating attributes, controlling
output to the JSPWriter, catching
exceptions

Conditional <c:if>

<c:choose>

<c:when>

<c:otherwise>

Control fl ow (branching)

Iteration <c:forEach>

<c:forTokens>

Control fl ow (looping)

URL-Related <c:import>

<c:url>

<c:redirect>

<c:param>

Use of other resources

The fi rst is the provision of a default value if the main value expression evaluates
to null. Here’s how it looks:

<c:out value=${user.name} default="User name not recognized" />

If the name property of the user attribute has a value, that value is displayed. If the
name property evaluates to null, then the text “User name not recognized” will be
displayed instead. As an alternative, the default value can be placed in the body of
<c:out>. The result is the same, and with rejigged syntax, here’s the alternative
form for the previous example:

<c:out value=${user.name}>User name not recognized</c:out>

The second feature is the ability to escape XML-unfriendly characters, such as
< and >. Entities are substituted instead, such as < and >. Whatever
characters go to output —whether in the value or the default value — they are
escaped in this way. This feature is enabled by default but can be invoked explicitly:

<c:out value=${xmlUnfriendlyAttribute} escapeXml="true" />

Or switched off:

<c:out value=${xmlUnfriendlyAttribute} escapeXml="false" />

The following table shows the list of characters that are converted through the
XML-escaping facility.

 Character Converted To

< <

> >

& &

' '

" "

It can be limiting to have the value you want to display with <c:out>
constrained to an attribute. It’s fi ne for simple expressions (<c:out value=
${user.name} />) but no use if you want the value to contain, say, other
tags. Under those circumstances, you can use the body of <c:out> to set up

JSTL (Exam Objective 9.3) 551

552 Chapter 8: JSP Tag Libraries

a default value, using tags or anything else you want. Then force the default
value to display by placing a constant of null for the value. Here’s an
example:

<c:out value="${null}" escapeXml="true">
 <jsp:include page="xmlUnfriendly.jsp" />
</c:out>

Since the value attribute contains the null literal expressed in EL, the default
value (contained in the body) is processed. In the body is a <jsp:include>
standard action to include a JSP fi le. Because escapeXml is set to “true,” the
page will be incorporated, and any XML-unfriendly characters implied in the
included fi le’s name will be turned into entities.

<c:set> This is used for setting attributes in any scope. This tag is a convenient
and lightweight alternative to the standard action combination of <jsp:useBean>
and <jsp:getProperty>. Here’s an example:

01 <c:set value="9.21" var="numerator" />
02 <c:set value="3" var="denominator" />
03 <c:set value="${numerator/denominator}" var="calculationResult" />
04 ${calculationResult}

The var attribute is used to name a variable, and the value attribute sets a value for
that variable. The variable becomes an attribute in page scope by default. So in the
example, at line 01 a page attribute called numerator is set with a literal fl oating
point decimal value of 9.21, and on line 02 another called denominator with a
literal integer value of 3. On line 03, <c:set> is used to set another variable called
calculationResult. This time, an EL expression is used to set the value instead of
a literal:

value="${numerator/denominator}"

Finally, an expression is used to display the value of the calculationResult page
attribute —just to show that something really happened. If you try out the code, you
should fi nd that the output is 3.0700000000000003.

As an alternative to using the value attribute, you can place the value in the
body of the tag. Here’s an alternative to line 03 in the example:

03 <c:set var="calculationResult">${numerator/denominator}</c:set>

If you want to set up attributes in different scopes, <c:set> has a scope attribute
for the purpose — taking the expected values of page, request, session, and application.
Here is how calculationResult can be put into session scope:

03 <c:set var="calculationResult"
scope="session">${numerator/denominator}</c:set>

You are not restricted to using attributes in some scope. Any available object
can be the object of a <c:set> action, provided that the object can be construed
as a Java Bean. An alternative syntax is used. As an example, consider that
HttpSession has a maxInactiveInterval property —by virtue of having set and
getMaxInactiveInterval() methods. You can set this property using the
following <c:set> syntax:

<c:set value="28" target="${pageContext.session}"
 property="maxInactiveInterval" />

The target attribute specifi es the bean under consideration —here, session is
available in EL through the implicit variable pageContext. The property attribute
specifi es the name of the property, maxInactiveInterval. The value attribute (which
we’ve seen before) specifi es the value for the property —in this case, 28 (seconds).
As before, the body of <c:set> can be used to specify the value, instead of using the
value attribute:

<c:set target="${pageContext.session}"
 property="maxInactiveInterval">28</c:set>

It’s very important to
note which tag attributes are allowed to
take expressions (and so be evaluated
dynamically), and which are not. There
are tables at the end of each of the four

groupings of actions (general purpose,
conditional, iterator, URL-related) that
summarize all the attributes for all the
core tags and show which ones allow
expressions.

JSTL (Exam Objective 9.3) 553

554 Chapter 8: JSP Tag Libraries

<c:remove> This is the inverse of <c:set>, and it can be used to remove a
scoped attribute. The action has only two attributes —var to name the variable, and
the optional scope to specify the scope. As always, page is the default when scope
is not specifi ed. So to remove a variable, a statement such as

<c:remove var="calculationResult" />

may be all that’s required, or one such as

<c:remove var="calculationResult" scope="session" />

when it is necessary to specify the scope.

<c:catch> This action allows you to catch an error in your page, without it
propagating to (for example) an error page defi ned in web.xml.

At fi rst sight, it appears like a catch block in Java, but it’s more like a try/catch
rolled into one, where the catch does nothing: All errors are suppressed. If you look
at the generated servlet code after inserting a <c:catch> action, you’ll see that the
exception caught is a java.lang. Throwable — right at the top of the hierarchy.
So you should use <c:catch> only for minor elements of your JSP page whose
successful execution really doesn’t matter.

The <c:catch> action relates only to anything that goes on in its body. So it
suppresses a Java language ArithmeticException in the following example:

<c:catch>
 <jsp:scriptlet>int zero = 0; out.write(3/zero);</jsp:scriptlet>
</c:catch>

You can specify a named, page-scope attribute to represent the exception, and
access this after the <c:catch> block. You use the var attribute to do this (there
is no scope attribute; the exception dies with the page). So, adapting the example
above,

<c:catch var="numException">
 <jsp:scriptlet>int zero = 0; out.write(3/zero);</jsp:scriptlet>
</c:catch>
<p>If there was an exception, the message is: ${numException.message}</p>

Conditional Actions
JSTL is provided with conditional actions, which give you the branching aspects
of a programming language. As always, the moral is to keep the logic simple! These
actions are designed to ease complexity, not to let you replicate full-blown Java
syntax in JSTL.

First, we’ll consider the <c:if> action, which tests a condition and executes
its body when this condition is true. Then we’ll consider the trio of actions <c:
choose>, <c:when>, and <c:otherwise>, which work in consort in a way not
dissimilar from the Java language switch statement.

<c:if> This action evaluates its body content if a condition is true. The condition
is expressed in EL as the value for the test attribute. The following example shows
how the syntax works:

t

Attribute Name
Run-time
Expression Allowed? Mandatory? Default Value Type

<c:out>

value Yes Yes None Object

escapeXml Yes No True boolean

default Yes No Empty String Object

<c:set>

value Yes No None Object

var No No None String

scope No No Page String

target Yes No None Object

property Yes No None String

<c:remove>

var No Yes None String

scope No No Page String

<c:catch>

var No No None String

JSTL (Exam Objective 9.3) 555

556 Chapter 8: JSP Tag Libraries

<c:if test="${user.loyaltyPoints gt 1000}">
 <p>Welcome to one of our best customers!</p>
</c:if>

The <c:if> action doesn’t have to have a body, which at fi rst may seem pointless.
However, you can store the result of the test in a scoped variable, thanks to the var
and scope attributes. There is some point to this if you want to use the result of a
test later, without repeating the test. This may make even more sense in the context
of EL functions that we examine later in this chapter but that we’ll introduce very
briefl y here. An EL function is a Java method, called with EL syntax. Let’s look at an
example:

<c:if test="${mytags:checkRole(user, 'Manager')}"
var="userInManagerRole" scope="session" />

The test uses an EL function called checkRole, which receives two parameters —a
user name and a role name, one an attribute called “user,” the other a String literal
“Manager.” The checkRole function returns a boolean result. If the function returns
true, the intent is that the user is allowed to see or do things within the application
that are off-limits to users who are not within the “Manager” role. The act of checking
the role might be quite expensive — perhaps involving a secure network call to
another machine hosting a user-role registry. But the result is held in a session attribute
called “userInManagerRole,” whose value is a java.lang.Boolean. So anywhere else
within this session, the application can conditionally check this variable instead of
reperforming the function. The following test makes use of this variable, and returns
sensitive information only if userInManagerRole evaluates to true.

<c:if test="${userInManagerRole}">Salary field: $1,234,567</c:if>

<c:choose> In combination with <c:when> and <c:otherwise>, this action
works something like a Java switch statement. However, these three tags behave a
little differently and more fl exibly than the Java equivalent.

The structure is this: The <c:choose> action is just a container for two possible
other actions —<c:when> and <c:otherwise>. Between the opening and closing
tags for <c:choose>, you can include only white space (any amount) or these two
actions. The rules on including <c:when> and <c:otherwise> are as follows:

■ <c:when>: there must be at least one occurrence.

■ <c:otherwise>: optional—but if included, there cannot be more than one
occurrence.

As we’ll see, <c:when> executes a test —like <c:if>. Within the body of the
<c:choose> each <c:when> test is performed in strict order of appearance. If a test
is false, the body of <c:when> is ignored —again, just like <c:if>. If a test is true,
the body of that <c:when> action is executed. Anything that follows within the
<c:choose> action —either <c:when> actions or the <c:otherwise> action —will
be ignored once a true test has triggered (and this is where the similarity to the
Java switch action ends in that you use break statements to prevent execution of the
statements within other cases or the default block). If none of the <c:when> tests
evaluate to true, then and only then will the body of <c:otherwise> be executed.

<c:when> This has only a single, mandatory attribute: test. The test expression
must evaluate to a boolean true for the body to be executed. The test expression
won’t break if the result evaluates to non-boolean; instead, the expression will be
treated as equivalent to a boolean false.

<c:otherwise> This has no attributes. The body will be executed only when
the preceding <c:when> actions within the enclosing <c:choose> all evaluate to
false. Note that <c:otherwise> must be the last action in the <c:choose> group,
coming after the fi nal <c:when> action.

Here’s a complete example that shows the trio of actions together:

<c:choose>
 <c:when test="${userInDeveloperRole}">
 Welcome, fellow developer.
 </c:when>
 <c:when test="${userInManagerRole}">
 You are a manager! I'll take the next bit slowly for you.
 </c:when>
 <c:otherwise>
 Hmm—I'm not sure what you are. Should I be talking to you?
 </c:otherwise>
</c:choose>

The example assumes the preexistence of a couple of attributes, userInDeveloper
Role and userInManagerRole. Actually, it doesn’t matter if these attributes don’t
exist, but the test they appear in will be treated as evaluating to false. Should the
fi rst <c:when> test prove true (because the attribute userInDeveloperRole has the
value true), then the “welcome” text will display. If not, the next <c:when> test will
be performed. If userInManagerRole has a value of true, the associated text for that
is displayed. If that test evaluates to false, then the catchall text within the body

JSTL (Exam Objective 9.3) 557

558 Chapter 8: JSP Tag Libraries

of the <c:otherwise> action will be displayed. If a user is both a developer and a
manager, note that only the text in the fi rst <c:when> will be displayed: Processing
resumes at the end of the <c:choose> block after a positive test.

Iterator Actions
There are only two iterator actions —and less is better when it comes to exam
preparation! They are also very similar: The <c:forEach> action is a general-
purpose construct for looping, and <c:forTokens> has nearly the same syntax, but
is specialized for splitting up Strings in the same way as the Java StringTokenizer
class. There is bad news, however: These actions have an impressive number of
attributes and, consequently, a few variant syntaxes. A few examples should set us
right on these.

<c:forEach> This has two main uses: to iterate over a collection of objects
(like a Java language “while” loop working with an Iterator or Enumeration),
or to iterate a fi xed number of times (like a Java language standard “for” loop).
EL helpfully provides some ready-made implicit variables that are collections of
objects —for example, ${headerValues}, which represents the collection of values
for request headers. Here is a <c:forEach> loop that displays these values in an
HTML table:

Attribute Name

Run-time
Expression
Allowed? Mandatory?

Default
Value Type

<c:if>

test Yes Yes None boolean

var No No None String

scope No No Page String

<c:choose>

No attributes. Body may contain only one or more <c:when> actions, and zero or one
<c:otherwise> action at the end of the block.

<c:when>

test Yes Yes None boolean

<c:otherwise>

No attributes

<table border="1">
<c:forEach var="hdr" items="${headerValues}">
 <tr><td>${hdr.key}</td><td>${hdr.value[0]}</td></tr>
</c:forEach>
</table>

The value for the items attribute must contain the collection object to loop
around —in this case, a java.util.Map object (${headerValues}— see Chapter 7
for a full explanation of this EL implicit object). On each circuit of the loop, an
object from this collection is placed in the variable represented by the value for
the var attribute: hdr. Each object in a Map is a Map.Entry object, with getKey()
and getValue() methods, exposing the two bean-like properties key and value. So
the EL syntax ${hdr.key} has the effect of getting the request header’s key value
and writing this to the current JspWriter. Map.Entry’s getValue() method returns
an Object —but here some inside knowledge is necessary. We know (from the EL
specifi cation) that each Map.Entry value object in the headerValues Map is a String
array. EL allows the use of Java-language such as array syntax (${hdr.value[0]}) to
obtain —in this case — the fi rst available value for the named request header.

The <c:forEach> action allows many different types for the items attribute.
These are listed in the following table, together with the corresponding type for the
var attribute exposed.

Type for itemsitems Attribute Corresponding Type for var Attribute

java.lang.Array (of some type of
Object) The declared type for the Array

java.lang.Array (of primitives)
The wrapper type (Integer, Double, etc.)
corresponding with the declared primitive type
(int, double, etc.) for the array

java.util.Collection, java.util
.Iterator, java.util.Enumeration

Whatever type of Object is returned from the
underlying Collection, Iterator or Enumeration
(and remember there is nothing that forces all
the Objects in a collection to be of the same type,
beyond all being Objects)

java.lang.String
java.lang.String (the String in items is split up into
a separate Strings for each comma encountered —
like the tokens in StringTokenizer)

JSTL (Exam Objective 9.3) 559

You don’t have to use <c:forEach> with a collection of items. Alternatively, it
can be used to perform a set number of iterations —much like a Java for loop. This is
what happens in the following example:

560 Chapter 8: JSP Tag Libraries

<table border="1">
 <c:set var="num" value="1" />
 <c:forEach begin="1" end="128" step="2">
 <c:set var="num" value="${num + num}" />
 <tr><td>${num}</td></tr>
 </c:forEach>
</table>

The JSTL tag <c:set> is used to set a variable called num with a value of 1. Then
the <c:forEach> loop begins. The loop is set up to begin at 1 and end at 128, in
steps of 2—as indicated by the begin, end, and step attribute values. So the loop
counter will initially have a value of 1, then 3, then 5, and so on up to 127. On the
next iteration, the counter will have a value of 129, which is greater than the end
value, so the loop ends. Within the loop, another <c:set> action is used to set the
num variable to double its present value, and display this within a table cell.

<c:forTokens> <c:forTokens> is a specialized version of the <c:forEach>
action, designed to perform String tokenization much like the StringTokenizer class
does in straight Java language syntax. In fact, <c:forEach> will also do String
Tokenization when the items attribute is set to a String but it is restricted to
observing commas as delimiters only. There’s no way to make <c:forEach> break
up a String on encountering tabs or white space. This is where <c:forTokens>
comes in. It has mostly identical parameters but differs in two important respects:

■ The items attribute will accept only a String as a value (not Maps,
Collections, etc.).

■ AAn additional attribute, delims, is used to specify the delimiter to recognize
when breaking up the String into tokens.

The possibilities of
<c:forEach> go further than space
in this book allows to give a complete
account. You can combine use of a
collection (expressed in the items
attribute) with the begin, end, and step
attributes to pick out particular objects

within the collection. You can also defi ne
a varStatus attribute that exposes
information about each iteration—most
usefully, a number representing the current
round. For complete exam readiness,
check the documentation in the JSTL 1.1.
specifi cation document.

The following example expands on the fi rst <c:forEach> example we saw a few
moments ago.

<table border="1">
<c:forEach var="hdr" items="${headerValues}">
 <tr><td>${hdr.key}</td><td>${hdr.value[0]}</td></tr>
 <c:if test="${hdr.key eq 'Accept'}">
 <c:set value="${hdr.value[0]}" var="acceptValues" />
 </c:if>
</c:forEach>
</table>
<table border="1"><tr><th>Accept values</th></tr>
<c:forTokens items="${acceptValues}" delims="," var="value">
 <tr><td>${value}</td></tr>
</c:forTokens>
</table>

The fi rst part of the code is unchanged —a <c:forEach> action is used to
iterate through request header values supplied by the EL implicit variable
${headerValues}. Most request headers have single values, but this is rarely true
of the header Accept, which lists a range of fi le (MIME) types that the requesting
client will accept back in the HTTP response. The Accept header could be
represented as multiple request headers, each with an individual value (the request
header mechanism allows for this). But more usually, the fi le types are returned as a
comma-delimited list. This is where the <c:forTokens> action comes in handy.

In a change from the original code, a <c:if> action is used to spot when the
Accept header is under consideration, and save its values using <c:set> to an EL
variable called acceptValues:

<c:if test="${hdr.key eq ' Accept'}">
 <c:set value="${hdr.value[0]}" var="acceptValues" />
</c:if>

This acceptValues variable becomes the input to the <c:forTokens> action, as
the value for the items attribute. Each value within acceptValues is recognized as
separate from the next because comma is set as the value for the delims attribute.
The var attribute is used to produce the value EL variable to display in a table cell
on each iteration of the loop:

<c:forTokens items="${acceptValues}" delims="," var="value">
 <tr><td>${value}</td></tr>
</c:forTokens>

JSTL (Exam Objective 9.3) 561

562 Chapter 8: JSP Tag Libraries

When I run this code in my browser, the result looks like this:

Attribute Name
Run-time
Expression Allowed? Mandatory?

Default
Value Type

<c:forEach>

var No No None String

items Yes No None Object

varStatus No No None String

begin Yes No None int

end Yes No None int

step Yes No None int

<c:forTokens>

Var No No None String

items Yes Yes None String

delims Yes Yes None String

varStatus No No None String

begin Yes No None int

End Yes No None int

Step Yes No None int

URL-Related Actions
The fi nal group of actions we need to consider in the JSTL core library is URL
related. You can use these actions to import resources from a given URL, re-encode
URLs, redirect to URLs, as well as pass additional request parameters where necessary.

<c:import> This is a souped-up version of <jsp:include>. It performs request-
time inclusion of other resources. But whereas <jsp:include> is restricted to
resources within the same web application, <c:import> can be used for resources
in other contexts on the same server, or even to other servers entirely. Furthermore,
the result of the import doesn’t have to be sent directly to page output. Instead,
you can store the result for later use. Some examples follow. First is the simple case,
importing a resource from the same application, and placing that in page output:

<c:import url="trailer.jsp" />

You can see that the only attribute you need to set up is url, which takes a relative or
absolute URL value. When the URL is relative, it can have a forward slash or not.
The usual rules apply: Minus a forward slash, the URL is relative to the fi le doing the
importing. With a forward slash, the URL is interpreted as starting from the context
root of the current web application.

If you want to go outside of the current context, the syntax is this:

<c:import url="/rounding.jspx" context="/examp0801" />

The context attribute specifi es the context root for the resource named in the url
attribute. The context must reside (or at least be known to) the same container that
houses the context for the fi le doing the importing. The important thing to
remember is that for this syntax, both the url and context values must begin with
a forward slash.

Absolute URLs can be used too. Here’s a slightly longer example that introduces
two new concepts —importing from an external resource using an absolute URL and
storing the result in a variable:

<c:import url="http://c2.com/index.html" var="importedPage" scope="page" />
<jsp:scriptlet>String fiftyChars = ((String)
 pageContext.getAttribute("importedPage")).substring(0,50);
 pageContext.setAttribute("fiftyChars", fiftyChars);
</jsp:scriptlet>
<pre>${fiftyChars}</pre>

JSTL (Exam Objective 9.3) 563

564 Chapter 8: JSP Tag Libraries

To specify an external URL, you simply include the protocol and server name in the
value for the url attribute. By using the var and scope attributes, the specifi ed URL is
imported into a page-scoped attribute called importedPage. Next, a scriptlet takes the
fi rst fi fty characters of the importedPage attribute value, setting this in an attribute
called fi ftyChars. Beyond the scriptlet, an HTML <pre> tag surrounds some EL that
displays the fi ftyChars attribute.

An alternative to var is the varReader attribute. With this, you have the
opportunity to import a page into a Reader object. In Exercise 8-2, we’ll use this
feature to build a mini-fi lter on the imported data. You can only make use of the
reader within the body of the <c:import> tag —beyond that, it’s unavailable. The
code to set up a reader for use might look like this:

<c:import url="http://c2.com/index.html" varReader="myReader">
<!—Make use of myReader in the body of the import action—>
...scriptlet goes here...
</c:import>

<c:url> This works out a URL string for inclusion in page output. By default, the
URL generated through this action is sent directly to page output —which is rarely
useful. More usually, you make use of the var attribute to store the URL for later
use — perhaps in an EL expression for the href parameter value for an HTML link, as
shown here:

<c:url value="/rounding.jspx" context="/examp0801" var="myLink" />
Link to another page in another context

The syntax has a lot in common with <c:import>. The value attribute replaces
the url attribute. In the example, a different context (/examp0801) is specifi ed
with the context attribute, so the URL in the value attribute is interpreted beginning
at the root of that context. The var attribute stores the generated URL in the
named attribute (myLink) as a String. As usual, this attribute defaults to the page
context —but by using the scope attribute (not shown), you can place the attribute
holding the URL in any scope you like.

You may well think that it would be more straightforward to put the link in
directly: Why bother with <c:url>? So the anchor link above would simply read

Link to another page in another context

For a start, this wouldn’t get to the other context. The value for href would need
to be an absolute URL (such as http://myserver.com/examp0801/rounding

.jspx) or a contorted relative URL (such as ../examp0801/rounding.jspx – the

.. to go “up one level” to escape the current context). Moreover, <c:url> is an
improvement because it seamlessly rewrites URLs whenever necessary to include the
session ID (recall the discussion in Chapter 4 about how you need to rewrite URLs
when cookies are banned on the client to maintain session identity).

<c:redirect> This causes the client to redirect to a specifi ed URL. This action
uses the HttpServletResponse.sendRedirect() method under the covers (we
talked about that in Chapter 2). There’s one compulsory attribute (url) and one
optional one (context). The URL can be a complete URL, including the protocol
and host name and port number:

<c:redirect url="http://localhost:8080/examp0801/rounding.jspx" />

At the other extreme, url can have a value that doesn’t begin with a forward
slash. Then it is interpreted relative to the directory in which the page doing the
redirection is located:

<c:redirect url="iteration.jspx" />

You can begin the url value with a forward slash, in which case it is interpreted as
starting at the context root:

<c:redirect url="/iteration.jspx" />

There’s also an option to supply another context on the same server, by using the
context attribute. Suppose you point your browser to a JSP using the following URL:

http://localhost:8080/examp0802/redirecting.jsp

You can see from the URL that the context root is examp0802. Within the page,
redirecting.jsp, <c:redirect> is used like this:

<c:redirect url="/rounding.jspx" context="/examp0801" />

In this case, the value for url must begin with a forward slash —because it begins
from the context specifi ed. In other words, <c:redirect> composes a URL like this
to cause your browser to repoint to the specifi ed page:

http://localhost:8080/examp0801/rounding.jspx

JSTL (Exam Objective 9.3) 565

566 Chapter 8: JSP Tag Libraries

ON THE CD

One fi nal point: Like the <c:url> action, <c:redirect> has the capacity to
rewrite URLs to include the session ID —when it needs to.

<c:param> Used to attach parameters to any of the previous three URL actions
<c:import>, <c:url>, or <c:redirect>. The following example expands the
original <c:url> example to add some parameters:

<c:url value="/rounding.jspx" context="/examp0801" var="myLink">
 <c:param name="firstName" value="David" />
 <c:param name="secondName">Bridgewater</c:param>
</c:url>
Link to another page in another context

AAttribute Name
Run-time Run-time
Expression Expression AAllowed?llowed? Mandatory?

Default
Value Type

<c:import>

url Yes Yes None String

context Yes No None String

var No No None String

scope No No Page String

charEncoding Yes No ISO-8859-1 String

varReader No No None String

<c:url>

value Yes No None String

context Yes No None String

var No No None String

scope No No Page String

EXERCISE 8-2

JSTL
In this exercise you’ll build a mini-search engine. It won’t quite be on the scale of
Google or Yahoo, but it will make use of a wide range of the JSTL actions you’ve
learned about in this section of the chapter. You’ll need to have Internet access to
make this exercise work properly.

For this exercise, go back to creating the usual web application directory structure
this time under a directory called ex0802, and proceed with the steps for the
exercise. There’s a solution in the CD in the fi le sourcecode/ch08/ex0802.war. This
is a moderately diffi cult exercise, so don’t feel any shame in deploying and looking at
the solution code.

A big health warning is required at this point: For this example to work, and for
most of the subsequent examples in the book, you have to have installed an implementation
of JSTL. The steps for doing this are described at the beginning of the JSTL section
in this chapter.

Create a File of URLs

 1. Create a fi le directly in the web application root ex0802 called urls.txt.
Type in a set of genuine URLs, each separated by a carriage return —for
example,

http://c2.com/index.html
http://www.ibm.com
http://www.microsoft.com
http://www.osborne.com
http://java.sun.com

Create a JSP Document for Entry
of a Search Word (search.jspx)

 2. Create a fi le directly in the web application root ex0802 called
search.jspx.

 3. The page will be an HTML document. In the root <html> element,
include namespaces for standard actions (http://java.sun.com/JSP/
Page) and the JSTL core library (http://java.sun.com/jsp/jstl/
core).

 4. Include the following standard actions to ensure you get standard HTML
output:

<jsp:output omit-xml-declaration="true" />
<jsp:directive.page contentType="text/html" />

JSTL (Exam Objective 9.3) 567

568 Chapter 8: JSP Tag Libraries

 5. In the body of the HTML page, include a heading saying “The following
URLs will be searched:”. Use the core JSTL import action to import urls.txt
(the fi le you created in step 1) into a variable called searchUrls.

 6. After this, use the core JSTL forTokens action to split up the imported
content of the urls.txt fi le. The items attribute will be the searchUrls variable
you created in step 5 (use EL to represent this). Each line in the original
fi le is a separate URL, so the delimiter (delims attribute) should be the
carriage return for your platform (on the Windows platform I’m using, that’s
carriage return and line feed, so
). Retrieve each line into a
variable called currentURL. Display each URL found in a separate row of an
HTML table. Don’t forget to close the forTokens action with an appropriate
end tag.

 7. Under this table, introduce a conventional HTML form. The action of the
form should be “searchResults.jspx.” Have a text fi eld in the form named
“searchWord” and a submit button. This is where the user will type a search
word for matching against text in the list of URLs. Optionally, express the
action of the form as an EL variable —and preload this by using the core
JSTL url action.

Create a JSP Document to Perform the Search
and Display the Results

 8. Create a fi le directly in the web application root ex0802 called search.jspx.

 9. Repeat steps 3 and 4 for this fi le, to reference the right namespaces and
ensure HTML output.

 10. Use the JSTL actions import and forTokens exactly as you did in the
search.jspx fi le, to iterate through the URLs in the urls.txt fi le. All the
remaining steps for this document should be inserted within the for
Tokens loop.

 11. Use the import action again, but this time to import the current URL
(${currentURL}) into a variable called currentFile.

 12. Insert the following scriptlet (code supplied here!), which scours the
current fi le for the search word passed in as a parameter, and sets up an
attribute called isFound to indicate whether the word has been found in the

fi le or not. To save typing, you can copy in the following lines of code from
the electronic version of the book (or the solution code):

<jsp:scriptlet>
 // Get hold of the search word, and the file-as-String
 String searchWord = request.getParameter("searchWord").toLowerCase();
 String file =
 ((String) pageContext.getAttribute("currentFile")).toLowerCase();
 // Is the search word in the file?
 int foundAt = file.indexOf(searchWord);
 if (foundAt >= 0) {
 // Yes, it's found
 pageContext.setAttribute("isFound", new Boolean(true));
 // Find a position in the file a little bit before the search word
 int startAt = 0;
 if (foundAt > 50) {
 startAt = foundAt—50;
 } else {
 startAt = 0;
 }
 pageContext.setAttribute("startAt", new Integer(startAt));
 } else {
 // No, the search word isn't found in the file
 pageContext.setAttribute("isFound", new Boolean(false));
 }
</jsp:scriptlet>

 13. Use the JSTL if action to test the isFound attribute set up by the previous
scriptlet. All the remaining steps take place within the if action (the
closing tag for </c:if> comes immediately before the closing tag for
</c:forTokens>). This next part of the JSP document should be accessed
only if isFound is true.

 14. Use the JSTL import action to import the same fi le again, but this time into
a Reader variable.

 15. Insert the following scriptlet, which returns 200 characters of the fi le
surrounding the search word. The idea is to present a small part of the
content to the user of this application to place the search word in some
kind of context — this is placed in an attribute called fi rstBitOfFile so that
it can easily be accessed using EL later in the code. As an aside — note how

JSTL (Exam Objective 9.3) 569

570 Chapter 8: JSP Tag Libraries

this scriptlet is surrounded in XML CDATA syntax. Why should this be?
(Answer at the end of the exercise!)

<jsp:scriptlet><![CDATA[
 // Now you have the file as a Reader - skip to where you
 // want to start at, a little before the found search word.
 Reader r = (Reader) pageContext.getAttribute("currentReader");
 long skipAmount = ((Integer)
pageContext.getAttribute("startAt")).longValue();
 r.skip(skipAmount);
 int i;
 char c;
 int counter = 200;
 StringBuffer sb = new StringBuffer();
 try {
 // Just read a couple of hundred characters
 while ((i = r.read()) > -1 &&—counter > 0) {
 c = (char) i;
 if (c == '<') {
 sb.append("<");
 } else if (c == '>') {
 sb.append(">");
 } else {
 sb.append(c);
 }
 }
} catch (IOException e) {
 e.printStackTrace();
}
 pageContext.setAttribute("firstBitOfFile", sb.toString());
]]></jsp:scriptlet>

 16. Using EL variables, display the current URL (preferably as a hyperlink) and
the fi rst bit of the fi le within table cells in an HTML table row.

Run and Test Your Code

 17. Create a WAR fi le that contains the contents of ex0802, and deploy this to
your web server. Start the web server if it has not started already.

 18. Use your browser to request search.jspx, with a URL such as

http://localhost:8080/ex0802/search.jspx

 19. Make sure that the URLs to be searched are displayed. Your page should look
something like this:

 20. Enter a search word, and click the submit button. The resulting page
(searchResults.jspx) should look something like this:

JSTL (Exam Objective 9.3) 571

 21. Remember the question earlier: Why is the scriptlet code surrounded in
XML CDATA (character data) syntax? The answer is that you are writing
XML documents, which have to contain legal XML. Because the code in the

572 Chapter 8: JSP Tag Libraries

second Java scriptlet contains characters that are XML-hostile (such as “<” in
the if statement), it has to be demarcated as character data that XML parsers
will effectively ignore.

CERTIFICATION OBJECTIVE

EL Functions (Exam Objective 7.4)
Given a scenario, write EL code that uses a function; write code for an EL function; and
confi gure the EL function in a tag library descriptor.

EL functions can be used almost as an alternative to custom tags. Many things that
you can accomplish with a custom tag can be achieved with an EL function instead.
The payback is in simplicity — the development process is easier, and the use of the
function within the JSP page is as easy as using a custom tag.

EL Functions
We’ll take the rounding tag that we met at the beginning of this chapter and recast
it as an EL function. The process of developing and using an EL function very
closely parallels the same process for custom tags. There are four very similar stages:

 1. Writing a Java class containing the method underpinning the EL function

 2. Defi ning the function within a tag library defi nition (TLD) fi le

 3. Providing details of where to fi nd the TLD fi le in the deployment descriptor,
web.xml

 4. Referencing the TLD fi le in your JSP page source and using the EL functions
from it

We’ll look at these steps in turn in the headings that follow.

Writing Methods for EL Functions
Any class will do as a repository for EL functions. The only requirement of a method
that acts as an EL function is that it should be declared (1) public and (2) static.
This means that any existing public static method in any class —either of your own,

EL Functions (Exam Objective 7.4) 573

or as part of your Java environment —is already a candidate for EL function-hood.
Most of the functions in java.lang.Math, for example, can be made available as EL
functions without having to write a line of code —you simply follow steps 2 to 4
within the EL function-making process.

Here is the logic of the rounding tag we met in the fi rst part of this chapter,
rendered in a public static method for use as an EL function:

package webcert.ch08.examp0803;
public class Rounding {
 public static double round(double figure, int decimalPlaces) {
 /* Do the rounding */
 long factor = (long) Math.pow(10, decimalPlaces);
 // Shift decimal point to right...
 figure *= factor;
 // Do the rounding...
 long interimResult = Math.round(figure);
 /* Shift decimal point to left (cast of numerator to double
 * because you don't want
 * integer division to occur, and then promote to double) */
 double output = ((double) interimResult) / factor;
 return output;
 }
}

As you can see, there is nothing special about this class that makes it specifi c to the
world of tags and JavaServer pages. You can use any prebuilt class —including those
supplied with the Java environment.

You might have thought
that returning nothing (void) from an
EL function is illegal. However, there’s

nothing wrong with it—provided you state
that void is returned from the function
signature in the TLD:

<function-signature>void voidFunction(int)</function-signature>

Why might you want to do this? You
might need to call a function that causes
some effect in your application (sets up

some attributes, perhaps) but shouldn’t or
mustn’t return anything to the JSP page.

574 Chapter 8: JSP Tag Libraries

The class that implements an EL function has two usual locations —as a straight
class fi le in WEB-INF/classes, or wrapped up in a JAR in WEB-INF/ lib.

Defi ning the Function within the TLD File
Having written (or chosen) the class and method for your EL function, the next
step is to defi ne it —in a TLD fi le. You use the function element to do so. The
defi nition for our rounding function might look like this:

<function>
 <description>Rounds figure to given number of decimal places</description>
 <name>round</name>
 <function-class>webcert.ch08.examp0803.Rounding</function-class>
 <function-signature>double round(double, int)</function-signature>
</function>

The subelements of <function> are as follows:

<description> This is an optional description for the function.

<name> This is the name of the function as it will be used within EL ex-
pressions. This doesn’t have to match the Java method name —it can be any
logical name.

<function-class> This is the fully qualifi ed name of the Java class containing
the implementation of the function.

<function-signature> This is the signature of the function, almost as it would
appear in regular Java syntax. The similarities and differences are these:

■ Qualifi ers are omitted (after all, the method must be public and static, so these
keywords would be redundant).

■ A return type must be supplied (or void)—just like Java. If the function returns
an object type (rather than a primitive), the fully qualifi ed name of the class
must be given. This applies even to classes in java.lang (java.lang.String, not
just String).

■ The method name follows, and this has to match the method name in the Java
class. Just as in Java, a pair of parentheses follows the method name — to enclose
the parameters.

■ Parameters must be listed in order, following the order within the Java method.
However, only the types are provided — the parameters don’t have an accompa-
nying name in the TLD signature. Primitives are listed as in Java, and —as for the
return type — objects must have their fully qualifi ed name.

Finding the TLD
Now we’re at the point where we need to put the TLD fi le somewhere where pages
in the web application can fi nd it. This process is absolutely no different from
locating a TLD for custom tags, as we explored at the beginning of the chapter. Refer
back to that for an account of what to do.

Declaring the TLD and Using the EL Function
We’re fi nally ready to use the EL function within a JSP page! This means two
things:

 1. Declaring the TLD with the page

 2. Using the rounding function

Your options for declaring the TLD fi le have already been covered at the beginning
of this chapter: You can either use the taglib directive (for JSP syntax) or reference
the taglib in a namespace (JSP document XML syntax).

However, using the function is different. You use EL rather than tag syntax. Our
call to the round function is shown here in its simplest form, plugging in constants
for the parameters to the function:

You don’t need a separate
TLD for EL functions, different from a TLD
that contains custom tags. You can mix EL
functions and custom tags (and, as we’ll
see later, other elements as well) in the

same TLD. The only rule is on names: Each
must be unique across all functions, custom
tags, and other top-level elements within
the TLD.

EL Functions (Exam Objective 7.4) 575

576 Chapter 8: JSP Tag Libraries

ON THE CD

${mytags:round(9.21 / 3, 2)}

As is customary for EL, the whole statement is surrounded by ${...}. Within the
curly braces, fi rst comes the function name —declared just like a tag name: mytags:
round. Immediately following the function name are parentheses to contain the
parameters —just as in Java language method calls. With the parentheses, each
parameter is separated by a comma from the next. So the fi rst parameter — the fi gure
to round —is a constant calculation (9.21 / 3), and the second parameter — the
number of decimals to display —is a constant 2.

Here’s another example of the use of the round function, in a more realistic
setting. Parameters to functions can be run-time expressions. Take a look at the
following example:

<c:set var="unrounded" value="${param.num/param.denom}" />
${mytags:round(unrounded, 2)}

First of all, the JSTL action <c:set> is used to load an attribute called unrounded
with the value from an EL calculation. The EL calculation performs a division
based on two request parameters: one called num and the other called denom.
Then the unrounded variable is plugged in to the EL round function —as the fi rst
parameter.

EXERCISE 8-3

EL Functions
In this exercise we’ll rewrite the Taxation Tag you met in Exercise 8-1 as an EL
function. You’ll reuse some of the pieces of that exercise but also add some new
components. The functionality is identical—you enter some details about income,
tax allowance, and tax rate on a web page; click on a submit button; and then see a
JSP document that presents a calculated net income fi gure. Refer to Exercise 8-1 for
screen shots of how the fi nished application should look.

Copy Files from Exercise 8-1

 1. First, create a context directory called ex0803 with the usual web application
subdirectories.

 2. From Exercise 8-1, copy the fi les income.html and taxation.jspx from the
context directory ex0801, and paste them directly into your new context
directory ex0803. You’ll leave income.html exactly as it is and make only one
small change to taxation.jspx later in the exercise.

 3. Also from Exercise 8-1, copy the deployment descriptor web.xml from
ex0801/ WEB-INF to ex0803/ WEB-INF.

Create the EL Function Code

 4. In /ex0803/ WEB-INF/src, create a package directory called webcert /ch08/
ex0803, and in that create a fi le called Taxation.java (belonging to package
webcert.ch08.ex0803).

 5. Include a method in this class called calcNetIncome, with the following
signature:

 public static String calcNetIncome(double gross,
 double rate, double allow, String currency)

 6. This method accepts four parameters, as shown, and should return a format-
ted net income fi gure (complete with correct currency symbol). You can write
the code to do this yourself, though — of course —it has no direct bearing on
the SCWCD exam. You may prefer to cheat and use the following code:

 double taxToPay = ((gross—allow) * rate / 100);
 double net = (gross—taxToPay);
 NumberFormat nf = NumberFormat.getInstance();
 Currency c = Currency.getInstance(currency);
 nf.setCurrency(c);
 nf.setMinimumFractionDigits(c.getDefaultFractionDigits());
 nf.setMaximumFractionDigits(c.getDefaultFractionDigits());
 return c.getSymbol() + nf.format(net);

 7. Compile the code to directory /ex0803/ WEB-INF/classes/webcert /ch08/
ex0803.

Declare the Function in a TLD File

 8. You have now to link the static method in the class you have just written to a
function defi nition in a tag library descriptor fi le.

EL Functions (Exam Objective 7.4) 577

578 Chapter 8: JSP Tag Libraries

 9. Create an empty fi le called mytags.tld in directory /ex0803/ WEB-INF/tags.

 10. Edit the fi le, and provide an enclosing <taglib> element. Make sure that
you include any necessary attributes in the taglib opening tag, and also add
mandatory subelements (for the tag library version and short name). Refer
to Chapter 7 for details on “heading level” information on tag library de-
scriptors. If you need to, use the tag library descriptor from Exercise 8-1 as a
template for this one (it’s also called mytags.tld, and is located in /ex0801/
WEB-INF/tags).

 11. Include a function element in the TLD, referring to the preceding material
in this chapter to remind yourself how the syntax of the function element
works.

■ The description can be anything you like.

■ The name should be netincome.

■ The function class should tie in to the Taxation class you wrote, webcert
.ch08.ex0803.Taxation.

■ The function signature should match the calcNetIncome function.
Remember that parameter types don’t need names and that all
nonprimitive parameters and return types (even those from java.lang)
need to have a fully qualifi ed name.

 12. Save and close the TLD fi le.

Adjust the JSP Document

 13. In the JSP document you copied from Exercise 8-1 (taxation.jspx), you
already had a reference to the TLD document mytags.tld, with a prefi x of
mytags.

 14. So you have only one thing to change. Currently, the document uses
the tag declaration <mytags:netincome> to display the calculated net
income. Remove this, prior to doing the following steps to replace
it with an EL function call.

 15. Place the function call to mytags:netincome in EL syntax.

 16. Remembering that you navigate to this document from an HTML page con-
taining a form, add four parameters as follows:

■ The fi rst should be from a request parameter called gross.

■ The second should be from a request parameter called rate.

■ The third should be from a request parameter called allowance.

■ Hard-code the fourth (the currency code) as “GBP.”

 17. Hint: Remember that EL has an implicit variable for obtaining parameter
values.

Run and Test the Application

 18. Create a .war fi le from your ex0803 context directory, and deploy this to your
server.

 19. Test your application with a URL such as

 http://localhost:8080/ex0803/income.html

 20. If you need to, refer to Exercise 8-1 to see how the pages in the application
should look.

CERTIFICATION OBJECTIVE

The “Classic” Custom Tag Event Model (Exam
Objective 10.1)

Describe the semantics of the “Classic” custom tag event model when each event method
(doStartTag, doAfterBody, and doEndTag) is executed, and explain what the return value
for each event method means; and write a tag handler class.

We have looked at a number of JSP technologies now that rely on tag technology —
standard actions, Expression Language, and JSTL actions. Formerly —without EL
and JSTL —you would always have to write your own custom tags (or acquire some

The “Classic” Custom Tag Event Model (Exam Objective 10.1) 579

580 Chapter 8: JSP Tag Libraries

from a third party) to avoid Java scripting. But although EL and JSTL are very
fl exible, there will come a time when the best solution to keeping your page Java-free
is a custom tag. Hence, custom tags are still alive and well on the exam syllabus, and
although they represent the most complex end of JSP technology, they are satisfying
to write and powerful in scope.

In this section we’ll tackle tags head-on by looking at the so-called “classic”
custom tag event model. This is technology that has been around for a long time,
featured in the older version of the SCWCD exam and still in the current one. In
the next chapter, you’ll meet newer technologies that make it possible to retain most
or all of the power of classic tags, but with easier development approaches. But to
appreciate these properly, you need to work through some classic tags fi rst!

Tags for All Seasons
In actual fact, the classic custom tag event life cycle isn’t a single life cycle. There are
three possibilities you can choose from, based on three interfaces, all in the javax.
servlet.jsp.tagext package: Tag, IterationTag, and BodyTag. Each of these extends
the other, adding new possibilities into the basic life cycle:

■ Tag is the simplest of the three.

■ IterationTag extends Tag, adding (no surprises!) some looping capabilities.

■ BodyTag extends IterationTag, adding further method calls to manipulate the
body content of the tag (instead of just blindly appending more output to the
page, as the other types do).

You can build your own custom tags by implementing any one of these three
interfaces. More usually, you extend classes provided in javax.servlet.jsp.tagext that
already implement these interfaces, and provide some useful base functionality.
Figure 8-3 is a class diagram that shows the relationship among these classes and
the interfaces already mentioned.

BodyTagSupport

TagSupport

BodyTag

IterationTag

Tag Key

Extends

Implements

Interface

Class

FIGURE 8.3

Tag Interfaces and
Classes in javax
.servlet.jsp.tagext

You can see from Figure 8-3 that there isn’t a class that just implements the Tag
interface. Your choices are TagSupport (implementing IterationTag as well as Tag)
and BodyTagSupport (implementing everything possible).

Tag
If all you want to do is make the tag do something —you’re not interested in the
body at all— then the Tag interface is for you. Let’s consider the case where you
have so little interest in the body that you elect to leave it empty. The tag is there
just to substitute some text or other into your page output. Perhaps you would like
to insert the current date and time. You could use an expression such as this:

<%= new Date() %>

Here’s how you might approach a tag replacement for this. First of all, you might
write a class that implements the Tag interface. Here’s the source for this:

import java.io.IOException;
import java.util.Date;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.JspWriter;
import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.tagext.Tag;
public class DateStampTag1 implements Tag {
 private PageContext pageContext;
 private Tag parent;
 public void setPageContext(PageContext pageContext) {
 this.pageContext = pageContext;
 }
 public void setParent(Tag parent) {
 this.parent = parent;
 }
 public Tag getParent() {
 return parent;
 }
 public int doStartTag() throws JspException {
 dateStamp();
 return Tag.EVAL_BODY_INCLUDE;
 }
 public int doEndTag() throws JspException {
 return Tag.EVAL_PAGE;
 }

The “Classic” Custom Tag Event Model (Exam Objective 10.1) 581

582 Chapter 8: JSP Tag Libraries

 protected void dateStamp() throws JspException {
 JspWriter out = pageContext.getOut();
 try {
 out.write("<i>" + new Date() + "</i>");
 } catch (IOException e) {
 throw new JspException(e);
 }
 }
 public void release() {
 }
}

This is more or less as simple as classic tag source gets. Let’s examine the methods
in turn. In the source, they appear roughly in “tag life cycle” order. The life cycle is
illustrated in Figure 8-4.

JSP container processing one occurrence of a tag implementing the Tag Interface in one JSP page:

[setXxxxxx(. . .)]

if SKIP_BODY
returned . . .

if EVAL_BODY_INCLUDE returned . . .

int doStartTag()

if SKIP_PAGE
returned . . .

[JSP processes body contents]

if EVAL_PAGE returned . . .

int doEndTag()

[JSP processes remainder of page]

[JSP container does nothing
with the rest of the page]

setPageContext(PageContext pc)

setParent(Tag t)
J

S

P

C

O

N

T

A

I

N

E

R

FIGURE 8-4

Custom Tag Life
Cycle (1): The
Tag Interface

■ First of all, the JSP container makes an instance of the DateStampTag1 class.
The class must have a no-argument constructor —either explicitly defi ned or
(as here) provided by the compiler in the absence of other constructors.

■ Next, the JSP container calls setPageContext(PageContext pc). This gives
the tag an opportunity to save a reference to the page context of the JSP page that
contains the tag, and this is exactly what happens here. DateStampTag1 has been
defi ned with a javax.servlet.jsp.PageContext instance variable. The page context
so provided lets the remaining code in the tag handler class do all the things that
might otherwise be done using the pageContext implicit variable in a scriptlet.

■ After this, the JSP container calls setParent(Tag parent). Again, the idea is
to save a reference for later use — this time to the tag that immediately encloses
this tag. Although DateStampTag1 makes no use of its parent tag, it has to
provide the method to properly implement the Tag interface. So DateStampTag1
does the right thing, by defi ning an instance variable of type Tag, and saving the
parameter passed into this method for later use.

■ Again to satisfy the Tag interface, the getParent() method (returning the
parent Tag — or null) must be defi ned. This isn’t called by the container, but it
can be used by a later method within the tag handler class.

■ Now the JSP container calls any other set methods on DateStampTag1 that
relate to attributes for the tag. As it happens, there aren’t any; we’ll introduce
an attribute in the next version of the tag handler coming up soon (imaginatively
called DateStampTag2).

■ Next the JSP container calls doStartTag(). You can think of this as cor-
responding to the point where the JSP container processes the appearance of
datestamp’s opening tag within the JSP page source. In this case, doStartTag()
calls its own internal method —dateStamp()— to do the work of writing the
date to page output. After doing this, doStartTag() must return an int value —
this is a return code to tell the JSP container what to do next. Valid values are
defi ned as public fi nal static int data members within the Tag interface. There
are two possibilities:

■ Tag.EVAL_BODY_INCLUDE —any JSP page source between the
opening and closing tags for this action should now be processed.

■ Tag.SKIP_BODY— the exact opposite: Any JSP page source between
the opening and closing tags for this action should be ignored. The JSP
container proceeds directly to the doEndTag() method for this action.

The “Classic” Custom Tag Event Model (Exam Objective 10.1) 583

584 Chapter 8: JSP Tag Libraries

■ Dealing with the dateStamp() method: This is the only method in the
DateStampTag1 class that is not an implementation of a Tag interface method.
It does the specifi c work associated with this tag: namely, getting hold of the
JspWriter from the pageContext variable and writing a new date and time to it.
This is equivalent to using the implicit variable out in a scriptlet, but with the
benefi t that this tag handler class is completely separate from JSP page source.

■ Next, the JSP container calls doEndTag(). In this version of DateStampTag1,
this does nothing functional. However, the method is still obliged to send back a
return code to the container. Again, there are two options:

■ Tag.EVAL_PAGE tells the JSP container to process the rest of the page
after the closing tag.

■ Tag.SKIP_PAGE effectively tells the JSP container to abort the rest of the
page following the closing tag.

■ Finally, the JSP container calls release(). However, this won’t happen every
time the tag appears in a JSP page. The instance of the tag is potentially reused
over and over again. If the container decides to take a particular instance of a
tag out of service, then release() is called, which you can use to clean up any
expensive resources associated with the tag.

The diffi cult work—writing the tag handler class —is now done. However, there
are additional things to do before we can use the datestamp tag within a page.
For one thing, we must defi ne the tag within a TLD fi le. We’ve seen how functions
are defi ned already in a TLD fi le, and tags are —if anything —easier. Here’s how the
tag element looks (to save space, some mandatory taglib attributes are omitted, as
are the top-level elements that go with tag libraries):

Instances of tag handler
classes are reused—at least, potentially.
So you don’t necessarily get a new instance
with every use of a particular tag on your
JSP page, or even across JSP pages.
That means that you can’t rely on the
constructor to do initialization that must
take place for each specifi c use; it’s far

better to use setPageContext() for
that, which will get executed for every tag
appearance. Apart from the no-argument
constructor and release(), all other
Tag life cycle methods are executed
for each appearance of the tag on the
page, as shown in Figures 8-4, 8-5,
and 8-6.

<taglib ...taglib attributes...>
<... elements omitted ...>
<tag>
 <name>dateStamp1</name>
 <tag-class>webcert.ch08.examp0804.DateStampTag1</tag-class>
 <body-content>empty</body-content>
</tag>
</taglib>

Each tag must have a <tag> element defi ned. The tag must have at least the three
subelements shown:

■ <name>: a unique name within the tag library. This name must remain unique
not only within other tags but also within any EL functions or tag fi les defi ned in
the tag library as well.

■ <tag-class>: like <function-class> for EL function descriptors, or
<servlet-class> for servlets — the fully qualifi ed name of the tag handler
class (but omitting the fi le extension “.class”).

■ <body-content>: the sort of content permitted in the body of the tag —
between the opening and closing tags. There are four valid values: empty,
scriptless, tagdependent, and JSP. In this case, dateStamp1 is defi ned as empty,
so there can’t be any body. The tag can appear in the page either as <prefix:
dateStamp1></prefix:dateStamp1>, or —more usually —using the “self-
closing” form <prefix:dateStamp1 />.

We covered the correct locations for the TLD fi le in the fi rst section of this
chapter.

So that leaves actually using the tag within the JSP page. The procedure is
the same as for EL functions. Here is a complete JSP document that uses the
dateStamp1 tag:

<html xmlns:mytags="http://www.osborne.com/taglibs/mytags"
 xmlns:jsp="http://java.sun.com/JSP/Page">
<jsp:output omit-xml-declaration="true" />
<jsp:directive.page contentType="text/html" />
<head><title>Date Stamp Example</title></head>
 <body>
 <h1>Date Stamp Example</h1>
 <p>Date Stamp 1: <mytags:dateStamp1 /></p>
 </body>
</html>

The “Classic” Custom Tag Event Model (Exam Objective 10.1) 585

586 Chapter 8: JSP Tag Libraries

If you run this page, the output is as shown in the following illustration. As you can
see, all you have to do to make the date stamp appear is to locate the tag within
the template text at the right point. The JSP page container will run the code and
substitute the output from the tag handler code into the page output at the right
place.

Just because a tag that only implements the Tag interface doesn’t have a way of
manipulating the body is not to say that such a tag can’t have a body. Let’s now look
at a modifi ed version of the date stamp tag, which allows a body and demonstrates
the use of an attribute associated with the tag. In this version, the tag logic has
changed in one important respect. Dependent on the setting of an attribute called
beforeBody, the location of the date stamp will change in respect of the body. We’ll
fi rst look at how this works in action, then revisit the code in the tag handler.
Here’s the JSP page using the modifi ed tag, dateStamp2:

<html xmlns:mytags="http://www.osborne.com/taglibs/mytags"
 xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jsp/jstl/core" >
 <jsp:output omit-xml-declaration="true" />
 <jsp:directive.page contentType="text/html" />
 <head><title>Date Stamp 2 Example</title></head>
 <body>
 <h1>Date Stamp 2 Example</h1>
 <h3>Example 1</h3>
 <p><mytags:dateStamp2 beforeBody=“false”>
 Date after tag body:

 </mytags:dateStamp2></p>
 <h3>Example 2</h3>
 <c:set var=“trueVariable” value=“true” />
 <p><mytags:dateStamp2 beforeBody=“${trueVariable}”>
 — date before tag body through runtime expression.
 </mytags:dateStamp2></p>
 <h3>Example 3</h3>
 <p><mytags:dateStamp2>
 Date after tag body by default:
 </mytags:dateStamp2></p>
 </body>
</html>

This is what the output looks like when you access the document.

The “Classic” Custom Tag Event Model (Exam Objective 10.1) 587

You can see that the dateStamp2 tag has one optional attribute, called beforeBody.
When this is set to true, the date stamp appears before the body; and when set to
false, after the body. Example 1 is the fi rst of three uses of dateStamp2 in the JSP
page source:

588 Chapter 8: JSP Tag Libraries

<h3>Example 1</h3>
<p><mytags:dateStamp2 beforeBody="false">
 Date after tag body:
</mytags:dateStamp2></p>

In this case, the attribute beforeBody is set from the constant value “false” in the
opening tag. Unlike the previous tag examples, dateStamp2 has a body (the text
“Date after tag body: “ between the HTML bold face tags).

If the beforeBody attribute accepted only constant values, there would be very little
point to having it. After all, you could just decide to place the bodiless version of the
date stamp custom action (dateStamp1) either before or after some template text.
However, there might be occasions when you want the placement decision made
according to some logic in your JSP page. Consequently, the beforeBody attribute is
set up to allow an expression for a value, and that’s what you see in Example 2:

<h3>Example 2</h3>
<c:set var="trueVariable" value="true" />
<p><mytags:dateStamp2 beforeBody="${trueVariable}">
 —date before tag body through runtime expression.
</mytags:dateStamp2></p>

The set action from the JSTL core library is used to set a variable called trueVariable
to a value of “true.” Now in the dateStamp2 action’s opening tag, the beforeBody
attribute is set from an EL expression that pulls back the value from trueVariable.
Because beforeBody is set to “true,” the date stamp appears in front of the “—date
before tag body. . .” template text. Though the example is trivial, it serves to make
the point that run-time expressions can be fed into custom tag attribute values.

Finally, in Example 3, we see that the dateStamp2 custom action allows you to
leave out the beforeBody attribute altogether:

<h3>Example 3</h3>
<p><mytags:dateStamp2>
 Date after tag body by default:
</mytags:dateStamp2></p>

In that case, the attribute still retains a default value, set by the tag handler code
we’ll see in a few moments. Because the default value of beforeBody is “false,” the
outcome is to place the date stamp after the “Date after tag body...” template text.

Here’s the tag defi nition in the tag library (TLD fi le). The opening and closing
tags used for tag library setup are omitted for brevity.

<...>
<tag>
 <name>dateStamp2</name>
 <tag-class>webcert.ch08.examp0804.DateStampTag2</tag-class>
 <body-content>JSP</body-content>
 <attribute>
 <name>beforeBody</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
</tag>
<...>

Again we see the unique <name> for the tag —dateStamp2. The tag handler
class is referenced in the <tag-class> element, as we’ve seen before. The
<body-content> element is set to JSP, which means that anything permitted in
JSP page source can be placed between the opening and closing dateStamp2 tags.
This includes template text, scriptlets, expressions, standard actions, and custom
actions —in fact, any element you want. While “empty” is the most restrictive,
“JSP” is the most permissive setting for <body-content>.

Next we come to a set of elements not discussed previously, enclosed by the
<attribute> element. You can have as many enclosing <attribute> elements as
you want in a <tag>, from zero to many. <attribute>—like <tag>—has no data
of its own, but contains three mandatory subelements:

■ <name>—a unique name for the attribute. The unique rule applies only to all the
attributes within a single tag (different tags can have attributes of the same name,
as you’ve already seen with the JSTL core library. For example, var is an attribute
name that appears in many tags — such as c:set and c:import).

■ <required>—if set to “true,” the attribute must appear in the opening tag.
If “false,” the attribute’s presence is optional. This implies that the tag handler
class supplies a default value or doesn’t otherwise need any value for the attribute
to evaluate the action.

■ <rtexprvalue>—if set to “true,” a run-time (EL) expression value is permitted
for the attribute’s value setting. You are not forced to use a run-time expression;
a constant value is still perfectly valid. If set to “false,” run-time expressions are
disallowed for the attribute value —a translation error results if you try to do so.

Finally, here’s the revised code for the tag handler class. The changed lines of
code are shown in boldface.

The “Classic” Custom Tag Event Model (Exam Objective 10.1) 589

590 Chapter 8: JSP Tag Libraries

import java.io.IOException;
import java.util.Date;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.JspWriter;
import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.tagext.Tag;
public class DateStampTag2 implements Tag {
 private PageContext pageContext;
 private Tag parent;
 private boolean beforeBody;
 public void setPageContext(PageContext pageContext) {
 this.pageContext = pageContext;
 }
 public void setParent(Tag parent) {
 this.parent = parent;
 }
 public Tag getParent() {
 return parent;
 }
 public boolean isBeforeBody() {
 return beforeBody;
 }
 public void setBeforeBody(boolean beforeBody) {
 this.beforeBody = beforeBody;
 }
 public int doStartTag() throws JspException {
 if (isBeforeBody()) {
 dateStamp();
 }
 return Tag.EVAL_BODY_INCLUDE;
 }
 public int doEndTag() throws JspException {
 if (!isBeforeBody()) {
 dateStamp();
 }
 return Tag.EVAL_PAGE;
 }
 protected void dateStamp() throws JspException {
 JspWriter out = pageContext.getOut();
 try {
 out.write("<i>" + new Date() + "</i>");
 } catch (IOException e) {
 throw new JspException(e);
 }

 }
 public void release() {
 }
}

In support of the attribute is a bean-style property, represented by the private
instance variable beforeBody. The crucial aspect of attribute setup in the tag handler
code is the presence of a setter method —in this case, setBeforeBody()—whose
name matches the attribute name apart from the “set” portion, and the initial
capital (“BeforeBody” instead of “beforeBody”). The JSP container can infer from
the attribute name what set method to call, passing in the value set within the page
source.

As it happens, a “getter” is provided in this example, but that’s not crucial to
the tag life cycle (the JSP container will never call the “getter”). Because we’re
using a boolean for the attribute here, the getter is called “isBeforeBody()”
("getBeforeBody()" is still permissible —it’s just that booleans more usually have
“is”-style getter methods).

The doStartTag() logic has changed slightly. Remember this is executed when
the JSP container encounters the opening dateStamp2 tag —before the body has
been encountered. If the outcome of calling the isBeforeBody() method is true,
then the date stamp is included at this point by calling the dateStamp() method
(unchanged from before). Regardless of whether the date stamp is included at this
point, the doStartTag() method returns the value Tag.EVAL_BODY_INCLUDE,
indicating that the body should be evaluated in all circumstances.

The doEndTag() logic does a similar test. When the JSP container calls this
method, the body of the tag has already been output. Now if the “isBeforeBody()”
test evaluates to false, the dateStamp() method is called, placing the date stamp
after the body. The return value from this method remains unchanged from before:
Tag.EVAL_PAGE indicates that the JSP container should carry on and evaluate the
rest of the page following on after this custom action.

IterationTag Interface and TagSupport Class
We’ve seen a simple case. Now we’ll step up the complexity and consider a tag that
repeats itself. This will also give an opportunity to look at how tags can interact
when nested together. The example we’ll take is the idea of a JSP page that shuffl es
and deals a pack of cards. We’ll have a tag to manage the pack (called cardDealer)

The “Classic” Custom Tag Event Model (Exam Objective 10.1) 591

592 Chapter 8: JSP Tag Libraries

and a tag within it that “receives” cards from the pile (called, simply, card). The tag
is structured so that it deals out all fi fty-two cards from the pack.

Let’s see an example of the tags in action as a preliminary to considering the code.
Here’s the JSP page source:

<html xmlns:mytags="http://www.osborne.com/taglibs/mytags"
 xmlns:jsp="http://java.sun.com/JSP/Page">
 <jsp:output omit-xml-declaration="true" />
 <jsp:directive.page contentType="text/html" />
 <head><title>Card Game</title></head>
 <body>
 <h1>Bridge Hand</h1>
 <table border="1">
 <tr>
 <th>Player 1</th>
 <th>Player 2</th>
 <th>Player 3</th>
 <th>Player 4</th>
 </tr>
 <mytags:cardDealer>
 <tr>
 <td><mytags:card /></td>
 <td><mytags:card /></td>
 <td><mytags:card /></td>
 <td><mytags:card /></td>
 </tr>
 </mytags:cardDealer>
 </table>
 </body>
</html>

Most of the page is template text, setting up a table with headings for each of
four players. The cardDealer custom action surrounds the data row of the table.
Within each data row are four cells, one under each player heading. The card
custom action has the effect of taking a card off the shuffl ed pack and displaying
the value of the card. After each player “takes” a card, processing reaches the
end tag for the cardDealer custom action. If there are more cards to deal,
the JSP container processes the whole body of the tag (the table row) again,
and so on until all the cards are used up. The following illustration below
shows a sample hand.

The TLD descriptions for the two custom actions are pretty simple. Neither has
any attributes. The notable difference is that cardDealer can contain any sort of
body content, whereas card must be free of any body content.

<tag>
 <name>cardDealer</name>
 <tag-class>webcert.ch08.examp0804.CardDealingTag</tag-class>
 <body-content>JSP</body-content>
</tag>

The “Classic” Custom Tag Event Model (Exam Objective 10.1) 593

594 Chapter 8: JSP Tag Libraries

<tag>
 <name>card</name>
 <tag-class>webcert.ch08.examp0804.CardTag</tag-class>
 <body-content>empty</body-content>
</tag>

Let’s consider the tag handler code, fi rst of the CardDealingTag class, which
supplies the logic for the cardDealer custom action:

import javax.servlet.jsp.JspException;
import javax.servlet.jsp.tagext.IterationTag;
import javax.servlet.jsp.tagext.Tag;
import javax.servlet.jsp.tagext.TagSupport;
public class CardDealingTag extends TagSupport {
 private static String[] suits =
 { "spades", "hearts", "clubs", "diamonds" };
 private static String[] values =
 { "Ace of", "Two of", "Three of", "Four of",
 "Five of", "Six of", "Seven of", "Eight of",
 "Nine of", "Ten of", "Jack of", "Queen of", "King of" };
private String[] pack = new String[52];
private int currentCard;
public int doStartTag() throws JspException {
 initializePack();
 shufflePack();
 currentCard = 0;
 return Tag.EVAL_BODY_INCLUDE;
}
public int doAfterBody() throws JspException {
 if (currentCard >= pack.length) {
 return Tag.SKIP_BODY;
 } else {
 return IterationTag.EVAL_BODY_AGAIN;
 }
}
public String dealCard() {
 String card = pack[currentCard];
 currentCard++;
 return card;
}
protected void initializePack() {
 for (int i = 0; i < 4; i++) {
 for (int j = 0; j < 13; j++) {
 int cardIndex = (i * 13) + j;

 pack[cardIndex] = values[j] + " " + suits[i];
}
 }
}
protected void shufflePack() {
 int packSize = pack.length;
 for (int i = 0; i < packSize; i++) {
 int random = (int) (Math.random() * packSize);
 // Swap two cards in the pack
 String card1 = pack[i];
 String card2 = pack[random];
 pack[i] = card2;
 pack[random] = card1;
 }
 }
}

The fi rst big difference about this tag handler class from the previous date
stamp example is that it doesn’t directly implement the Tag interface. Instead, it
extends an existing class called javax.servlet.jsp.tagext.TagSupport. You can see
from the class diagram (Figure 8-3) that TagSupport implements the IterationTag
interface. Because IterationTag extends Tag, you get all the Tag methods as well,
supplemented by those unique to IterationTag (there is only one!). However, there
is a profound change to the life cycle with IterationTag, as you can see by looking at

Figure 8-5 (compare this to the Tag life cycle in
Figure 8-4).

TagSupport —as it must — provides a
default implementation of all the Tag and
IterationTag methods, and supplements
these with a few useful methods of its own
that don’t derive from any interface. So
when writing your own tag that extends
TagSupport, you are likely to have less work
to do than if implementing IterationTag from
scratch. You confi ne yourself to overriding
only those methods where the default
TagSupport behavior is insuffi cient. So, for
example, doEndTag() is missing from our
CardDealingTag code. The default TagSupport
implementation —which is simply to return

The “Classic” Custom Tag Event Model (Exam Objective 10.1) 595

Although there are
two instance variables declared in the
CardDealerTag class, neither of these is
an attribute of the tag (which has no
attributes at all). They are merely there
to support the internal workings of the
tag. Even if these instance variables had
getter and setter methods, they still
wouldn’t be attributes. For an attribute
to be available on the tag, it must be
declared in an <attribute> element
in the tag library descriptor.

596 Chapter 8: JSP Tag Libraries

JSP container processing one occurrence of a tag implementing the IterationTag Interface in one JSP page:

[setXxxxxx(. . .)]

if SKIP_BODY
returned . . .

int doStartTag()

if SKIP_PAGE
returned . . .

[JSP processes body contents]

if EVAL_PAGE returned . . .

int doEndTag()

int doAfterBody()

[JSP processes remainder of page]

[JSP container does nothing
with the rest of the page]

setPageContext(PageContext pc)

setParent(Tag t)
J

S

P

C

O

N

T

A

I

N

E

R
if SKIP_BODY returned . . .

if EVAL_BODY_INCLUDE returned . . .

if EVAL_BODY_AGAIN returned . . .

FIGURE 8-5

Custom Tag Life
Cycle (2): The
IterationTag
Interface

the value Tag.EVAL_PAGE —is just what we want here. There’s no special
processing to be done when the closing tag is encountered in the page.

At the beginning of the class are two static String arrays. These provide the base
data (suits and card values) for the next String array, called pack, which is a private
instance variable in the class. After some initialization work, the pack holds 52
String values representing the 52 playing cards, in a random sequence. Next comes
a private instance variable, of type int, called currentCard. This is used later as an
index to the pack array, and it dictates the next “card” to “deal” from the pack.

Next we get the doStartTag() method, which is overridden from TagSupport.
Remember that this will be invoked whenever the JSP container encounters the

opening cardDealer tag in any JSP page. The method calls the initializePack()
and shufflePack() methods in the class, which serve to load up the pack String
array with randomized card values. Their logic isn’t explained in detail here, for it is
straightforward and not central to the discussion of the tag life cycle (you can take
the methods on trust!). The calls to these methods could have been placed in a
no-argument constructor, but recall that tag instances get recycled —you don’t get a
dedicated instance for each access to the tag in your application. However, you can
guarantee a doStartTag() call for every access to the tag, which guarantees a newly
shuffl ed deck of cards every time. The doStartTag() method ends by returning Tag
.EVAL_BODY_INCLUDE, which is necessary to ensure that the body is processed.

Following doStartTag() is a call to doAfterBody(). This is the one new
method introduced by the IterationTag interface. The JSP container calls this
method after evaluating the body but before doEndTag() (see Figure 8-5). The
logic in the method demonstrates the two possible outcomes. If there are more cards
to deal, then the method returns the int value Tag.SKIP_BODY (which, you’ll
remember, is also a valid return value from doStartTag()). This means that the
JSP container won’t process any further occurrences of the body, but proceed directly
to the doEndTag() method. If, however, there are more cards available, then the
method returns a new constant defi ned in the IterationTag interface: Iteration
Tag.EVAL_BODY_AGAIN. As the name of this constant implies, the JSP
container will evaluate the body of the tag again, and then once again invoke the
doAfterBody() method. So you can see that there is no way out of this tag handler
until Tag.SKIP_BODY is returned! You can also see that the body is evaluated at least
once, for the logic tests present in doAfterBody() occur for the fi rst time only after
the body has been processed for the fi rst time.

Should threading worry you? What if more than one person is trying to access
the cardDealing.jspx fi le at the same time? Could there be other invocations
of the same cardDealer tag instance that are trying to draw cards from
the same pack? The answer is no. The JSP container must guarantee that any
given instance of a tag handler class is dedicated to one thread at one given
moment. How this is achieved is up to the JSP container designer—but you as
a developer need not (in fact, should not) worry about synchronizing method
calls within your tag handler classes.

So much for the life cycle methods of IterationTag. However, there is one
“business” method left to explain, and that’s dealCard(). It’s an important method,
for it retrieves a card from the pack—it’s only by calling this method that the pack

The “Classic” Custom Tag Event Model (Exam Objective 10.1) 597

598 Chapter 8: JSP Tag Libraries

is reduced and the loop implied by the logic in doAfterBody() can be broken.
However, there is no code inside of the CardDealingTag class that calls this method,
so where is it called from? The answer lies in the code of the tag handler class for the
card tag — the CardTag class:

import java.io.IOException;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.JspWriter;
import javax.servlet.jsp.PageContext;
import javax.servlet.jsp.tagext.Tag;
public class CardTag implements Tag {
 private PageContext pageContext;
 private Tag parent;
 private static int instanceNo;
 public CardTag() {
 instanceNo++;
 }
 public void setPageContext(PageContext pageContext) {
 this.pageContext = pageContext;
 }
 public void setParent(Tag parent) {
 this.parent = parent;
 }
 public Tag getParent() {
 return parent;
 }
 public int doStartTag() {
 return Tag.SKIP_BODY;
 }
 public int doEndTag() throws JspException {
 CardDealingTag dealer = (CardDealingTag) getParent();
 String card = dealer.dealCard();
 JspWriter out = pageContext.getOut();
 try {
 out.write(card);
 //out.write(card + "
" + instanceNo);
 } catch (IOException e) {
 throw new JspException(e);
 }
 return Tag.EVAL_PAGE;
 }
 public void release() {
 System.out.println("Releasing CardTag instance number: " + instanceNo);
 }
}

The CardTag tag handler is mostly simpler than the CardDealer tag handler.
It implements the Tag interface rather than IterationTag, and has no body, as you
can see from the tag library descriptor declaration:

<tag>
 <name>card</name>
 <tag-class>webcert.ch08.examp0804.CardTag</tag-class>
 <body-content>empty</body-content>
</tag>

This is reinforced by the doStartTag() method, which simply skips the body.
All the action occurs in the doEndTag() method, whose purpose is to obtain
the latest card from the pack and send the name of the card to page output. Its
mechanism for doing this is simple enough.

getParent() works well when the tag in question is nested directly inside of its
intended parent. But what if some other tag gets between the intended parent and
child elements, by accident or design? Consider the following change to the JSP
document that used the cardDealer and card tags:

<mytags:cardDealer>
<tr>
 <td><mytags:card /></td>
 <td><mytags:embolden><mytags:card /></mytags:embolden></td>
 <td><mytags:card /></td>
 <td><mytags:card /></td>
</tr>
</mytags:cardDealer>

You can see a new tag here, called “embolden,” which surrounds the card tag for the
second player (in the second column of the table). The tag’s purpose is very simple:
It introduces HTML boldface beginning and end tags to surround any body content
(of course, it would be much easier just to write <mytags:card />; bear
with this as a teaching example!). For brevity, its tag handler code isn’t shown here,
but the class name is EmboldenTag. Now when the tag handler code for the card tag
reaches the fi rst line of code in its doEndTag() method:

CardDealingTag dealer = (CardDealingTag) getParent();

The actual tag handler instance returned by the getParent() method will be
of type EmboldenTag — not the expected CardDealingTag instance as required.
The page will fall down in a messy heap at run time with a ClassCastException.

The “Classic” Custom Tag Event Model (Exam Objective 10.1) 599

600 Chapter 8: JSP Tag Libraries

There is a solution to this, provided by a static method on the TagSupport
class, called findAncestorByClass(), which accepts two parameters: the fi rst an
instance of the tag whose ancestor is sought, and the second the class type of the
ancestor tag. Here’s the rewritten code for the doEndTag() method in card’s tag
handler:

Class parentClass;
try {
 parentClass = Class.forName("webcert.ch08.examp0804.CardDealingTag");
} catch (ClassNotFoundException e1) {
 throw new JspException(e1);
}
CardDealingTag dealer = (CardDealingTag)
 TagSupport.findAncestorWithClass(this, parentClass);
// Code is unchanged from this point onwards...
String card = dealer.dealCard();
// etc.

First of all, the code makes an instance of Class type, using the static Class.
forName() method. The instance required here is the CardDealingTag. Then
in place of getParent(), TagSupport.findAncestorWithClass() is called,
passing in “this” (the current instance of the CardTag tag handler), and the class
instance we have just made. The method searches through the hierarchy of tags
until it fi nds a parent, or grandparent, or great-great-grandparent (and so on) of the
required class, CardDealingTag. The fi rst (closest) relative is returned. The class
match doesn’t have to be exact: A subclass is acceptable (the API documentation
states that the method will return “the nearest ancestor that implements the
interface or is an instance of the class specifi ed”). Under the covers, the code makes
use of the getParent() method for each tag examined in the hierarchy, hence the
importance of providing a functional getParent() method even if you never think
your tag will need it.

This card-dealing example is not what I would regard as “production ready”
code. If you forgot to include the card tag inside the cardDealer tag, you
would produce an endless loop, which is not at all obvious just by looking at
the tag declarations in the JavaServer Page source. There are mechanisms you
can use—out of scope of the exam—to ensure that validation is performed
at translation time. You might write a TagExtraInfo class to associate with
a tag defi nition, and use it to perform complex validation on the tag’s

attributes. However, to solve the validation problem posed here (checking
the proper nesting of related tags), you would need to write a class
extending javax.servlet.jsp.tagext.TagLibraryValidator. There are methods
on this class called by the JSP container at translation time. In particular,
the validate() method passes in an XML representation of the entire
JSP page to be validated, giving you the opportunity to perform cross-tag
checking and—if necessary—halting the translation process with an
appropriate error message.

Other Methods on the TagSupport Class
TagSupport provides some other convenience methods that you should know about
for the exam.

■ public void setId(String id) and public String getId()— these
methods assume that you will set up an attribute called id for your tag, intended
to uniquely identify the tag on the page. It’s up to you whether you do or not —
but if you do, then the JSP container will invoke the setId() method in the
normal way.

■ public void setValue(String name, Object o), public Object
getValue(String name), public void removeValue(String name),
and public Enumeration getValues()— these methods are underpinned
by an instance variable Hashtable within the TagSupport class, just like the set
of methods used to support attributes in different scopes (request, session,
etc.). The idea is that you can associate named values with the tag instance
and get them back according to their name (a unique String key). Note that
the getValues() method returns not an Enumeration of values but of keys
(you can use each key in turn with the getValue() method to return the
underlying object).

The “Classic” Custom Tag Event Model (Exam Objective 10.1) 601

Note that the setValue
(String name, Object o) method
in TagSupport is not a substitute for you
providing individually crafted “setter”
methods for each attribute you want to

expose on your tag. The JSP container
will not call the setValue() method; it’s
there for your own internal use in the tag
handler code.

602 Chapter 8: JSP Tag Libraries

The IterationTag life cycle is, to a large extent, superseded by JSTL’s iteration
capabilities. You can probably imagine how the card-dealing example could be
rewritten using <c:forEach>. However, I still like to use the IterationTag life
cycle when I have complex business functionality to incorporate. Encapsulation
is usually more readily achieved inside tag handler code than when using naked
JSTL within JSP page source.

BodyTag Interface and BodyTagSupport Class
So to the third and last manifestation of the custom tag life cycle: the BodyTag
interface (see Figure 8-6). Because IterationTag expands the base life cycle, BodyTag
expands the iteration life cycle. The additional capability that a BodyTag has over
its predecessors is the ability to manipulate the content of its body (the part that lies
between the opening and closing tags).

This statement might seem initially confusing. Surely, the types of tag we have
encountered have this capacity already? All tags, regardless of type, can dictate the
type of body content allowed through the <body-content> element in the tag
library descriptor —even, as we have seen, to the extent of banning body content
altogether (when <body-content> is set to “empty”). And an IterationTag can
cause its body to be evaluated as many times as it chooses.

However, all we have really seen so far is the ability of tags to append (or prefi x)
to body content. None of the tags have actually taken what is in the body already
and done something with it — perhaps changing the body out of all recognition
or obliterating the body altogether. This is where the BodyTag interface comes in.
Underpinning the BodyTag interface is a BodyContent object. This is a type of
JspWriter, with an important distinction: The contents are buffered so that no part
of the body has yet been committed to page output. This is what gives BodyTags
their ability to take any liberties they wish with body content.

Let’s fi rst of all take a look at the BodyTag life cycle, shown in Figure 8-6.
You can see two new life cycle methods over and above those provided by Tag
and IterationTag.

■ setBodyContent() gives you the opportunity to save the BodyContent
object that will hold the buffered body contents. This method is called after
doStartTag(), but before the next method, doInitBody().

■ doInitBody() is called before the JSP container enters and evaluates this tag’s
body for the fi rst time. It is called only once per access to the tag, however many

JSP container processing one occurrence of a tag implementing the BodyTag Interface in one JSP page:

[setXxxxxx(. . .)]

if SKIP_BODY
returned . . .int doStartTag()

if SKIP_PAGE
returned . . .

[JSP processes body contents]

if EVAL_PAGE returned . . .

int doEndTag()

if SKIP_BODY returned . . .

int doAfterBody()

if EVAL_BODY_AGAIN returned . . .

[JSP processes remainder of page]

[JSP container does nothing
with the rest of the page]

setPageContext(PageContext pc)

setParent(Tag t)

doInitBody()

setBodyContent(BodyContent bc)

J

S

P

C

O

N

T

A

I

N

E

R

if EVAL_BODY_BUFFERED
returned . . .

if EVAL_BODY_INCLUDE
returned . . .

FIGURE 8-6 Custom Tag Life Cycle (3): The BodyTag Interface

The “Classic” Custom Tag Event Model (Exam Objective 10.1) 603

604 Chapter 8: JSP Tag Libraries

times you choose to iterate through the body. Remember that at this point, the
BodyContent object — though available —is empty: The body hasn’t been evalu-
ated at all yet.

One additional fi eld is provided in the interface: BodyTag.EVAL_BODY
_BUFFERED. This gives a new, third return code option from doStartTag().
Now, as well as being able to skip the body altogether (Tag.SKIP_BODY)
or evaluating the body as normal (Tag.EVAL_BODY_INCLUDE), you can
choose BodyTag.EVAL_BODY_BUFFERED, which has the effect of making
the BodyContent object available. (Unless you set this return code, then the
setBodyContent() method is not called.)

Beyond doInitBody(), the life cycle is exactly the same—with the important
exception that doAfterBody() still has access to the BodyContent object. Under-
standing the methods on this object is the real key to effectively learning Body
Tag-style tags.

The BodyContent Object
The BodyContent object effectively traps the output from any evaluations of the
body that occur within the tag. As noted, the BodyContent is a JspWriter, so you
can (in your tag handler code) write additional content to the BodyContent object
before, between, and after evaluations of the tag body that arrive in the Body
Content object as well.

Although the BodyContent object is a writer, there is no real underpinning
stream; everything that accumulates there is held in a string buffer. One consequence
of this is that you can write as much as you like to BodyContent, but nothing arrives
in the page output, which can be baffl ing and confusing unless you know what is
going on. What you are meant to do, usually when you are fi nished doing all you
need to evaluate in the tag (most likely at the end of doEndTag()), is redirect the
output to some other writer. BodyContent has a method exactly for this purpose:
writeOut(Writer w). The entire contents of the BodyContent object are
appended to the Writer of your choice. But which Writer should you choose? Again,
BodyContent comes to the rescue with the method getEnclosingWriter(),
which passes back a JspWriter object. This is quite likely to be the JspWriter that is
associated with the JSP page as a whole. However, if you consider that your tag might
be nested within another tag implementing the BodyTag interface, the enclosing
writer could be another BodyContent object itself. Really, though, this doesn’t
matter; almost invariably, the right thing to do is to pass the output to the enclosing
writer, for whatever logic is controlling the enclosing writer should have a chance to

infl uence what happens to the output produced in your inner tag. So a typical
invocation you will see at the end of your tag logic goes like this:

BodyContent bc = getBodyContent();
bc.writeOut(bc.getEnclosingWriter());

You might choose a different approach entirely, which is to use the capabilities of
BodyContent to read what’s been initially placed in the body of the tag, but never to
write directly to BodyContent at all. You can always write whatever you like to the
enclosing writer and silently drop the original content of the tag. This is especially
useful when you set the content of your tag in the tag library to <body-content>
tagdependent</body-content>. This means that the JSP container will make
no effort at all to translate the body contents of your tag: It’s up to the tag logic to
do that. A very typical example of this use is when the body of the tag contains
some completely non-Java dynamic content — such as an SQL statement to read a
database. Suppose you have a JSP page with such a tag setup:

<mytags:sqlExecute>SELECT * FROM PRODUCT WHERE NAME LIKE
%1</mytags:sqlExecute>

Obviously, the user never wants to see “SELECT * FROM PRODUCT. . .”; he or
she is far more likely to prefer to see a nicely formatted set of rows in an HTML
table, showing details about a selection of products from the appropriate database
table. Let’s sketch out how you might approach writing a BodyTag to perform this
translation:

■ Ensure that you pass back EVAL_BODY_BUFFERED from the doStartTag()
method (if you’re extending BodyTagSupport, no need even to override the
method — this is the default return code).

■ Trap the BodyContent object in a private instance variable in your implementa-
tion of the setBodyContent() method (again — this work is done already if
you’re extending BodyTagSupport).

■ Override doAfterBody(), calling the getString() method on the Body
Content object — return this to a local String variable. This variable will contain
the SQL string as an outcome of evaluating the body.

■ Still in doAfterBody(), establish a data source connection to your database, and
execute the SQL string. From the ResultSet returned, format the output as desired
(in an HTML table, XML, or whatever). Write this to page output using the Jsp
Writer returned by the BodyContent object’s getEnclosingWriter() method.

The “Classic” Custom Tag Event Model (Exam Objective 10.1) 605

606 Chapter 8: JSP Tag Libraries

ON THE CD

■ Still in doAfterBody(), release your data source connection, and return
SKIP_BODY to prevent any further evaluations (no need for iteration here).

Before you develop database access tags along the lines of the pseudo-code
drafted here, check out the capabilities of the JSTL SQL tag library.

EXERCISE 8-4

The “Classic” Custom Tag Event Model
In this exercise, you’ll write a custom tag that will take a pair of numbers, and use
this to generate a Fibonacci-like sequence of numbers. This works by taking the
initial pair of numbers and adding them together, to produce a third. The second
and third are then added together to produce a fourth, then the third and fourth to
produce a fi fth, and so on. If the pair of numbers you start with is 1 and 1, the output
is the original Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, and so on. Here we see
the output from the tag in the solution code, using 1 and 1 as the fi rst and second
numbers in the sequence:

For this exercise, create the usual web application directory structure under
a directory called ex0804, and proceed with the steps for the exercise. There’s a
solution in the CD in the fi le sourcecode/ch08/ex0804.war.

Create an HTML Form (fi bonacci.html)

 1. Create a fi le directly in the web application root ex0804 called fi bonacci.html.

 2. Create an HTML form that allows you to type values into three input fi elds
named seed1, seed2, and rowLimit. seed1 is for the fi rst number in the
sequence, seed2 is for the second number, and rowLimit determines how
many numbers in the sequence will be generated and displayed.

 3. For the action on the HTML form, specify Fibonacci.jspx.

Create a JSP Document (fi bonacci.jspx)

 4. Create a fi le directly in the web application root ex0804 called fi bonacci.jspx.

 5. Declare a URI for a tag library as a namespace attribute (xmlns) of the root
<html> tag.

 6. Include the namespace for standard actions (xmlns:jsp=“http://java.sun.com/
JSP/Page”) and the following boilerplate code, which ensures HTML (rather
than XML) output:

<jsp:output omit-xml-declaration="true" />
<jsp:directive.page contentType="text/html" />

 7. In the body of the HTML, include a call to a tag called fi bonacci. Provide an
attribute called rowLimit, whose value is set using the EL variable representing
the rowLimit request parameter passed from the fi bonacci.html web page.

 8. In the body of the tag (i.e., between the opening and closing tags), include
two EL variables separated by a comma. The fi rst should return the seed1
request parameter and the second the seed2 request parameter.

Write a Tag Handler Class (Fibonacci.java)

 9. In an appropriate package directory under WEB-INF/src, create a Java source
fi le called webcert.ch08.ex0804.FibonnacciTag.java. Make sure that the class
declaration extends BodyTagSupport.

The “Classic” Custom Tag Event Model (Exam Objective 10.1) 607

608 Chapter 8: JSP Tag Libraries

 10. In the source fi le, defi ne an instance variable called rowLimit of type int,
together with getRowLimit() and setRowLimit() methods — this will
handle the rowLimit attribute on the tag.

 11. Defi ne an instance variable called currentRowNum of type int— to keep
count of how many iterations the tag has performed. Initialize the value of
this to 1 in an overriding doInitBody() method.

 12. Defi ne instance variables (all of type int) to hold the current sequence number,
the previous sequence number, and the previous to previous sequence number
(the solution code calls these currentValue, backOneValue, and backTwoValue,
respectively).

 13. In an overriding doAfterBody() method, have logic that is performed only
when the current row number (currentRowNum) is equal to 1. This should set
up an HTML table heading, and print two table rows and cells containing the
fi rst two numbers in the sequence. These can be obtained by parsing the two
comma-separated numbers in the tag body —available in the BodyContent
object (available to you because this tag extends BodyTagSupport). Don’t
forget to store these two numbers in their appropriate instance variables
(backOneValue and backTwoValue).

 14. Next in doAfterBody(), have logic that detects when the number of rows
requested in rowLimit has been exceeded. If this condition is true, return
immediately from the method with a Tag.SKIP_BODY return code.

 15. Next in doAfterBody(), calculate the current value of the sequence from the
previous two values, and output this as a further table row. Shuffl e the vari-
able values (of currentValue, backOneValue, and backTwoValue) ready for the
next iteration of the loop.

 16. Finally in doAfterBody(), increment the current row number (currentRow
Num), and return IterationTag.EVAL_BODY_AGAIN—you want to keep
going fi lling up table rows until the limit has been reached.

 17. In an overriding doEndTag() method, terminate the HTML table with an
appropriate closing tag.

Set Up the TLD File

 18. Create a TLD fi le called mytags.tld in a WEB-INF/tags directory.

 19. Include a tag entry with a name of fi bonacci, a tag class of webcert.ch08
.ex0804.FibonacciTag, and a body content of “scriptless.” (Note on scriptless:

This is the fourth and fi nal legal value for body content that you have met in
this chapter. This disallows Java language scriptlets, expressions, declarations,
and the like, but still allows EL evaluations to go ahead.)

 20. Include a defi nition with the tag entry for an attribute named rowLimit.
This is a required attribute and should allow run-time expressions.

Add a Tag Library Mapping in the Deployment
Descriptor (web.xml)

 21. In WEB-INF/web.xml, ensure there is an appropriate <taglib> element
within a <jsp-config> element.

 22. The taglib URI should match whatever you declared in fi bonacci.jspx.

 23. The taglib location should point to / WEB-INF/tags/mytags.tld.

Run and Test the Code

 24. Create a WAR fi le from your development directory ex0804, and deploy this
to your server. Run and test the code with an appropriate URL such as

http://localhost:8080/ex0804/Fibonacci.html

CERTIFICATION SUMMARY
In this chapter you started by learning how to use preexisting tags from a tag
library —how to use them in a JSP page or document, how to reference the tag
library in the JSP page or document, and how to use the deployment descriptor
to let the JSP container track the path from the JSP page or document to the
tag library descriptor fi le.

You saw that tags within the JSP page are used in exactly the same manner as JSP
standard actions, using XML-like syntax, declared in the form

<prefix:tagname attribute="value">any body content goes
here</prefix:tagname>

You further learned that you can use a taglib directive to declare the tag library
that holds the tag you are using, and that this takes the form

The “Classic” Custom Tag Event Model (Exam Objective 10.1) 609

610 Chapter 8: JSP Tag Libraries

<%@ taglib prefix="prefix" uri="anyStringYouLike" %>

You also touched on the alternative form found in JSP documents, which use
namespace declarations instead of taglib directives, in this form:

<anyElement xmlns:prefix="anyStringYouLikeToRepresentTheURI">

You went on to discover how to reference a tag library in the web deployment
descriptor, web.xml. You saw that this can be done within the <taglib> subele-
ment of <jsp-config>. You saw that <taglib> has two subelements, one called
<taglib-uri>—whose value must match the URI you place in the taglib
directive —and another called <taglib-location>—whose value holds an
path to the tag library descriptor fi le (.tld) holding tag defi nitions.

You learned more about the <jsp-config> element and, in particular, saw how
this can be used to switch off EL for a group of JSP fi les defi ned in a <jsp
-property-group>, by setting the <el-ignored> element to “true.” You also saw
how Java language scripting can be switched off for a group of JSP fi les by setting
the <scripting-invalid> element to “true.”

You then examined a tag library descriptor fi le in detail, seeing how to set up
certain mandatory heading elements, such as <tlib-version> and <short
-name>. You then learned about the elements used to defi ne a tag, such as <name>
(the name used in the JSP fi le after the prefi x to target this tag), <tag-class> (to
point to the actual Java tag handler class that does the work), and <body-content>
(to defi ne the permitted content between the opening and closing tags, with valid
values ranging from empty through tagdependent, scriptless, and JSP). You also
learned that a <tag> element might contain <attribute> elements, each with a
trio of attributes: <name> (to specify the attribute name), <required> (true or false:
whether mandatory or not), and <rtexprvalue> (true or false: whether a run-time
expression, such as a Java language expression or piece of EL, can be used to set the
attribute value).

In the next part of the chapter, you learned about the Java Standard Tag
Libraries —in particular, the core library. You met fourteen custom tag actions
you can use in your own JSP pages or documents, split across four groups: general
purpose, conditional, iteration, and URL-related.

In the general purpose group, you saw that <c:out> can be used to output a value
to the current JSPWriter, including the ability to escape XML-unfriendly characters.
You used <c:set> to set values of attributes in the scope of your choice and <c:
remove> to remove them again. Finally in this group, you learned how <c:catch>
can be used to suppress minor errors within your JSP page.

In the conditional group, you saw how <c:if> can be used to perform a test, and
so conditionally include pieces of JSP page source. You also saw how the result of
the test can be saved to an attribute accessible through EL at a later time. You also
learned how the <c:choose> action can be used to choose one true condition from
many, defi ned in <c:when> subactions, with the possibility of including a single
default action in a <c:otherwise> subaction.

In the iteration group, you saw that <c:forEach> can be used to work through
all the objects in any kind of Collection or Map. You also saw that <c:forEach> has
an alternative syntax, which allows iteration through a numeric sequence by steps —
much like a Java “for” loop. You then met <c:forTokens> and found that most of
its syntax is identical to <c:forEach> but that it specializes in breaking up Strings
into separate Strings (much like Java’s StringTokenizer class).

In the last JSTL core library group, URL-related actions, you learned about
the <c:import> action and how this can be used in lieu of <jsp:include>.
You saw how this action can be used to import local resources from the same web
application, or resources in different web applications on the same server, or even
external resources from other servers. You learned that the target of the import can
be the JSPWriter directly or an interim reader (for more effi cient processing of large
imports). You also learned about <c:url>, for manufacturing URL strings (with
session information automatically encoded when necessary), and <c:redirect>, to
instruct clients to redirect to other resources. You fi nally met <c:param>, which can
be used to provide additional request parameters to accompany any of the previous
three URL-related actions.

Then you examined EL functions. You learned that any public static method
in any class can be exposed as an EL function. You saw that making this happen
requires a <function> element entry in the tag library descriptor —including the
name of the function in the <name> element, the fully qualifi ed name of the Java
class containing the supporting method in the <function-class> element, and a
stylized version of the method signature in the <function-signature> element.
You learned the differences between <function-signature> and method signature:
Keywords are omitted, parameters are expressed without parameter names (only
types), and any Java objects returned or passed as parameters are always written with
a fully qualifi ed name. You fi nally learned that EL function-calling syntax looks like
a mixture between tags and Java method calls: ${prefix:myfunction(param1,
param2)}.

In the last part of the chapter, you learned about custom tags. You saw that the
custom tag life cycle grows in complexity, dependent on whether you implement the
Tag, IterationTag or BodyTag interface. You learned that the package containing

The “Classic” Custom Tag Event Model (Exam Objective 10.1) 611

612 Chapter 8: JSP Tag Libraries

these interfaces (javax.servlet.jsp.tagext) also contains two classes that save you work
by providing default implementations: TagSupport (implementing IterationTag and
Tag) and BodyTagSupport (implementing BodyTag).

You saw that in all cases, methods are called by the JSP container to provide a tag
handling class with a PageContext object and (if relevant) the object representing
the enclosing tag, and that this is followed by JSP container calls to set attribute
values. You saw that — still, in all cases —doStartTag() is the next method
called by the JSP container. You saw that a return code (Tag.SKIP_BODY) from
doStartTag() might cause the JSP container to skip the body altogether and
proceed directly to calling the doEndTag() method. You saw that doEndTag() can
abort the rest of the page (by providing a return code of Tag.SKIP_PAGE) or allow it
to be processed (Tag.EVAL_PAGE).

You then learned about the divergent parts of the life cycle. In IterationTag,
you saw how an additional method —doAfterBody()—can cause the body to be
processed again (with a return code of IterationTag.EVAL_BODY_AGAIN) or
proceed to the doEndTag() method (Tag.SKIP_BODY). You saw that BodyTag adds
to this by allowing doStartTag() an additional return code —BodyTag.EVAL
_BODY_BUFFERED. You learned that when this is set, your tag is provided with a
BodyContent object — representing the buffered contents of the body —and that by
using this, you can manipulate the body contents before they are written out to the
enclosing JSPWriter.

Two-Minute Drill 613

✓ TWO-MINUTE DRILL

Tag Libraries
❏ Tags are used in a JSP page using the syntax <prefix:tagname

attribute="value">any body content goes here</prefix:tagname>.

❏ The prefi x used must match the value of the prefi x attribute in the taglib
directive.

❏ A taglib directive has the following syntax: <%@ taglib
prefix="prefix" uri="anyStringYouLike" %>.

❏ For JSP documents, taglib directives are disallowed.

❏ JSP documents use XML namespace syntax as an alternative to the taglib
directive.

❏ Namespace syntax can be attached to any element (but usually the root
element), like this: <anyElement xmlns:prefix="anyStringYouLikeTo
RepresentTheURI">.

❏ The URI declared in the taglib directive (or namespace value) should
match the value of a <taglib-uri> element in the deployment descriptor.

❏ The <taglib-uri> element is paired with a <taglib-location> element,
which points to the location within the web application where the tag library
descriptor fi le is located.

❏ <taglib-uri> and <taglib-location> are both subelements of <taglib>,
which is a subelement of <jsp-config>, which is a subelement of the root
element <web-app>.

❏ Apart from <taglib>, <jsp-config> can have one other type of
subelement: <jsp-property-group>.

❏ Within <jsp-property-group>, you can defi ne a group of JSP fi les with the
<url-pattern> element.

❏ Also within <jsp-property-group>, EL can be turned off for the defi ned
group of JSP fi les by setting the <el-ignored> element to a value of “true.”

❏ Again within <jsp-property-group>, scripting can be turned off for the
defi ned group of JSP fi les by setting the <scripting-invalid> element to a
value of “true.”

❏ A tag library descriptor fi le (TLD) has a root element of <taglib>.

614 Chapter 8: JSP Tag Libraries

❏ A TLD must have elements <tlib-version> and <short-name> defi ned.

❏ A TLD can have any number of <tag> elements.

❏ The <name> subelement of <tag> defi nes the (unique) name of the tag, as it
is called in the JSP page.

❏ The <tag-class> subelement of <tag> defi nes the fully qualifi ed name of
the Java tag handler class.

❏ The <body-content> subelement of <tag> defi nes what is allowed to appear
between the opening and closing tags:

❏ empty: The tag mustn’t have a body.

❏ tagdependent: The tag can have a body, but the contents (scriptlets, EL,
etc.) are completely ignored and treated like template text.

❏ scriptless: The tag body can contain EL or template text, but no Java
language scripting constructs (expressions, scriptlets, declarations)—if
these are present, a translation error results.

❏ JSP: The tag body can contain anything: Java language scripting, EL, or
template text.

❏ Another subelement of <tag> is <attribute>: This can appear zero, one, or
many times.

❏ The <attribute> element is used to defi ne attributes on a tag and has three
subelements:

❏ <name>—a name for the attribute (unique within the tag)

❏ <required>— true or false —whether the attribute must be present or is
optional.

❏ <rtexprvalue>— true or false —whether the attribute value can be
provided by an expression (Java language or EL).

JSTL
❏ There are fi ve JavaServer Page Standard Tag Libraries (JSTL): core,

relational database access (SQL), Formatting with Internationalization, XML
Processing, and EL standard functions. The exam focuses only on the core
library.

❏ The actions (tags) within the libraries represent a standard way of performing
frequently required functionality within web applications.

Two-Minute Drill 615

❏ The following tag directive is used for access to core library actions in your
pages:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

❏ The “c” value for prefix is usual, but optional.

❏ The value for uri must be just as shown above.

❏ There are fourteen core library actions, divided into four groups: general
purpose, conditional, iteration, and URL-related.

❏ There are four actions in the general purpose group: <c:out>, <c:set>,
 <c:remove>, and <c:catch>.

❏ <c:out> is for directing output to the JSPWriter. Its attributes are value (the
output), default (the output if value is null), and escapeXml (for converting
XML-unfriendly characters).

❏ <c:set> is for setting attributes in any scope. Its main attributes arevalue
(contents of attribute), var (name of attribute), and scope (scope of attribute).

❏ <c:set> also has target and property attributes for setting properties on beans.

❏ <c:remove> is for removing attributes in any scope. It has only the attributes
var (name of attribute to remove) and scope (scope of attribute).

❏ <c:catch> catches Throwable objects thrown from the statements it
contains. It has only the one optional attribute, var, to store the Throwable
object for later use.

❏ The conditional group in the JSTL library has four actions: <c:if>,
<c:choose>, <c:when>, and <c:otherwise>.

❏ <c:if> is used to conditionally execute some JSP statements if a test proves
true. Its attributes are test (expression for the test), var (optional attribute
variable to hold the result of the test), and scope (scope of the optional
attribute).

❏ <c:choose> is used to contain mutually exclusive tests, held in <c:when>
actions.

❏ <c:choose> can only contain <c:when> and <c:otherwise> actions (and
white space).

❏ <c:when> has only one attribute: test.

❏ Only the statements bounded by the fi rst <c:when>...</c:when> action
whose test is true will be executed.

616 Chapter 8: JSP Tag Libraries

❏ One <c:otherwise> can be included after any <c:when> actions.

❏ The statements within <c:otherwise> are executed only if all the preceding
<c:when> tests prove false.

❏ There are two actions in the iterator group of the JSTL core library:
<c:forEach> and <c:forTokens>.

❏ <c:forEach> is used to iterate through a series of items in a collection, or
simply to loop for a set number of times.

❏ items can hold Arrays, Strings, and most collection types in java.util:
Collections, Maps, Iterators, and Enumerations.

❏ When iterating through collections, <c:forEach> uses the attributes items
(for the collection object) and var (to represent each item in the collection
on each circuit of the loop).

❏ When looping a set number of times, <c:forEach> uses the attributes begin
(the number to begin at), end (the number to end at), and step (the amount
to step by when working through from the begin number to the end number).

❏ In either case, a special variable called varStatus can be used to obtain
properties about the current iteration.

❏ All the above attributes can be combined in a hybrid syntax—for example,
to step through every second item in a collection.

❏ <c:forTokens> works similarly to <c:forEach>—but is specialized for
breaking up (tokenizing) Strings.

❏ It has the same six attributes as <c:forEach>, and an additional seventh of
its own.

❏ The items attribute will accept only a String as input.

❏ The additional seventh parameter is delims, which holds the characters used
to denote where to break up the String.

❏ There are four actions in the URL-related group of the JSTL core library:
<c:import>, <c:url>, <c:redirect>, and <c:param>.

❏ <c:import> is used to include a URL resource within the current page at run
time.

❏ <c:import> has six attributes. The main one is url (the expression representing
the URL resource to import).

❏ The context attribute can be used to specify a different context housed in the
same application server.

Two-Minute Drill 617

❏ The var and scope attributes can be used to place the contents of the URL
resource in a scoped attribute (as a String).

❏ Alternatively, varReader can be used to keep the contents of the URL
resource in a Reader object.

❏ <c:url> is used to compose URL strings (for use as links in documents, for
example).

❏ <c:url> has four attributes: value (expression for the URL string), context
(optional alternative context on the same web application server), var
(optional String attribute to hold the result of the URL String expression),
and scope (scope for var, if used).

❏ <c:redirect> is used to instruct the web client to point to an alternative
resource.

❏ <c:redirect> has two attributes: url (the URL for the client to point to)
and context (optional alternative context if the URL is in a different web
application on the same server).

❏ <c:param> can be nested within <c:url>, <c:import>, or <c:redirect>.

❏ <c:param> is used to attach additional parameters to the requests made or
implied by the other URL-related actions.

❏ <c:param> has two attributes: name (the name of the request parameter) and
value (the value of the request parameter).

EL Functions
❏ Any public static method in any Java class can be exposed as an EL function.

❏ EL functions are defi ned in <function> elements in a tag library descriptor
(TLD).

❏ Within the <function> element, an EL function must have three
subelements defi ned: <name>, <function-class>, and <function
-signature>.

❏ <name> is a unique name for the function.

❏ <name> must be unique not only within functions in the TLD but also within
other elements that might be defi ned in the TLD, such as custom tags and tag
fi les.

❏ <function-class> gives the fully qualifi ed name of the Java class containing
the method backing the EL function.

❏ <function-signature> refl ects the signature of the method backing the EL
function.

❏ <function-signature> must always use fully qualifi ed names for Java
classes returned or passed in to the function (even String must be expressed
as java.lang.String).

❏ Parameter names are omitted from the function signature (only types are
defi ned).

❏ The method name in the function signature must match the method name in
the Java class.

❏ Qualifi ers (such as public and static) are omitted in the function signature.
So the Java method with signature . . .

public static String getDefinition(String word, int timeForSearch)

❏ . . . would yield the following <function-signature>:

<function-signature>java.lang.String getDefinition(java.lang.String,
int)</function-signature>

❏ This function might be called in the JSP page with the following EL syntax:

${myfunctions:getDefinition(wordHeldInAttribute, 30)}

The “Classic” Custom Tag Event Model
❏ Custom tags are supported by Java classes called tag handler classes.

❏ A tag handler class must implement one of the Tag, IterationTag, or BodyTag
interfaces in the javax.servlet.jsp.tagext package.

❏ Each of these interfaces extends the next, so IterationTag augments the life
cycle of Tag, and BodyTag augments the life cycle of IterationTag.

❏ Two classes implement default functionality for tags: TagSupport and
BodyTagSupport.

❏ TagSupport implements IterationTag (and therefore Tag as well).

❏ BodyTagSupport implements BodyTag.

❏ When the JSP container meets an occurrence of a tag in the page, it makes
calls to known methods on an instance of the tag handler class.

❏ The method calls and other events that can occur whatever the type of tag
are shown here in order:

618 Chapter 8: JSP Tag Libraries

Two-Minute Drill 619

❏ setPageContext()— to give the tag access to the PageContext object

❏ setParent()— to give the tag instance access to the enclosing tag
instance

❏ setXXX()— to set any attribute values on the tag

❏ doStartTag()

❏ The processing of the tag body

❏ doEndTag()

❏ The processing of the remainder of the page

❏ If doStartTag() returns Tag.SKIP_BODY, the JSP container ignores
anything between the opening and closing tags.

❏ If doEndTag() returns Tag.SKIP_PAGE, the JSP container aborts
evaluation of the rest of the JSP page after the closing tag.

❏ doStartTag() can return Tag.EVAL_BODY, and doEndTag() can return
Tag.EVAL_PAGE, which tell the JSP container to process the tag body and
rest of page, respectively.

❏ IterationTag introduces a doAfterBody() method, called after the body is
processed for the fi rst time.

❏ If doAfterBody() returns IterationTag.EVAL_BODY_AGAIN, the JSP
container processes the body again and then calls doAfteBody() again.

❏ doAfterBody() must return Tag.SKIP_BODY to break this loop.

❏ BodyTag introduces the concept of buffering the tag body (before it is
committed to the JSPWriter) into a BodyContent object.

❏ For a BodyTag, the JSP container calls the methods setBodyContent() and
doInitBody() immediately after the call to doStartTag().

❏ However, for these calls to happen, doStartTag() must return BodyTag
.EVAL_BODY_BUFFERED.

❏ The BodyContent object is a type of JSPWriter and can be used to
manipulate the contents of the body before it is sent to page output.

❏ Alternatively, the body content can be discarded entirely.

❏ Important methods of BodyContent include getEnclosingWriter() and
writeOut(Writer out).

620 Chapter 8: JSP Tag Libraries

SELF TEST
The following questions will help you measure your understanding of the material presented in this
chapter. Read all the choices carefully because there might be more than one correct answer. The
number of correct choices to make is stated in the question, as in the real SCWCD exam.

Tag Libraries

 1. Given a tag declared as shown in the following tag library descriptor extract, what are valid uses
of the tag in a JSP page? You can assume that the tag library is correctly declared in the JSP page
with a prefi x of “mytags.” (Choose three.)

<tag>
<name>book</name>
<tag-class>webcert.ch08.examp0801.BookTag</tag-class>
<body-content>tagdependent</body-content>
<attribute>
 <name>isbn</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
</tag>

 A.

<mytags:book />

 B.

<mytags:book isbn="<%= isbn %>">

 C.

<mytags:book isbn="${isbn}" />

 D.

<mytags:book isbn="1861979258" />

 E.

<mytags:book isbn="${isbn}">Some default text if book not found</mytags:
book>

620 Chapter 8: JSP Tag Libraries

Self Test 621

 2. Which of the following XML fragments, if placed below the root element in the deployment
descriptor, will deactivate the scripting language for all fi les in the web application with a .jsp
extension? (Choose one.)

 A.

<jsp-config>
 <jsp-property-group>
 <url-pattern>*.jsp</url-pattern>
 <scripting-invalid>true</scripting-invalid>
 </jsp-property-group>
</jsp-config>

 B.

<jsp-config>
 <url-pattern>*.jsp</url-pattern>
 <scriptless>true</scriptless>
</jsp-config>

 C.

<jsp-config>
 <url-pattern>/*.jsp</url-pattern>
 <el-ignored>true</el-ignored>
</jsp-config>

 D.

<jsp-config>
 <jsp-property-group>
 <uri-pattern>*.jsp</uri-pattern>
 <script-invalid>true</script-invalid>
 </jsp-property-group>
</jsp-config>

 E.

<jsp-config>
 <jsp-property-group>
 <url-pattern>*.jsp</url-pattern>
 <el-ignored>true</el-ignored>
 </jsp-property-group>
</jsp-config>

 3. (drag-and-drop question) In the following illustration, match the correct numbered tag library
descriptor element names to the letters masking the element names in the tag library descriptor
source.

 4. Which of the following deployment descriptors will successfully and legally deactivate Expres-
sion Language for an entire web application? (Choose two)

 A.

<?xml version="1.0" ?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
</web-app>

<taglib xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-
jsptaglibrary_2_0.xsd"
 version="2.0">
 <tlib-version>1.0</tlib-version>
 <short-name>MyTagLib</short-name>
 <uri>http://www.osborne.com/mytags.tld</uri>
 <tag>
 <name>sometag</name>
 <tag-class>a.b.MyClass</tag-class>
 <body-content>empty</body-content>
 <attribute>
 <name>grossIncome</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>

 </attribute>
 </tag>
</taglib>

E

C C

F

G

I

D
E

F

D

B B
A A

H
G

I
H

15 mandatory

14 required

16 rtexprvalue

13 body-content

12 body

11 url-pattern

10 uri

9 short-name

8 name

7 class

6 tag-class

5 tlib-version

4 runtime-expression

3 expression

2 name

1 version

622 Chapter 8: JSP Tag Libraries

 B.

<?xml version="1.0" ?>
<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">
</web-app>

 C.

<?xml version="1.0" ?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <jsp-config>
 <jsp-property-group>
 <url-pattern>*.*</url-pattern>
 <el-ignored>true</el-ignored>
 </jsp-property-group>
 </jsp-config>
</web-app>

 D.

<?xml version="1.0" ?>
<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">
 <jsp-config>
 <jsp-property-group>
 <url-pattern>/*</url-pattern>
 <el-ignored>true</el-ignored>
 </jsp-property-group>
 </jsp-config>
</web-app>

 E.

<?xml version="1.0" ?>
<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

Self Test 623

624 Chapter 8: JSP Tag Libraries

<jsp-config>
 <jsp-property-group>
 <url-pattern>*.*</url-pattern>
 <el-invalid>true</el-invalid>
 </jsp-property-group>
 </jsp-config>
</web-app>

 5. From the following use of the tag <mytags:convert>, what statements must be true about its
setup and use? You can assume that the tag translates and executes correctly. (Choose three.)

<mytags:convert currency="${param.cur}"><%= amount %></mytags:convert>

 A. The taglib declaration has a prefi x of “mytags.”

 B. In the TLD, the tag’s body content element has a value of JSP.

 C. In the TLD, the tag’s name element has the value of currency.

 D. In the TLD, the tag’s currency attribute has the required element set to true.

 E. In the TLD, the tag’s currency attribute has the rtexprvalue element set to true.

 F. In the TLD, the tag’s mandatory element is set to true.

JSTL

 6. Which of the following characters are not converted by the <c:out> action when the attribute
escapeXml is set to false? (Choose one.)

 A. {

 B. <

 C. ;

 D. @

 E. All of the above

 F. None of the above

 7. Which of the following are invalid uses of the <c:set> action? (Choose three.)

 A.

<c:set scope="page">value</c:set>

 B.

<c:set value="value" var="${myVar}" />

 C.

<c:set var="myVar" scope="${scope}">value</c:set>

 D.

<c:set target="${myTarget}" property="myProp">propValue</c:set>

 E.

<c:set value="${myVal}" target="myTarget" property="${myProp}" />

 8. (drag-and-drop question) In the following illustration, match the numbered JSTL tag names,
attribute names, and attribute values with the corresponding lettered points in the JSP document
source shown. Your choices should lead to the output illustrated beneath the JSP document source.

Self Test 625

<html xmlns:mytags="http://www.osborne.com/taglibs/mytags"
 xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jsp/jstl/core" >
 <jsp:output omit-xml-declaration="true" />
 <jsp:directive.page contentType="text/html" />
 <head><title>JSTL Iterator Tags
Example</title></head>
 <body>
 <h1>Chapter 08 Question 08</h1>
 <h1>JSTL Drag and Drop</h1>
 <table border="1">
 <c:set var="num" value="1" />
 <c:forEach begin="1" end="7" step="3 "
varStatus="counter">
 <c:set var="num" value="${num + num}" />
<tr><td>${counter.count}</td><td>${num}</td></tr>
 </c:forEach>
 </table>
 </body>
</html>

G

J

D E F
A B C

H I

15 c:forEvery

14 c:forEach

16 step

17 skip

18 c:forToken

13 counter

12 varCounter

11 varStatus

10 value

9 val

8 variable

7 var

6 c:load

5 c:set

4 3

3 num + num

2 num * num

1 4

626 Chapter 8: JSP Tag Libraries

 9. What is the result of attempting to access the following JSP page source? You can assume that
the fi le countries.txt exists in the location specifi ed. (Choose one.)

<html xmlns:mytags="http://www.osborne.com/taglibs/mytags"
 xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jsp/jstl/core" >
 <jsp:output omit-xml-declaration="true" />
 <jsp:directive.page contentType="text/html" />
 <jsp:directive.page import=“java.io.*" />
 <head><title>Question 9</title></head>
 <body>
 <c:import url="/countries.txt" varReader="myReader" />
 <jsp:scriptlet>
 Reader r = (Reader) pageContext.getAttribute("myReader");
 out.write(r.read());
 </jsp:scriptlet>
 </body>
</html>

 A. The fi rst character of the fi le countries.txt is sent to page output.

 B. IOException occurs at run time.

 C. NullPointerException occurs at run time.

 D. Some other exception occurs at run time.

 E. Translation error generating the source.

 F. Translation error compiling the source.

 10. What is the minimum number of attributes that must be specifi ed in the <c:forEach> action?
(Choose one.)

 A. 1—items

 B. 1—collection

 C. 2—var and items

 D. 2—begin and end

 E. 3—begin, end, and step

 F. 3—var, collection, and varStatus

EL Functions

 11. Which of the following characteristics must a Java class have if it contains one or more EL
functions? (Choose three.)

Self Test 627

 A. Instance variables matching the function attribute names

 B. A no-argument constructor

 C. A method that is public

 D. A method that is static

 E. A main method (signature: public static void main(String[] args))

 F. A method that returns a nonvoid result

 12. Which of the following represents a correct function declaration in the tag library descriptor?
(Choose one.)

 A.

<el-function>
 <description>Taxation Function</description>
 <name>netincome</name>
 <el-function-class>webcert.ch08.ex0803.Taxation</el-function-class>
 <el-function-signature>java.lang.String calcNetIncome(double, double,
 double, java.lang.String)</el-function-signature>
</el-function>

 B.

<function>
 <description>Taxation Function</description>
 <name>netincome</name>
 <function-class>webcert.ch08.ex0803.Taxation.class</function-class>
 <function-signature>java.lang.String calcNetIncome(double, double,
 double, java.lang.String)</function-signature>
</function>

 C.

<el-function>
 <description>Taxation Function</description>
 <name>netincome</name>
 <el-function-class>webcert.ch08.ex0803.Taxation</el-function-class>
 <el-function-signature>String calcNetIncome(double, double,
 double, String)</el-function-signature>
</el-function>

 D.

<function>
 <description>Taxation Function</description>

628 Chapter 8: JSP Tag Libraries

 <name>netincome</name>
 <function-class>webcert.ch08.ex0803.Taxation</function-class>
 <function-signature>public static java.lang.String
 calcNetIncome(double grs, double allow, double rate,
 java.lang.String cur)
 </function-signature>
</function>

 E.

<el-function>
 <description>Taxation Function</description>
 <name>netincome</name>
 <el-function-class>webcert.ch08.ex0803.Taxation</el-function-class>
 <el-function-method>public static String calcNetIncome(double, double,
 double, String)</el-function-method>
</el-function>

 13. What is the result of attempting to access the following JSP? You can assume that the EL
functions are legally defi ned, that the EL function mytags:divide divides the fi rst parameter
by the second parameter, and that the EL function mytags:round rounds the result from
the fi rst parameter to the number of decimal places expressed by the second parameter.
(Choose one.)

<html>
 <%@ taglib prefix="mytags" uri="http://www.osborne.com/taglibs/mytags" %>
 <head><title>Question 13</title></head>
 <body>
 <p>${mytags:round(${mytags:divide(arg1, arg2)}, 2)}</p>
 </body>
</html>

 A. Translation error (in code generation).

 B. Translation error (in code compilation).

 C. Run-time error.

 D. Zero, for arg1 and arg2 are not set to any value.

 E. The expected result from the division, rounded to two decimal places.

 14. Where in JSP page source can EL functions be used? (Choose two.)

 A. In the body of a tag where body-content is set to scriptless

 B. In the body of a tag where body-content is set to JSP

Self Test 629

 C. In the body of a tag where body-content is set to tagdependent

 D. Within a JSP scriptlet

 E. Within a JSP expression

 F. Within a JSP declaration

 15. Consider these pairings of Java method signatures and EL function method signatures for a TLD
fi le. Which pairings go together and will work? (Choose two.)

 A.

Java:
public String getNameForId(String id)
TLD:
public String getNameForId(String id)

 B.

Java:
public static String getNameForId(int id)
TLD:
java.lang.String getNameForId(int)

 C.

Java:
public static java.lang.String getNameForId(java.lang.String id)
TLD:
java.lang.String getNameForId(java.lang.String)

 D.

Java:
static String getNameForId(String id)
TLD:
static java.lang.String getNameForId(java.lang.String id)

 E.

Java:
public static String getNameForId(String id)
TLD:
public static java.lang.String getNameForId(java.lang.String)

630 Chapter 8: JSP Tag Libraries

The “Classic” Custom Tag Event Model

 16. What is output from the following JSP document? (Choose one.)

JSP document:
<html xmlns:mytags="http://www.osborne.com/taglibs/mytags"
 xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jsp/jstl/core" >
 <jsp:output omit-xml-declaration="true" />
 <jsp:directive.page contentType="text/html" />
 <head><title>Chapter 8 Question 16</title></head>
 <body>
 <c:set var="counter" value="0" />
 <p><mytags:question16>${counter}</mytags:question16></p>
 </body>
</html>

Tag Handler Code for question16 custom action:
import java.io.IOException;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.tagext.BodyTagSupport;
import javax.servlet.jsp.tagext.*;
public class Question16 extends BodyTagSupport {
 public int doAfterBody() throws JspException {
 int i = Integer.parseInt("" + pageContext.getAttribute("counter"));
 if (i > 5) {
 return Tag.SKIP_BODY;
 } else {
 pageContext.setAttribute("counter", "" + ++i);
 return IterationTag.EVAL_BODY_AGAIN;
 }
 }
}

 A. 0123456

 B. 01234

 C. 12345

 D. 23456

 E. 123456

 F. A blank page

Self Test 631

 17. Which of the following are valid statements relating to the <body-content> element in the
tag library descriptor? (Choose two.)

 A. A closing tag may never be used for a custom action whose <body-content> element is set
to “empty.”

 B. A <body-content> setting of scripting-allowed permits JSP scriptlets in the body of the
custom action.

 C. A <body-content> setting of jsp-document permits the use of JSP document syntax in the
body of the custom action.

 D. To permit JSP expressions but not EL, <body-content> should be set to JSP.

 E. To permit EL but not JSP expressions, <body-content> should be set to scriptless.

 F. JSP expressions are legal in the body of a custom action whose <body-content> is set to
tagdependent, but they will not be translated.

 18. What is the result of accessing the following JSP document? (Choose one.)

JSP document:
<html xmlns:mytags="http://www.osborne.com/taglibs/mytags"
 xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jsp/jstl/core" >
 <jsp:output omit-xml-declaration="true" />
 <jsp:directive.page contentType="text/html" />
 <jsp:directive.page import="java.io.Writer" />
 <head><title>Chapter 8 Question 18</title></head>
 <body>
 <jsp:scriptlet>Writer myOut = pageContext.getOut();</jsp:scriptlet>
 <p><mytags:question18>
 <jsp:scriptlet>myOut.write("Body");</jsp:scriptlet>
 </mytags:question18></p>
 </body>
</html>

Tag handler code for question18 custom action:
import java.io.IOException;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.tagext.*;
public class Question18 extends BodyTagSupport {
 public int doAfterBody() throws JspException {
 try {
 bodyContent.write("Legs");
 bodyContent.writeOut(bodyContent.getEnclosingWriter());

632 Chapter 8: JSP Tag Libraries

 } catch (IOException e) {
 throw new JspException(e);
 }
 return Tag.EVAL_PAGE;
 }
 public void doInitBody() throws JspException {
 try {
 bodyContent.write("Head");
 } catch (IOException e) {
 throw new JspException(e);
 }
 }
}

 A. Translation error (source generation)

 B. Translation error (source compilation)

 C. Run-time error

 D. Output of HeadBodyLegs

 E. Output of BodyHeadLegs

 F. Output of BodyHeadBodyLegs

 19. Which TLD tag declarations would best fi t this tag handler code? (Choose two.)

Tag handler code:
package webcert.ch08.examp0804;
import java.io.IOException;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.tagext.Tag;
import javax.servlet.jsp.tagext.TagSupport;
public class Question19 extends TagSupport {
 private int data;
 int getData() {
 return data;
 }
 void setData(int data) {
 this.data = data;
 }
 public int doEndTag() throws JspException {
 try {
 pageContext.getOut().write(id + ":" + data);
 } catch (IOException e) {
 throw new JspException(e);

Self Test 633

 }
 return Tag.EVAL_PAGE;
 }
}

 A.

<tag>
 <name>question19a</name>
 <tag-class>webcert.ch08.examp0804.Question19</tag-class>
 <body-content>empty</body-content>
 <attribute>
 <name>id</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>data</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
</tag>

 B.

<tag>
 <name>question19b</name>
 <tag-class>webcert.ch08.examp0804.Question19</tag-class>
 <body-content>empty</body-content>
 <attribute>
 <name>value</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
</tag>

 C.

<tag>
 <name>question19c</name>
 <tag-class>webcert.ch08.examp0804.Question19</tag-class>
 <body-content>empty</body-content>
 <attribute>
 <name>data</name>
 <required>false</required>

634 Chapter 8: JSP Tag Libraries

 <rtexprvalue>true</rtexprvalue>
 </attribute>
</tag>

 D.

<tag>
 <name>question19d</name>
 <tag-class>webcert.ch08.examp0804.Question19</tag-class>
 <body-content>empty</body-content>
 <attribute>
 <name>id</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
</tag>

 E.

<tag>
 <name>question19e</name>
 <tag-class>webcert.ch08.examp0804.Question19</tag-class>
 <body-content>empty</body-content>
</tag>

 20. For the given interfaces, which of the following are valid sequences of method calls according to
custom tag life cycle? (Choose three.)

 A. Tag: setParent, setPageContext, doStartTag

 B. Tag: setPageContext, setParent, doStartTag, doEndTag

 C. IterationTag: doStartTag, doInitBody, doAfterBody, doEndTag

 D. IterationTag: doStartTag, doAfterBody, doAfterBody, doAfterBody

 E. BodyTag: setBodyContent, doInitBody, doStartTag, doAfterBody

 F. BodyTag: doInitBody, setBodyContent, doStartTag, doEndTag

 G. BodyTag: doStartTag, setBodyContent, doInitBody, doAfterBody

LAB QUESTION
In this lab you are invited to write a custom tag that extends BodyTagSupport but overrides every tag
life cycle method. Give the tag some attributes that will dictate the return codes from each of the life
cycle methods. So, for example, suppose the tag has an attribute called rcStartTag, which accepts a

value of 0, 1, or 2. Within the doStartTag() method for the tag handler, return Tag.SKIP_BODY if
0 is specifi ed, Tag.EVAL_BODY_INCLUDE if 1 is specifi ed, or BodyTag.EVAL_BODY_BUFFERED
if 2 is specifi ed for the rcStartTag attribute.

Write an HTML page that allows you to specify different values for each of the tag’s attributes,
and forward these to a JSP document that receives these values as parameters and uses EL to supply
the values to an occurrence of your tag within the document. It doesn’t really matter what the tag
does, but try to get the page to refl ect the tag life cycle methods called and the order in which they
are called.

Lab Question 635

636 Chapter 8: JSP Tag Libraries

SELF TEST ANSWERS
Tag Libraries

 1. � C, D, and E are correct. C is correct because the attribute isbn can take a run-time
expression and an EL expression is supplied using correct syntax. Also, the tag closes itself —
although it’s strange for a tagdependent tag to lack a body, it’s not illegal. D is correct, this time
supplying a constant for the required attribute isbn. E is correct — the opening tag has the
same syntax as answer C (supplying an EL expression), but this time there is a body that is
correctly rounded off by the end tag.

 � A is incorrect because the attribute isbn is required, and it’s missing in the syntax here.
B is incorrect because the tag doesn’t close itself, nor is there an end tag after a body. Though
the tag may still work, the result could be catastrophic for any page source coming after, for this
might be interpreted as the body of the tag.

 2. � A is the correct answer. A specifi es the right sequence of elements —<url-pattern> and
<scripting-invalid> nested inside <jsp-property-group> nested inside <jsp-config>.
Furthermore, the URL pattern used (*.jsp) is correct — the leading slash is not required.

 � B is incorrect: <jsp-property-group> is missing, and <scriptless> is an incorrect
element name. C is incorrect because <jsp-property-group> is missing again, the value
for <url-pattern> wrongly begins with a leading slash, and <el-ignored>—although a
correct element name —controls expression language, not scripting. D is incorrect because
<uri-pattern> and <script-invalid> are subtly wrong element names. E is incorrect —it’s
well formed with correct element names for ignoring expression language, but no good for
suppressing scripting in all .jsp fi les.

 3. � A matches to 5 (tlib-version), B matches to 9 (short-name), C to 10 (uri), D to 8 (name),
E to 6 (tag-class), F to 13 (body-content), G to 8 (name, again), H to 14 (required), and I to
16 (rtexprevalue).

 � All other combinations are incorrect.

 4. � A and D are correct answers. A will work because web.xml is set to servlet version level 2.3,
and, although empty of any detail, a JSP container will interpret that as meaning that EL should
be ignored. D is correct, for although web.xml is at servlet version level 2.4, the necessary
elements are included to turn off EL. Note the URL pattern to designate all fi les: /* (a single
forward slash without the asterisk should also work, as this is the default mapping)

 � B is incorrect, for the (empty) deployment descriptor is at servlet version level 2.4 —at
which EL is, by default, enabled. C is incorrect because the <jsp-config> element isn’t

636 Chapter 8: JSP Tag Libraries

recognized in a 2.3 deployment descriptor. Your web application won’t even start if XML
validation is performed against the DTD. E is incorrect on two counts: A pattern of *.* is
illegal, and the element name is <el-ignored>, not <el-invalid>.

 5. � A, B, and E are correct. A is correct because the prefi x “mytags” must match the taglib
directive. B is correct because the body of the tag contains a Java language expression, and JSP
is the only value that will permit this within the body content. E is correct because to support
an EL expression as the value for the currency attribute, the attribute must have its rtexprvalue
set to true.

 � C is incorrect because the tag’s name element is convert—it’s the name attribute of one of
its attributes, which is set to currency. D is incorrect because we can’t infer anything just by
looking at the tag use about whether the currency attribute is required or not; it might be fi ne
to leave it out altogether. F is incorrect because tags don’t have a mandatory element — that’s
made up.

JSTL

 6. � E is the correct answer. If escapeXml is set to false, then no characters are converted, so all
of the listed characters are not converted.

 � A, B, C, and D are incorrect because no character conversion takes place. If escapeXml
were set to true, then the less than sign (<) would be converted to the entity <. F is incorrect
because it implies that all the listed characters would be converted.

 7. � A, B, and C are the correct answers. A is incorrect because the syntax including the scope
attribute demands that there is a var attribute — the name of the variable to set to a value.
B is incorrect because although the var attribute is present, it can’t accept a run-time EL
expression. C is incorrect because the optional scope attribute can’t accept a run-time EL
expression either.

 � D is valid syntax, so an incorrect answer. The target and property attributes are set correctly
(target can accept EL expressions), and the value is in the body of the tag. E is also valid syntax,
and so an incorrect answer. This time, value, target, and property are set as attributes, with the
values for value and property coming from EL expressions, which is legal.

 8. � A matches to 5 (c:set), B matches to 7 (var), C to 10 (value), D to 14 (c:forEach), E to
16 (step), F to 4 (3), G to 11 (varStatus), H to 10 (value, again), I to 3 (num + num), and J to
14 (c:forEach, again).

 � All other combinations are incorrect.

Self Test Answers 637

638 Chapter 8: JSP Tag Libraries

 9. � C is the correct answer. A NullPointerException occurs. This is because the Reader
returned by the <c:import> action is available only within the body of the action. Because
<c:import> has no body in the example code, the reader drifts out of scope immediately.
When the scriptlet code accesses myReader, null is returned, and when the container attempts
to invoke the read() method, a NullPointerException occurs.

 � A is incorrect, for the fi le is never read. This would, however, be the correct answer if the
scriptlet were properly enclosed inside the body of the <c:import> action. B is incorrect; the
NullPointerException preempts the possibility of an IOException. D is incorrect; no other sorts
of exception occur, and E and F are incorrect because the page source generates and compiles
successfully.

 10. � A is the correct answer. It is possible to specify the items attribute on its own, in which case
the loop will work through each item in the given collection.

 � B is incorrect because there isn’t a collection attribute. C is incorrect because although it is
very common to specify the var attribute as well as the items attribute, you don’t have to have
each object in the collection available to you within the loop. D and E are incorrect —although
they specify a correct combination of attributes, it is possible and legal to use less as shown in
the correct answer. Finally, F is incorrect both because the number of attributes is too high, and
because collection is a made-up attribute.

EL Functions

 11. � C, D, and E are the correct answers. All a Java class needs to support an EL function is a
method that is declared as both public and static (hence, both C and D have to be true for the
same function —but there is nothing in the answers that says that this can’t be so). E is also
true: Bizarre as it may seem, a class’s main method can be exposed as an EL function, just
because it is public and static. The facts that main returns nothing (void) and receives an array
as a parameter are not barriers to EL function status.

 � A and B are incorrect, because anything at instance level within the class (such as instance
variables and constructors) is irrelevant for EL functions: It doesn’t matter if these are present in
the class or not. F is incorrect because it is allowable for an EL function not to return anything
to the JSP page that uses it (provided the TLD states that the function signature has a return
type of “void”).

 12. � B is the correct answer, for it has the correct syntax for an EL function declaration in the
TLD fi le.

 � A is incorrect because three of the element names are prefi xed with el-, which they should
not be. C is incorrect for the same reason as A, and also because the String return type and

String parameter must both be expressed in fully qualifi ed form: java.lang.String. D is incorrect
because the function signature must not contain the public or static keywords, and the
parameters must not be named — only the type is present in the function signature (unlike
Java). E is wrong because it contains a combination of the errors in the other wrong answers,
already explained.

 13. � A is the correct answer — there is a translation error in code generation. You cannot embed
one EL function inside another, as depicted. The JSP code generator will choke on the second
{ (before encountering the terminating }).

 � B and C are incorrect because the code is never generated to compile and run. D and E
would occur only if the code did run. The reasoning in D is also incorrect: Just because arg1
and arg2 don’t have values in the JSP you can see, that is not to say that these could not be
attributes set in some previous code in request, session, or application scope.

 14. � A and B are correct. A is correct —where body-content is designated as scriptless, that only
means that Java language constructs are disallowed: scriptlets, declarations, and Java language
expressions. EL functions (and other EL constructs), though, can be used in a scriptless body.
B is correct —if body content is defi ned as JSP, then any kind of legal JSP syntax (EL functions
included) goes.

 � C is incorrect —although you can place EL function syntax in the body of a tagdependent
action, it will be treated simply as template text; the container will not attempt to invoke the
function. D, E, and F are incorrect — scriptlets, expressions, and declarations can contain only
legal Java syntax. EL syntax is clearly not Java syntax, so it will cause compilation failure.

 15. � B and C are the correct answers. B is correct in all respects: The Java method is declared
as public and static, and the matching TLD function signature uses fully qualifi ed types where
necessary. C is also correct: Although it isn’t necessary to declare the String class with its full
package name in the Java method signature (java.lang is implicitly available in every class),
there is nothing wrong with doing that. Crucially, the TLD function signature does use fully
qualifi ed types for both the parameter and the return type.

 � A is incorrect for several reasons: The Java method is not static; the TLD must not use
the public keyword; the TLD must fully qualify the String return type and parameter (as java
.lang.String); and the TLD must not name the parameter as the Java method signature does
(so (java.lang.String) instead of (String id)). D is incorrect for several reasons as well:
The Java method must be public; the TLD must not use the static keyword; the TLD must not
name the id parameter (only state its type). E is incorrect only because the TLD uses the public
and static keywords (which it must omit; in this respect, it doesn’t match the Java method
signature).

Self Test Answers 639

640 Chapter 8: JSP Tag Libraries

The “Classic” Custom Tag Event Model

 16. � F is the correct answer. Because the tag handler inherits from BodyTagSupport, and does
not override the doStartTag() method, the default doStartTag() method is invoked, which
returns a value of EVAL_BODY_BUFFERED. So all the body content — through all the
iterations —is written to the BodyContent object. However, the contents of the BodyContent
object are never sent to its enclosing writer — so they are completely lost.

 � A, B, C, D, and E are incorrect because there is no output. If the problem outlined
in the correct answer were fi xed, then answer A would be correct — the body would be
evaluated seven times before exit from the implicit loop in doAfterBody()—giving an
output of 0123456.

 17. � E and F are the correct answers. E is correct because a value of scriptless for
<body-content> does allow EL to run, but bans any language scripting — so JSP expressions,
declarations, and scriptlets result in a translation error. F is correct as a value of tagdependent,
for <body-content> turns off the JSP container’s translation process (and validation) for the
body of a tag. It’s up to the tag handler logic to do something with the body content; the JSP
container won’t translate JSP expressions as it normally would.

 � A, B, C, and D are incorrect. A is incorrect because although a tag whose <body
-content> is set to “empty” must not have a body, a closing tag can still be present, like
this: <mytags:dosomething></mytags:dosomething>. B is incorrect because there is no
such allowed value as scripting-allowed for <body-content>; use a value of JSP when JSP
scriptlets are permitted in the custom action’s body. C is incorrect because there is no such
setting as jsp-document either —and indeed, no setting of <body-content> has any effect
on permitting or denying JSP document syntax. D is incorrect because the settings of <body
-content> are cumulative. JSP is more permissive than scriptless. A setting of scriptless allows
EL; a setting of JSP allows EL and language scripting as well. There is no way to allow scriptlets
but disallow EL.

 18. � E is the correct answer. The key point to note is that the tag handler extends Body
TagSupport. That means anything written to the BodyContent object is buffered. However,
the scriptlet in the body of the tag uses the main JspWriter associated with the page. This is
not buffered, so anything written to it is sent to page output straightaway, and not included
in the body content for the tag. So the sequence of events is this: doInitBody() writes
“Head” to BodyContent, which is buffered; the body is evaluated, so running the scriptlet
that writes “Body” directly to page output; then doAfterBody() writes “Legs” to Body
Content, which is buffered; then doAfterBody() writes the current accumulated content of

BodyContent (“HeadLegs”) to the enclosing writer —which is in this case the main JspWriter
for the page.

 � A, B, and C are incorrect, for there are no translation or run-time problems. D and F are
incorrect because of the reasoning given in the correct answer.

 19. � D and E are the correct answers. The only attribute exposed by the tag handler is id (setId
is inherited from TagSupport). So answer D, which declares the custom action with the id
attribute, is a good choice. So is answer E, which declares no attributes; there is no compulsion
to use an available setter method in tag handler code as a declared attribute in the tag library
descriptor.

 � A is incorrect because it exposes data as an attribute (as well as id, which is fi ne).
Although there is a setData() method within the tag handler code, the method access
is at package level, meaning that JSP container code cannot call the method. So it doesn’t
count from the point of view of attribute defi nition. B is incorrect because although there is a
setValue(String key, Object value) method inherited from TagSupport, this style of
signature is wrong for exposing an attribute called value (this method is designed for a different
purpose altogether). C is incorrect for the same reason as answer A.

 20. � B, D, and G are correct. B is correct because it correctly places the setting of page
context before parent. D is correct because you can have several successive calls to
doAfterBody()in an IterationTag. G is correct because the setting of body content
comes before doInitBody(), and both these methods are positioned correctly between
doStartTag() and doAfterBody().

 � A is incorrect because the setting of parent comes after the setting of page context — not
before. C is incorrect because IterationTags don’t have a doInitBody() method — only Body
Tags do. E is incorrect because of the bad positioning of doStartTag(). F is incorrect because
of the bad positioning of doStartTag(), and the reversing of doInitBody() and setBody
Content().

LAB ANSWER
Deploy the WAR fi le from the CD called lab08.war, in the /sourcecode/chapter08 directory.
This contains a sample solution. You can call the initial HTML page with a URL such as

http://localhost:8080/lab08/lifecycle.html

The resulting page looks something like this:

Lab Answers 641

642 Chapter 8: JSP Tag Libraries

Example output after pressing the submit button looks like the following illstration.

