Custom Tags

CERTIFICATION OBJECTIVES

° Tags and Implicit Variables ° Tag Hierarchies

° The “Simple” Custom Tag Event Model v/ Two-Minute Drill
. The Tag File Model Q&A Self Test

644 Chapter9: Custom Tags

t has been a long haul, but you are almost through the many objectives for JavaServer Pages
and tag technology.

This chapter begins by sweeping up loose ends on tag handling code — showing
you how tag handler code can access implicit variables.]SPs have implicit variables
within their syntax. In the Java for tag handler code, you have to work a little
harder.

Then we move on to two bigger topics, which are new to this version of the exam
(and to JSP 2.0). The first topic is the simple tag life cycle. This is something of a
misnomer, for tags are never that simple, but after fighting your way through the life
cycle of Tag, IterationTag and BodyTag, you will probably appreciate the reduced
frills of the new approach. The second topic is tag files. These give you a means of
writing simple tags without writing a line of Java—everything is encapsulated in a
JavaServer Page-like structure called a tag file.

The chapter finishes by looking at hierarchies of tags. Whether or not they
follow the classic or simple model, some tags need to look up to their parents and
grandparents. You learn about two techniques for tag handlers to get hold of other
tag instances in the hierarchy.

CERTIFICATION OBJECTIVE

Tags and Implicit Variables (Exam Objective 10.2)

Using the PageContext API, write tag handler code to access the JSP implicit variables and
access web application attributes.

Whereas]JSPs have their own implicit variables (such as request, session, and
application), your tag handler classes don’t. What they have instead is a PageContext
object. This part of the chapter explores how you can use methods on this object

to get hold of the implicit variable equivalents. It’s hard to write a meaningful tag
handler without reference to the supplied PageContext, so we have inevitably
covered some of this ground already. This short chapter section will amplify the
knowledge you have already gained.

Tags and Implicit Variables (Exam Objective 10.2) @45

The PageContext API

Datch

convert the implicit variable name to the
PageContext method name by prefixing
“get” to the implicit variable. Just watch
out for the two exceptions to this rule:
config maps to getServletConfig, and
application to getServletContext.

You have seen that in naked JSPs, you have access to a pageContext implicit
object— of type javax.servlet.jsp.PageContext. Because this is an abstract class, you
never meet an object of this type directly—your kindly JSP container provides an
instance of a subclass that has implemented all the abstract methods it contains.

For the most part (in naked JSPs), you can avoid calling many of the methods
on the pageContext implicit object—such as getRequest (), getSession(), and
getServletConfig(). There’s nothing stopping you from doing this, but you
already have references to the objects returned by those methods. These take the
shape of other implicit variables—such as request, session, and application.

In tag handler code, you don’t have that luxury. The PageContext object is passed
to you in the setPageContext () method. If your tag class inherits from TagSupport
(or BodyTagSupport), setPageContext () saves the object to a protected instance
variable so that you can access it directly in your code as pageContext—which
conveniently matches the name of the pageContext implicit variable used directly
inside JSP page source.

However, there is no equivalent mechanism for the remaining implicit variables.
You could imagine the JSP container providing a call to a tag life cycle method
called setRequest (HttpServletRequest request), giving an opportunity to
save the implicit request object, yet it doesn’t. You have to do a little work yourself.
But it’s not hard. pageContext is a conduit to all the other implicit variables: You
simply have to know the right method to call.

Accessing JSP Implicit Variables

Table 9-1 lists the nine JSP implicit variables, together with the PageContext
method needed to obtain the equivalent instance objects.

Mostly, you can mentally

646 Chapter 9: Custom Tags

TABLE 9-1

PageContext Method Used to Obtain

JSP Implicit Variable = Equivalent Object

JSP Implicit
Variables and Request getRequest ()
Equivalent R =
PageContext esponse getResponse ()
Methods Out getOut () (inherited from PageContext’s parent class
JspWriter)
Session getSession()
Config getServletConfig()
Application getServletContext ()
Page getPage()
PageContext (This is the PageContext object passed to your tag handler)
Exception getException()

The following example shows tag handler code using PageContext to exercise
methods on objects that are otherwise implicit to the JSP:

public int doStartTag() throws JspException {

ServletRequest request = pageContext.getRequest();
String varl = request.getServerName() + ":"

+ request.getServerPort();
ServletResponse response = pageContext.getResponse();
String var2 = response.getCharacterEncoding() + ";"

+ response.getContentType();
ServletConfig config = pageContext.getServletConfig();
String var3 = config.getServletName();
try {

Writer out = pageContext.getOut();

out.write(varl + ";" + var2 +
} catch (IOException e) {

e.printStackTrace();

nwoon
’

+ var3);

}
return Tag.EVAL BODY INCLUDE;

}

You can deploy this code from the WAR file in the CD at /sourcecode /ch09/
examp0901.war. Here is the URL to run it:

http://localhost:8080/examp0901/asTag.jsp

Tags and Implicit Variables (Exam Objective 10.2) 4.7

When I run this code, the output I see is this:
localhost:8080;IS0-8859-1;text/html; jsp

The output of localhost:8080 originates from the calls to getServerName ()
and getServerPort () on the ServletRequest object returned by pageContext
.getRequest (). Likewise, ISO-8859-1 and text/html are derived from get
CharacterEncoding() and getContentType () calls on the ServletResponse
object returned by pageContext.getResponse (). The string jsp is the servlet
name retrieved from the ServletConfig object.

All of these pieces of information are held in String variables and are
concatenated together. PageContext.getOut () is used to return the JSP’s
associated Writer and send the output to the page.

If the above code were written within a JSP using implicit variables, it might

look like this:

<p><%= request.getServerName() %>:<%= request.getServerPort() %>;
<%= response.getCharacterEncoding() %>;<%= response.getContentType() %>;
<%= config.getServletName() %></p>

This JSP is available in the same WAR file as you deployed above (examp0901.war),
and the URL to run it is

http://localhost:8080/examp0901/asJSP.jsp

Datch

The only implicit variable by the other page is then available to
that isn’t necessarily always available is your error page, as the implicit variable
exception. Recall that the exception exception in the JSP source. If that |SP
implicit variable is available only in a source has a custom tag within it, that
JSP error page. The |SP container should custom tag can invoke pageContext
be used to load your error page only .getException () and expect an
indirectly—when another page specifies Exception object back. Under other
your error page and when that other page circumstances, the call will return null.
goes wrong. The exception produced

648 Chapter 9: Custom Tags

Accessing Attributes with PageContext

You already know how to access attributes with the PageContext object — take a
look again at Chapter 6 if you need a reminder. All four scopes are available to you:
page, request, session, and application.

All you haven’t yet done is use PageContext inside of tag handler code to set or
get attribute values. We’ll consider a small example where a tag handler performs a
simple mathematical function using attributes to handle the input and outputs to

the JSP page. Here’s the JSP page first of all:

01 <%@ taglib prefix="mytags" uri="http://www.osborne.com/taglibs/mytags" %>
02 <html><head><title>Squaring Function</title></head>

03 <body><p>The square of ${param.input}

04 <% pageContext.setAttribute("input", request.getParameter("input")); %>
05 <mytags:square />

06 is ${output}

07 </p></body></html>

This example is available from the same WAR file you deployed previously,
examp0901.war. You can call this JSP with a URL such as

http://localhost:8080/examp0901/square.jsp?input=2
Then the output is
The square of 2 is 4

The tag handler code in doStartTag() that performs the calculation looks like this:

01 String input = (String) pageContext.getAttribute("input");
02 int i = Integer.parselnt(input);
03 i=141i* i;

04 pageContext.setAttribute("output", new Integer(i));
05 return Tag.SKIP_BODY;

Let’s follow through the logic of the request to the JSP:

B In the URL an input parameter called input is passed with a value of 2.

B The JSP displays the value of this input parameter using EL on line 03:
${param.input}.

B In line 04 the JSP uses the pageContext implicit variable to set up an attribute
called input. The value of this attribute is taken from the request parameter we

Tags and Implicit Variables (Exam Objective 10.2) 649

just saw displayed. Because no scope is specified within the setAttribute()
method, scope will default to page.

B At line 05 of the JSP, we find the bodiless <mytags : square> tag inserted. There
is no output from this, but the tag handler code is executed.

B Within the tag handler code, at line 01 the value of the page context attribute
called input is recovered into a local String variable.

B At line 02 the value of the String input is coerced to an int value. (This code is
not production-ready as you can see — there’s no defensive coding for bad input!)

B At line 03 we have the calculation: The input is squared (and still held in the int
local variable 7).

B At line 04 the result of the calculation is stored in an Integer object. This is used
as the value of an attribute called output, set up in page scope.

B Acline 05 we return from doStartTag(), skipping the body.

B Now—back at line 06 in the JSP—we are ready to display the result of the
calculation. EL has direct access to attributes by name, hence the simple
statement $ {output}.

From this small example, you see combined several techniques that you have
learned so far. In particular, you see how attributes can be used to communicate
between a JSP and a tag handler.

Ar

ON THE CD

Tags and Implicit Variables

In this exercise you will set up a tag handling class with instance variables whose
names match the implicit variables in a standard JSP. You already have an
example —in TagSupport—in the protected instance variable pageContext. You
might even find this class useful as the base class for tag handlers of your own.

For this exercise, create a web application directory structure under a directory
called ex0901, and proceed with the steps for the exercise. There’s a solution in the
CD in the file sourcecode /[ch09/ex0901.war.

Create the Tag Handler Class

I. Create a Java source code file in / WEB-INF/classes or an appropriate package
directory within it called ImplicitsTag.java.

2. In the class declaration, extend (javax.servlet.jsp.tagext.) TagSupport.

650 Chapter9: Custom Tags

3.

7.
8.

Declare instance variables called request, response, session, application, config,
out, page, and exception. These should match their appropriate (implicit
variable) type.

Opverride the setPagecontext () method. However, invoke super.setPage
Context () so that TagSupport’s default action (to save the page context in

a protected variable called pageContext) is honored. In the following lines

of code, invoke the appropriate methods on pageContext to initialize the
instance variables you declared in the previous request. For example,

request = pageContext.getRequest();

to initialize the ServletRequest instance variable.

In dostartTag(), exercise any methods you like on any of your instance
variables. Use this as an opportunity to revise long-unused javax.servlet APIs
that you last tried in the early chapters.

Whichever methods you do choose, make sure to obtain some information
from each available implicit attribute, and record this in a request attribute.
So, for example, you might use the request.getRemoteHost () method to
return String information to record in an attribute called requestinfo.

Conclude the dostartTag () method by skipping the body.

Save and compile ImplicitsTag.java.

Create a Tag File

9.
10.

Create a TLD file called mytags.tld in / WEB-INF/tags.

Include within it a definition for a tag named implicits. The tag class should
tie in with the ImplicitsTag class you created previously. Remember that the
tag has no body.

Create a JSP File

12.
13.
14.

Create a JSP file called implicits.jsp directly in the context root directory
ex0901.

Declare the tag file mytags.tld, with a prefix of mytags.
Include <mytags:implicits /> somewhere in the JSP.

Somewhere after the tag, display the attributes you set up in the
doStartTag() method of ImplicitsTag.java.

The “Simple” Custom Tag Event Model (Exam Objective 10.4) @ 5§ |

Create, Deploy, and Test a WAR File

I5. Create a WAR file from your ex0901 context directory, and deploy this to the
Tomcat server.

|6. Test your application by invoking the JSP with a URL such as
http://localhost:8080/ex0901/implicits.jsp

I7. The output will, of course, vary depending on the choices you made about
information to retrieve to the displayed attributes. The solution code
produces the following output:

Implicit Variables Tag

Display request attributes set up in implicits tag

pageClass org apache. jap anplicits jsp

pageInfo A T3P housing a tag to access imphcit variables
servletName Implicits

serverInfo Apache Tomeatis 5.7

sessionAccess IMon Apr 11 09:02:53 BET 2005

exception null

outClass org. apache. jasper. runtime. Jep WriterTmpl

CERTIFICATION OBJECTIVE

The “Simple’” Custom Tag Event Model (Exam
Objective 10.4)

Describe the semantics of the “Simple” custom tag event model when the event method
(doTag) is executed; write a tag handler class; and explain the constraints on the JSP
content within the tag.

652 Chapter9: Custom Tags

In Chapter 8, you learned about the “classic” tag event model. Although this is
highly flexible, it is complex to learn. This explains part of the motivation for the
J2EE designers to produce a “simple” model for tag production. Instead of three life
cycle choices based on the interfaces Tag, IterationTag, and BodyTag, you have only
one. This is based on the javax.servlet.jsp.tagext.SimpleTag interface, and in this
section, we'll see how to write a tag based on this interface and learn how the J2EE
container makes use of it. You'll find that you can do almost all the things you are
able to do in the classic model, but you “do it yourself” instead of relying on different
API calls and method return codes.
Since SimpleTag is a new innovation with JSP 2.0, you can expect plenty of
exam questions relating to it. Don’t make the mistake of thinking that simple tags
are simple — perhaps relative to classic tags they are, but they still demand study and

practice!

The Simple Tag Model Life Cycle

The simple model for tags is shown in Figure 9-1. At first sight, it looks like the
classic model. There is a method that provides some kind of content object. There is
a method to set the parent tag, followed by methods to set attributes. Following this,

The Simple Model
Tag Life Cycle

JSP container processing one occurrence of a tag implementing the SimpleTag Interface in one JSP page:

T »n —

»mZ—>»-4Z0O0

setdspContext (JspContext pc)

setParent (IJspTag parent)

Only called if there is a body

[setXxxxxx (...) for each attribute]

setJdspBody (IJspFragment jspBody)

i

void doTag ()

defaut behavior

In doTag() ...

* output or discard the body

* iterate as many times as
you like (with or without
outputting the body)

* set attributes for EL

variables in body or

calling page

[JSP processes remainder of page]

[JSP container does nothing
with the rest of the page]

if
SkipPageException
thrown . ..

The “Simple” Custom Tag Event Model (Exam Objective 10.4) &5 3

another method provides the body content of the tag to the tag handler. So far, so
classic— though you might have already noticed some unfamiliar parameter types
(such as JspContext, JspTag, and JspFragment —where you might have expected
PageContext, Tag, and BodyContent).

Next comes the doTag() method, and this is where the big difference lies.
This method replaces all of dostartTag(), doAfterBody(), and doEndTag().
All the processing that would have occurred in those methods moves to doTag/().
Furthermore, doTag () returns nothing at all. With simple tags, you don’t use
return codes (such as Tag.SKIP_BODY or BodyTag.EVAL_BODY_BUFFERED)
to influence the life cycle. The life cycle as it directly affects the tag output is
controlled instead by your code inside doTag().

Life Cycle Details

Any tag handler class you write needs to implement the javax.servlet.jsp.tagext
.SimpleTag interface. Nearly all its methods are designed to have implementations
that are called by the JSP container, as shown in Figure 9-1. Let’s explore the
complete life cycle in more detail. It begins within the thread running the servlet
generated from your JSP page that uses an occurrence of the simple tag, and ends
once that occurrence has been processed. The following table lists simple tag events
in order.

Construction When the JSP container meets an occurrence of a simple tag, it makes
a new instance of the tag handler class. The container calls the zero-
argument constructor, so the tag handler class must have one, either
explicitly defined or implicitly put there by the Java compiler. Because
(unlike classic model tags) you get a new instance for every use, you
can safely initialize variables in your constructor or instance member
declarations. There is no “pool” for simple tags.

setJspContext Saves the JspContext object for later access to attributes in all scopes

(JspContext pc) and the JspWriter currently associated with the page.

setParent Saves the JspTag for later access to this action’s immediate parent. This

(IspTag tag) method is called only if the custom action has a custom action as a
parent.

set<AttributeName> The JSP container calls any “set” methods for attribute names defined in

(<Type> attributeValue) the tag library descriptor (just as for classic tag handlers).

setJspBody (JspFragment The JSP container calls this method only if the custom action has a

jspBody)

body. If so, save the JspFragment object for later use —you’ll need it
to process the body later (the JSP container doesn’t do that for you
automatically).

654 Chapter9: Custom Tags

doTag()

Within this method, you can do whatever you like. You are most likely
to want to do one or both of the following: 1. Process the body (more
than once if required) 2. Write directly to page output

Variable Synchronization

This is an advanced topic that should not come up on the exam. In brief,
you can specify the equivalent of output parameters from your simple

tag handler. The variable synchronization process moves these into
attributes accessible in your page after the end of your tag. Of course,
you can achieve this effect quite easily manually by setting up your own
attributes in the tag handler code —as happens with the tag examples in
the book.

Garbage Collection

There is no release () method for simple tags. Once a tag instance

has been used, it is thrown into touch. So any cleanup must happen in
doTag () (or a method called from doTag ()), for this is the last method
called by the container before garbage collection. You could include a
finalize () method, although there is never an absolute guarantee that
finalize () will be called.

SimpleTagSupport
Just as TagSupport and BodyTagSupport exist to provide default implementations
of the classic tag handler interfaces, so SimpleTag has one of its own. The name

won’t come as any surprise: SimpleTagSupport.
Consequently, it is usually easiest to extend
SimpleTagSupport for your own simple tag

”

Datch A pedantic point, but handler classes, instead of implementing the
one that might underpin a more picky SimpleTag interface directly.
examination question: All three set SimpleTagSupport provides some predictable

methods in the SimpleTagSupport class
are implementations of SimpleTag inter-
face methods. However, only one of the
get methods—getParent ()—derives
from the interface. getJspBody () and
getJspContext () are provided out
of the kindness of SimpleTagSupport’s
designer’s heart (or more likely because
you need them to access otherwise
private instance variables).

support for each of SimpleTag’s methods, plus
some extra useful methods as explained below:

B setJspContext(JspContext pc),
setParent (JspTag parent),
and setJspBody (JspFragment
jspBody) store the objects passed in
by the container for later access in your
code by corresponding get methods
(getJspContext (), getParent(),
getJspBody ()).

Unicode
Character
Converter—
First Few
Characters
Shown

The “Simple” Custom Tag Event Model (Exam Objective 10.4) @5 5

B doTag() is a do-nothing implementation.

B findAncestorWithClass(JspTag from, Class klass) is an interesting
static method that we look at in the final section of this chapter, on exploring
tag hierarchies.

An Example: A Unicode Converter

Enough theory on the APIs—Iet’s look at a working example. This lives on the
CD in /sourcecode fexamp0902.war —deploy this as you will. This example uses
a simple tag handler to list a sequence of numbers in an HTML table, together
with their corresponding Unicode character equivalents. If you use a range of
numbers from O to 255, you will see the extended ASCII character set. You
may find it more exciting to explore some of the upper ranges of Unicode. The
supplied JSP that uses the simple tag sets a range of 1040 to 1100, which causes

the web page to display Cyrillic characters as shown in Figure 9-2. Call it with a
URL such as

http://localhost:8080/examp0902/unicodeDisplay. jspx

If you don’t see Cyrillic characters (just boring boxes instead), the chances are that
you don’t have a Cyrillic font installed.

Numbers with Unicode Character Equivalent

1040[a
1041[5
10428
10430
1044 |1
1045
1046 &
10473
10481
1049 7

656

<tag>

Chapter 9: Custom Tags

Here is a JSP document that uses the simple tag (called unicodeConverter). You
can see nothing to differentiate it from a classic tag invocation — the mechanism is
the same:

<html xmlns:jsp="http://java.sun.com/JSP/Page"
xmlns:c="http://java.sun.com/jsp/jstl/core"
xmlns:mytags="http://www.osborne.com/taglibs/mytags">
<jsp:output omit-xml-declaration="true" />
<jsp:directive.page contentType="text/html" />
<head><title>Unicode Converter</title></head>
<body>
<h3>Numbers with Unicode Character Equivalent</h3>
<table border="1">
<mytags:unicodeConverter begin="1040" end="1116">
<tr><td>${number}</td><td>${character}</td></tr>
</mytags:unicodeConverter>
</table>
</body>
</html>

You can see in the body of the unicodeConverter action a table row with two table
cells, their data supplied from two EL variables: $ {number} and ${character}. You
can infer from Figure 9-2 and the JSP document source above that the tag handler is
preoccupied with two tasks: setting up these EL variables and adding as many rows as
requested. The number of rows—and range of characters displayed —is determined
by the begin and end attribute values for the action.

Before we see the tag handler code, we will peek at the TLD. There’s not much
to see here —again, there’s nothing particular to indicate that this is a simple tag we
are dealing with. The declaration looks just like a classic tag:

<description>Shows Unicode Character for Number</description>
<name>unicodeConverter</name>
<tag-class>webcert.ch09.examp0902.CharConvSimpleTag</tag-class>
<body-content>scriptless</body-content>
<attribute>

<name>begin</name>

<required>true</required>

<rtexprvalue>true</rtexprvalue>
</attribute>
<attribute>

<n
<r

<r
</at
</tag>

packag
import
import
import
import
import

publ

The “Simple” Custom Tag Event Model (Exam Objective 10.4) & 57

ame>end</name>
equired>true</required>
texprvalue>true</rtexprvalue>
tribute>

[t’s true that the <tag-class> (CharConvSimpleTag) hints at the tag’s simple
origins, but that’s merely a naming choice by this developer. The only constraint
on simple tag file declaration within the tag library descriptor is that <body
-content> is restricted to three (instead of four) allowed values: empty, tag
dependent, and scriptless. The fourth value—Jsp—may get through XML
schema validation, but the JSP container will give you a translation error: Simple
tags are not allowed the full range of JSP syntax. Java language syntax within
scriptlets, declarations, or expressions is disallowed. After all, this is meant to be
a simple tag.

So to the tag handler code. Here it is in its entirety:

e webcert.ch09.examp0902;
java.io.IOException;
javax.servlet.jsp.JspContext;
javax.servlet.jsp.JspException;
javax.servlet.jsp.tagext.JspFragment;
javax.servlet.jsp.tagext.SimpleTagSupport;

ic class CharConvSimpleTag extends SimpleTagSupport {

private int begin;
private int end;

publ
publ
publ
publ
publ
publ

fo

ic int getBegin() { return begin; }

ic void setBegin(int begin) { this.begin = begin; }

ic int getEnd() { return end; }

ic void setEnd(int end) { this.end = end; }

ic CharConvSimpleTag() { super(); }

ic void doTag() throws JspException, IOException {

r (int thisChar = getBegin(); thisChar <= getEnd(); thisChar++) {
JspContext ctx = getJspContext();

ctx.setAttribute("number", new Integer(thisChar));
ctx.setAttribute("character", new Character((char) thisChar));
JspFragment fragment = getJspBody/();

fragment.invoke(null);

658 Chapter9: Custom Tags

This class extends Simple TagSupport, so most of the life cycle methods are
inherited from there. Beyond that, over half of the class is taken up with import
statements and attribute handling code (instance variables and getters and setters
for the attributes begin and end). The interest is in the doTag () method, which does
the following things:

Defines a for loop, designed to start at the value specified in the begin attribute
and finish at the end attribute value.

Gets hold of the JspContext object, using the getIspContext () method
inherited from SimpleTagSupport.

Sets up an attribute on the JspContext object, called number. This reflects the
numeric value of the loop counter held in variable thisChar.

Sets up a second attribute on the JspContext object, called character. The value
for the attribute is a Character wrapper object. This is constructed with a char
value derived from downcasting the int counter variable thisChar. This supplies
the Unicode character when character is later accessed in the JSP page as an EL
variable (${character}).

Next, the code gets the JspFragment defining the body of the custom action—in
other words, the following line of JSP page source:

<tr><td>${number}</td><td>${character}</td></tr>

Next, the code calls the invoke () method on the fragment. The effect of this
is to process this piece of JSP page source. Template text (such as <tr><td>) is
written directly to page output. Any EL expressions (such as $ {number}) are
evaluated before being sent to page output. Which writer is used? The answer
lies in the parameter passed into the invoke method. You can define your

own Writer and divert the JspFragment output there. But by supplying null

as the parameter value, you are writing to the JspWriter associated with the
JspContext. In other words, getIspBody () . invoke (null) is shorthand for
getJspBody () .invoke (getJspContext().getOut()).

This marks the end of the loop—which goes around again and is repeated as
many times as necessary before reaching the end attribute value. Each time, the
body of the custom action is reevaluated afresh—with a new table row, number,
and character.

The “Simple” Custom Tag Event Model (Exam Objective 10.4) 659

INSIDE THE EXAM

Get clear in your mind the differences B Writer access (getout ())

between the following: B Programmatic access to the EL

B PageContext and JspContext evaluator (getExpression

Evaluator(), getVariable
B BodyContent and JspFragment (), 9 i
Resolver ())—not something

PageContext and BodyContent belong to the you are likely to encounter in the
classic tag model. JspContext and JspFragment exam or encounter early in your
are their equivalents (roughly speaking) in the simple tag development career.

simple tag model. There are many similarities, B PageContext adds methods to
but there are significant differences as well. do with
First, some points about javax.servlet.jsp

.JspContext and javax.servlet.jsp.PageContext: M Accessing implicit objects in

a servlet environment (e.g.,

B Both PageContext and JspContext are getRequest (), getResponse(),
classes, not interfaces. getServletContext()).

B As a page author, you're never supposed B Redirection (forward(),
to make a new one of either of these include()).

classes: You let the JSP container supply
I — The idea behind JspContext was to abstract

away all the parts that are not specific to the
HTTP servlet environment. Of course, you
are likely to be using JspContext in a HT TP
B JspContext contains all the methods to servlet environment most, if not all, of the
do with time. And indeed, many JspContext methods
B Attribute access (e.g., get are designed to accept constants defined in the
Attribute(), setAttribute()) PageContext class, as in the following:

B JspContext is the parent of PageContext
(PageContext extends JspContext).

myJspContext.getAttribute("mySessionId", PageContext.SESSION SCOPE)

However, at least you can be aware of the questions that include simple tag handler code
differences so you’re not fooled by exam of the following kind:

660 Chapter 9: Custom Tags

DE THE EXAM (conti

HttpServletRequest request = myJspContext.getRequest();

which, of course, won’t compile.

So what about the differences between
javax.servlet.jsp.tagext.BodyContent and
javax.servlet.jsp.tagext.JspFragment? These

are more pronounced:

BodyContent inherits from javax.servlet
.jsp.JspWriter, which is a java.io. Writer.
JspFragment isn’t a Writer of any sort; it
inherits directly from java.lang.Object.

BodyContent has some content in it
already when your classic custom tag
handler code gets hold of it. This is the
result of the JSP container evaluating the
body of the tag— processing any scriplets
or EL contained therein.

Terminating Early

B JspFragment is the opposite: Its

content constitutes the body before any
evaluation has taken place. In your
simple tag handler code, you control
when to do the evaluation —if at all —
by calling the invoke () method on the
JspFragment object.

There is no concept of buffering

with JspFragment, as there is with
BodyContent. Nothing of the body is
buffered because nothing has been output
until you decide. You can simulate a
buffer by all means: Have the invoke ()
method write to a StringWriter, and
there you have evaluated content, very
like a BodyContent object.

Back in Figure 9-1, the simple tag life cycle diagram, you can see two routes out
of the doTag() method: one the normal route, which results in the JSP container
processing the rest of the page, the other bypassing evaluation of the rest of the

page entirely.

Because doTag () has no return code associated with it, the mechanism
for bypassing the rest of the page is through an exception. The exception to
throw is javax.servlet.jsp.SkipPageException, a subclass of javax.servlet.jsp.Jsp
Exception (which is in the throws clause of the SimpleTag.doTag () method

signature).

The “Simple” Custom Tag Event Model (Exam Objective 10.4) &6 |

.

ON THE CD

The “Simple” Custom Tag Event Model

This exercise is going to use a combination of an HTML file, JSP, and simple tag
handler to display the contents of a given directory. For this exercise, create a web
application directory structure under a directory called ex0902, and proceed with
the steps for the exercise. There’s a solution in the CD in the file sourcecode /ch09/
ex0902.war.

Create the HTML File

I. Create an HTML file called fileBrowser.html directly in the context directory
ex0902.

2. Include a form in the file that has a text input field, named initDir. The user
will type into this field the name of the directory to browse. Don't forget to
include a submit button in the form.

3. Make the action of the form a JSP document called fileBrowser.jspx.

4. Save and exit the file.

Create the JSP Document

5. Create a JSP document called fileBrowser.jspx directly in ex0902.

6. Include the following heading information, which ensures proper HTML
output and declares standard actions, the core tag library, and your own tag
library:

<html xmlns:jsp="http://java.sun.com/JSP/Page"
xmlns:c="http://java.sun.com/jsp/jstl/core"
xmlns:mytags="http://www.osborne.com/taglibs/mytags">
<jsp:output omit-xml-declaration="true" />
<jsp:directive.page contentType="text/html" />

7. Include an HTML table in the JSP document with three headings: “Name,”
“Size,” and “Directory?”
8. After the headings, and before the main table row, include a tag declaration

like this:

<mytags:fileBrowser initdir="${param.initdir}" size="true">

662 Chapter 9: Custom Tags

10.
I
12.

You can see that this is the opening tag of a tag named fileBrowser, with two
attributes: initdir and size. The value for the size attribute is set to a constant
of true. The value for initdir is supplied from the initDir request parameter set
up in the HTML page (rendered through EL).

In the following table row, place ${file} in the first table cell. This EL picks
up an attribute set by the tag handler code we have yet to write.

In the next table cell, place ${size}.
Place ${isDir} in the next table cell.

After the table row, place the closing fileBrowser tag: </mytags:
FileBrowser>.

Create the Tag Library Descriptor File

13.
14.

I5.

l6.

Create a TLD file called mytags.tld in / WEB-INF/tags.

Include within it a definition for a tag named fileBrowser. The tag class should
be webcert.ch09.ch0902.FileBrowserSimple Tag (follow whatever package
naming convention you are using). The body content should be scriptless.
Define two attributes for the tag: initDir and size. Both are required, and both

should allow run-time expressions.

Save and exit the TLD file.

Enter a Tag Library Mapping in the Deployment Descriptor

17.

In web.xml, ensure you have a tag library mapping. The URI is http://
www.osborne.com/taglibs/mytags, and the tag library descriptor location
is /WEB-INF/tags/mytag.tld.

Write the Simple Tag Handler Code

18.

19.
20.

21.

Create a Java source code file in / WEB-INF/classes or an appropriate package
directory within it. Call the file FileBrowserSimpleTag.java.

In the class declaration, extend (javax.servlet.jsp.tagext.)Simple TagSupport.
Provide instance variables and getters and setters for the two attributes initDir
and size.

Override the doTag() method. Within the method, create a java.io.File
object from the value given for initDir. Use the 1istFiles () method on

the File object to obtain an array of Files.

The “Simple” Custom Tag Event Model (Exam Objective 10.4) 663

22. Still in the doTag () method, obtain the JspContext as a local variable.

23. Start a for loop based on the contents of the File array. For each file found,
use setAttribute() on the JspContext local variable to set three attributes.
The first is called file, and the value is the name of the current file in the
loop. The second is called size, and the value is the size of the current file in
the loop (1ength () method on File). The third is isDir, and the value is a
Boolean object created from the output of the isDirectory() method on
the current file in the loop.

24. Still within the loop, get the JspFragment associated with the tag handler (get
JspBody ()). Call the invoke () method on the fragment, passing in a null
value. This has the effect of processing the body of the tag in the JSP. The
body contains references to the three attributes whose values you have set.

Create, Deploy, and Test a WAR File

25. Create a WAR file from your ex0902 context directory, and deploy this to the
Tomcat server.

26. Test your application by invoking the JSP

Show Files in Requested Directory ith 2 URL such as
w U

Directory: C:\Program Files
http://localhost:8080/ex0902/
fileBrowser.html

| Name |Size |Directnry?
|Adobe |(Dir) |Yes 27. Enter a valid directory (such as C:>), and
| Ahead |(Dir) |Yes click the submit button.
|Apache Software Foundation |(Djr) Tes 28. The output for the solution code (which
|C-Me I iDhudis |(Dir) |Yes %nc}ujesd Qne }?r two ir.npr.ovemeths n;)t

. included in the exercise instructions
Igir?jon = IEEE E:: looks like the illustration to the left.
|ComP1us Applications |(Dir) |Yes
(CyberLink (Dir) | Tes
(Google (Dir) | Tes
HighMAT CD Writing Wizard |(Dir) | Ves
TBM (Dir) | Tes
|IDM Computer Solutions |(Dir) |Yes

664 Chapter 9: Custom Tags

CERTIFICATION OBJECTIVE

The Tag File Model (Exam Objective 10.5)

Describe the semantics of the Tag File model; describe the web application structure for tag
files; write a tag file; and explain the constraints on the JSP content in the body of the tag.

Now we come to a variant of the simple tags we have met and written so far: tag
files. In appearance and behavior, tag files are like JavaServer Pages. They contain
a mixture of template text and elements. They are translated into Java source code
and then compiled. The result is a simple tag class—yet with no necessity to write a
simple tag handler.

Tag files are also convenient to deploy. You don'’t write tag entries in a tag library
descriptor. Tag files are self-contained, with their own deployment directives.

We'll rewrite the simple tags we created in the last section as tag files and make
comparisons between the two approaches. And along the way, we’ll tease apart the
exam objectives for tag files.

Rewriting Simple Tags as Tag File

In the last section, you saw an example of a simple tag used to display a range of
Unicode characters on a web page. We’ll now look at a version of the tag when it
is rewritten as a tag file—with some slight improvements. You may want to run
the code, which is in the CD at sourcecode /ch09/examp0903.war. Simply deploy
the WAR file as you would any other solution code file. To run the code, point
your browser to the following URL (adapt this to suit if you are not using standard
Tomcat settings):

http://localhost:8080/examp0903/unicodeDisplay. jspx

This looks no different from the original version of the code (refer to Figure 9-2 to see
how this looks in the browser). However, the underlying mechanism is different. In
the remainder of this section, we'll revisit this example to explain how tag files work.

Where Does the JSP Container Find the Tag File?

To ensure that your web container will find your tag file, you have to ensure that it
has an extension of .tag and that it is located in one of these places within your web
application:

B /WEB-INF/tags

The Tag File Model (Exam Objective 10.5) 665

B A subdirectory of / WEB-INF/tags

B Ina]AR file kept in / WEB-INF/lib. The directory of the tag file within the JAR
file must be /META-INF/tags — or a subdirectory of /META-INF/tags.

Let us first consider the case of a tag file in / WEB-INF/tags. What happens at run
time, when the tag file is first accessed? This is shown in Figure 9-3. Tag files bear the
same relationship to tag handler classes as JSP pages do to servlets. Both are used as
sources from which a class file is generated. For tag files, a SimpleTag class is created

m Tag File Deployment and Run Time

Imyroundingpage.jsp

/WEB-INF/tags

taglib’s tagdir
JSP Document declaration
<%@ taglib prefix="mytags" in JSP page
tagdir="/WEB-INF/tags" %> maps directly
. to /WEB-INF
<mytags:simple>Body</mytags /tags or a
:simple> subdirectory of

/ WEB-INF/tags.

\ N

simple.tag
<p>So simple I have nothing but
template text</p>

START HERE: tag used
in JSP page. mytags:
maps to taglib prefix

On first use:
tag file used
to generate
SimpleTag
Java source,
and compiled
into a class

file. /

“mytags.” For example: <TOMCAT INSTALLATION
DIRECTORY>\work\Catalina\localhost\examp0903\org\
apache\jsp\tag\web

SimpleTag source
public final class
unicodeConverter tag /
Source and class files are extends
kept somewhere known SimpleTagSupport {
to your application server. etc.
}

Finally: JSP document
maps to SimpleTag class.

SimpleTag class

1000001000000010101010
0000101010100000010010
1000011111111000000000
1000001000000010101010
0000101010100000010010
1000011111111000000000

666 Chapter 9: Custom Tags

when the tag file is first used —in much the same way as the use of a JSP triggers
generation and compilation of a servlet.

So your JSP page source invokes the tag, which maps to a tag file in a tag
directory. If this is its first use, the container generates a Java source code file that
implements SimpleTag (usually by extending Simple TagSupport —]JSP container
writers like to keep their work to a minimum too!). This source is kept and compiled
in a location known to the server—Figure 9-3 illustrates the current situation for
Tomcat. Thereafter, the server keeps an internal mapping between invocations of
the tag file and the actual compiled class.

Beyond that, everything works just as if this were a bona fide simple tag declared
in a tag handler, and with a handcrafted tag handler. Life cycle methods and rules
are exactly the same.

When a tag file sits inside a JAR file, there is one difference in the packaging: The
tag file must have a declaration inside a tag library descriptor. Here is a very short
TLD, containing a single tag file declaration:

<taglib>
<tlib-version>1.0</tlib-version>
<short-name>webcert</short-name>
<tag-file>
<name>mytag</name>
<path>/META-INF/tags/mytag.tag</path>
</tag-file>
</taglib>

You can mix tag file declarations with regular tag declarations and EL functions, all
in the same TLD. Crucially, though, the <name> component must be unique across
all the different types (you can’t have a tag file called mytag existing in the same TLD
as a regular tag called mytag).

For tag files kept directly in / WEB-INF/tags (or a subdirectory), there is no need
for a tag library descriptor entry, although it is permitted: You could do this if (for
some reason) you wanted a tag name that is different from the tag file name.

Tag File Source

Let’s return to the Unicode characters example. What has changed from the last
section, where this was a simple tag developed in Java source? The JSP document
using the tag—unicodeDisplay.jspx —has hardly changed at all. However, there is a
subtle difference in the namespace declaration. There’s no need to have a namespace
referencing a tag library. Instead, you must reference a tag directory—a directory

that acts as a repository for tag files and must be declared in using JSPs. Here is the
original declaration in unicodeDisplay.jspx:

Datch

The Tag File Model (Exam Objective 10.5) & &7

<html xmlns:mytags="http://www.osborne.com/taglibs/mytags" ... >
Here it is again, the change highlighted:
<html xmlns:mytags="urn:jsptagdir:/WEB-INF/tags/" >

In the first case, the URL String “http://www.osborne.com [taglibs /mytags” doesn’t
point to anything —it just has to match the corresponding <taglib-uri> setting
in the web deployment descriptor. In the second case, the URN (of type JSP tag
directory) designates a real location within the web application: the directory

| WEB-INF/tags.

The truth is that you will xmlns:mytags="urn:jsptagdir:
still probably encounter more traditional /WEB-INF/tags/" in a JSP document
JSPs than JSP documents as questions is<% taglib prefix="mytags"
in the exam. So you need to know the tagdir="/WEB-INF/tags" %>. You

traditional variant of the tag directive. This will often find questions that test whether
is the <% taglib %> directive—but with tagdir and uri can coexist in the same
a change to one of its attributes. It retains <% taglib %> directive. They can’t.
prefix, but tagdir is substituted for prefix is always present, and you can
uri. So the full declaration equivalent to have either tagdir or uri—not both.

Within the JSP document, the use of the tag hasn’t changed very much, except
that it no longer has a body with EL variables. All elements of the HTML table

declaration have disappeared as well. Here’s how it looks:

<html xmlns:jsp="http://java.sun.com/JSP/Page"
xmlns:mytags="urn:jsptagdir:/WEB-INF/tags/">
<jsp:output omit-xml-declaration="true" />
<jsp:directive.page contentType="text/html" />
<head><title>Unicode Converter—from Tag File</title></head>
<body>
<h3>Numbers with Unicode Character Equivalent—from Tag
File</h3>
<mytags:unicodeConverter begin="1040" end="1116" />
</body>
</html>

All the removed elements for presentation and data have migrated to the tag file,
whose source we will see in a moment.

668 Chapter 9: Custom Tags

01
02
03
04
05
06
07
08
09
10
11
12

But before we consider that, how does the JSP find the tag? We've already said
that no tag library descriptor is involved. So how is the name of the tag (unicode
converted) derived? The mechanism is very simple. The tag directory (/ WEB-
INF/tags) referenced in the XML name space declaration contains the tag file. The
tag file itself has the name unicodeConverter.tag. So the name before the file
extension corresponds to the name as used in the JSP document. The extension
must always be .tag.

So now we know how the JSP document finds it, let’s look at the complete tag
file—shown below, with line numbers:

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<%@ taglib prefix="mytags" uri="http://www.osborne.com/taglibs/mytags" %>

<%@ attribute name="begin" %>

<%@ attribute name="end" %>

<table border="1">

<c:forEach begin="${begin}" end="${end}" step="1" varStatus="counter">
<tr>

<td>${counter.index}</td>
<td>${mytags:unicodeConverter (counter.index)}</td>
</tr>
</c:forEach>
</table>

Because there is no TLD entry to refer to, the tag file has to assume its own respon-
sibility for providing some of the information. This explains lines 03 and 04 of the
file, which declare attributes using the <%@ attribute %> directive. This may
sound incestuous, but the <3@ attribute %> directive has attributes of its own.
The only mandatory attribute is name, as used in the example here. This is entirely
equivalent to a tag library descriptor file containing these elements:

<attribute>
<name>begin</name>
</attribute>

<% attribute %> has other attributes, and, like name, all of them (required,
rtexprvalue, description, type, and fragment) are equivalent to the TLD subelements
of <attribute> we have already met.

As well as playing the declarative role formerly taken by the TLD, the tag
file needs to find its own way of substituting the Java logic otherwise placed in
the doTag () method of a genuine simple tag handler class. Actual Java logic is

The Tag File Model (Exam Objective 10.5) 669

disallowed: A tag file chokes as soon as you try to introduce the smallest of Java
language scriptlets. Instead, you use custom actions, and you are especially likely to
choose actions from the JSTL. Hence, line 01 declares a reference to the JSTL core
tag library.

Line 05 onward is a mixture of template text (HTML table elements), core
library syntax, and EL. Line 06 introduces a <c: forEach> loop. The begin and end
attributes in <c: forEach> have values supplied from the begin and end attributes
defined in the tag—and represented in EL. The step attribute tells us we will be
incrementing by 1 each time, and the varStatus attribute creates an EL variable
called counter that we use in the table. This occurs at line 08: The index property
of counter is displayed, which gives the current loop value. Remember that we're
starting this loop at a number set in the JSP document: 1040. So the numbers we
want to display are 1040, 1041, 1042, ... (not 1, 2,3, ...).

What if there is logic that is beyond the bounds of what JSTL and EL can
accomplish? Well, you can always access “real Java” by means of a (real) custom
tag (not a tag file) used within the tag file. Or, as this example shows, through
an EL function. At line 09, we want to display the Unicode character corresponding
to the number displayed. Converting an integer to a character value is beyond
simple EL; we need some Java to get the job done. Consequently, line 09 invokes
a preprepared EL function called unicodeconverter, which accepts counter.index
and returns an equivalent java.lang.Character wrapper object for display. (The
code to achieve this is in CharConvFunction.java— not reproduced here, for
it’s not central to the explanation of tag files but present in the example code.)
This, incidentally, explains why there is a tag library declaration at line 02:

This references the tag library descriptor, which declares the EL function
unicodeConverter.

Tag File Directives

There are two directives in the tag file example: <%@ taglib %>, which you have
met many times before in JSPs, and <¢@ attribute %>, which you are meeting for
the first time and which only works in tag files. Let’s consider —first of all— those
attributes found in JSPs and how they are used in tag files:

B <3@ page %>—only suitable for JSP pages. Tag files have their own
equivalent—<2%@ tag %>.

M <%@ taglib %>,<%@ include %>—both work identically in tag files
and in JSP pages.

670 Chapter9: Custom Tags

on the

Qob

There are three directives that are only for tag files:

B <3@ tag %>, which shares several attributes in common with <¢@ page %> for
JSPs (language, import, pageEncoding, isELIgnored)
B <2@ attribute %>, like the <attribute> subelement of <tag>ina TLD

B <2@ variable %>, like the <variable> subelement of <tag> ina TLD

<%@ tag %> sounds as though it should be crucial, but all its attributes are
optional. For a full list (and for absolutely thorough exam preparation), check
Table JSP.8-2 in the JSP 2.0 specification. Only one attribute is crucial to under-
stand in terms of the exam objective that headed this chapter section, and that is
body-content. The default value for the body-content attribute is scriptless. The
only other allowed values are empty and tagdependent. Their meaning is identical
to the equivalent values in the <body-content> element of a custom or simple tag
declaration in a TLD. Because a tag file becomes a simple tag handler class (after
generation and compilation), ISP is a strictly disallowed value.

So far, tag files have led us back to a more traditional JSP syntax. Although
Java language is absent, the <% ... %> syntax predominates for all kinds
of necessary declaration. What if you want your tag files to be written in
pure XML, as |SP documents? That’s fine; you can do that. There are custom
actions equivalents, such as <jsp:directive.tag ...>. See the JSP 2.0
specification, especially sections 8.7 and 10.1.

Al

ON THE CD

The Tag File Model

In this exercise you will rewrite the file browser from Exercise 9-2 as a slightly
enhanced version of the original. You will also use a tag file to provide the core
functionality instead of a tag handler class. The tag file makes use of a servlet, which
houses some of the code that would otherwise be difficult or impossible to render as a
combination of JSTL and EL within the tag file.

For this exercise, create a web application directory structure under a directory
called ex0903, and proceed with the steps for the exercise. There’s a solution in the
CD in the file sourcecode /ch09/ex0903.war.

The Tag File Model (Exam Objective 10.5) @7 |

Copy the HTML File from Exercise 9-2

I. Copy the HTML file fileBrowser.html from context directory ex0902 to the
current context directory for this exercise: ex0903.

2. Change the action in the form to target JSP page fileBrowser.jsp (instead of
JSP document fileBrowser.jspx).

Create the JSP Page

3. Create a JSP page called fileBrowser.jsp directly in ex0903.

4. Include a taglib directive with a prefix of mytags and with the tag directory
attribute set to “/ WEB-INF/tags.”

5. Most of the template text in the original JSP document from Exercise 9-2 is
going to migrate to the tag file. Consequently, all you need to set up in the
JSP page is (1) some template elements (<html>, <body>, etc.) to establish
the page as proper HTML and (2) a call to the tag just as before:

<mytags:fileBrowser initDir="${param.initDir}" size="true" />

Set Up the Servlet and the Helper Class

6. The tag file we have yet to write is going to use a servlet, which in turn uses
a helper class. You aren’t going to write them yourself — they can be copied

from the solution code WAR file.
7. Unzip the WAR file.
8. Copy /ex0903/ WEB-INF/classes/webcert /ch09/ex0903/FileBrowserServlet

.class to the equivalent directory located in your own directory structure for
this exercise.

9. Do the same for /ex0903/ WEB-INF/webcert /ch09/ex0903/FileFacade.class.

10. Also copy the deployment descriptor /ex0903/ WEB-INF/web.xml. This sets
up the servlet with a URL mapping of /FileBrowser.

I'l. Look at the source for FileBrowserServlet (in /ex0903/ WEB-INF/src/
webcert /ch09/ex0903/FileBrowserServlet.java). Note how this obtains a
value for the parameter initDir, representing the directory to start with. See
how this is used to create an array of Files in that directory and how each File
in turn is transferred to a collection (ArrayList) of FileFacade objects. Note
how the collection is set up as a request attribute called fileList.

672 Chapter9: Custom Tags

12.

Now look at the source for FileFacade.java (same solution directory as the
servlet source code). Note how this is a bean that “wrappers” a genuine
java.io.File object, with the express purpose of exposing three properties: size
(of file), directory (is the file in fact a directory?), and nameAndPath (the full
name of the file). This will make it easier to write EL in the tag file in the
next stage of the exercise.

Write the Tag File

13.

14.
I5.

20.

Create a file called fileBrowser.tag directly in directory / WEB-INF/tags
(create the directory as necessary).

Include a taglib directive to reference the JSTL core tag library.

Define two attributes for the tag (in attribute directives) with the names
mitDir and size. initDir represents the directory that the tag file operates on.
size indicates whether or not the “size” column should appear in the displayed

table.

. Now use the <c: import> core library action to invoke the URL

[FileBrowser, which will cause the FileBrowserServlet to process the request.
Within <c: import>, pass a parameter (using <c:param>) with a value of
${initDir}— the directory the servlet should operate on.

Include a table with two columns, with the headings “Name” and “Size.” Use
<c:if> and the ${size} attribute to include only the Size column if it is
requested.

Use <c: forEach> to iterate over the request attribute fileList set up by the
servlet. Pull each object in the collection (a FileFacade object) back into a

variable called file.

. Within the <c: forEach> loop, display the file’s full name (with the

nameAndPath property on file) and (if requested) the file’s size.

Optionally, detect whether the file is a directory or not. When it is

a directory, set the displayed name up as a hyperlink back to the JSP
fileBrowser.jsp, forwarding the link directory name as the initDir parameter.

Create, Deploy, and Test a WAR File

21.
22.

Zip up your context directory in a WAR file, and deploy this to your server.
Test with a URL such as

http://localhost:8080/ex0903/fileBrowser.html

Tag Hierarchies (Exam Objective 10.3) @73

23. Supply an initial directory name (e.g., C:\Documents and Settings All

Users), and click the submit button.

24. The solution page is shown in the following illustration. If you have included
hyperlinks to other directories, check to see that they work.

Show Files in Requested Directory (using Tag File)

Directory: C:\Documents and Settings\David

i Name

| Size

iC:‘Docmnents and Settings'\Dand\. WASE egistry

159

\C\Documents and settnes\Dand\Application Data

N/

|C:\Documents and Settings'\Dawmd\Cooldes

N/A

iC:‘Docmnents and Setting'\Danid\Deslton

N/A

|C:‘Docmnents and Settings'\Dand\F avorites

/4

|C:\Documents and SFettnes\Dand\ B

N/ A

|C:\Documents and Settings'\Dawid\Local Settings

N/A

|C:‘Docmnents and Setting\Danid\bly Documents

/4

IC:‘Docmnents and Zetings'\DandetHood

N/

iC:\Documents and Settings'\Dand\ N TUSEE DAT

11835008

iC:‘LDocuments and Settings\Dand ITTUSEE. DAT LOG

11024

CERTIFICATION OBJECTIVE

Tag Hierarchies (Exam Objective 10.3)

Given a scenario, write tag handler code to access the parent tag and an
ancestor.

arbitrary tag

The good thing about this exam objective is that you have already worked on it.
In the last section of Chapter 8, you learned about iteration tags, following a card

dealing example. Within that example, you saw how an inner tag c

ould make use

674 Chapter9: Custom Tags

Jatch

of methods in an outer tag. This chapter will
round out your knowledge on this topic. In
the Chapter 8, you considered how you could

For the exam, you need access parent tags (and parents of parents)
to know how hierarchies work for both in the classic tag model. This section shows
classic and simple tags. you how the simple tag model can also access

members of a simple tag hierarchy, and how you
can even mix simple and classic tags together
in the same hierarchy.

Tag Hierarchies

Instead of having a practical example (such as card dealing), we’re going to strip
hierarchies back to their bare essentials in this section. You’ll meet both a classic tag
and a simple tag that have only a single purpose: to display the name of their parent.
You'll see that name is an attribute of the tags. Then you'll see the tags embedded in
all combinations:

B Simple within simple
B Classic within classic
B Simple within classic

B Classic within simple

You'll see how this works in three out of the four cases, but how one case (in which
a classic tag is embedded inside a simple tag) proves to be problematic. However,
the JSP container provides a solution, which we will explore.

The Big Picture

The entirety of this example is available in the CD in /sourcecode /ch09/examp0904
.war. You may want to deploy and run the code first of all. All the source code is
available in the WAR file, so not all of this is reproduced in the pages that follow.
Once deployed, run the code using a URL such as

http://localhost:8080/examp0904/nestingTags.jsp

This should produce a page in your browser similar to that shown in Figure 9-4.
We’ll explore each of the five cases illustrated one by one.

Tag Hierarchies (Exam Objective 10.3) @75

m Experiment with nesting tags

Nesting Tags
Example Output

Iy name is: outerSimple; my parent's name is: Mo parent

Simple within Simpl o : : :
1wpe Wi S Iy name 15 mmerzimple; my parent's name 1s; outer Simple
Gl i Clagn .MST name is: F:uterClassy:; my parentI § narne is: o pa.rent.
Iy name is: inmerClassic, my parent's name is: outerClassic
L o Iy name 15; cuterClassic; my parent's name 15: No parent

Iy name 15 mner=mple;, my parent's name 15 outerClassic

Iy name is: outerSimple;, my parent's name is: Mo parent
Iy name 1s5: mnerClassic, my parent's name 15 Mo parent

Classic within Simple (Broken)

Iy name is: outerSitnple; my parent's name is: Mo parent

Classic within Simple (Fixed) Iy namne is: innerClassic2; my parent's name ie; cuterSitnple

Simple within Simple
The JSP code that produces the “simple within simple” output in Figure 9-4 is as
follows:

<mytags:nestingSimple name="outerSimple">
<mytags:nestingSimple name="innerSimple" />
</mytags:nestingSimple>

You can see that there is an outer occurrence of a tag called nestingSimple, with a
name attribute of outer. There is an inner occurrence of the same tag— this time
without a body —called inner. The outer occurrence has no parent, so it displays
the following:

My name is: outerSimple; my parent's name is: No parent
The inner occurrence does have its own name (“innerSimple”), and we would
expect its parent to be “outerSimple.” Again, this performs as expected. The next
line of output in the web page is

My name is: innerSimple; my parent's name is: outerSimple

So far, so good.

676 Chapter9: Custom Tags

The crucial code to accomplish this output in the doTag () method of the tag
handler (which extends SimpleTagSupport) goes as follows:

String bodyMessage;

JspTag parent = getParent();

if (parent instanceof NestingSimpleTag) {
NestingSimpleTag nst = (NestingSimpleTag) parent;
bodyMessage = nst.getName();

} else {
bodyMessage = "No parent";
}
bodyMessage = "My name is: " + getName() + "; my parent's name is: " +

bodyMessage + "
";

Just as for classic tags (as implemented in TagSupport), so any SimpleTag (as
implemented in SimpleTagSupport) has a getParent () method. Note that this
returns not a Tag, but a JspTag—useless by itself, for it has no methods. However,
we suspect that the parent might be an instance of NestingSimple Tag—if it is, we
can cast the parent reference to a NestingSimpleTag and get hold of its name. The
rest is finagling with the String output (the code to send the String to the associated
page output Writer has been omitted).

Classic within Classic

The code for a classic tag to retrieve its classic parent is hardly any different. Here’s

the highly predictable JSP code first of all:

<mytags:nestingClassic name="outerClassic">
<mytags:nestingClassic name="innerClassic" />
</mytags:nestingClassic>

The relevant code in the doStartTag() method of the tag handler (which extends
TagSupport) looks like this:

String bodyMessage;
Tag parent = getParent();
if (parent instanceof NestingClassicTag) {

NestingClassicTag nct = (NestingClassicTag) parent;
bodyMessage = nct.getName();

} else {
bodyMessage = "No parent";

Tag Hierarchies (Exam Objective 10.3) @77

Since this is a Tag (not a SimpleTag), the getParent () method retrieves a Tag
rather than a JspTag—a subtle difference, but one that proves important later.
And this time, the code tests for an instance of a NestingClassicTag rather than a
NestingSimpleTag—naturally enough. The output is just as expected for the outer
and inner invocations:

My name is: outerClassic; my parent's name is: No parent
My name is: innerClassic; my parent's name is: outerClassic

Simple within Classic

What happens, though, when we embed our nestingSimple tag in our nestingClassic
tag, as in the following JSP code?

<mytags:nestingClassic name="outerClassic">
<mytags:nestingSimple name="innerSimple" />
</mytags:nestingClassic>

The desired output is clear enough:

My name is: outerClassic; my parent's name is: No parent
My name is: innerSimple; my parent's name is: outerClassic

Our tag handler code won’t quite work as it stood before. We need some
additional code to make the right cast to a classic tag:

String bodyMessage;

JspTag parent = getParent();

if (parent instanceof NestingSimpleTag) {
NestingSimpleTag nst = (NestingSimpleTag) parent;
bodyMessage = nst.getName();

} else if (parent instanceof NestingClassicTag) {
NestingClassicTag nct = (NestingClassicTag) parent;
bodyMessage = nct.getName();

} else {
bodyMessage = "No parent";

This allows the code to call the getName () method on the right sort of tag—
nothing more than this. The important part is that the getParent () call doesn’t
change. Even though we are in simple tag handler code, getParent () still retrieves

678 Chapter9: Custom Tags

the classic tag handler instance parent: as a JspTag. That’s no problem because
classic tag handler instances are all Tags—and in JSP 2.0, Tag inherits from JspTag.
JspTag, as we have seen before, is the common ancestor for both classic and simple
tags. So this works.

Classic within Simple (Broken)

Only one combination to go—a classic tag trying to find a simple parent, as in this

JSP code:

<mytags:nestingSimple name="outerSimple">
<mytags:nestingClassic name="innerClassic" />
</mytags:nestingSimple>

The naive approach to making our nestingClassic tag find a nestingSimple parent
is to write a mirror image of the adaptations we made to our simple tag handler code,

which looks like this:

String bodyMessage;

Tag parent = getParent();

if (parent instanceof NestingClassicTag) {
NestingClassicTag nct = (NestingClassicTag) parent;
bodyMessage = nct.getName();

} else if (parent instanceof NestingSimpleTag) {

NestingSimpleTag nst = (NestingSimpleTag) parent;
bodyMessage = nst.getName();

} else {
bodyMessage = "No parent";

}

However, this doesn’t work. It doesn’t break at run time; instead, we'’re told that the
innerClassic tag has no parent, which is simply untrue:

My name is: outerSimple; my parent's name is: No parent
My name is: innerClassic; my parent's name is: No parent

Why doesn’t the test (parent instanceof NestingSimpleTag) prove true!
Consider that we are in an implementation of Tag and so the getParent () method
has a return type of Tag, not JspTag. NestingSimpleTag can never be an instance of
Tag—it’s in the wrong hierarchy, as the following illustration shows.

Tag Hierarchies (Exam Objective 10.3) @79

: JspTag |
o T
TagSupport Tag _: : SimpleTag K& — — —| SimpleTagSupport
____________________]
A A
NestingClassicTag Key NestingClassicTag
T Extends I~ ~ " " !Interface

———>> Implements [] Class

So what does getParent () return? Maybe null because classic tags perhaps can’t
detect simple parents? On the contrary— the JSP container has an ace up its sleeve.
One step ahead of our tag handler, it detects the mixed hierarchy and shrouds the
NestedSimpleTag object in a TagAdapter instance. The process is as follows:

B The JSP container calls doTag () on mytags:nestingSimple (the outer—
simple — tag).

B The doTag() method chooses to process the body of the simple tag (by calling
the JspFragment. invoke () method).

B The body of the simple tag contains mytags :nestingClassic (the classic
tag)—so the JSP container exercises the classic model life cycle on this tag.

B The classic model life cycle includes a call to setParent () for the classic tag.
The JSP container knows the parent is a simple tag. However, setParent () will
only accept a Tag as a parameter—and simple tag is a JspTag, not a Tag.

B The JSP container gets out of the dilemma by creating an instance of
TagAdapter, which is of type Tag. The JSP Container passes the simple tag to the
TagAdapter’s one-argument (and only) constructor.

B Now the JSP container calls setParent () on the classic tag, passing in the
TagAdapter instance.

B When—Ilater—the code in the classic tag calls getParent (), the method
returns this TagAdapter instance.

B In a moment, we’'ll see what methods the classic tag can use from TagAdapter to
get at the real parent: the simple tag.

The TagAdapter is a class that you don’t need to instantiate in your own code —
it’s there for the JSP container. The TagAdapter is a “wrapper” around the simple

680 Chapter 9: Custom Tags

tag. You encountered this kind of behavior before in the SCJP exam, in the java.io
library. Recall that if you have a byte stream, but need to deal with characters, you
can pass your byte stream to the constructor of an InputStreamReader. Thereafter,
you deal with the character-oriented InputStreamReader — though under the covers,
this is manipulating the original stream of bytes. So with the TagAdapter —it allows
the JSP container code to deal with simple tags as classic tags in situations where
there is no alternative.

Classic within Simple (Fixed)

Armed with this information, we can set about making NestedClassicTag
work properly (which is done in the nestingClassic2 tag, with tag handler class
NestedClassicTag2). TagAdapter has two useful methods:

B getAdaptee() returns the wrappered-up JspTag (i.e., your simple tag instance).

B getParent() returns the adaptee’s parent (by running getAdaptee ()
.getParent ()). If that parent isn’t an instance of a Tag, then it in turn is
wrappered up as a TagAdapter, then returned from this method.

$atch
The TagAdapter class also doEndTag (), and release (). These

contains a number of deliberately useless mustn’t be called directly—by you or
methods. Because TagAdapter implements the JSP container. To do so results in an
the Tag interface, it includes all the classic UnsupportedOperationException in all
life cycle methods: setPageContext (), cases.

setParent (), doStartTag(),

So back in our classic tag handler: getParent () returns—in these
circumstances—an instance of TagAdapter. Given that, we can use the
getAdaptee () method to fix our code, as follows:

String bodyMessage;

Tag parent = getParent();

if (parent instanceof NestingClassicTag2) {
NestingClassicTag2 nct = (NestingClassicTag2) parent;
bodyMessage = nct.getName();

} else if (parent instanceof TagAdapter) {
JspTag simpleParent = ((TagAdapter) parent).getAdaptee();
if (simpleParent instanceof NestingSimpleTag) {

Datch . .

Just as TagSupport has a any TagAdapter found in the hierarchy
findAncestorWithClass () method, is not taken at face value—instead, the
so SimpleTagSupport has a method of simple tag it contains (obtained with
the same name. It has some important getAdaptee()) is compared with the
differences, though. For one thing, it class passed in as the second parameter
returns a JspTag rather than a Tag: It’s to the findAncestorWithClass ()
intended to hunt down simple classes. method. Check out the APl documentation
For another (and in keeping with this), for chapter and verse.

Tag Hierarchies (Exam Objective 10.3) 68 |

bodyMessage = ((NestingSimpleTag) simpleParent).getName();

} else {
bodyMessage = "No parent";
}
} else {
bodyMessage = "No parent";

}

If the parent is a classic tag, nothing has changed —we test for an instance of the
classic tag class (true, there has been a name change to NestingClassicTag2 —to
differentiate it from the broken original). Next, the code —suspecting a simple tag
as parent — tests for getParent () returning an instance of TagAdapter. If it has, the
simple tag is extracted from the TagAdapter by using the getAdaptee () method.
The output from this is a JspTag, and finally this instance can be tested to see if it is
the tag we're hoping for, the NestingSimpleTag. When this code is run, the output is
fixed, as shown:

My name is: outerSimple; my parent's name is: No parent
My name is: innerClassic2; my parent's name is: outerSimple

Al

ON THE CD

Tag Hierarchies

In this exercise you will build a version of the card dealing example that you first met
in Chapter 8. This will give you a good feel for classic tag hierarchies (to complete
the picture, in the lab at the end of the chapter, you'll convert this example to use a
mixed hierarchy with classic and simple tags).

682 Chapter 9: Custom Tags

For this exercise, create a web application directory structure under a directory
called ex0904, and proceed with the steps for the exercise. There’s a solution in the
CD in the file sourcecode /ch09/ex0904.war.

Copy the CardDealingTag Code from the Solution

I. The main custom action (code in the CardDealingTag class) contains mostly
the “business” method for the card dealing solution. Rather than attempt to
recreate this yourself, copy it from the solution code WAR file to a directory
called /ex0904/ WEB-INF/classes/webcert /ch09/ex0904.

2. Copy the source file CardDealingTag.java to /ex0904/ WEB-INF/src /webcert /
ch09/ex0904.

3. Open the source file. Note the following methods:

doStartTag()—this shuffles the card every time it’s invoked, and returns

EVAL_BODY_INCLUDE to ensure that the body is processed.

doAfterBody ()—this continues to loop until all cards are “dealt” (as
indicated by the currentCard value).

dealcCard()—this is the method that must be called to “deal” cards from the
pack and will be called by child tag handlers you will write.

Write Child Tag Handler Classes

4. Create two Java source files in your context directory, under a suitable
package directory in / WEB-INF/classes, called CardTag.java and CardTag2

Jjava.

5. Have CardTag extend TagSupport. Override the doEndTag () method.
This should use getParent () to get hold of the parent tag, and cast this
to a CardDealingTag reference. Call the dealcard () method on the
cardDealingTag() instance so that one card is dealt. dealcard() returns
a String holding the card name — output this to the Writer for the page
context object.

6. Have CardTag2 extend TagSupport as well. Copy the code from cardTrag
.doEndTag() into CardTag2. Change the code so that instead of using
getParent (), it uses TagSupport.findAncestorWithClass () to return a
reference to the parent CardDealerTag.

Tag Hierarchies (Exam Objective 10.3) 683

Write the Tag Library Descriptor File

7. Create a TLD file called mytags.tld in / WEB-INF/tags (create the directory

as necessary).

Declare three tags called cardDealer, card, and card2. These reference
(respectively) the CardDealerTag, CardTag, and CardTag2 classes. The
body content of cardDealer should be set to JSP, and for card and card2
should be set to empty.

Reference the TLD in the Deployment Descriptor

9. Place a <jsp-config> element in web.xml, which defines a mapping

from taglib URI http://www.osborne.com /taglibs /mytags to a location
of / WEB-INF/tags /mytags.tld.

Define a JSP Document to Use the Tags

10.

14.
15.

Create a JSP document called cardGame.jspx directly in the ex0904 context
directory.

Include the following “boilerplate” namespace declarations for your own tag
library, JSP standard actions, and the JSTL core library:

<html xmlns:mytags="http://www.osborne.com/taglibs/mytags"
xmlns:jsp="http://java.sun.com/JSP/Page"
xmlns:c="http://java.sun.com/jsp/jstl/core">

. Include the following standard actions to ensure HTML rather than XML

output to your browser:

<jsp:output omit-xml-declaration="true" />
<jsp:directive.page contentType="text/html" />

. Create an HTML table with four columns. Include table headings labeled

Player 1 through to Player 4.
Surround the main table row with opening and closing cardDealer tags.

In each of the four cells for the main table row, include a self-closing
card tag.

684 Chapter 9: Custom Tags

Create, Deploy, and Test a WAR File

16. Zip up your context directory in a WAR file, and deploy this to your server.
[7. Test with a URL such as

http://localhost:8080/ex0904/cardGame. jspx

I8. The solution output is shown in the following illustration. Each refresh of the
browser should result in a newly shuffled deal.

Bridge Hand

Player 1 Player 2 Player 3 Player 4
Three of spades |Eight of spades Hine of hearts Ten of hearts
|51z of clubsz Four of spades Zueen of hearts [Four of chibs
Four ot hearts |(Queen of spades |Ten of clubs Mine of spades

Two of spades |(Queen of diamonds |Eing of heatts Two of clubs
Three of hearts | Jack of diamonds |Five of diamonds [JTack of hearts

[Mine of clubs Ace of spades Arce of clubs =even of spades
Ten of diamonds Emg of diamonds |Ten of spades Ace of diamonds
Eight of clubs: [EKing of clubs Two of hearts Five of spades
Eing of spades |3 of hearts Jack of spades Zeven of hearts
S of spades |Tack of clubs Four of diamends |Mine of diamonds

Ace of hearts Three of diamonds |Seven of diamonds [Five of clubs
Five of hearts meven of clubs Two of diamonds Three of clubs
Eight of hearts |Queen of clubs |Eight of diamends |Six of diamonds

19. Now amend cardGame.jspx (you can, if you wish, amend the deployed copy
under Tomcat; otherwise, change the document in your context directory,

remake the WAR, and redeploy it).

20. Change one of the card tags to be surrounded by a <c: i£> action like this:

<c:if test="${true}"><mytags:card2 /></c:if>

Tag Hierarchies (Exam Objective 10.3) 685

The test will always be true, so the <c:if> is spurious. However, it separates
the <mytags:card> action from its proper parent (<mytags:cardDealer>) in
the hierarchy.

21. Retest the document. You should get a ClassCastException, like this:

HTTP Status 500 -

T Exception report
The server encountered an internal error) that prevented it from fulfiling this reguest.

org.apache. jasper.JasperException: org.apache.taglibs.standard.tag.rt.core, IfTag
org.apache. jasper.servlet.Jspl3ervletWrapper.service | Jsp3ervletWrapper. java:373)
org.apache . jasper.servlet . JspServilet.servicedspFile (JapServlet. javar295)
org.apache. jasper.servlet.Jsplervilet.service (Jsplervilet. java:245)
javax.zervletc.http.Hotpl3ervlet.service (Hoop3ervler. Java: 802)

oot cause

Java. lang.ClassCastException: org.apache.taglibs.standard. tag.rt.core, IfTagy
webcert.ch09.ex0904, CardTay. doEndTag (CardTag. java: 30)
org.apache.jsp.cardGame_Jjspx. Jjspx_meth wytags card 1(org.apache.jsp.cardGame jspx:194)

22. Now change the tag enclosed in the <c:if> to <mytags:card2>. When you
retest this time, the page should work. This is because <mytags:card2> uses
the findancestorByClass () method and is not sensitive to intervening
actions in the hierarchy.

CERTIFICATION SUMMARY

In this chapter you started by learning about accessing implicit variables in tag
handler code. You saw that this involved gaining a thorough knowledge of methods
on the PageContext class that provide equivalent instances to the JSP’s implicit
variables, such as getRequest () for request.

686 Chapter 9: Custom Tags

You also revised the topic of attributes and PageContext: Any attribute in any
scope can be manipulated through the PageContext object.

You went on from there to explore the simple tag model. You saw that simple tags
implement the SimpleTag interface or, more usually, extend the SimpleTagSupport
class, which provides useful default implementations of methods. You learned all
about the simple tag life cycle and maybe agreed that although it is not that simple,
it removes a lot of the complexity that goes with classic tags. You learned that a new
simple tag gets created for every invocation (no pooling as there is— potentially —
for classic tags), so instance variables are safe to use. You saw that setJspContext ()
is the first life cycle method to be called, and this provides the tag handler with
a JspContext object—very like a PageContext (which is JspContext’s subclass).
You saw that a call to setParent () followed —passing in a JspTag reference (as
opposed to a Tag for the equivalent classic tag method). You saw that attributes
are set after this (much as classic tags), followed by a call to setJspBody, providing
something called a JspFragment to your simple tag. You then learned that doTag ()
is called and that this can write directly to page output and cause the body to be
executed using the JspFragment . invoke () method. You finally learned that even
though doTag() has no return value, you can skip the rest of the page by throwing a
SkipPageException.

Next you saw that simple tags can be written without any Java source—in the
form of tag files. You saw that tag files are written very much like JSP pages (though
without any Java syntax— only template text, actions, and EL allowed). You saw
that tag files must have a .tag extension and are normally placed in / WEB-INF/tags
or a subdirectory thereof. You learned that the JSP container generates simple tag
source code from a tag file and compiles this into a class that then functions just as a
handcrafted simple tag.

You learned that tag file source shares some directives in common with JSPs
(<%@ taglib %>,<%@ include %>), has one that it doesn’t share (<%@ page %>),
and has three directives all of its own (<%@ tag %>, <%@ attribute %>, <%@
variable %>). You learned that the attribute and variable directives have attributes
very similar to subelements of the <attribute> and <variable> elements in a
tag library descriptor. You also saw that the tag directive has several attributes in
common with the JSP page directive, but also has some attributes (such as body-
content) that reflect subelements of the <tag> element in a TLD.

In the final section of the chapter, you revisited the subject of tag file hierarchies.
You saw that both TagSupport and Simple TagSupport have identically named
methods for retrieving instances of tag handlers: getParent (), for retrieving an
immediate parent in the hierarchy, and findAncestorwithClass (), for retrieving

Tag Hierarchies (Exam Objective 10.3) @87

a tag handler somewhere farther up the hierarchy of the class identified in the
parameter.

However, you learned that there are subtle differences— Tags and SimpleTags do
not belong to the same class hierarchy (although they do both have JspTag as their
ultimate parent). Tag hierarchy methods return Tags. SimpleTags return JspTags,
and a SimpleTag can never be a Tag. You saw that to stop a fatal collision where a
classic tag has a simple parent, simple tags may be cloaked in a TagAdapter, which
presents the SimpleTag as a classic Tag.

688 Chapter 9: Custom Tags

TWO-MINUTE DRILL

Tags and Implicit Variables

N

N

|

I T)) Iy

OO

a

In tag handler code, implicit variables are available through methods on the
PageContext object.

The PageContext object is handed to the tag handler code in the
setPageContext () method.

For ServletRequest request, use PageContext .getRequest().
For ServletResponse response, use PageContext.getResponse().

For Writer out, use JspWriter.getout (). (JspWriter is the superclass for
PageContext.)

For HttpSession session, use PageContext.getSession().

For ServletConfig config, use PageContext.getServletConfig().

For ServletContext application, use PageContext.getServletContext ().
For Object page, use PageContext.getPage () (it’s usually a Servlet).

For PageContext pageContext— that is the PageContext object passed to the
tag handler through the setPageContext() method.

For Exception exception, use PageContext.getException().

PageContext.getException () will return null, unless the enclosing
JSP page is marked as an error page (isErrorPage="true") and the JSP
container has redirected to this page as the result of an error.

PageContext can be used to access attributes in all scopes.

The “Simple” Custom Tag Event Model

a

a

Simple tags implement the SimpleTag interface or extend the
SimpleTagSupport class.

An instance of a simple tag is created for each run-time use.

Simple tag life cycle methods are called in sequence by the JSP container.
None of the methods produce return codes.

Following construction, setJspContext is called to provide a context object
(in much the same way that setPageContext is called for a classic tag).

Next: setParent ()— passing a reference to a JspTag.

Two-Minute Drill ¢ 89

Next: setxxx () methods for attributes.

Next: setIspBody ()— passing in a JspFragment representing the JSP code
within the body of the tag (called only if there is a body).

Next: doTag(). All looping, body processing, and other page output occurs
within this method.

Normal exit from doTag () allows the JSP container to process the remainder
of the page.

A SkipPageException thrown from doTag () makes the JSP container skip
the rest of the page.

JspFragment is not like BodyContent. BodyContent represents evaluated
content, buffered. JspFragment is content that hasn’t been evaluated yet (so
no need for a buffer).

The Tag File Model

a

a
a
a

(]

Tag files are simple tags whose source is in JSP-syntax form.

Tag files must have a .tag extension (or .tagx if they are XML documents).
Tag files are kept in / WEB-INF/tags or a subdirectory of / WEB-INF/tags.
A]JSP page using a tag file has access to it through a tag library directive:

The tagdir attribute is used instead of uri—for example,

<%@ taglib prefix="mytags" tagdir="/WEB-INF/tags" %>

Tag files may also be kept in a JAR file in / WEB-INF/lib.

Tag files within a JAR must reside in the /META-INF/tags directory (or a
subdirectory of this).

Tag files within a JAR are only accessible if declared in a <tag-file>
element in a tag library descriptor (TLD).

The <tag-file> element in the TLD has two subelements: <name> and
<path>.

<name> must contain a name unique across all tag files, tags, and EL functions
contained in the TLD.

<path> must begin with /META-INF/tags.

Tag files have limitations on body content: empty, tagdependent, or
scriptless.

690 Chapter 9: Custom Tags

The fourth value for body content—JSP—is disallowed in tag files (as for all
simple tags).
scriptless is the default.

To set another value for body-content, use the tag directive:

<% tag body-content="tagdependent" %>

Tag files have three directives that may only occur in tag files: tag,
attribute, and variable.

The tag directive is like the page directive in the]SP (and has four
attributes in common with it—1language, import, pageEncoding, and
isELIgnored).

The attribute directive is like the <attribute> element within a TLD.
The variable directive is like the <variable> element within a TLD.

At run time, Java source is generated for a SimpleTag from the tag file source
and compiled into a class file.

Tag Hierarchies

4
a
4

Tag has a getParent () method, implemented in TagSupport.
getParent () retrieves the immediate parent of a tag—if there is one.

getParent () returns a Tag reference, which can be cast to something more
appropriate if specific methods are needed.

SimpleTag also has a getParent () method, implemented in
SimpleTagSupport.

getParent () in SimpleTag also returns its immediate parent, if there is one.

However, SimpleTag.getParent () returns a JspTag, so it can accommodate
both simple or classic tag parents.

As Tag.getParent () can accommodate only Tags, any simple tag higher in
the hierarchy is “cloaked” by the JSP container in an instance of TagAdapter.

TagAdapter.getAdaptee () returns the simple tag wrappered by the
TagAdapter instance (as a JspTag reference—which you can cast as needed).

TagSupport has a static method called findAncestorwithClass().

To this method, you pass in the Tag instance to start from (usually this) and
the Class whose type should match a tag handler instance in the hierarchy.

a

a

Two-Minute Drill @9 |

TagSupport.findAncestorByClass () returns a Tag reference — this could
be a TagAdapter.

SimpleTagSupport also has a static findAncestorByClass () method, which
works in identical fashion, except that it receives a JspTag to start from (not a
Tag), and returns a JspTag reference.

When using SimpleTagSupport.findAncestorByClass () methods, where
TagAdapters are encountered, the class comparison is to TagAdapter
.getAdaptee () (not directly to the class of the TagAdapter instance).

692 Chapter9: Custom Tags

SELF TEST

The following questions will help you measure your understanding of the material presented in this
chapter. Read all the choices carefully because there might be more than one correct answer. Choose
all the correct answers for each question.

Tags and Implicit Variables

I. Given the following JSP and tag handler code, what is the result of accessing the JSP?
(Choose one.)

JSP Page Source
<%@ taglib prefix="mytags" uri="http://www.osborne.com/taglibs/mytags" %>
<html><head><title>Questions</title></head>
<body><p><% session.setAttribute("first", "first"); %>
<mytags:question0l />
${second}
</p></body></html>
Tag Handler Code for <mytags:questionOl />
(imports missing, but assume they are correct)
public class Question0l extends TagSupport {
public int doStartTag() throws JspException {
Writer out = pageContext.getOut();
try {
out.write(+ pageContext.getAttribute("first"));
} catch (IOException e) {
e.printStackTrace();

}
pageContext.setAttribute("second", "second", PageContext.SESSION SCOPE);
return super.doStartTag();

first first
second second
first second
second first
first null

null second

OmMmMoUN®»

null null

Self Test 6§93

2. Which of the following snippets of code, if inserted into the doStartTag() method of a tag
handler class extending TagSupport, would compile? (Choose three.)

A.
pageContext.getSession().getId();
B.
pageContext.getRequest().getAttributeName();
C.
pageContext.getHttpResponse().getBufferSize();
D.
pageContext.getPage().getServletName();
E.
pageContext.getException().getStackTrace();
F.

pageContext.getExpressionEvaluator();

3. Identify true statements about the exception implicit object in tag handler code.
(Choose two.)
A. It can be obtained through the page context’s getError () method.

B. The JSP page housing the tag must have page directive isErrorPage set to true for exception
to be non-null in the tag handler code.

C. The JSP page housing the tag must have page directive errorPage set to true for exception
to be non-null in the tag handler code.

D. The page context’s getError () method return type is java.lang. Throwable.
The page context’s getException () method return type is java.lang. Throwable.

The exception implicit object has a getLocalizedMessage () method.

4. The following is an extract from a tag handler class that implements the Tag interface. Given
the code in the dostartTag () method, what else is likely to be true for the tag handler to
compile and run successfully? (Choose three.)

694 Chapter 9: Custom Tags

w

C.
D.
E.
F.

// ...all necessary imports supplied...
public class Question04 implements Tag {
public int doStartTag() throws JspException {
HttpServletRequest request = pageContext.getRequest();
request.setAttribute("myattr", "myvalue");
return Tag.SKIP_ BODY;

}

// ...Other methods and instance variables defined...

}

pageContext should be defined as an instance variable of type PageContext.

The method pageContext.getRequest () should be replaced with pageCcontext
.getServletRequest().

The setPageContext () method must initialize a value for pageContext.

A cast needs to be inserted in the dostartTag() code.

The release() method should set pageContext to null.

A scope parameter should be provided to the request.setAttribute() method call.

5. Which of the following methods are available in the java.servlet.jspPageContext class?
(Choose three.)

A

TmoO QoW

getPageScope
getServletConfig
include
getErrorData
getError

getApplication

The “Simple” Custom Tag Event Model

6. For a tag implementing the SimpleTag interface, which of the following method sequences
might be called by the JSP container? (Choose two.)

A
B.
C.
D.

setParent, setPageContext, setJspBody
setParent, setJspContext, dolnitBody
setJspContext, setAnAttribute, doTag
setPageContext, setParent, doTag

Self Test G9S5

E. setJspBody, doAfterBody, doTag
F. setJspContext, setParent, doTag

7. Which of the following techniques causes the JSP container to skip the rest of the page after
processing a custom action implementing the SimpleTag interface? (Choose one.)

Returning Tag.SKIP_PAGE from the doEndTag () method

Returning —1 from the doPage () method

Returning —1 from the doTag () method

Returning Tag.SKIP_PAGE from the doTag () method

Throwing a SkipPageException within the doTag () method

mmoONw>»

Throwing a JspException from the doPage () method

8. Consider the following JSP page code and SimpleTag code. What is the output from tag
<mytags:question08> to the requesting JSP page? You can assume that all necessary
deployment descriptor and tag library descriptor elements are set up correctly. (Choose one.)

JSP Page Code:

<%@ taglib prefix="mytags" uri="http://www.osborne.com/taglibs/mytags"
>

<html><head><title>Question08</title></head>
<body><p><mytags:question08>a</mytags:question08></body>

</html>

SimpleTag Tag Handler Code for <mytags:question08>:
import java.io.IOException;
import java.io.StringWriter;
import javax.servlet.jsp.JspException;
import javax.servlet.jsp.tagext.JspFragment;
import javax.servlet.jsp.tagext.SimpleTagSupport;
public class Question08 extends SimpleTagSupport {
public void doTag() throws JspException, IOException {
JspFragment fragment = getJspBody();
StringWriter sw = new StringWriter();
for (int i = 0; i < 3; i++) {
fragment.invoke(sw);
String s = "b" + sw;
sw.write(s);
fragment.invoke(null);

696 Chapter9: Custom Tags

A. aaa

B. bababa

C. babaabaaa

D. baabaaabaaaa
E. No output

9. Identify true statements about tag declarations in tag library descriptors from the following list.

(Choose three.)

A. The element <simpletag> is used to differentiate actions following the simple tag model
from the classic tag model.

B. A tag whose <body-content> is declared as JSP must follow the classic tag model.

C. Separate tag library descriptor files must be used to separate classic and simple tag
declarations.

D. A simple tag has a default <body-content> of scriptless.
E. Simple tags are commonly declared with a <body-content> of scriptless.

If a simple tag is declared with a <body-content> of “empty,” the JSP container makes one
less method call on the simple tag handler class.

10. Consider the following JSP page code and SimpleTag code. What is the output from tag
<mytags:question08> to the requesting JSP page? You can assume that all necessary
deployment descriptor and tag library descriptor elements are set up correctly. (Choose one.)

JSP Page Code:

<%@ taglib prefix="mytags" uri="http://www.osborne.com/taglibs/mytags"
%>

<%Q@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<html><head><title>Question 10</title></head>

<c:set var="counter">1</c:set>

<body><p><mytags:questionl0>

<c:forEach begin="${counter}" end="3">${counter}</c:forEach>
</mytags:questionl0></p></body>

</html>

SimpleTag Tag Handler Code for <mytags:question08>:
package webcert.ch09.questions09;

import java.io.IOException;

import javax.servlet.jsp.JspContext;

import javax.servlet.jsp.JspException;

import javax.servlet.jsp.tagext.SimpleTagSupport;
public class Questionl0 extends SimpleTagSupport {

Self Test @97

public void doTag() throws JspException, IOException {
JspContext context = getJspContext();
int i = Integer.parseInt("" + context.getAttribute("counter"));
for (; 1 < 4; i++) {
context.setAttribute("counter", new Integer(i));
getJspBody () .invoke(null);
}

No output
111222333
123
123123123
111223
223

mmoONw>»

The Tag File Model

I'l. From the list, identify correct techniques to make tag files available in a JSP page or]SP
document. (Choose two.)

A

<%@ taglib prefix="mytags" uri="/WEB-INF/tags/mytags.tld" %>
B.

<%@ taglib prefix="mytags" taglocation="/WEB-INF/tags" %>
C.

<html xmlns:mytags="http://www.tags.com/tags">
D.

<html xmlns:mytags="urn:jsptagdir:/WEB-INF/tags/">
E

<%@ taglib prefix="mytags" tagdir="/WEB-INF/tags" %>
F.

<%@ taglib prefix="mytags" tagdir="/WEB-INF/tags/mytags.tld" %>

698 Chapter 9: Custom Tags

12. What is the result of accessing the following tag file? (Line numbers are for reference only and
should not be considered part of the tag file source.) (Choose one.)

01 <%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
02 <c:set var="character">65</c:set>

03 <c:forEach begin="1" end="10" varStatus="loopCount" >

04 <% char c = (char)
Integer.parselnt(pageContext.getAttribute("character").toString());
05 pageContext.setAttribute("displayCharacter", new Character(c));
07 %>

08 ${displayCharacter}

09 <c:set var="character">${character + 1}</c:set>

10 </c:forEach>

Translation error at line 1
Translation error at line 4
Translation error at line 9

Run-time error at line 9

Output from tag file f ABCDEFGHI]

m o N w >

13. Which of the following are directives you might find in a tag file? (Choose three.)
page

tag

variable

import

attribute

jspcontext

OmMmo N w®»

scope

14. (drag-and-drop question) In the following illustration, match the numbered options on the
right with the concealed lettered portions of the JSP page and tag file, such that the output
from accessing the JSP page is as follows:

Body: 1 Tag File: 2 Body: 1 Tag File: 3 Body: 1 Tag File: 4

Self Test G99

JSP Source | 1 | 1 |

<%@ taglib prefix="mytags" tagdir="/WEB-INF/tags" %>

<%@ taglib prefix="c" | 2 | 5

uri="http://java.sun.com/jsp/jstl/core" %>

<htmls><head><title>Question l4</title></head> | 3 | 3

<[2a] var="counter" value="1" />

<body><mytags:questionl4 counter="${counter}"> | 4 | 4 |

Body:

</mytags:questionl4d></body></html> | 5 | tag |

Tag File Sour.'ce for /VYEB-INF/tags/questionI4.tag | 5 | attribute |

<%@ taglib prefix="c"

uri="http://java.sun.com/jsp/jstl/core" %> | 7 | variable |

<%@ name="counter" %>

<c:forEach begin="[D]"end="[E" | s | o set |

varStatus="loopCounter” > .

’ 9 | loopCounter |
Tag File: ${counter + | G I} | P

</c:forEach> | 10 | loopCounter.count |
11	loopCounter.index
12	<jsp:attribute />
13	<jsp:doBody />
14	<jsp:invoker />
15	${counter}
16	${counter + 1}
17	${counter + loopCounter}

I5. Which of the following is a valid location for a tag file? (Choose one.)
A. Directly in the context directory
Directly in the / WEB-INF directory
In any subdirectory of / WEB-INF
In / WEB-INF/tags or a subdirectory beneath / WEB-INF/tags
In a JAR file in / WEB-INF/lib, under the /META-INF/tags directory
Cand D
Dand E

O mmo QoW

700 Chapter 9: Custom Tags

Tag Hierarchies

16. Consider the following hierarchy of actions. <c:if> is from the JSTL core library, and <a:
tagA> and <a:tagB> are classic custom actions.

<a:tagA>
<c:if test="${true}">
<a:tagB />
</c:if>
</a:tagA>

What options does tagB have for obtaining the enclosing instance of tagA? (Choose one.)
Use TagSupport.findAncestorWithClass ()

Invoke getParent () .getParent().

Use simpleTagSupport.findAncestorWithClass()

A B, and C

A and B only

B and C only

mmogQnNn®w>»

17. Which of the following could not be returned by either of the getParent () methods in the
JSP class libraries? (Choose two.)

An instance of a JSTL core library tag handler

An instance of a JSTL xm1 library tag handler

An instance of an HTML tag

An instance of an XML template tag in a JSP document

An instance of BodyTagSupport

mmQgQnNw>»

An instance of Simple TagSupport

18. What methods can you execute on the reference myAncestor at 17 in the code snippet below?
(Choose two.)

JspTag myAncestor = SimpleTagSupport.findAncestorWithClass(MyTagClass);
myAncestor.???

notifyAll()
B. setParent()

C. dostartTag()

o

doEndTag ()
doAfterBody()
clone()

hashCode()

Self Test

[9. (drag-and-drop question) Consider the dostartTag() method shown in the following

701

illustration. The tag for this tag handler will always have a parent, which could obey the simple
or classic model. Complete the code by matching numbered options from the right with the
concealed letter options, such that the code will successfully identify and print out whether the

parent is simple or classic (you may need to use some numbered options more than once).

public int doStartTag() {
[A] enclosing = getParent () ;

if (enclosing instanceof [B) {

2 | TagSupport |
[¢ lenclosingSimple = | 9=upp
D)) enclosing; [3 [simplerag |
JspTag simpleTag =
enclos1ngSlmple.[::::::::::]; | | SimpleTagSupport
System.out.println("Simple parent: " +
simpleTag.getClass () .getName()) ; | 5 | TagAdapter |
} else {
System.out.println("Classic parent: " + | | TagAdaptee |
.getClass () .getName ()) ;
}
7 etAdapter
return Tag.| G ; | | g P 0
} | | getAdaptee () |
| 9 | enclosing |
| 10 | enclosingSimple
11	simpleTag
12	EVAL BODY
13	EVAL BUFFERED BODY
14	EVAL_BODY_ INCLUDE

20. What strategies might a parent tag use to get hold of a child tag handler instance?
(Choose two.)

A.

Classic model: Child gets hold of parent and provides the parent with its own reference
to the child. Parent uses the reference in doAfterBody () method.

Classic model: Child gets hold of parent and provides the parent with its own reference to

the child. Parent uses the reference in dostartTag() method.

7072 Chapter 9: Custom Tags

C. Simple model: Child gets hold of parent and provides the parent with its own reference to
the child. Parent uses the reference after a call to JspFragment.invoke().

D. Simple model: Child gets hold of parent and provides the parent with its own reference to
the child. Parent uses the reference after doTag () method completes.

Parent tag uses TagSupport.findDescendantWithClass ().

Parent tag uses this.getChild().

LAB QUESTION

Before you finish shuffling cards altogether, attempt the following moderately difficult undertaking.
Take the solution code from Exercise 9-4, and convert the CardDealingTag to a simple tag. Leave
Card and Card2 as classic tag handlers. You'll need to make some adjustments, though, to cope with

having a simple tag handler as a parent.

Self Test Answers 703

SELF TEST ANSWERS

Tags and Implicit Variables

M Fis the correct answer: The output is null second. In the JSP a session attribute called
first is set to a value of “first.” Although the tag handler code attempts to retrieve an attribute
called “first,” it uses the pageContext.getAttribute () method without supplying a scope
parameter—hence, the code looks in page scope and retrieves a null reference that is output
to the page within the code. Still in the tag handler code, another attribute called second is set
up with a value of “second”—again in session scope. Back in the JSP, EL is used to output the
attribute. Because EL uses findAttribute () under the covers, the JSP searches through all
scopes until finding the second attribute.

& A,B,C,D,E, and G are incorrect according to the reasoning in the correct answer.

M A, E, and F are the correct answers. A returns the ID for a session. E prints the stack
trace for an exception object. Of course, the exception object will be null unless this

tag handler is called from a JSP error page. So you might get a run-time error (NullPointer
Exception), but the question is about compilation. F is correct, for there is a method called
getExpressionEvaluator () on the pageContext object (not that you are likely to need it
very often).

B is incorrect because there is a ServletRequest method called getattributeNames (),
but not one called getattributeName (). C is incorrect; although ServletResponse has a
getBufferSize method, to get the ServletResponse object from PageContext, you should use
(just) getResponse () (there is no getHttpResponse () method). D is incorrect; although the
page implicit variable is likely to be a servlet object (with a getservletName () method), the
getPage () method returns java.lang.Object, so some casting is necessary before using servlet
methods.

M B and F are the correct answers. B is correct because only error pages (designated by
isErrorPage set to true) have an exception implicit variable. This is then available to the
tags used in the page as a non-null object available through the pageContext object. F is
correct because all exception objects have a getLocalizedMessage () method, for they must
implement java.lang. Throwable. This has little to do with web coding, but don’t forget that the
SCWCD exam assumes you can remember things from the SCJP exam!

& A is incorrect— the PageContext object doesn’t have a getError () method. This also
rules out answer D. C is incorrect because although there is a page directive errorPage, it’s for
pages to specify a separate page as their chosen error page to divert to when things go wrong.
The actual page with the errorPage directive won’t have an exception implicit object available.

704 Chapter 9: Custom Tags

E is incorrect: Although PageContext has a getException () method (the one you do use to
get hold of the exception implicit object), it returns java.lang.Exception — not java.lang

.Throwable.

4. M A, C,andD are the correct answers. A is correct because —as this is a direct implemen-
tation of the Tag interface (not an extension of TagSupport)—you need to do the work to set
up a pageContext variable. C is also correct because having set up the pageContext variable,
setPageContext () is the appropriate method for supplying a value. D is correct because
pageContext.getRequest () returns a ServletRequest, not an HttpServletRequest (but a cast
to HttpServletRequest is likely to work in an HT TP environment).
® B is incorrect: The method name (getRequest ()) is already correct, so should not
be changed. E is incorrect — there’s nothing wrong with setting pageContext to null, but
it doesn’t contribute to making the code compile and run correctly. F is incorrect:
request.setAttribute() sets an attribute in request scope—you can’t adjust the scope
to something else.

5. M B, C, and D are the correct answers. All these methods (getServletConfig, include,
and getErrorData) are available on PageContext.
A is incorrect: PageContext has a getPage () method and a static int value defined of
PageContext. PAGE_SCOPE, but the method getPageScope () is made up and meaningless.
E is incorrect: There is a getException () method that you can legitimately call when a tag
is located within a JSP error page, but there is no getError (). F is incorrect: Although there
is an implicit variable called application in JSPs, the correct way to access this through the
PageContext object is through the getServletContext method.

The “Simple” Custom Tag Event Model

6. M CandF are the correct answers. C is correct because setJspContext () is always the first
method to be called for a SimpleTag. Next is setParent (), missing in this sequence, and it will
be bypassed if this tag doesn’t have a custom action for a parent. Next comes attribute setting—
so setAnAttribute() is a plausible method call. Next is setJspBody (), again missing in this
sequence, but bypassed by the JSP container if the SimpleTag doesn’t have a body. Finally, the
JSP container does call doTag (). F is correct because setIspContext (), setParent (), and
doTag() is a plausible sequence for a tag with no attributes and no body.

X A is incorrect because SimpleTags do not have a setPageContext method, and even

if they did, it wouldn’t come after setParent () (setting of contexts is the first thing to
happen). B is incorrect because setIspContext () should come before setParent (), and
SimpleTags do not have a doTnitBody () method. D is incorrect because —although the order

Self Test Answers 7058

is plausible — SimpleTags have a setIspContext () method, not setPageContext () (as for
classic tags). Finally, F is incorrect because SimpleTags do not have a doAfterBody () method.

M E is the correct answer. To make the JSP container skip the rest of the JSP page, throw a
SkipPageException (subclass of JspException) from the doTag () method of a SimpleTag. You
can do this anyway and should rethrow the exception if it originates from any enclosed custom
actions.

& A is incorrect for SimpleTags (this is the correct technique for classic tags, but of course,
simple tags do not have a doEndTag () method). B and F are incorrect because there is no such
method (in the simple or classic tag model) as dopage (). C and D are incorrect because the
doTag () method returns nothing (void), so any attempt to return an integer literal or constant
will result in a compilation error.

M A is the correct answer. All the work that the code does using the java.io.StringWriter goes
nowhere. When JspFragment.invoke (null) is executed at the end of the for loop, however,
the contents of the body (the letter a) are output to the JspWriter associated with the page.
This happens three times within the loop—hence, aaa is output to the page from the tag.

& B, C, D, and E are incorrect according to the reasoning in the correct answer.

M B, E, and F are the correct answers. B is correct because simple tags are not allowed JSP
content: scriptless, tagdependent, and empty are the only valid values for a simple tag’s
<body-content>. E is correct because the most common use of simple tag handler code is

to manipulate attributes that are accessed by EL variables in the body of the action—and

for the EL variables to be interpreted, the only valid setting is scriptless. F is correct: If
<body-content> is declared as empty, the JSP container will not call the setJspBody ()
method on the simple tag handler class.

& A is incorrect as there is no such element as <simpletag>; the <tag> element is used to
declare both classic and simple tags. C is also incorrect, for simple and classic tags can be mixed
freely in the same tag library descriptor file—as long, of course, as their names are unique. D is
incorrect, though almost right — there is no default for simple tags (though as discussed in the
correct answer E, scriptless is a common choice).

M E is the correct answer. First a page attribute is set up in the JSP called counter, with a
value of 1. This is retrieved in the tag handler code into the int value i. On entry to the for
loop, the page attribute counter is set to the value of i, so it remains at 1. Then the body of the
action is invoked. This executes a <c: forEach> loop beginning at the current value of counter,
and ending at 3. So the <c: forEach> loop executes three times, printing counter (with a value
of 1) three times, through the EL syntax $ {counter}. Back now to the for loop in the tag
handler code: second iteration. i is incremented to 2, so the attribute counter is incremented to

706 Chapter 9: Custom Tags

2. The body is invoked again, and the <c: forEach> loop outputs “2” twice. Repeat the process,
and “3” is output once. So the entire output is: 111 22 3.
A, B, C, D, and F are incorrect following the reasoning in the correct answer.

The Tag File Model

M D and E are the correct answers. D looks strange but is the namespace convention for
declaring a tag file directory in a JSP document (the namespace doesn’t have to be declared in
an <html> opening tag but is usually declared in the root element for the document). E is the
right way to reference a tag file directory in a conventional taglib directive.

& A is incorrect—it depicts the correct way to declare a tag library descriptor, not a directory
for tag files. B is incorrect because taglocation is a made-up attribute for the taglib
directive. C is incorrect because the value for the namespace is not a URN for a tag directory.
Finally, F is incorrect because the tagdir attribute must reference a directory, not a TLD file.

M B is the correct answer. A translation error occurs as soon as the JSP scriptlet begins at line
4. You are not allowed to embed scriptlets or scriptlet expressions (or any other sort of direct
Java language syntax) in a tag file.

A and C are incorrect because all remaining syntax in the tag file is correct apart from the
presence of the scriptlet. D is incorrect because the tag file will never be run. E is incorrect
because you will never get output—although if you transfer this code to a normal JSP file, it
will produce the output shown.

M B, C, and E are the correct answers: tag, attribute, and variable are the three possible
directives present in a tag file.

A is incorrect: The page directive is valid in JSPs, not tag files—where the tag file replaces
it (and shares many of the same attributes). D is incorrect: import is not a directive, but an
attribute of the tag directive. F is incorrect—although a tag file has an associated JspContext,
jspcontext is not a directive. Finally, G is incorrect —scope is an attribute of the variable
directive.

M A mapsto 8 (c:set), B mapsto 15 (${counter}), Cto 6 (attribute), D to 1 (the
figure 1), E to 3 (the figure 3), F to 13 (<jsp:doBody>), and G to 11 (loopCounter
.index). The key things to note about the code: $ {counter} in the JSP file is independent
of ${counter} in the tag file. However, as the body is re-executed three times (through
placing <jsp:doBody> in the <c: forEach> loop in the tag file), the original value of
${counter} (a value of 1) is passed through as the initial value for the attribute named
counter on each occasion.

& All other combinations are incorrect.

Self Test Answers 707

I5. ™M G is the correct answer. Tag files can live directly in the / WEB-INF/tags directory (or
any subdirectory of it) or can be packaged with a JAR file. The directory in the JAR file
must be /META-INF/tags (or a subdirectory of this), and the JAR file must be located in
/ WEB-INF/lib.
& A is incorrect: Tag files in the context directory will just be treated as web content. B and C
are incorrect: / WEB-INF and any arbitrary subdirectory of / WEB-INF won’t do according to the
specification. F is wrong, for it includes one incorrect location. D and E are correct locations—
but because both are correct, one choice on its own is not a correct answer to the question.

Tag Hierarchies

16. M D is the correct answer. All the techniques listed in answers A, B, and C are viable.
TagSupport.findAncestorWithClass () is a natural approach: You would pass as parameter
the class for <a:tagA>. getParent().getParent() is viable in this circumstance — this
technique will return the grandparent tag <a:taga>. However, unless you can be very
sure of the tag hierarchy, it’s not a great approach. What may come as a surprise is that
SimpleTagSupport.findAncestorWithClass () works in the context of classic tags. In
fact, it’s more flexible than TagSupport.findAncestorwithClass ()—it returns a JspTag
rather than a Tag. This means that the method can be used to find both simple and classic
tags in the hierarchy (whereas TagSupport.findAncestorWithClass () is restricted to
classic tags only).

& A, B, C, E, and F are incorrect according to the reasoning in the correct answer. (A, B, and
C are correct approaches, but because all three are correct, you have to select answer D.)

7. @ CandD are the correct answers. Tags that qualify as template text—whether XML or
HTML —are not part of the JSP custom tag hierarchy accessible through methods such as
getParent().

& A, B, E, and F are incorrect answers. All are instances of objects that implement JspTag
and mostly Tag as well—so all are possible to recover with one of the two getParent ()
methods (provided in the Tag and SimpleTag interfaces).

18. M A and G are the correct answers. Because the JspTag interface has no methods of its own
(it is only a marker interface), then the only methods available in a JspTag reference are those
on java.lang.Object. Hence, notifyall () and hashCode () would be valid method calls.

B, C, and D are incorrect, for all are methods in the Tag interface, which is a subinterface
of JspTag. E is incorrect because doAfterBody () is a method in the IterationTag interface, yet
farther down the hierarchy. F is incorrect, for although clone() is a method on Object, it is
protected — only public methods are available to call on a local reference.

708 Chapter 9: Custom Tags

19. M A mapstol (Tag); B, C,and D map to 5 (TagAdapter); E maps to 8 (getAdaptee());
F maps to 9 (the variable enclosing); and G maps to 14 (the return value EVAL_BODY
_INCLUDE —beware of fake constants in the answers!).
® All other combinations are incorrect.

20. M A and C are the correct answers. A is correct, for doAfterBody () will be executed after
the evaluation of the body that contains the child tag. C is correct because by calling the
invoke () method, the parent tag forces execution of the body containing the child tag, which
sets the reference to the child tag that it needs.

X B is incorrect because the body (containing the child tag) hasn’t yet been evaluated, so
the child tag cannot have set a reference for the parent tag to use. D is incorrect because there
is no life cycle method invoked on a simple tag after the doTag () method completes. E and F
are incorrect because the methods are made up: There are no parent-to-child methods. This is
a pity, but obvious when you consider that a JSP is processed in strict sequence, so parent tags
always come before child tags.

LAB ANSWER

Deploy the WAR file from the CD called lab09.war, in the /sourcecode /chapter09 directory. This

contains a sample solution. You can call the initial document with a URL such as:
http://localhost:8080/1ab09/cardGame. jspx

The output should be no different from before —see Exercise 9-4 for an illustration.

