
CERTIFICATION OBJECTIVES

10
J2EE Patterns

 • Intercepting Filter Pattern

 • Front Controller Pattern

 • Model View Controller Pattern

 • Business Delegate Pattern

 • Service Locator Pattern

 • Transfer Object Pattern

 ✓ Two-Minute Drill

 Q&A Self Test

710 Chapter 10: J2EE Patterns

In this fi nal chapter of the book, we move from the “micro” level of individual servlet and
tag APIs to the “macro” level of designing entire systems. You leave the low-level world of
servlet containers and the tag life cycle API, and embrace some altogether bigger notions on

how a J2EE system should be constructed.

This comes about because the SCWCD exam includes questions on six design
patterns. A design pattern is like an architectural blueprint for solving some
common problem, and J2EE applications exhibit a whole range of common problems
that have been solved hundreds of times before. So when you encounter your own
J2EE design issues, you may not have to think for yourself, but instead adopt an off-
the-shelf design pattern.

The questions in this area are much more like those you fi nd in the fi rst stage of
the Sun Certifi ed Enterprise Architect (SCEA) examination. At fi rst sight, this may
seem like a soft topic. How diffi cult can big design ideas be compared to knowing
low-level APIs? But proceed with caution: This is an area that often lets SCWCD
exam candidates down, and it accounts for nearly 10 percent of the questions.
Design patterns are not fl uffy, easy things —you can’t afford to be woolly in your
grasp on them. So with that stern warning in mind, read on.

Core J2EE Patterns
You have probably encountered design patterns before in your work as a Java
developer. Even if you haven’t read the legendary design patterns book, you will have
used at least one pattern.1 You don’t believe me? You can’t have got this far in your
Java career without using the java.util.Iterator interface. This is a living embodiment
of the iterator design pattern documented in the Design Patterns book. As you’ll
recall, java.util.Iterator keeps the specifi cs of what kind of collection you are dealing
with at arm’s length, while allowing you to traverse the contents of the collection. If
you compare this with the pattern in the GoF book, you’ll fi nd that this description
of java.util.Iterator matches the goals for the iterator pattern.

Patterns are not confi ned to the lowest levels of a computing language. Good
design ideas can be found at any level—indeed, some of them work at several levels
(from fi ddly components to enormous building blocks). J2EE boasts its own set of
design patterns, targeted at solving problems working with J2EE-size components,

1See Design Patterns—Elements of Reusable Object-Oriented Software, by Gamma, Helm, Johnson,
and Vlissides [Addison Wesley]. The authors are often referred to as the Gang of Four —abbreviated
GoF —and their magnum opus referred to as the GoF book.

so the building blocks involved might be servlets, JavaServer Pages, and Enterprise
JavaBeans as well as other support classes. The motivation for discovering and
documenting J2EE patterns is the same as for patterns elsewhere. Your problem needs
a solution. Chances are that somebody else has hit your problem (or one very like
it) before. If they’ve taken the trouble to document that solution, you can adopt it:
either as a ready-made solution or as one that requires a little adaptation.

Elements of a Pattern
In this chapter I’ve tried to cover everything you need to know to do well with the
SCWCD design patterns questions, but I do have only 60 or so pages at my disposal.
If you want to broaden and deepen your design exploration, you should know that
the “bible” for J2EE design patterns is a book called Core J2EE Patterns: Best Practices
and Design Strategies (by Alur et al., published by Sun Microsystems). Five out of the
six design patterns required for the SCWCD exam were fi rst defi ned in this book.
You’ll fi nd the content of the core patterns book on the Sun web site:

http://java.sun.com/blueprints/corej2eepatterns/Patterns/

Just one unfortunate thing: At least at the time of writing, the free resources
on the web site are aimed at J2EE 1.3, whereas the SCWCD is pitched at J2EE
1.4. Fortunately, the patterns world moves a little more slowly than the rate of
API evolution, so most of what the web site covers is absolutely germane to your
SCWCD studies. However, if you want the absolute latest information, you’ll need
to purchase the second edition of the book (revised for J2EE 1.4).

The features of design patterns are described according to a set of headings that
act as a template for each pattern. This set of headings is not standard between
champions of design patterns. So what the GoF book calls “implementation,” the
Core J2EE Patterns book calls “strategies,” and so forth. The Core J2EE Patterns
book talks in terms of

■ Context—where in the J2EE environment you are likely to encounter a need for
the pattern

■ Problem—an account of the design problem that a developer needs to solve

■ Forces—motivations and justifi cations for adopting the pattern

■ Solution—how the design works, both in structural terms (depicted with UML
diagrams) and implementation terms (often backed up with example code)

■ Consequences—what are the pros and cons when the pattern is applied

J2EE Patterns 711

712 Chapter 10: J2EE Patterns

My “template” for describing the patterns will be simpler than this. Here is what I
will describe:

■ How each pattern works, with reference to a concrete example

■ The benefi ts (and, sometimes, drawbacks) of using the pattern

■ Particular scenarios when it might be appropriate to adopt the pattern

I’ve found this approach gets you to the heart of the exam objectives quicker than
any other. Your task in the exam is not to be able to implement a design pattern
(even though understanding the implementation clearly helps). You’ll see from the
wording of the exam objectives that you have to match benefi ts and scenarios to
specifi c patterns.

A Road Map for J2EE Patterns
First of all, Sun’s J2EE patterns are based on a tiered approach to application
development. Of course, Sun wouldn’t claim to have invented this idea, but
has sensibly adopted it as the best approach to separating out concerns and
responsibilities: an aspect of object orientation in the large. The fi ve tiers are
depicted in Figure 10-1, together with the J2EE (and other) components you are
likely to fi nd in each.

Client Tier Presentation Tier Business Tier Integration Tier Resource Tier

Swing

Other
apps

Applets

“Thick
clients”

JSPs

Servlets

HTML

GIFs

EJBs

Other
business
objects

JDBC

JMS

Enterprise
information
system
connectors

Databases

Topics,
queues

Enterprise
information
systems

FIGURE 10-1

Tiers for
Application
Development

You’ll be familiar with many of the components depicted in the presentation tier.
However, we haven’t touched on components in the business tier: They haven’t
impinged at all on what you have needed to learn for the SCWCD —until now. The
principal J2EE business component is the Enterprise JavaBean, or EJB. Fortunately,
you don’t need any great expertise in its use; that’s the subject of a whole separate
certifi cation exam (the Sun Certifi ed Business Component Developer Exam, or
SCBCD). You do need a token idea, though, of what Enterprise JavaBeans are, and
the issues they present.

To start off with, Enterprise JavaBeans are designed to be self-contained business
components. That doesn’t mean they constitute a single Java class: An Enterprise
JavaBean is composed of a number of classes, some written by developers, some
generated. However, a particular Enterprise JavaBean —maybe representing some
business entity such as “Customer”—can be considered as a unit in its own right.

Just as servlets run in a servlet container, so EJBs run in an Enterprise JavaBean
container. You can’t make an EJB with the new keyword, any more than you’d
consider doing the same for a servlet: The container supplies the life cycle. Whereas
you fi re an HTTP request to make use of a servlet in a servlet container, you execute
JNDI (Java Naming and Directory Interface) code to get hold of the services an EJB
can offer within its EJB container.

Originally, EJBs were designed to be independent, so independent that they
did not even have to run in the same JVM as the client code using them. In the
past, this meant that every use of an EJB involved a remote method call using
Java’s Remote Method Invocation (RMI) protocol. This doesn’t have to be the
case anymore when EJBs are co-located in the same JVM as the client using them.
However, EJBs are to be treated with respect because they do a lot for you (not least
of which is masking network concerns); they are heavyweight components. You
might pay a price in performance for naïve use of EJBs.

The preceding paragraphs made a very minimalist introduction to a very big
topic, but it is important to understand that EJBs are a primary force in driving some
of the patterns you encounter for the SCWCD (Business Delegate, Service Locator,
and Transfer Object).

Having understood tiers and components, the next thing to consider is where
the design patterns fi t. Figure 10-2 shows the tiers again, but this time with the six
design patterns superimposed. (You may also want to reference the diagram on the
Sun web site that shows how all the J2EE core patterns fi t together: That’s at the
Sun URL referenced a little earlier in the chapter.)

You can see from Figure 10-2 that the patterns you are concerned with live within
or straddle different tiers, and often work in combination with one another. Here’s a

J2EE Patterns 713

714 Chapter 10: J2EE Patterns

brief explanation of each of the six patterns so that you have a road map for the rest
of the chapter.

■ Intercepting Filter: used to check or transform a request or a response.

■ Front Controller: a “gateway” for all requests —can be used to check requests
and control navigation centrally.

■ Model View Controller: used to keep presentation and business concerns
independent. The model holds the business data, the view presents the data,
and the controller mediates between the two.

■ Business Delegate: used to provide a friendly front end to business-level APIs
(especially when those APIs involve Enterprise JavaBeans).

■ Service Locator: used to locate services (!), which usually means executing highly
technical code to get back references to resources such as Enterprise JavaBeans
and JMS queues.

■ Transfer Object: encapsulates the data returned from complex business objects
(usually EJBs again).

There is a whole fl ow of control among these different patterns. Figure 10-2 shows
how they might typically collaborate, tracing the fl ow of a request through the

C
lie

nt
 T

ie
r

Presentation Tier Business Tier

In
te

gr
at

io
n

T
ie

r

R
es

ou
rc

e
T

ie
r

JSPs

9

56

4

7

8

1

EJBs

Front
controller

Transfer
object

Controller

View

Model

Model view controller

I
n
t
e
r
c
e
p
t
i
n
g

F
i
l
t
e
r

Business
delegate

Service
locator

3

Other
business
objects

2

FIGURE 10-2

How the J2EE
Patterns Fit
Together

application. A request is trapped by an Intercepting Filter (1 in Figure 10-2)—if the
fi lter allows it, the request passes on to a Front Controller (2). The Front Controller
makes use of a Business Delegate to obtain business data (3). The Business Delegate
uses a Service Locator (4) to fi nd the business component it needs (5)— often an
EJB. The Business Delegate requests data (6), which it gets back in the form of a
Transfer Object (7), and returns this to the Front Controller. The Front Controller
takes what it needs from the Transfer Object (8), then forwards to an appropriate
JSP (9) (which —in all likelihood —uses data originating from the Transfer Object).
Where does Model View Controller fi t in? That’s the collection of components
represented by the JSP (for the view), the Front Controller (evidently the
controller!), and the Business Delegate (fronting the business model).

A Working Example
This chapter is underpinned by a working example that uses all six patterns in
its construction. There are no Enterprise JavaBeans within the example, for they
require an Enterprise JavaBean container to support them (like the open source
JBoss: See http://www.jboss.org). At this stage of your SCWCD exam preparation,
coming to terms with an EJB container is a bridge too far. So instead, I have
implemented the integration tier of the example using Java Remote Method
Invocation (RMI). This introduces quite a few of the issues associated with EJBs
but doesn’t require additional software (beyond the J2SDK) to make it run.

Figure 10-3 shows how the application fi ts together and indicates which classes
embody J2EE patterns. Some of the classes actually refl ect the name of the pattern.
There’s a danger in this: You might think that one pattern = one class. Whereas
that can be the case, it doesn’t do justice to the full story. Even if only one class is
involved, that class must cooperate in the right way with other classes and do a
particular job to count as an implementation of a pattern.

The idea of the example application is to display information about the six
patterns for SCWCD. The application has only two working screens: home.jspx and
pattern.jspx. home.jspx displays a menu, from which you can select the pattern you
want information about (Figure 10-4). On selecting a pattern, you see a detail screen
with information about the pattern (Figure 10-5).

For such a simple application, the supporting architecture is very ornate, but the
complexity is there to illustrate how to apply the six patterns. Let’s consider how
the application works, with reference to Figure 10-3. We’ll start with the back end:
the resource tier. The “database” of pattern information is represented by a simple
properties fi le, called patternsDB.props. The PatternLoader class is arguably part of
both the integration and business tiers. It contains a method to load the contents

J2EE Patterns 715

716 Chapter 10: J2EE Patterns

of the “database” into an internally held java.util.Properties object, using simple fi le
input /output for connectivity to the data (in a real production system, you might
expect to see JDBC code connecting to a relational database). PatternLoader also
contains the fi rst of our patterns: Transfer Object. It provides a “getData” method
that returns a PatternTfrObj, which encapsulates all the data about one pattern.
We’ll see later why this is an advantage.

Presentation Tier Business Tier
(Remote)
Business Tier /
Integration Tier

Resource Tier

Servlet /JSP Container JVM Business Server JVM

BusinessDelegate

OriginFilter FrontController

home.jspx

PatternTfr
Obj

ServiceLocator

PatternLoader
RmtImpl

PatternLoade

patternsDB.
props

-

error.jspx

pattern.jspx

PatternTfr
Obj

PatternLoader
RmtImpl

FIGURE 10-3

How the
Working Example
Implements J2EE
Patterns

FIGURE 10-4

The Working
Example
Home Page

To make PatternLoader more EJB-like, it’s wrapped up in a remote implemen-
tation class called PatternLoaderRmtImpl. The idea is that the web application will
run within Tomcat and be forced to access this part of the business tier through
remote calls. PatternLoader and its remote implementation run in an entirely
separate JVM, launched with Java’s rmiregistry command —we’ll see more of
that in the deployment instructions later.

Let’s now come at the application from the other direction. First I make a request
for the main screen of the application from my browser. The request is intercepted
by the OriginFilter class. This is the key player in the Intercepting Filter J2EE
pattern, and is a bona fi de class implementing the Filter interface and declared
as a fi lter in the deployment descriptor. Its purpose is to guard the borders of the
application, turning away requests from any host of origin it doesn’t like (in this case,
it’s set up to allow only requests from the localhost with IP address 127.0.0.1, but you
can adjust this by changing the relevant initialization parameter within the web.xml
fi lter declaration).

If the request gets past the border guard, it goes to a servlet called FrontController
(named after the J2EE pattern it supports). Front Controller determines from
parameters passed whether this is a request for a specifi c pattern or not. If not, it
forwards to the home menu page, home.jspx. A selection from this page goes back
to Front Controller — this time with a named pattern as parameter. This prompts
FrontController to do a deal more work. It passed the pattern name requested to
the BusinessDelegate class (our next J2EE pattern). BusinessDelegate checks to see
if it has information about the pattern in its own data cache. If not, it sees if it has

FIGURE 10-5

The Working
Example
Detail Page

J2EE Patterns 717

718 Chapter 10: J2EE Patterns

a reference to a remote PatternLoader object. If not, it calls on the ServiceLocator
(next pattern) class to fi nd the remote PatternLoader object. Once armed with a
remote PatternLoader object, BusinessDelegate uses it to return a PatternTfrObj (the
Transfer Object). Now the explanations have met in the middle. This is the point
where our survey of the presentation and business tiers meets the earlier exploration
of the resource, integration, and (remote) business tiers.

We’ll revisit the application in detail when explaining the purpose of the different
J2EE design patterns. It would be a good idea to deploy the application at this point.
The WAR fi le is in the CD in /sourcode/ch10/ lab10.war. Deploy this WAR fi le in
the normal way; then access the home page with a URL such as the following:

http://localhost:8080/lab10/controller

You should see the screen we saw earlier in Figure 10-4 — the application home page.
However, when you select one of the patterns and click the “Show Pattern Details”
button, you’ll see an application error screen (Figure 10-6). This is because the
remote layers of the application haven’t yet been started up. To bring these to life,
take the following steps:

 1. Start two command windows. In both command windows, change the current
directory to / WEB-INF/classes within the deployed application directory
(e.g., <Tomcat Installation Directory>/webapps/ lab10/ WEB-INF/classes).

 2. In the fi rst command window, execute the command rmiregistry. No
parameters —just as printed. If the command is not recognized, make sure
that you have the /bin directory of your J2SDK installation in your path (so if
we’re talking MS-DOS, adjust the PATH environment variable). This is the
Java command that starts off your Remote Method Invocation Registry, which
listens (by default) on port 1099. If successful, the command just hangs there,
not giving much appearance of doing anything —don’t worry about it!

 3. In the second command window, execute the command java webcert.
ch10.lab10.RemoteBusinessServer. The result should be a message
saying “Pattern Loader bound in RMI Registry.” Again, the command appears
to hang in midair —leave it to do its stuff.

 4. Now return to your browser, and try again to access a pattern through the
main menu. This time, you should see a detail screen as in Figure 10-5.

 5. When you have fi nished with the application, just abort the two command
windows (ctrl-c and exit in MS-DOS terms).

With luck, RMI will be familiar to you from your previous programming experience
(though it’s not a mandatory part of the SCJP exam). Don’t worry if not: It’s
certainly not central to the explanation of patterns —I’ve included it to give
more of a sense of a “real” full-blown J2EE application. We’ll revisit some of the
technicalities when explaining the Transfer Object pattern at the end of the chapter.

CERTIFICATION OBJECTIVE

Intercepting Filter Pattern (Exam Objectives 11.1
and 11.2)

Given a scenario description with a list of issues, select a pattern that would solve the
issues. The list of patterns you must know are: Intercepting Filter, Model-View
-Controller, Front Controller, Service Locator, Business Delegate, and Transfer Object.

FIGURE 10-6

The Working
Example
Error Page

Intercepting Filter Pattern (Exam Objectives 11.1 and 11.2) 719

720 Chapter 10: J2EE Patterns

Match design patterns with statements describing potential benefi ts that accrue from
the use of the pattern, for any of the following patterns: Intercepting Filter, Model-
View-Controller, Front Controller, Service Locator, Business Delegate, and Transfer
Object.

Let’s start with some good news —you have learned all about the Intercepting Filter
design pattern already. The kindly designers of J2EE have built the Intercepting
Filter pattern directly into J2EE architecture. You learned all about Filters and
FilterChains in Chapter 3, and how these could be used to “pre-process” a request
for a web resource, or “post-process” the response. These interfaces and classes
(together with the life cycle support for them in a servlet container) are the concrete
embodiment of the Intercepting Filter pattern.

Intercepting Filter Pattern
The Intercepting Filter pattern works in the following way. A fi lter manager
intercepts a request on its way to a target resource. From the content of the request
(usually from its URL pattern), the fi lter manager calls on the help of a fi lter chain
object, which creates the fi lter objects needful to the request (if they haven’t been
created already). The fi lter chain also dictates the correct sequence of fi lters to
apply (hence the name: fi lter chain). The fi lter chain object infers the appropriate
sequence from some information in the request: As we’ve seen with the “offi cial”
fi lter mechanism, the basis for this is the request’s URL pattern.

So in Figure 10-7, we see that a request is made for the fi le /resources/resource1
.html. This request is grabbed by a FilterManager object, which builds a FilterChain
object. The FilterChain object holds references to the matching fi lters, which the
FilterManager determines by matching up the request URL to the URL mappings for
each of the fi ve available fi lters. From these, it selects one ofthe following choices:

Request for
resource1.html Filter

manager /resources/resource1.html

/resources/resource2.jsp

Filter 1 Filter 2

Filter 4 Filter 5

Filter 3

Filter
chain

*.html

/resources/
resource1.html

/resources/
resource2.jsp

.jsp /resources/

FIGURE 10-7

A Request’s
Route Through
Filters

■ Filter 1: because of the extension match (*.html)

■ Filter 3: because of the path match (/resources/*—anything whose path begins
with /resources)

■ Filter 4: because of the exact match (/resources/resource1.html)

See if you can work out the logic for the fi lter selection in Figure 10-8, when
 /resources/resource2.jsp is requested.

I am being very prescriptive here in saying that this J2EE pattern works by URL
matching. If you write code for a customized Intercepting Filter, you might use some
other criteria altogether for the selection of fi lters in the chain. It is just that in this
case, the J2EE pattern has to be implemented in your application server because it’s a
mandatory part of the servlet specifi cation —and the servlet specifi cation goes with
URL matching (and servlet naming) as the basis for fi lter selection.

How Is Intercepting Filter Used in the Example Application?
The example application uses a fi lter called OriginFilter. This is specifi ed in the
deployment descriptor as follows:

<filter>
 <filter-name>OriginFilter</filter-name>
 <filter-class>webcert.ch10.lab10.OriginFilter</filter-class>
 <init-param>
 <param-name>origin</param-name>
 <param-value>127.0.0.1</param-value>
 </init-param>
</filter>
<filter-mapping>
 <filter-name>OriginFilter</filter-name>
 <servlet-name>FrontController</servlet-name>
</filter-mapping>

Request for
resource1.jsp Filter

manager /resources/resource1.html

/resources/resource2.jsp

Filter 1 Filter 2

Filter 4 Filter 5

Filter 3

Filter
chain

*.html

/resources/
resource1.html

/resources/
resource2.jsp

.jsp /resources/

FIGURE 10-8

Another Request
Routing Through
Filters

Intercepting Filter Pattern (Exam Objectives 11.1 and 11.2) 721

722 Chapter 10: J2EE Patterns

You can see that the fi lter has an initialization parameter called “origin” that
holds an Internet address as a value — the one for the local host, 127.0.0.1. The
implementing class has the following fi lter logic:

public void doFilter(ServletRequest request, ServletResponse
response,
 FilterChain chain) throws IOException,
ServletException {
 String origin = request.getRemoteHost();
 String mustMatch = config.getInitParameter("origin");
 if (origin.equals(mustMatch)) {
 chain.doFilter(request, response);
 } else {
 sendErrorPage(response, origin);
 }
}

The code performs a simple check, getting hold of the Internet address associated
with the incoming request and comparing this with the initialization parameter
setup on the fi lter in the deployment descriptor. If the two match, the fi lter chain
is used to invoke the next item in the chain (chain.doFilter()), which is the
FrontController servlet (there are only two things in the chain: the fi lter and the
servlet).

Why Use Intercepting Filter?
What you see in the example code is a typical use of a fi lter: to perform an
authentication check. In this case, the code is only allowing approaches from one
particular server. When we fi rst discussed fi lters in Chapter 3, you saw that you
could harness them for a range of purposes —including but not limited to auditing,
security, compressing, decompressing, and transforming request and response
messages. I apply two tests when deciding whether some or other functional
requirement should be placed in a fi lter:

 1. Is the requirement discrete?

 2. Is it common to more than one type of request (and/or response) from my
web application?

For test 1, I defi ne “discrete” as whether or not the fi lter can perform its work
independently of other considerations. If other fi lters are placed before or after,
will the current fi lter remain unaffected? For test 2, I may not want to apply my

fi lter globally, but if it’s executing logic that is specifi c to one particular resource,
then perhaps the code belongs with that particular resource, not in a fi lter. Filters are
meant to be more general purpose.

Possible reasons for using a fi lter are limited only by your imagination. Here are
some scenarios where you might want to do some processing on the request before
letting it loose on the targeted resource:

■ You want to check something about the origin of the request. This might be the
type of device making the request (laptop or iPod?).

■ You might want to detect how the request is encoded, and maybe re-encode it
before it reaches the core of your application.

These are “inbound” reasons for using a fi lter. What about “outbound”
possibilities — things you might want to do to the completed response before
returning it to the requester? You might

■ Translate the response in some way — to make it more intelligible to another
computer system or to a human.

■ Tag your response in some general way — perhaps adding a copyright notice.

There’s nothing stopping you from using a servlet to carry out any of the above
tasks. The very worst case would have every servlet in your application embedding
copied and pasted logic to perform common fi ltration actions (count yourself lucky
if you have never witnessed this kind of bad practice!). A much better approach
is to dedicate a servlet as a “gateway” to your application — this is like the Front
Controller pattern we’ll be considering next. This gateway (or controller) servlet
could examine the request, perform whatever actions are required (using helper
classes or other included servlets as necessary), then permit access to the actual
requested resource. There are some drawbacks to this approach, however:

■ You have to design the approach yourself. You might end up by reinventing the
elegant wheels of the existing fi lter mechanism.

■ It’s easy to overburden your “gateway” servlet with too many responsibilities. At
worst, your servlet will contain a burgeoning series of nested checks.

■ Depending on your design, you’ll need to change servlet code to add new fi lter
logic or alter the sequence of the fi lter chain.

The offi cial list of benefi ts (or at least, consequences) of using the Intercepting
Filter pattern are as follows:

Intercepting Filter Pattern (Exam Objectives 11.1 and 11.2) 723

724 Chapter 10: J2EE Patterns

ON THE CD

■ Control is centralized for chosen activities (like encryption) but in a loosely
coupled way (the encryption happens independently of anything else going on
around it).

■ Filters promote the reuse of code. It’s easy to plug a fi lter in where you want it (as
it presents a standard interface) so that there’s no barrier to including it in your
web application.

■ Including a fi lter doesn’t involve recompilation: Everything is controlled from
the deployment descriptor, declaratively. You can juggle your fi lter order without
recourse to javac (though dependent on your application server, you might have
to remake and redeploy your WAR fi le).

The only real identifi ed drawback for fi lters is this: Information sharing between
fi lters is likely to be ineffi cient. You may well need to reprocess an entire request
or entire response all over again in each fi lter in the chain. Imagine a multipart
request — that’s a POST with a load of fi le attachments. Suppose that these are
composed of a random mixture of documents and spreadsheets and that you have one
fi lter dedicated to automatic translation of the documents and another fi lter to verify
the technical integrity of the formulae in the spreadsheets. Each fi lter would have
to read through the entire request, with the document fi lter ignoring spreadsheet
attachments and the spreadsheet fi lter needlessly churning through documents.
However, to fl ip-fl op between the two fi lters as each attachment type was recognized
would constitute a violation of each fi lter’s independence from the other.

EXERCISE 10-1

Intercepting Filter Pattern
Consider how you would use the Intercepting Filter pattern to fulfi ll the following
requirement: A company keeps information on the sales of goods from certain of
its suppliers. These are accessible through the company’s extranet and are currently
produced through servlets whose response is delivered in plain-text, comma-
delimited format. Some of their suppliers (readily identifi able through the host
component of their requesting machines) are more sophisticated and would like
the fi les delivering for a trial period ready-translated into an agreed XML format.

What are the benefi ts of the approach you use versus placing the same logic in a
combination of servlets and JSPs?

If you run the working example that accompanies this chapter, select the
Intercepting Filter pattern radio button option, and click the “Solution to Exercise”

button, you’ll fi nd a discussion of the above scenario. The URL to launch the
working example is likely to be

http://localhost:8080/lab10/controller

CERTIFICATION OBJECTIVE

Front Controller Pattern (Exam Objectives 11.1
and 11.2)

Given a scenario description with a list of issues, select a pattern that would solve the
issues. The list of patterns you must know are: Intercepting Filter, Model-View-Controller,
Front Controller, Service Locator, Business Delegate, and Transfer Object.

Match design patterns with statements describing potential benefi ts that accrue from the
use of the pattern, for any of the following patterns: Intercepting Filter, Model-View
-Controller, Front Controller, Service Locator, Business Delegate, and Transfer Object.

The essence of Front Controller is that it acts as a centralized point of access
for requests. There are many responsibilities Front Controller may take on. As a
gateway, it might control access through authentication and authorization rules.
It may delegate to business processes. Almost invariably, it plays a crucial role in
controlling (screen) fl ow through an application. In this next section, we’ll consider
how Front Controller works, the benefi ts it provides, and some scenarios for which it
is well suited.

The Front Controller Pattern
Like Intercepting Filter, Front Controller is another presentation tier pattern.
The main diffi culty in answering questions about Front Controller is, in fact,
distinguishing it from the Intercepting Filter pattern, for both have a lot in common.
If you look back at Figure 10-1, though, you can see that Front Controller is
embedded deeper within the presentation layer; Intercepting Filter is more at the
fringes (as its name implies).

The pattern works by having an object (the Controller object) as the initial
point of contact for requests to a web application (after those requests have made it
past any en route fi lters!). The controller may validate the request according to any

Front Controller Pattern (Exam Objectives 11.1 and 11.2) 725

726 Chapter 10: J2EE Patterns

criteria it chooses. It may also extract information from the request that determines
which page to navigate to next.

The prime example of a Front Controller that you are likely to encounter
in your working life is the framework Struts. This uses what the Core J2EE
Patterns book terms the “multiplexed resource mapping strategy.” What this
boils down to is this: The URL mapping *.do maps to a master servlet (acting
as a Front Controller). Dependent on what is before the .do, the master
servlet delegates to a class of type Action. So thisaction.do might map onto a
class called ThisAction, and thataction.do to ThatAction.

How Is Front Controller Used in the Example Application?
Front Controller is best understood by example. In our application, the Front
Controller pattern manifests itself in a single servlet called FrontController. This
FrontController confi nes itself strictly to navigational issues. Here is the complete
code for the servlet class (excluding package and import statements):

01 public class FrontController extends HttpServlet {
02 public static final String[] patternNames = { "interceptingFilter",
03 "frontController", "modelViewController", "businessDelegate",
04 "serviceLocator", "transferObject" };
05 private BusinessDelegate businessDelegate = new BusinessDelegate();
06 protected void doGet(HttpServletRequest request,
07 HttpServletResponse response) throws ServletException, IOException {
08 // Sort out link back to controller servlet
09 String actionLink = request.getContextPath() + request.getServletPath();
10 request.setAttribute("actionLink", actionLink);
11 // Sort out the action required
12 String patternName = request.getParameter("patternChoice");
13 String page;
14 if (isPatternNameRecognized(patternName)) {
15 try {
16 setPatternAttributes(patternName, request);
17 page = "/pattern.jspx";
18 } catch (PatternNotFoundException pnfe) {
19 // Application error handling: masks remote error
20 request.setAttribute("patternName", pnfe.getPatternName());
21 page = "/error.jspx";
22 }
23 } else {
24 page = "/home.jspx";
25 }
26 // Forward to required page

27 RequestDispatcher rd = getServletContext().getRequestDispatcher(page);
28 rd.forward(request, response);
29 }
30 protected boolean isPatternNameRecognized(String patternName) {
31 for (int i = 0; i < patternNames.length; i++) {
32 if (patternNames[i].equals(patternName)) {
33 return true;
34 }
35 }
36 return false;
37 }
38 protected void setPatternAttributes(String patternName,
39 ServletRequest request) throws PatternNotFoundException {
40 PatternTfrObj pto = businessDelegate.findPattern(patternName);
41 // translate value object properties to request attributes
42 request.setAttribute("patternName", pto.getName());
43 request.setAttribute("patternDescription", pto.getDescription());
44 request.setAttribute("patternBenefits", pto.getBenefits());
45 request.setAttribute("patternDrawbacks", pto.getDrawbacks());
46 }
47 }

The purpose of the code is to navigate to a page displaying the correct pattern
information or, if no specifi c pattern is requested, to display the menu (home) page.
Here’s a breakdown of what the code does:

■ In lines 02 to 04, a String array is declared as a constant. Called patternNames,
it holds the names by which the six J2EE patterns in this chapter are known
internally to the application.

■ In line 05, FrontController declares an instance of a class called BusinessDelegate.
We’ll explore this class fully later in the chapter. It serves to front the business
logic that FrontController needs — namely, getting hold of business objects that
contain J2EE pattern information.

■ The doGet() method begins at line 06. In lines 09 and 10, the FrontController
servlet sorts out a URL to point back to itself. This is built dynamically from the
context path and the servlet path, avoiding any literal hardcoding. Then the
URL is made available as a request attribute (called actionLink) that can be
accessed in the JSP “views”—avoiding JSPs having to hard-code any URL that
may later change.

■ In line 12, FrontController determines if there is a request parameter available
called patternChoice, and stores the value as the local variable patternName.

Front Controller Pattern (Exam Objectives 11.1 and 11.2) 727

728 Chapter 10: J2EE Patterns

■ The remaining logic in the doGet() method is concerned with navigating to the
right page. The major determining factor is whether of not the patternName
passed is recognized or not. At line 14, the doGet() method calls isPattern
Recognized() (lines 30 to 37), which takes the value of the patternName local
variable, and compares this with the valid values for pattern names in the String
array patternNames. Even if patternName is null (intentionally not passed),
isPatternRecognized() won’t fail, but will simply return false.

■ If patternName is not recognized (or null), the name of the page to navigate to
is set to the home page (line 24).

■ If patternName is recognized, doGet() calls the setPatternAttributes()
method (line 16). This method uses the BusinessDelegate object to return an
object representing pattern data (line 40). The object returned is of type Pattern
TfrObj —a manifestation of the TransferObject pattern that we discuss at the
end of the chapter. The setPatternAttributes() method then transfers the
attributes of the PatternTfrObj object to a set of request attributes (lines 42 to 45).

■ Back at line 17—after a successful call to setPatternAttributes()— the
name of the next page to navigate to is set to be the pattern detail page (pattern
.jspx).

■ Line 18 catches a possible exception from setPatternAttributes(),
the business error PatternNotFoundException. This doesn’t originate from
setPatternAttributes()—it’s passed on from the BusinessDelegate object
if an error occurs. We’ll see later that the BusinessDelegate class masks any
“technical” errors and translates them to this “application” exception.

■ If a PatternNotFoundException is thrown, the doGet() method sets up an error
page name to forward to (line 21).

■ Finally in the doGet() method, at lines 27 and 28, a RequestDispatcher object
is used to forward to whichever of the three pages has been determined by the
foregoing logic.

The net result is that the three JSP documents in the application (home.jspx,
pattern.jspx, and error.jspx) have nothing in the way of hard-coded navigation
information. Here’s a short extract from home.jspx:

<form action="${actionLink}">
 <table border="1">
 <tr>

 <td><input type="radio"
 name="patternChoice" value="interceptingFilter" /></td>
 <td>Intercepting Filter</td>
 </tr>
...

You can see that the target action for the HTML form is derived from an EL variable
actionLink—which ties back to the request attribute set up in the controller so that
all requests link back to the controller. From this short extract, you can also see that
the parameter value for the pattern name comes from a value on a radio button.

Why Use Front Controller?
The reasons you might want to use Front Controller are numerous:

■ Central control of navigation. Instead of allowing one JSP to directly link to
another, you plant logical links in your JSPs instead — sending you via the Front
Controller, which makes the ultimate decision about forwarding to the next JSP.

■ Central control of requests. You might want this control so that you can easily
track or log requests.

■ Better management of security. With centralized access, you can cut off illegal
requests in one place. Authentication and authorization can also be centralized
(but only worry about this if declarative security, as discussed in Chapter 5, isn’t
enough for you. Better to have security embedded in your deployment descriptor
than in code —even when that code is centralized in a Front Controller!).

■ To avoid embedding control code within lots of separate resources. This is an
approach that easily leads to a copy-and-paste mentality.

And the drawbacks? The Core J2EE Patterns book points out that the pattern
can lead to a single point of failure. Given, though, that your Front Controller

is likely to be implemented as a servlet,
you can always mitigate this by distributing
your application, as long as your application
server supports this. And as servlets are by
their nature multithreaded, it is not as if
your Front Controller should be a bottle-
neck allowing only one request through at
a time.

If you are asked to match
the pattern for a scenario that contains
the words “managing the workfl ow,”
then the answer is very likely to be Front
Controller.

Front Controller Pattern (Exam Objectives 11.1 and 11.2) 729

730 Chapter 10: J2EE Patterns

It is very easy to overload a servlet acting as a Front Controller with too
many responsibilities and too much code. The answer is to ensure that Front
Controller, wherever necessary, delegates to appropriate helper classes. If you
want to go further with this (beyond what the SCWCD exam requires), take a
look at the View Helper pattern.

When Do You Choose a Front Controller
Instead of an Intercepting Filter?
It’s often hard to tell which pattern to use —Front Controller or Intercepting Filter.
The Core J2EE Patterns book identifi es these two patterns as complementary:
“Both Intercepting Filter and Front Controller describe ways to centralize control
of certain types of request processing, suggesting different approaches to this issue.”
You can’t really argue with that statement, but it does leave you wondering which
approach is suitable for which requirement. It’s often a matter of experience and
taste —which is less clear-cut than you would like in face of the SCWCD exam!
The following Scenario and Solution table may help you to get a feel for which
pattern is appropriate and when.

Sc

Controlling the fl ow of navigation from
one page to another

Front Controller (as we’ve seen)

Converting responses from one form of
XML to another

Intercepting Filter (as long as there is a general way of
translating the XML for many different responses)

Zipping up the response Intercepting Filter

Executing different blocks of business logic
dependent on a parameter in the request

Front Controller (dispatching to other classes that contain the
business logic)

Stopping a request dead in its tracks if your
application dislikes its encoding

Intercepting Filter

Enforcing J2EE authentication and
authorization (as per Chapter 5 on
security)

Neither Intercepting Filter nor Front Controller. You want
to protect individual components declaratively in the
deployment descriptor as far as possible.

Enforcing custom authentication or autho-
rization rules

Depends: could be Intercepting Filter or Front Controller. Use
Intercepting Filter if these are “blanket” rules, applying to all
(or most) resources. If authentication and authorization needs
to be closer to business logic, use Front Controller.

SCENARIO & SOLUTION

ON THE CD

EXERCISE 10-2

Front Controller Pattern
Would the Front Controller pattern help with the following requirement? List
the pros and cons of adopting the approach. A company has a medium-sized web
application that is undergoing extensive enhancement. The company realizes
that the JavaServer Pages in the application should be reorganized into different
directories relating to subsystems within the application, but that this will upset the
many embedded links within the current pages. Because the company is working
on all aspects of the pages, changing the links is not a big deal—but the company
would like to protect itself from URL volatility in JSPs in the future.

If you run the working example that accompanies this chapter, select the Front
Controller pattern radio button option, and click the “Solution to Exercise” button,
you’ll fi nd a discussion of the above scenario. The URL to launch the working
example is likely to be

http://localhost:8080/lab10/controller

CERTIFICATION OBJECTIVE

Model View Controller Pattern (Exam Objectives
11.1 and 11.2)

Given a scenario description with a list of issues, select a pattern that would solve the issues.
The list of patterns you must know are: Intercepting Filter, Model-View-Controller,
Front Controller, Service Locator, Business Delegate, and Transfer Object.

Match design patterns with statements describing potential benefi ts that accrue from the
use of the pattern, for any of the following patterns: Intercepting Filter, Model-View
-Controller, Front Controller, Service Locator, Business Delegate, and Transfer Object.

Model View Controller doesn’t quite fi t with the other fi ve patterns on the list for
the SCWCD exam. It sits at a higher level than the others. You combine several
J2EE patterns to make up a Model View Controller architecture, some of which are
on our exam hit list (such as Front Controller and Business Delegate) and some of
which are not (View Helper and Dispatcher View).

Front Controller Pattern (Exam Objectives 11.1 and 11.2) 731

732 Chapter 10: J2EE Patterns

Model View Controller isn’t just a J2EE pattern —it has a far longer pedigree
going back to the heydays of the object-oriented language SmallTalk. If you
explore web sites dedicated to discussions of patterns (they exist!), you will fi nd
more disagreement and controversy about the defi nition of Model View Controller
(MVC) than almost any other pattern. But don’t be daunted — this section of the
chapter will pick out the incontrovertible bits that you need for the SCWCD.

Model View Controller
The main motivation for using MVC is to separate your presentation logic from your
business logic. The idea is to have a “controller” component that mediates between
the two — something we have already explored in the preceding section on the
Front Controller pattern. You can see the Model View Controller pattern depicted
in Figure 10-9.

The view is far from unintelligent —your view code may be the most complex
part of your application (all the more reason not to tangle it up with business logic).
Figure 10-9 indicates two principle responsibilities for the view:

■ To detect each user action (like a mouse click or an enter keypress) and transmit
it to the controller component

Mouse clicks, keyboard
presses, user-entered
data…

New views,
updated data

Responses to requests,
flagging changes from
other sources

Requests for and
updates to model
information

The model may receive other
changes that didn’t come from
the controller

View

Controller

Model

FIGURE 10-9

The Model
View Controller
Pattern

■ To receive information back from the controller and organize this appropriately
for the recipient

The view can range in complexity from some text on a screen and a gray button
or two to a fully interactive display resplendent with color. Indeed, different
circumstances may demand entirely different views.

From our previous discussion of the Front Controller pattern, you can predict the
likely responsibilities of the controller:

■ To supply the view with the information it needs —usually by obtaining
information from the underlying model

■ To interpret user actions and take appropriate actions —usually updating the
model and switching view (or both)

■ To receive changes from the model that come from other sources, and update
views as appropriate

That third and last responsibility causes some problems in the web browser
environment — see the nearby On the Job comments.

Finally, what are the model’s responsibilities? Easy: to look after the underlying
data. It must respond to requests for information and update from the controller. It
must (or should) inform the controller of external changes to the data that didn’t
arrive through the controller.

What I’ve described here is the scale at which Model View Controller works in
J2EE terms —at application level. You should be aware, though, that MVC can be
found at the micro as well as the macro level. Swing components have the same
idea: a visual component, the view (like a JTable); an underlying representation of
the data, the model (JTableModel); and the Swing framework acting as controller
mediating between the two.

But because our focus is J2EE web applications, we need to consider where we
are likely to fi nd the constituent parts of MVC. To start with, where is the view?
Typically, the view is represented by a JavaServer Page. At run time, though, it’s
really the web browser that acts as the view component. It’s not literally the JSP
you interact with — that’s been translated to pure HTML and delivered to your
browser. When you type in text and click buttons, you are using the browser,
which sends the results back to the controller component in your design. This
is something of an academic point, for it is ultimately the JSP that dictates the
availability of those text fi elds and buttons. So in design and development terms,
the JSP is the view.

Model View Controller Pattern (Exam Objectives 11.1 and 11.2) 733

734 Chapter 10: J2EE Patterns

We’ve already seen (in J2EE terms) that an appropriate choice for a controller
component is often a servlet (with assistant classes where necessary). The model is
composed —more often than not — of Enterprise JavaBeans (though there are good
reasons why we might want to place some classes in between our controller and the
Enterprise JavaBeans, as we’ll see with the Business Delegate and Service Locator
patterns).

In an ideal world, changes to the model from other sources would result in
updates to the appropriate views. Suppose you have a web page where you
are viewing volatile stock quotes. Your J2EE application has a real-time feed
from another application, which updates quote fi gures every 30 seconds, so
the model data is always up to date. Ideally, you would like the model to be
able to tell the controller “I’ve changed.” Then the controller could update
the view.

If your view client was a Swing application with a permanent connection
to the controller, this could be achieved easily. The trouble is that the web is
a connection-less world. Unless you press the refresh button in your browser,
you won’t see the latest fi gures. Consequently, you are more or less reliant
on a browser client “pulling” fresh changes from the controller. In the cruel

There is nothing stopping
you from having other components
for views—you don’t have to have a
JavaServer Page. A pattern is a “logical”
design, with several possible physical
implementations. A servlet could act
as a view component (though has the
disadvantage of embedding HTML in
code, which we discussed much earlier in
the book). Maybe your aim is to present
a graphical chart that allows client-side
interaction (reordering columns, changing
line colors). In these circumstances, an
applet may be a good choice. When
you meet questions on the exam, don’t
be too narrow in your interpretation of

what a view can be. A view may not even
be graphic—just because your client is
another business application running
silently in batch mode, it can still have a
view on your system.

Look out for any of these scenarios—
they probably indicate use of the Model
View Controller pattern:

■ When you see the words “presenting
data in different ways”

■ When the presentation changes
dependent on user feedback

■ When the data has to be presented to
different types of users

real world, you may have to fudge the illusion of the controller “pushing” to
the client by inserting some tawdry bit of script in your web page to cause an
auto-refresh at given intervals.

How Is Model View Controller Used
in the Example Application?
The example application for this chapter separates out model, view, and controller
in ways that you have probably already guessed. Here they are anyway:

■ The view consists of three JSP documents: home.jspx, pattern.jspx, and error.
jspx. These views are more or less dumb consumers of request attributes — they
aren’t very clever (so all the better for later maintenance).

■ The controller is the FrontController class, which we have already examined
in some detail. We have seen how it uses logic to direct to the different JSP
documents, and how it populates those request attributes required by the views.

■ The model is the BusinessDelegate class, and everything behind it. We’ll explore
this in the later patterns.

Why Use Model View Controller?
Imagining this question asked out loud at a design patterns conference, I can almost
hear the collective sharp intake of breath. MVC is such a sacred pattern that you
are practically obligated to use it in every circumstance —whether you are adding a
Swing widget to a screen design or putting together a complex J2EE architecture for
an investment bank.

Perversely, though, I’ll start this section by exploring some reasons for not
adopting MVC. By its nature, MVC increases the number of moving parts in your
application. There is more overall complexity. Very few of the examples in this book
(present chapter notably excepted!) use a Model View Controller design. This could
be down to bad design choices on my part, but I prefer to claim that MVC would
have just got in the way of explaining other concepts. The undoubted benefi ts of
MVC are outweighed by the complexity it brings.

Teaching examples are a special case, though. What about real J2EE applications
that avoid MVC? One of the JSTL libraries contains custom actions dedicated to
SQL (database access functionality). This library has a host of useful facilities for
embedding database access directly in your JavaServer Page. But hang on —because
the JavaServer Page is normally the view, and the database is ultimately a model,
where is the controller? You could perhaps use some JSPs with embedded SQL
actions separate from JSPs representing the view, and have controlling logic

Model View Controller Pattern (Exam Objectives 11.1 and 11.2) 735

736 Chapter 10: J2EE Patterns

ON THE CD

separating them. But this seems perverse: You lose the convenience of embedding an
SQL tag right in an HTML table where you want it, and you still end up putting the
model code inside a JavaServer Page. It doesn’t feel like the purpose for which the
JSTL SQL library was intended.

Therefore, many J2EE architects would avoid using the JSTL SQL components
altogether, just because they fundamentally violate MVC rules. I would say that
it depends on the job at hand. If you have a one-developer project, where the
developer has good web design and Java skills, then the SQL components might be
ideal for getting a quick-and-dirty version of your application into existence. Later
you might choose to re-architect the system along cleaner lines.

So after that exploration of when not to use Model View Controller, let’s
enumerate the reasons for using it:

■ You want to reduce dependencies between the view code and the business model
code. That way,

■ You can graft on additional views much more easily (so you might have a web
client and a Swing client showing alternative views of the same model data).

■ You can change the view without affecting the business model, and vice versa.

■ The controller is the only volatile component that might be affected by
changes at either end.

■ You are using a framework that has MVC built into it. Struts is a very popular
framework. If you are in a development team that uses it, you are forced into a
set of programming standards that abide by MVC rules.

■ You want the maintenance benefi t that comes from separating the layers. Expert
Java programmers can concentrate on the controller and model ends of the
application. Web designers (potentially, nondevelopers) can concentrate on the
JSP view side of things. Alternatively, if you are using a fancy graphical view,
expert Swing Java programmers can concentrate on the visual aspects and be
freed up from most concerns about model access.

EXERCISE 10-3

Model View Controller Pattern
Consider again the company featured in the fi rst exercise, 10-1. It had an extranet
application executing business logic to manufacture comma-delimited fi les or XML
for various suppliers. A further requirement arises. Some consumers of the same data

don’t want fi le downloads: They need a view of the data presented in a simple web
page with an HTML table. How could Model View Controller be integrated into the
application to fulfi ll this requirement, without disturbing the way that existing users
of the system work?

If you run the working example that accompanies this chapter, select the Model
View Controller pattern radio button option, and click the “Solution to Exercise”
button, you’ll fi nd a discussion of the above scenario. The URL to launch the
working example is likely to be

http://localhost:8080/lab10/controller

CERTIFICATION OBJECTIVES

Business Delegate Pattern (Exam Objectives 11.1
and 11.2)

Given a scenario description with a list of issues, select a pattern that would solve the
issues. The list of patterns you must know are: Intercepting Filter, Model-View-Controller,
Front Controller, Service Locator, Business Delegate, and Transfer Object.

Match design patterns with statements describing potential benefi ts that accrue from the
use of the pattern, for any of the following patterns: Intercepting Filter, Model-View
-Controller, Front Controller, Service Locator, Business Delegate, and Transfer Object.

Model View Controller damps down the destructive aspects of change that
ripple through the presentation tier. What, though, if you want to insulate your
presentation tier more fully from the effects of volatility at the model end? Enter the
Business Delegate Pattern, which creates a buffer zone for business APIs.

Business Delegate Pattern
The Business Delegate pattern works by placing a layer in between a client (possibly
a Front Controller object) and a business object. That way, even when business
object interfaces change, it may well be possible to absorb the change within the
business delegate object —without changing the interface that this presents to its
clients.

Business Delegate Pattern (Exam Objectives 11.1 and 11.2) 737

738 Chapter 10: J2EE Patterns

It’s not just about change. The other service a Business Delegate typically
provides is encapsulation of all the ugly details that might be involved in getting
hold of the business object in the fi rst place, and coping with any errors thrown up.
Without turning this chapter into an EJB tutorial, consider the process shown in
Figure 10-10. This shows (in slightly simplifi ed form!) a typical process involved in
executing a business method on an Enterprise JavaBean.

There are three independent processes running. First is our client-side code.
Second is the “Naming Service”—like a phone directory, which translates names to
references to objects. Third is the EJB container. These three processes may run as
threads inside the same JVM, within separate JVMs on the same physical computer,
or on three separate computers. The actual implementation doesn’t matter, as long as
you get the idea that what’s going on here is a big deal. There is plenty of potential
for breakdown in the message passing between the three participants.

Figure 10-10 describes the process involved in obtaining the bean. The code to
achieve this (not shown here) is not so very frightening —it distills down to a half
a dozen lines of code, doubled or tripled by whatever mechanics you put in place to
catch the many exceptions that might result —RemoteExceptions (even where the
network is all local to one machine), CreateExceptions (because something goes
wrong in the EJB creation mechanics), and so on. However, the code involved is not

1. Client finds the
naming service.

5. And finally… the
client executes
business methods
on the real EJB
business object.

Client code

2a. Client looks up
where the EJB is
using a JNDI name.

(JNDI)
Naming
service

2b. Client gets back a
reference to the EJB’s
“Home” interface.

3. Client uses “Home”
interface to ask the
“Home” object to
create the real EJB
business object.

EJB container

Home object

Real object

4. Home object creates
the real business object
you need.

FIGURE 10-10

Using an
Enterprise
JavaBean

beginner material: You need to know plenty about EJBs to handle them successfully.
Given that there is a parallel certifi cation exam dedicated to EJBs alone, you can
believe that gaining the knowledge is a long and painful process. Already you
have a motive for burying this code in a layer of its own and giving your Java web
application developers a simpler API for accessing business data (after all, they have
enough to think about —witness the thickness of this book!).

That’s not all of it, though. We mentioned exceptions above. The process of
looking up the name of your EJB involves JNDI (Java Naming and Directory
Interface) code. This can kick up some pretty intimidating exceptions just by itself —
InterruptedNamingExceptions and NameNotFoundExceptions, to name but two.
These may be important for support developers trying to diagnose a problem with
your application, but you may want some friendlier business-type exception to pass
through the presentation tier and ultimately drive whatever nonthreatening message
shows to the user of the application. And we haven’t even started on EJB exceptions.

Still that’s not all. There are vendor-specifi c issues. Surely, J2EE (including the
JNDI and EJB) specifi cations involve standard interface calls, such that your code is
portable from one application server to another? Well, yes they do —but there may
still be vendor-specifi c details. Let’s pick on JNDI again to furnish an example. As
Figure 10-10 shows, the long road to an EJB business method call begins with fi nding
your JNDI Naming Service. This involves getting hold of a JNDI object called an
InitialContext. The parameters for getting hold of the InitialContext (which host
to look up, which port, etc.) do vary from one platform to another. How to feed the
parameters to the calling code (directly or via properties fi les) varies as well.

With luck, you are getting the idea that it might be a good idea to confi ne some of
this code to easily accessible regions of your web application. And that is, of course,
where the Business Delegate pattern comes in. It is used to

■ Encapsulate EJB (and other complex business object access) code

■ Encapsulate JNDI code (but often defers to the Service Locator pattern for
that — see the next section of the chapter)

■ Present simple business interfaces to presentation-tier clients

■ Cache (sometimes) the results of expensive calls on business objects

Finally in this description, where does the Business Delegate belong? Because it
has the name “Business” within it, you would assume the business tier. In physical
terms, though, the classes involved are likely to remain close to your presentation
code (the EJB server itself is potentially remote). Perhaps for this reason, it’s
described as a client-side business abstraction and often regarded as belonging to
the (physical) presentation tier.

Business Delegate Pattern (Exam Objectives 11.1 and 11.2) 739

740 Chapter 10: J2EE Patterns

The presence of the
acronym “EJB” in an exam question
scenario is very likely to imply the use of
Business Delegate. However, EJBs are not
the only kind of business object that can be

fronted by the Business Delegate pattern.
Be sensitive to other possibilities and
phrases that describe systems for managing
information: “business rules” and “stored
procedures,” for example.

How Is Business Delegate Used in the Example Application?
The example application has a class called BusinessDelegate that exhibits most of
the Business Delegate pattern features. Here is the code for the BusinessDelegate
class (minus package statement and imports):

01 public class BusinessDelegate {
02 Map patternCache = new HashMap();
03 ServiceLocator serviceLocator = new ServiceLocator();
04 PatternLoaderRmtI patternLoader;
05 public PatternTfrObj findPattern(String patternName)
06 throws PatternNotFoundException {
07 // Is the pattern already in the cache?
08 PatternTfrObj pattern = findCachedPattern(patternName);
09 // Not in cache: use remote object
10 if (pattern == null) {
11 if (patternLoader == null) {
12 patternLoader = serviceLocator.findPatternLoader();
13 }
14 try {
15 pattern = findRemotePattern(patternName);
16 } catch (RemoteException re) {
17 // Print the stack trace for internal diagnosis
18 re.printStackTrace();
19 // Re-throw an "application" exception
20 throw new PatternNotFoundException(patternName);
21 }
22 patternCache.put(patternName, pattern);
23 }
24 return pattern;
25 }
26 protected PatternTfrObj findCachedPattern(String patternName) {
27 return (PatternTfrObj) patternCache.get(patternName);

28 }
29 protected PatternTfrObj findRemotePattern(String patternName)
30 throws RemoteException, PatternNotFoundException {
31 System.out.println("Making expensive call to remote API...");
32 delay(3000);
33 if (patternLoader == null) {
34 throw new PatternNotFoundException(patternName);
35 }
36 return patternLoader.getData(patternName);
37 }
38 protected void delay(int millis) {
39 try {
40 Thread.sleep(millis);
41 } catch (InterruptedException ie) {
42 }
43 }
44 }

Here are the Business Delegate pattern features that this class implements:

■ Its main business method begins at line 05: findPattern(). This returns a
business object — of type PatternTfrObj —given a named pattern passed as a
parameter. So the fi rst point is that this class exposes a business method for use by
classes in the presentation tier (in this case, the FrontController class).

■ In line 02, BusinessDelegate declares a local cache (a HashMap)—for pattern
business objects. Because pattern information doesn’t change very much (at all!)
in the example application, having a cache makes a great deal of sense. So at line
08 in the findPattern() method, the code fi rst looks for the business object
in the cache — only if it doesn’t fi nd it there will it execute calls to real remote
business services. Note that at line 22, after doing a remote call to fi nd a pattern,
there is code to place that pattern in the cache.

■ At line 15, BusinessDelegate calls its own method —findRemotePattern()—
beginning at line 29. This calls the real business method on the real remote
object. The real remote object (of type PatternLoaderRemoteImpl) is very
much like an Enterprise JavaBean: You have to go through RMI to get hold
of its methods. Consequently, findRemotePattern() might throw a
RemoteException. Just to emphasize the expense and remoteness of making the
call, the method throws in an arbitrary 3-second delay — this is so you can tell
the difference when information comes out of the cache, which has no such
built-in artifi cial delay.

Business Delegate Pattern (Exam Objectives 11.1 and 11.2) 741

742 Chapter 10: J2EE Patterns

■ If the findRemotePattern() method fails to fi nd a pattern, it throws a
business-type exception: PatternNotFoundException (at line 34).

■ There’s still the possibility that RemoteException will be thrown — so back in the
calling code, the call to findRemotePattern() is couched in a try-catch block.
You can see how —in lines 17 to 20 — the contents of the RemoteException are
printed in the stack trace for later diagnosis. Then —
at line 20 — the application-friendly PatternNotFoundException is thrown
for the benefi t of the presentation code.

■ One thing the BusinessDelegate doesn’t do is contain code to fi nd the remote
business object in the fi rst place (which involves JNDI code and other nastiness).
Instead, it defers to a helper class called ServiceLocator, declared at line 03 and
used at line 12. We will explore that in a subsequent part of the chapter devoted
to the Service Locator pattern.

So you can see this BusinessDelegate class does most of what you would expect
from the Business Delegate pattern: It encapsulates diffi cult-to-handle business
objects, has its own cache for performance gains, and translates technical errors to
application errors.

Why Use Business Delegate?
By now, most of the reasons for using Business Delegate have been exposed. Here’s a
summary:

■ To reduce coupling between clients in the presentation tier and actual business
services, by hiding the way the underlying business service is implemented.

■ To cache the results from business services.

■ To reduce network traffi c between a client and a remote business service.

■ To minimize error handling code (particularly network error handling code) in
the presentation tier.

■ Substituting application-level (user-friendly) errors for highly technical ones.

■ If at fi rst the business service doesn’t succeed, the Business Delegate class
might choose to retry or to implement some alternative API call to recover a
situation. A business service failure doesn’t immediately have to be passed on
to a client.

■ Make naming and lookup activities happen within the Business Delegate — or
code that the Business Delegate uses (see Service Locator).

ON THE CD

■ To act as an adapter between two systems (B2B-type communication —where
a visible GUI isn’t involved). The delegate might interpret incoming XML as a
business API call.

EXERCISE 10-4

Business Delegate Pattern
This time, you are managing a project to build a new web application to extend
the functionality of an existing legacy COBOL system. The COBOL system has
a number of programs that offer stable, well-tested business services and whose
code you don’t want to duplicate or change. There are Java APIs to handle calls to
COBOL, but you know that they are tricky to write and use and that they throw
a multitude of obscure exceptions, and you have at your disposal only a single
developer skilled in their use —and he spends most of his days supporting existing
systems. How could the Business Delegate pattern help the project and the future
support of your new web application?

If you run the working example that accompanies this chapter, select the Business
Delegate pattern radio button option, and click the “Solution to Exercise” button,
you’ll fi nd a discussion of the above scenario. The URL to launch the working
example is likely to be

http://localhost:8080/lab10/controller

CERTIFICATION OBJECTIVE

Service Locator Pattern (Exam Objectives 11.1
and 11.2)

Given a scenario description with a list of issues, select a pattern that would solve the
issues. The list of patterns you must know are: Intercepting Filter, Model-View-Controller,
Front Controller, Service Locator, Business Delegate, and Transfer Object.

Match design patterns with statements describing potential benefi ts that accrue from the
use of the pattern, for any of the following patterns: Intercepting Filter, Model-View
-Controller, Front Controller, Service Locator, Business Delegate, and Transfer Object.

Service Locator Pattern (Exam Objectives 11.1 and 11.2) 743

744 Chapter 10: J2EE Patterns

The Service Locator pattern often acts in conjunction with the Business Delegate.
We already discussed Business Delegate as a way of offl oading the “technical” aspects
of calling business APIs —you use a Business Delegate to do this instead of letting
presentation code perform this task directly. What Service Locator does is to allow
a Business Delegate class to further offl oad the most gruesome aspects of Business
Service access code, which is normally the sleight of hand involving looking up the
business service in the fi rst place and getting some kind of reference to it. Thereafter,
the Business Delegate can happily call APIs on the business object. So Service
Locator encapsulates the mysteries of fi nding business objects (services).

The Service Locator Pattern
Service Locator is like a subset of Business Delegate —you might even include
“service locator” code in methods within your “business delegate” class. It’s a valid
implementation of the pattern. However, I prefer the obvious separation of different
classes —even in the small-scale example application that accompanies this chapter.

The main reason for using the Service Locator pattern is to avoid duplication of
code that gets references to business resources (services) you need to use. To start the
ball rolling, you most often use JNDI (Java Naming and Directory Interface) code,
and this can easily proliferate across all kinds of clients. Furthermore, the operation
of looking up some resource in a JNDI-compliant naming and directory service
is expensive, so if the results of retrieving the resource can be cached rather than
repeated, there is a performance saving to be had.

If you look at the J2EE Core Patterns book (or web site on line), you’ll see that
there are lots of specifi c “strategies” for the Service Locator pattern that have mainly
to do with the particular kind of J2EE resource Service Locator is after. You might
be after Enterprise JavaBeans. Or JMS (Java Messaging Service) objects. Or other
things not mentioned: legacy programs in Enterprise Information Systems, or Java
Mail, or URL factories. I boldly suggest that the specifi cs of these don’t matter at all.
The general principle holds true in all cases. Your Java code needs to get hold of a
reference to a business service. That’s code you will want to isolate.

How Is Service Locator Used in the Example Application?
Let’s see how the ServiceLocator class in the example application contains the
pattern features. At fi rst sight, it doesn’t look like much —here’s the class (minus
package and import statements):

01 public class ServiceLocator {
02 PatternLoaderRmtI patternLoader;

03 public PatternLoaderRmtI findPatternLoader() {
04 if (patternLoader == null) {
05 initializePatternLoader();
06 }
07 return patternLoader;
08 }
09 protected void initializePatternLoader() {
10 try {
11 // Needless 6-second delay to make the point that looking up
12 // a remote registry might be expensive.
13 System.out.println("Making expensive call to naming registry...");
14 delay(6000);
15 patternLoader = (PatternLoaderRmtI) Naming
 .lookup("rmi://localhost/patternLoader");
16 } catch (MalformedURLException e) {
17 e.printStackTrace();
18 } catch (RemoteException e) {
19 e.printStackTrace();
20 } catch (NotBoundException e) {
21 e.printStackTrace();
22 }
23 }
24 protected void delay(int millis) {
25 try {
26 Thread.sleep(millis);
27 } catch (InterruptedException ie) {
28 }
29 }
30 }

The fi rst and only public method in the class is called findPatternLoader(),
and it returns a business object of type PatternLoaderRemoteI. The real work to get
hold of this object occurs in the protected method initializePatternLoader(),
but notice that if the class has gone to the trouble of executing this method already,
it keeps hold of the reference (lines 04 to 07).

Within initializePatternLoader(),, you fi rst of all fi nd an artifi cial delay
built in (lines 13 and 14). This is not part of the Service Locator pattern —your real
application architecture is unlikely to need any artifi cial delays! It makes the point
that the reference-fi nding process can be a lengthy one (if the delay wasn’t there, you
wouldn’t notice the difference between cached calls and remote calls when running
all the example components on your desktop PC). The real work is done at line 15.
This uses a JNDI class called Naming to look up the remote business object in the
RMI Registry. You can see from the stack of catch clauses that follow (lines 16 to 22)
that there is plenty of potential for disaster.

Service Locator Pattern (Exam Objectives 11.1 and 11.2) 745

746 Chapter 10: J2EE Patterns

ON THE CD

If the JNDI call works, the code casts the object returned to the type of business
object expected: a PatternLoaderRemoteI reference. This is held as an instance
variable in the class, so there is no need to repeat the JNDI call.

At last the business of fi nding is done: The result (for clients — the
BusinessDelegate class in our case) is an already found reference to a business object.
Hiding RMI code like this may seem trivial. However, it makes the point that you
can easily trap this code in one place. Inasmuch as this is a simulation of EJB use
(without the need for an EJB container), take a look back at Figure 10-10. The
Service Locator encapsulates the steps numbered 1 to 3 on the fi gure: everything
from fi nding a naming service to getting hold of the remote object. This leaves the
Business Delegate to concentrate solely on step 5: executing business methods on
the remote object once found.

So when you come to writing classes that deal not with simple RMI objects but
with bigger business components — such as EJBs —you are likely to be grateful to
the Service Locator pattern.

Why Use Service Locator?
The reasons for using the Service Locator pattern are these:

■ To hide JNDI (or similar) code that gets hold of a reference to a service. Even
though JNDI code is pure, portable Java, the parameters fed into JNDI code
can be vendor-specifi c, so locating all these details in one place (rather than
leaking them all over your business objects) is desirable if you want to port your
application later with minimum hassle.

■ By locating JNDI (or similar) code in one place — or a few places —you avoid
copying and pasting technical calls across many business objects.

■ To minimize network calls — the Service Locator can decide which JNDI calls
need to be made and when it has appropriate references to remote objects already.
This can, of course, improve performance.

EXERCISE 10-5

Service Locator Pattern
Consider the scenario from the previous exercise, where you used the Business
Delegate pattern to front calls to legacy COBOL programs. How could the Service
Locator pattern be used to further ease the maintenance of your web application?

If you run the working example that accompanies this chapter, select the Service
Locator pattern radio button option, and click the “Solution to Exercise” button,
you’ll fi nd a discussion of the above scenario. The URL to launch the working
example is likely to be

http://localhost:8080/lab10/controller

CERTIFICATION OBJECTIVES

Transfer Object Pattern (Exam Objective 11.1
and 11.2)

Given a scenario description with a list of issues, select a pattern that would solve the
issues. The list of patterns you must know are: Intercepting Filter, Model-View-Controller,
Front Controller, Service Locator, Business Delegate, and Transfer Object.

Match design patterns with statements describing potential benefi ts that accrue from the
use of the pattern, for any of the following patterns: Intercepting Filter, Model-View
-Controller, Front Controller, Service Locator, Business Delegate, and Transfer Object.

The idea of the Transfer Object pattern is to encapsulate data —usually the data
that would be available inside a complex (and possibly remote) object, such as an
Enterprise JavaBean (EJB). The class representing a Transfer Object is a very simple
thing, but what goes on around it is moderately profound and complex, and that’s
what we’ll explore in this fi nal section on J2EE design patterns.

The Transfer Object Pattern
Structurally, the object representing a Transfer Object is very simple. It’s a Java
Bean — not an Enterprise JavaBean —just a bean. And a bean only in the sense
that is has a bunch of properties that can be accessed with set and get methods.

The idea of a Transfer Object is that it holds the data returned from a more
complex business object, such as an Enterprise JavaBean. You may well ask a
question: Wouldn’t it be more straightforward to deal with the EJB business
object directly? Why bother with additional objects? To understand that, let’s
consider client code that deals with a type of EJB called an Entity EJB. It’s a big

Transfer Object Pattern (Exam Objective 11.1 and 11.2) 747

748 Chapter 10: J2EE Patterns

simplifi cation, but more often than not, an Entity EJB represents a single row on
a table (and has attributes to match). Let’s consider a fashion retailing example.
Suppose that we have a database table to record information about dresses — one
row per dress. And suppose we tie an Entity EJB defi nition to this table, as shown in
Figure 10-11.

You see how the attributes of the EJB (each with their own getters and setters)
map on to equivalent table fi elds —fashionSeason to FSHN_SEASON, and so
on. Let’s consider what might happen if you had hold of the EJB and executed the
getSizeRange() method. This might well be a remote call across the network.
Because EJBs are often designed to disguise the JDBC database access details
from you, your EJB might (under the covers) generate some JDBC SQL SELECT
statement to get hold of the individual piece of information you are after: the size
range for the dress. Now suppose that you want to get hold of the dress color. You
make a call to getColor(), which goes remotely across the network and instigates
a new and separate JDBC SQL SELECT statement to get hold of the color attribute
from the same table row.

It should be said at this point that no sane EJB container vendor manages SQL
access in such a naïve way. However, you should be getting the message that access

DRESS EJB

sizeRange
color
fashionSeason

getSizeRange()
setSizeRange()
getColor()
setColor()
getFashionSeason()
setFashionSeason()
getData()

DRESS table

SIZE_RANGE
COLOR
FSHN_SEASON

FIGURE 10-11

An EJB Mapping
to a Database
Table

to separate attributes in this piecemeal fashion can be expensive in networking and
processing terms. The answer? To get hold of all the attributes you need together.
Place in the EJB a getData() method that returns all three attributes at once —
color, fashion season, and size range. getData() returns an object —a transfer
object — that has all attributes of the EJB but none of the complexity. You might not
want to know abut the fashion season for your particular call to getData(), but it’s
far cheaper to collect all the data you’re likely to need in one hit and pass it back in
one package —as shown in Figure 10-12.

Classes for Transfer Objects are always implement Serializable so that they
can be returned from remote method calls.

You can even apply the same principle in reverse. A client may want to update
this row on the Dress table through the system. A client can make changes to its
own copy of the transfer object, then pass this back to the Enterprise JavaBean via
a setData() method. That gives the EJB code the opportunity to execute a single
SQL update statement for all the changed attributes in one hit, instead of updating
each attribute in turn.

FIGURE 10-12

EJB getData()
Method
Returning A
Transfer Object

DRESS EJB

sizeRange
color
fashionSeason

getSizeRange()
setSizeRange()
getColor()
setColor()
getFashionSeason()
setFashionSeason()
getData()

DRESS transfer objedt

sizeRange
color
fashionSeason

getSizeRange()
setSizeRange()
getColor()
setColor()
getFashionSeason()
setFashionSeason()

DRESS table

SIZE_RANGE
COLOR
FSHN_SEASON

Transfer Object Pattern (Exam Objective 11.1 and 11.2) 749

750 Chapter 10: J2EE Patterns

How Is Transfer Object Used in the Example Application?
Bearing in mind that the example application doesn’t use actual EJBs, you still
get the full Transfer Object pattern rendered for your money. The simulation
EJB is the class called PatternLoader. Rather than connecting to a database,
this class maps on to a properties fi le in the fi le system, which loads into a
Properties object. PatternLoader has its own getData() method, which returns
a PatternTfrObj (Pattern Transfer Object). This takes data from the Properties
object and populates attributes on the PatternTfrObj by calling appropriate getter
methods. For brevity, the code isn’t shown here — the source is, of course, available
in the solution code.

You can follow the PatternTfrObj back through the system. BusinessDelegate
makes the call to the getData() method. It passes the transfer object back to
FrontController. As we’ve seen, FrontController strips the values into request
attributes, which are then used by the JavaServer Pages. Alternatively, the
PatternTfrObj could have been made directly available with the JSP as a bean
(using the <jsp:useBean> custom action, for example).

The example application doesn’t go as far as providing a setData() method on
PatternLoader, whereby an updated version of the PatternTfrObj could be passed
back in order to update the underlying properties fi le.

Why Use Transfer Object?
Having seen how the Transfer Object pattern works and where it fi ts, we just need to
give some thought to why you would employ the pattern. These are the benefi ts:

■ Transfer Objects simplify your life on the client side. You avoid direct dependence
on potentially complex business objects and deal instead with relatively simple
bean-like objects.

Transfer Object is the
design pattern formerly known as Value
Object (if you were around for the previous
version of J2EE, or are upgrading from the
previous version of the SCWCD). Almost

none of the details have changed—it just
seemed a more appropriate name to the
J2EE pattern gurus (because it’s to do with
the transfer of information).

■ You avoid the expense of repeated interaction with remote business objects. This
occurs when you accumulate dribs and drabs of data from those business objects
by a series of expensive remote calls. Better to pass all the data you are likely
to need in one remote “hit.” This may seem profl igate if you never use some of
these attributes, but this is likely to be a small overhead compared even to one
unnecessary network call.

There are some real drawbacks to using the Transfer Object pattern, however.
A Transfer Object is likely to duplicate code — notably in the attributes and getter
and setter methods that shadow those of its associated Enterprise JavaBean (or
other business component). That said, there are ways to mitigate this. You could
consider coupling the Transfer Object and business component by having the
business component extend the Transfer Object and so inheriting its attributes and
getter and setter methods. Alternatively, you might have a tool available to generate
Transfer Object code directly from your business component. These strategies are
not that palatable, though, just because they tie together an object deep in the
model with an object that is used — potentially — on the fringe of the presentation
layer. You could imagine adding a fresh attribute to the EJB, regenerating the code
for the associated Transfer Object, and forgetting to revisit a particular client using
the Transfer Object (because it had no particular reason to use the new attribute).

Transfer Objects can also go stale. Vendors of EJB containers go to great lengths
to ensure that EJBs keep up to date with changes from multiple users of the EJB.
As soon as you copy the data from the EJB as you do with the Transfer Object, you
have an object bouncing around your system with data that will inevitably get out
of date. This may not matter very much, especially when you are only reading data.
However, you may not be able to remain complacent over multiple user update
issues. You may happily update values in the Transfer Object you are using. Yet in
the meantime, someone may have sneaked up and updated the underlying business
component. When you press the update button, what should happen? Should the
old values in your Transfer Object (as well as your changes) overwrite the changes
from the other user —which you were never aware of? Or should your changes
be rejected? To protect against this, you may introduce complexity into your
code —by adding some form of version control or locking to your system. When
you deal directly with EJBs, you could end up attempting to solve problems that EJB
container designers have already solved.

Transfer Object Pattern (Exam Objective 11.1 and 11.2) 751

752 Chapter 10: J2EE Patterns

ON THE CD

EXERCISE 10-6

Transfer Object Pattern
For this exercise, we’ll stick with the web application tied to legacy COBOL
programs that has dominated the previous two exercises. The COBOL program
update routines will disallow your update to a row on a table, if this row has been
updated by another user since you read the record for update. How could you use
Transfer Objects to integrate with this mechanism?

If you run the working example that accompanies this chapter, select the Transfer
Object pattern radio button option, and click the “Solution to Exercise” button,
you’ll fi nd a discussion of the above scenario. The URL to launch the working
example is likely to be

http://localhost:8080/lab10/controller

CERTIFICATION SUMMARY
In this chapter you surveyed around a quarter of the J2EE core patterns catalogue,
concentrating on the six J2EE patterns you need to know for the SCWCD exam.

You started by thinking about patterns in general—and how they supply a logical
design solution to a particular design problem. You examined

■ Intercepting Filter —and saw that this is a logical description of the Filter
mechanisms you met in Chapter 3. You learned that Intercepting Filter can be
used to manipulate or validate requests and responses on their way into or out of
a web application. You saw that fi lters can be independent and loosely coupled,
with a chain controlling the passage from one to another. You learned that a
principal benefi t of a fi lter chain like this is the avoidance of conditional code to
fulfi ll the same function copied and pasted around several points of entry to your
application.

■ Front Controller —you learned that this is used as a gateway into a web
application and can be used as a point where a request is authenticated before
passing on to real resources within the application. You also saw that navigation

can be greatly simplifi ed by adopting Front Controller. If all links lead to the
Front Controller, you appreciated how navigation might be controlled by logical
links.

■ Model View Controller —you saw that this is a bit less specifi c than the other
patterns; it describes how to separate out presentation logic and business logic,
then interpose a controller to mediate between them. You saw that in J2EE
terms, the View might be represented by JSPs, the controller by a class or
classes implementing the Front Controller pattern, and the model by a Business
Delegate (or at least, fronted by classes representing the Business Delegate
pattern). You learned how the view sends user actions to the controller, and
how the controller translates these into actions against the model. You learned
that this separation of concerns can help in practical project terms —allowing
developers with different skills to concentrate on components matched to their
area of expertise.

■ Business Delegate —you learned that this can be used as a translation layer
between a client wanting to use business routines (like a Front Controller) and
the business routines themselves. You further learned that the motive for this
is to hide some of the complexity that might come with business routines —for
example, where these involve calling methods on Enterprise JavaBeans. You
saw also that changes to business routines need not necessarily result in changes
to the interface that a Business Delegate exposes to its clients — so in this way,
the presentation layer has an element of protection from volatility in the model
layer.

■ Service Locator —you saw that this is effectively a helper to the Business
Delegate pattern. You learned that it is often the case in J2EE applications
that just fi nding the resources you want to use can be an expensive business,
involving calls to a naming service through JNDI. You saw how a Service Locator
can encapsulate this often complex code, and also cache references to business
objects once found.

■ Transfer Object — the last pattern you met, this encapsulates data in a simple
bean-like way. You learned that the idea of a Transfer Object is to return many
items of data at once, instead of making repeated calls to (potentially) remote
methods to get attributes one at a time. You saw how this can decrease network
traffi c, and —by giving the client a simple object to deal with — reduce the
complexity of client code.

Transfer Object Pattern (Exam Objective 11.1 and 11.2) 753

754 Chapter 10: J2EE Patterns

✓ TWO-MINUTE DRILL
Intercepting Filter Pattern

❏ Allows each incoming request (and outgoing response) to be pre-processed
(or post-processed).

❏ Acts as the fi rst port of call—before accessing a requested resource.

❏ Involves a fi lter chain of loosely coupled fi lters.

❏ A fi lter manager constructs each fi lter chain based on information in the
incoming request —most often the URL pattern used — so each request can
have a unique fi lter chain associated with it.

❏ Possible uses for fi lters include (but are not limited to): auditing,
transforming, compressing, decompressing and re-encoding.

❏ Because fi lters are deliberately loosely coupled (order of execution may even
not matter), they are bad at sharing information effi ciently.

Front Controller Pattern
❏ Acts as a centralized request handler.

❏ Can be used as a central initial point for authentication, authorization,
auditing, logging, and error handling.

❏ May make decisions on content handling —based on the requesting client (is
it a laptop or a wireless device?).

❏ Can be used to centralize error handling.

❏ Very often used for the fl ow of control through views in an application.

❏ Should delegate business processes to other classes (perhaps implementing
the Business Delegate pattern).

❏ Can make the management of security and navigation much easier.

❏ Can be used to centralize code that would otherwise be duplicated around
many separate resources.

Model View Controller Pattern
❏ Is a pattern not just defi ned within J2EE: It can be found on a smaller scale in

(for example) Swing components.

Two-Minute Drill 755

❏ Separates out data (the model) from the presentation of data (the view), by
having a controller object interposed between the model and the view.

❏ In J2EE terms, the view is often represented by JSPs and the model by
business components (like EJBs —fronted by Business Delegates), and
the controller is often a servlet (conforming to the Front Controller
pattern).

❏ The controller selects which view to display.

❏ The controller can embed security functionality —maybe disallowing some
requests from the view.

❏ This pattern can lead to a cleaner approach to application design, for
concerns are separated.

❏ This pattern can even suit projects where different developers have different
expertise — some developers may concentrate on business logic in the model
and others on presentation in the view JSPs.

Business Delegate Pattern
❏ An abstraction of the business layer, this pattern hides business services.

❏ This pattern presents

❏ a route into business services that stays constant even if the underlying
business services change in minor ways

❏ simpler access to business services

❏ Most often, this pattern is used to stop presentation code from accessing EJBs
directly.

❏ The complexity of EJB method calls is encapsulated in the Business
Delegate.

❏ May also cache the results of calling underlying business APIs.

❏ By reducing business API calls —which are often networked —a Business
Delegate can reduce network traffi c.

❏ May also cope with failing business services through retry and recovery code,
passing on failures to the presentation layer only when there is no other
option.

❏ May simplify the errors arising from business API calls, translating these to
more application-oriented messages.

756 Chapter 10: J2EE Patterns

Service Locator Pattern
❏ Is used to fi nd references to business services in the fi rst place.

❏ May take some of the load off the Business Delegate pattern.

❏ Typically encapsulates calls to naming service (JNDI) routines.

❏ May cache references to business objects, avoiding unnecessary repeated
JNDI calls.

❏ Reduces the need to have JNDI code at many points in the application —
wherever a business object must be found.

❏ Can help with application server migration; because some details of JNDI are
inevitably vendor-specifi c, it reduces the places where code needs to change.

Transfer Object Pattern
❏ Is used to encapsulate data returned from a business service (usually from an

EJB).

❏ All (or a meaningful subset) of the attributes on a business object are
collected together in a transfer object.

❏ Takes the form of a simple bean, with get and set methods.

❏ Is usually the return type for a getData() method on an EJB.

❏ The getData() method transfers the EJB attributes to the Transfer Object.

❏ Is usually the input parameter to a setData() method on an EJB.

❏ The setData() method takes attribute values on a Transfer Object, and
updates these on the EJB.

❏ Reduces the need for separate API calls to get individual attributes from a
remote business object.

❏ May contain stale data at variance with the originating business object
(because the business object has been updated by another user).

❏ May duplicate attribute defi nition and getter/setter methods from the EJB (or
other business object) with which it is associated.

Self Test 757

SELF TEST
The following questions will help you measure your understanding of the material presented in this
chapter. Read all the choices carefully because there might be more than one correct answer. The
number of correct choices to make is stated in the question, as in the real SCWCD exam.

 1. Which of the following patterns can reduce network overhead? (Choose one.)

 A. Model View Controller

 B. Business Delegate

 C. Service Locator

 D. Transfer Object

 E. All of the above

 F. B, C, and D above

 2. Which pattern insulates the presentation client code from volatility in business APIs?
(Choose one.)

 A. Business Delegate

 B. Service Layer

 C. Service Delegate

 D. Service Locator

 E. Model View Controller

 F. Business Service Locator

 3. A company has a message queuing system, accessible with complex Java APIs. The company
wants a new web application but also wants to minimize the specialized knowledge required to
write business code that accesses the queuing system. Which J2EE patterns might best help the
company with this problem? (Choose two.)

 A. Front Controller

 B. Front Director

 C. Business Controller

 D. Service Locator

 E. View Controller

 F. Business Delegate

758 Chapter 10: J2EE Patterns

 4. From the following list, choose benefi ts that are usually conferred by the Transfer Object
pattern. (Choose two.)

 A. Reduces network traffi c

 B. Packages data into an accessible form

 C. Decreases client memory use

 D. Reduces code dependencies

 E. Simplifi es EJB development

 5. A company wants to structure its development department on specialist lines so that web
designers can concentrate on page layout and Java developers can concentrate on business
API development. Which pattern should the company use in application development to best
support its organizational aims? (Choose one.)

 A. Service Locator

 B. View Helper

 C. Intercepting Filter

 D. Model View Controller

 E. Front Controller

 F. View Controller

 6. From the following list, choose benefi ts that are usually conferred by the Service Locator
pattern. (Choose two.)

 A. Acts as a wrapper around business API calls

 B. Reduces strain on the Business Delegate pattern

 C. Encapsulates naming service code

 D. Bridges gaps to non-Java (web services aware) platforms

 E. Caches business data

 7. Which of the following patterns might best be used to reject requests from a host machine with
“uk” in its domain name? (Choose one.)

 A. Front Controller

 B. Business Delegate

 C. Authentication Guard

 D. Request Analyzer

 E. Intercepting Filter

 F. Service Locator

Self Test 759

 8. From the following list, choose benefi ts that are usually conferred by the Model View Controller
pattern. (Choose two.)

 A. Insulation from volatility in business APIs

 B. Reduced EJB code

 C. Better graphical representation of information

 D. Decreased code complexity

 E. Separation of concerns

 F. Better project management

 9. Which of the following patterns might be used to dispatch a view containing an application-
friendly error message? (Choose one.)

 A. Business Delegate

 B. Front Controller

 C. Model View Controller

 D. View Controller

 E. Business Handler

 10. From the following list, choose benefi ts that are usually conferred by the Business Delegate
pattern. (Choose two.)

 A. Presentation code stability

 B. Less JNDI code

 C. Less layering

 D. Better business models

 E. Simplifi ed EJB code

 F. Better network performance

 11. Which scenario below could best use Transfer Object as a solution? (Choose one.)

 A. An application needs to have its navigation rationalized —at the moment, JSPs have URLs
pointing to other JSPs, and the naming is nonstandard throughout.

 B. Some developers inexperienced with EJBs are having trouble calling business routines
throughout a large application.

 C. An application appears to have hit a bottleneck when using some EJBs. On analysis, it
appears that there are numerous method calls to retrieve individual attributes.

 D. An application appears to have hit a bottleneck through excessive calls to the JNDI
naming service fronting an RMI registry.

760 Chapter 10: J2EE Patterns

 12. From the following list, choose benefi ts that are usually conferred by the Front Controller
pattern. (Choose three.)

 A. Imposes JSPs as views

 B. Reduces network traffi c

 C. Adds a single point of failure

 D. Acts a gateway for requests to the system

 E. Centralizes control of navigation

 F. Reduces complexity of links in JSPs

 13. Which of the patterns below will defi nitely reduce the lines of code in an application?
(Choose one.)

 A. Front Controller

 B. Front View

 C. Model View Controller

 D. Intercepting Filter

 E. None of the above

 14. From the following list, choose reasonable applications for the Intercepting Filter pattern.
(Choose one.)

 A. Re-encoding request or response data

 B. Unzipping uploaded fi les

 C. Authenticating requests

 D. Invalidating sessions

 E. All of the above

 F. A, B, and C above

 G. A and B above

 15. Which of the patterns below might reduce the lines of code in an application?
(Choose one.)

 A. Business Delegate

 B. Service Locator

 C. Intercepting Filter

 D. All of the above

LAB QUESTION
Write your own application that uses all the patterns in this chapter. Of course, you have been
working with my solution to this throughout the chapter.

Lab Question 761

762 Chapter 10: J2EE Patterns

SELF TEST ANSWERS
 1. � F is the correct answer. Business Delegate can reduce network overhead by caching results

of executing business methods (where appropriate). Service Locator can cache references to
remote objects to avoid making repeated networked calls to (mostly) JNDI code. Transfer
Object collects together lots of data that might otherwise be garnered by repeated network
calls.

 � A is incorrect —Model View Controller is about the separation of concerns and doesn’t
directly address any network issues. B, C, and D are all patterns that contribute to reducing
network overhead, but no one of these answers is correct on its own. E is incorrect because
MVC is included in the list.

 2. � A is the correct answer —Business Delegate wraps business APIs. If the business APIs
change, it may be unnecessary to change the interfaces that Business Delegate offers to clients
in the presentation tier.

 � B, C, and F are incorrect are they are made-up pattern names. D is incorrect — Service
Locator is used by Business Delegate, so it shouldn’t be directly exposed to presentation client
code. E is incorrect because the Model View Controller doesn’t specify how the Controller (the
presentation client code in the question) should be kept at arm’s length from the model.

 3. � D and F are the correct answers. The Service Locator pattern can be used to isolate the
code that fi nds references to the objects that give access to the queuing system. The Business
Delegate pattern can be used to translate simple method calls (used by the business code) into
the complex method calls required by the queuing system.

 � A is incorrect: Front Controller doesn’t address complexity at the model end. B, C, and E
are incorrect because they have made-up or incomplete pattern names.

 4. � A and B are the correct answers. Transfer Object can reduce network traffi c by encouraging
a call to one coarse-grained method instead of repeated calls to lots of fi ne-grained remote
methods. Transfer Object also packages data in a convenient and simple bean-like form.

 � C is incorrect — potentially, bulky Transfer Objects could increase client memory usage
rather than reducing it. D is incorrect —Transfer Object doesn’t reduce code dependencies;
it permeates several layers, so it increases them instead. E is incorrect — the Transfer Object
pattern implies increased work at the EJB development end: to defi ne Transfer Objects and
supply getData() and setData() methods, for example.

 5. � D is the correct answer. Model View Controller helps separate presentation and business
concerns in a design sense, and this can support the organization of projects in the way
described.

 � A is incorrect — Service Locator is a refi nement of the Java development side. B is
incorrect — there is a pattern called View Helper, but it’s a refi nement of Model View
Controller, so it’s not central to the issue at hand. The same goes for answer E, Front Controller.
C is incorrect —Intercepting Filter is independent of separating view and model development
management. Finally, F is wrong — there is no such thing as the View Controller pattern.

 6. � B and C. The Service Locator pattern is often used in conjunction with Business Delegate,
to take from it the responsibility of encapsulating naming service code.

 � A is incorrect —wrapping business API calls is actually the responsibility of the Business
Delegate pattern. D is incorrect, for there is nothing particular about Service Locator regarding
web services. There is potential for using a Service Locator to front the fi nding of a web service,
but it’s not a benefi t that can be described as being “usually conferred” by the pattern. Finally,
E is incorrect —again, it’s Business Delegate that may cache business data. Service Locator can
cache things —usually references to remote objects that don’t then have to be looked up again
through the naming service.

 7. � E is correct. An Intercepting Filter could be used to check the remote host and block the
request before it gets any farther into the application.

 � A is incorrect, though certainly possible —a Front Controller could perform this task.
However, for this particular sort of blanket authentication, I would judge that Intercepting
Filter is a better choice —and the question wanted the best pattern. C and D are incorrect, for
the names are made up. B and F are correct pattern names, but not right at all for this task.

 8. � E and F. Model View Controller is all about separation of concerns: different components
dedicated to different aspects. Though a more contentious claim, Model View Controller can
also lead to better project management, for different specialists (graphics programmers, business
API experts) can concentrate on their own areas.

 � A is incorrect —Business Delegate leads to insulation from business API volatility. B is
incorrect —MVC has nothing to say about the amount of EJB code. C is incorrect —MVC
doesn’t dictate how information is represented graphically. It might improve as a result of
separating concerns, but that’s a by-product — not a stated benefi t of the pattern. D is incorrect,
for MVC might actually increase code complexity because it is a more complex framework to
work within than simple JSPs accessing data with JSTL SQL custom actions, for example.

 9. � B is correct. Front Controller is used to dispatch to views in general— so it is the best
choice for redirecting to an error page.

 � A is incorrect —although Business Delegate might return an application-friendly exception
from one of its methods, it shouldn’t be used to dispatch to a view. C is incorrect —Model View
Controller is not specifi c enough (it’s the controller part we are interested in only). D and E are
incorrect, for they are not valid pattern names.

Self Test Answers 763

764 Chapter 10: J2EE Patterns

 10. � A and F are the correct answers. The primary reason for using the Business Delegate
pattern is to bring about presentation code stability. Presentation code is insulated from direct
use of business APIs. Also, Business Delegate often brings about better network performance by
caching data and avoiding calls to remote business objects if they don’t need to be repeated.

 � B is incorrect, for JNDI code is typically reduced by adopting the Service Locator pattern.
C is incorrect, for Business Delegate introduces another layer into your code, so it increases
layering. D is incorrect — nothing can improve business models except better analysis! E
is incorrect, for Business Delegates —although they are liable to use EJBs —don’t have any
necessary effect on the way EJBs are coded.

 11. � C is the correct answer. Transfer Object could be used to collate the individual attributes
on the EJB, so only one networked method call would be required to return all the attributes in
one go.

 � A is incorrect: Front Controller is used to rationalize navigation. B is incorrect —Business
Delegate is used to encapsulate (and minimize) EJB method calls. D is incorrect — Service
Locator is used to encapsulate (and minimize) JNDI calls.

 12. � D, E, and F are the correct answers. The Front Controller pattern does act as a gateway
for requests, and it should be used to centralize control of navigation. It is also likely to reduce
the complexity of links in JSPs; those links should all point to the Front Controller (preferably
through an attribute set fl exibly by the Front Controller itself).

 � A is incorrect because the Front Controller pattern doesn’t insist that you have to have JSPs
for the view element: applets, Swing clients, or even other applications are valid view clients
for the Front Controller. B is incorrect, for Front Controller makes no claim to reduce network
traffi c. C is incorrect —although Front Controller may become a single point of failure, this is
hardly a benefi t conferred by the pattern; it’s more of a drawback.

 13. � E is the correct answer. None of the patterns listed will unequivocally decrease the number
of lines of code in an application. Some may actually increase the lines of code (even though
the code is likely to be in a much better organized state).

 � A is incorrect —Front Controller may initially increase the number of components
and lines of code. It could reduce navigation code where this is embedded in many different
places, but not necessarily. B is incorrect —Front View doesn’t exist. C is incorrect —again,
Model View Controller may increase code, especially when fi rst introduced. D is incorrect, for
Intercepting Filter may just fulfi ll an additional requirement in the application. It may reduce
code where it takes over from code that has been copied and pasted into many separate points
of entry into an application.

 14. � E is the correct answer. All the applications listed in answers A through to D are
reasonable applications for the Intercepting Filter pattern. Re-encoding and unzipping tasks

are the classic province of fi lters. It is reasonable to use a fi lter to perform some form of
authentication. Equally, you might use a fi lter to invalidate a session — perhaps as the result of
an authentication or authorization check.

 � A, B, C, D, F, and G are incorrect answers based on the reasoning in the correct answer.

 15. � D is the correct answer —all of the above. Because the question (rephrased from question
13) is which patterns might reduce code, then all the patterns listed could do this. Business
Delegate can ultimately reduce code by locating EJB method calls in one place. Because an
EJB method call will have many lines of code just for exception handling, these multiply when
distributed across all the presentation code that might make EJB method calls. Service Locator
can reduce code in the same way, mainly for JNDI method calls. Finally, Intercepting Filter (as
noted in question 13 as well) may reduce code by locating some functionality in one place that
might otherwise be copied into (for example) all the servlets in an application.

 � A, B, and C are incorrect answers according to the reasoning in the correct answer.

LAB ANSWER
The lab answer is in the CD at sourcecode/ch10/ lab10.war. This is the example application that was
used throughout the chapter —detailed instructions on its deployment can be found at the beginning
of the chapter.

Lab Answer 765

