
B
General Exercise
Instructions

The exercises in the book almost all involve building and deploying web applications. This
appendix tells you what you will need to complete the exercises and covers

■ What software you need and where to get it

■ How to create a directory structure for your web applications and where to put
the fi les you create

■ How to set up your environment to compile Java source

■ Where to put other fi les related to your web applications

■ How to package your web applications

■ How to deploy your web applications on the Tomcat application server

■ How to make the supplied solutions work and how to inspect the source code

Downloading and Installing Software
There are three things you will need:

 1. Java2 Standard Edition (J2SDK), version 1.4.2

 2. Java2 Enterprise Edition (J2EE), version 1.4

 3. Tomcat application server

When you download the Java2 Enterprise Edition (item 2 in the preceding list),
you will have the opportunity to download the J2SDK (item 1 in the list) at the
same time. So if you don’t already have J2SDK 1.4.2, this might be a good option
for you. Both of these pieces of software are available from Sun:

■ J2SDK 1.4.2: http://java.sun.com/j2se/1.4.2/index.jsp

■ J2EE 1.4: http://java.sun.com/j2ee/1.4/download.html#sdk

You should download

■ All of J2SDK 1.4.2.

■ Only the Platform API Documentation for J2EE 1.4 (include J2SDK 1.4.2 as well
if you have not downloaded this separately). You won’t need Sun’s Application
Server or the J2EE 1.4 SDK examples for the purposes of this book (though you’re
welcome, or course, to download everything anyway).

Follow Sun’s download and installation instructions for your platform (this is a very
straightforward process).

772 Appendix B: General Exercise Instructions

Tomcat is a freely available, open-source application server from Jakarta Project,
part of the Apache Source Foundation. It also (still) advertises itself as the offi cial
reference implementation for Java Servlet and JavaServer Pages technologies.
This may seem a little at odds with Sun’s J2EE site, which now supplies its own
application server (Sun Java System Application Server Platform Edition 8.1 at the
time of writing). I’ve chosen to go with Tomcat for the purposes of this book. My
opinion is that it’s been around longer, has better documentation, and is a bit easier
to use than the Sun equivalent. And since it seems to retain its status as an offi cial
reference implementation (so should behave exactly as the examiners expect), I’m
happier recommending it. Of course, you can choose to do your own thing —use
the Sun reference implementation instead, or perhaps a commercial application
server like BEA’s Weblogic or IBM’s WebSphere. However, you’ll have to adapt the
instructions here and elsewhere in the book to suit. While I take care to point out
when a description is server specifi c (so not part of the exam syllabus) as opposed to
core J2EE behavior, this appendix and the exercise instructions rather assume that
Tomcat is your deployment platform.

Tomcat can be downloaded by taking a link from the product’s home page, which
is http://jakarta.apache.org /tomcat /index.html. Version 5.0.n is the best to use for
your exam preparation. I’ve used 5.0.27 in this book, but also cross-checked all the
solution code on Tomcat 5.5. The reason for not using Tomcat 5.5 is that you should
ideally run it on a 1.5.0 JDK (without exploiting any of the new language features).
However, if you do decide to use Tomcat 5.5, you can adapt it to run on J2SE 1.4.2,
but you will need to pay careful attention to the release notes (particularly the fi le
RUNNING.txt). In all events, Tomcat is easy to install—just follow its simple
installation instructions.

Creating a Directory Structure
for Web Applications

As discussed in Chapter 2, J2EE web applications adhere to a fairly strict directory
structure. Here’s how I suggest you organize directories to perform the exercises in
the book.

 1. Create a top-level directory for all your exercise work, for example,
C:\WebCert.

 2. Within this, create a directory that represents the chapter and exercise
number within the chapter as you come to it. The convention I follow
throughout (in the solution fi les as well) is exCCEE, where “ex” is constant,

Creating a Directory Structure for Web Applications 773

“CC” is the number of the chapter (01 for Chapter 1, 02 for Chapter 2, etc.),
and “EE” is the number of the exercise (01 for the fi rst exercise in a chapter,
02 for the second, and so on). So the fi rst exercise in the sixth chapter has
a dedicated directory called C:\WebCert\ex0601. This is equivalent to the
context directory in the deployed web application. You can use the same
naming convention for the context directory as I do —but do something
different if you want to deploy your own code and the solution code side by
side on the Tomcat server.

 3. Within this, create a WEB-INF subdirectory (e.g., C:\WebCert\ex0601\
WEB-INF).

 4. With the WEB-INF subdirectory, create three subdirectories: classes, lib, and
src: C:\WebCert\ex0601\WEB-INF\classes, C:\WebCert\ex0601\lib, and
C:\WebCert\ex0601\src in our example. The following illustration shows
the complete example structure.

774 Appendix B: General Exercise Instructions

C:\WebCert

\ex0601

\WEB-INF

/lib

/src

/classes

You’ll place Java source for servlets and any supporting classes in the WEB-
INF\src subdirectory for a given exercise’s context directory. If you are using
package names, you’ll need to create the relevant subdirectories under WEB-INF\
src to support these. My solution fi les follow this package structure: webcert.chCC
.exCCEE, where CC is the chapter number and EE is the exercise number within the
chapter (zero prefi xed). Therefore, the last element of the package name is the same
as the context directory. You can use the same naming convention or use your own.

When I say “if you are using package names,” it’s not really an option in J2EE
1.4. The so-called “default package” is disallowed —and quite right, too. Whatever

Java source you’re writing, there’s no excuse for not providing a package structure!
Although some JSP containers will let you get away with using the default package,
I suggest you get into good habits from the start. As a bonus for me telling you this,
note that the package name topic might come up in the exam!

Compiling Java Source
Having placed your web application source in the relevant directory, compiling from
a command line is no different from normal Java projects. First change to the src
directory for the web application you’re working on. For example,

cd C:\WebCert\examp0401\WEB-INF\src

Since most of what you will be doing relies on servlet technology, however,
you will have to ensure that the base J2EE servlet packages are available on your
class path. These will live with your Tomcat installation in <tomcat-installation-
directory>/common / lib/servlet-api.jar. For example, on my Windows machine, I
set the classpath as follows:

set classpath=.;C:\Java\jakarta-tomcat-5.0.27\common\lib\
servlet-api.jar

To compile a Java source fi le (servlet or otherwise),

■ Switch to the src directory under WEB-INF for the context directory for the
exercise or lab.

■ Enter a compilation command in the form

javac your/package/structure/YourServlet.java -d ..\classes

By using -d ..\classes, the compiled class fi les will be placed in the classes
directory under WEB-INF.

Other Files
Any other fi les you need to create for the exercise should be placed in the web
application directory structure as indicated by the exercise instructions. For
example,

Other Files 775

■ web.xml— the web application deployment descriptor —will live directly in the
WEB-INF directory.

■ JavaServer Pages will normally live in the context directory of your web
application directory structure (the one above WEB-INF, e.g., ex0601).

Packaging Web Applications
So you have your compiled code and other related fi les. The next thing you need to
do is to package up your web application for deployment on a suitable server such as
Tomcat. To do this, you use the jar utility to create a java archive, with the subtle
difference that you call the resulting fi le a .war fi le (web archive). Web archive fi les are
fully described in Chapter 2, but for now all you need to know is how to create one.

Suppose the name of the exercise context directory is ex0601. On a command
line, navigate to the directory above this (C:\WebCert). Then enter the following:

jar cvf0 ex0601.war ex0601

This creates an archive fi le called ex0601.war in C:\WebCert, which contains the
full contents of the C:\WebCert\ex0601 directory (including all the sub-directories
and fi les within them).

Deploying Web Applications on Tomcat
Under Tomcat, deploying is the easy part. You’ll need to follow the Tomcat
documentation so you are at least familiar with starting and stopping the Tomcat
server and looking at the Tomcat server console. Beyond that, the default behavior
of Tomcat (for a new installation) is to automatically deploy web applications.
All you have to do is to put the .war fi le you just created in the right place, which
is <tomcat installation directory>/webapps. With the Tomcat application server
started, you will see two things happen. First, messages appear in the console to
denote that your application is being installed, as shown in the following illustration:

776 Appendix B: General Exercise Instructions

Second, your .war fi le is “un-jarred” (unzipped) into its own directory structure under
<tomcat installation directory>/webapps. The structure will mirror exactly the one
you built in your development area C:\WebCert.

At this point, your application is ready to run. Again by default, Tomcat listens
for your requests on port 8080 on the PC on which it is installed. Assuming you
are running your browser on the same PC, you can access resources in your web
application with a URL such as the following:

http://localhost:8080/<context name>/<resource name>

Therefore, if the context is ex0601 and the resource you want to access is called
lifecycle.jsp, then the URL would be

http://localhost:8080/ex0601/lifecycle.jsp

If you get an HTTP 404 (page not found) error in your browser, then check the
following:

■ You spelled everything correctly, including using the correct upper- and lowercase
letters.

■ You have an appropriate <servlet-mapping> in web.xml (see Chapter 2).

■ The application deployed correctly: There are no errors in the Tomcat server
console window.

■ The resource you’re after has actually been expanded into the directory.

An HTTP 500 error indicates a Java problem running your servlet or server
page — the error may show up in your browser window, or you may need to look for
errors in the Tomcat server console window.

Tomcat is smart about recognizing when a .war fi le has been updated. Therefore,
if you re-deploy a new .war to the webapps directory, overwriting one with an earlier
date, Tomcat will elegantly close the current version of the application and deploy
the new one.

In some of the earlier exercises, you bypass the steps of making and deploying
the WAR fi le. On Tomcat, you can get away with copying the working directory
structure for your application to the webapps directory. After a server restart, Tomcat
will recognize your new application. However, this is more of a workaround until
you are comfortable with WAR fi le creation —later exercises (from around Chap-
ter 3) expect you to make WAR fi les from your working directories and deploy them,
instead of copying your working directories directly to the Tomcat webapps directory.

Deploying Web Applications on Tomcat 777

Solution Code
The solution code for each of the exercises and the labs can be found on the CD.
There’s a .war fi le for almost every one (for the handful where this isn’t true, the
exercise is not directly code based). Deploying the solution code follows the same
pattern as for your own code: Place each .war fi le as needed in <tomcat-installation-
directory>/webapps. The .war will automatically expand and deploy. Look in the
directory structure (under WEB-INF/src) for the accompanying Java source code,
wherever appropriate.

Using Your Own IDE
What I’ve outlined here uses the most basic, but most commonly available
development tooling — the command line facilities of the J2SDK. There is no
compulsion to do this. If you are already familiar with an integrated development
environment that supports servlet and JavaServer Page development and
deployment, by all means use it. I freely confess that I haven’t used the J2SDK
in preparation of this book: I worked with the open-source Eclipse Java IDE, in
combination with a plug-in called Lomboz, which facilitates J2EE web application
development. Lomboz is freely available from http://www.objectlearn.com.

There are dangers in using an IDE to learn a technology for certifi cation — their
ease-of-use features sometimes obscure what you need to know for an exam. For
example: IBM’s Rational Application Developer has a sophisticated graphical user
interface for manipulating the information in the web deployment descriptor, web.
xml. For the exam, though, you must be familiar with web.xml in its naked, textual
form. (And much to the credit of IBM Rational Application Developer, you have
the choice to switch to a “source level” view of web.xml and edit it as a text fi le in
tandem with the GUI approach.)

Some certifi cation books take a purist approach and suggest that you avoid IDEs
altogether for technology-learning purposes. I take a more pragmatic stance —do
whatever you’re comfortable with. Use the tools if you’re already familiar with them
and you’re aware of the areas where the tools do too much for you. If you don’t use
tools already, or would rather avoid them while learning, work at ground level with a
text editor and the J2SDK.

778 Appendix B: General Exercise Instructions

